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Goal: study two-dimensional materials (embedded in 3d space).

# 2d material in 2d space (e.g. with the 2d Coulomb kernel).

Questions:
@ What should be the size of the «simulation box»?

@ What is the decay of the electronic density or mean-field potential away from the plane?

In this talk, we consider homogeneous materials, modelled by a charge density

p(x1, 2, w3) = p(xs) € L' (R).

and study the properties of the electronic density in Thomas-Fermi and Kohn-Sham models.

Remarks
@ Very crude approximation (we lose the microscopic details of the material);

o This model should have the correct decay properties away from the slab (the details fade away).
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Thomas-Fermi model




Recall the (three-dimensional) Thomas-Fermi energy (assume p € C§° (R3))
1
Vpe L' R N LY/3(R®), p>0, & (p) = CTF/ P + S Ds(p = ),
R3

with the three-dimensional Coulomb energy

i,
s = [ s T Pazay,

The model is convexin p. In particular, if 1 satisfies some symmetries, then p satisfies the same symmetries.
If 1 only depends on 3, we may assume that p also depends on z3 only.

We define the Thomas-Fermi energy per unit surface

1
vp e LARNL®), ) i=em [ 00+ Dilo - n),
R

with the one-dimensional Coulomb energy
Di(f) := —2m // f(@)f(y)|z — y|dzdy.

Thomas-Fermi minimization (for neutral systems only)

prr = argmin{ﬁF(p), pe L'(R)NL3(R), p>0, /p=/u=: Z}-
R R
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prr = argmin{SfF(p), p e L'(R)NL3(R), p>0, /p:Z}-
R

Key remark: It is a (very) simple model (one-dimensional, no derivatives, ...).

Proposition

There is a unique minimizer ptr. It is the (unique) solution to the Thomas-Fermi equation

%chp%{3 =\ —2m)+
_(b'/l'/F = 47T(pT1: — /1,), <I>-’n_-(:|:oo) = 0, (IDTF(O) =0.

Here, A € R is the Fermi level, chosen so that fR p = Z, and @y is defined as the unique solution of the
second equation.

Remark: There is no reference energy in 1d (the 1d Green’s function does not have a limit at infinity).
Only the difference V1r := ®1r — A, called the mean-field potential, makes sense.

The proof is similar to the ones of the usual Thomas—Fermi model (see [Lieb/Simon, Adv. Math. 23, 1977]).
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Screening properties
Let f € C§°(R) be such that [, f = 0. The potential generated by f is formally

Qf(z) = *2W/Rf(y)lr — yldy.

We have ® ¢ (c0) = 27r/ f(y)ydy and @ ¢ (—o0) = —27r/ fy)ydy.
R R
The difference ® ¢ (c0) — ® ¢(—00) = 4r [ f(y)ydy is called the dipolar moment.

Proposition (perfect screening)

Assume |z|pu(z) € L*(R). Then |z|ptr(z) € L' (R) as well, and the Thomas-Fermi potential Viy satisfies

lim Vip(z) = lim Vip(z) =0. (no dipolar moment.)
xr—r-+00 r—r—00

Proposition (Sommerfeld estimates)

Assume p is compactly supported in [a, b]. Then, there is zq, xp € R so that

—c1 c2
Ve <a, Vir(z)= CErRT and prr(x) = [EErsL
—ci1 c2
2 > b7 A\ = —ry d =\
m e () o ™ prr() (@ — 25)0
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Interlude: the 1d Coulomb operator




For L > 0, we consider the LZQ-periodic Green’s function G, solution to

—A3GL :471' Z 6(R1,R2,0)'
(R1,R2)€LZ?

A computation shows that (we write x = (21, z2))

2 2w e~ lk|-z3] dox
Gr(xes) = ~ 5 los| + 5 > Tek
ke (27 /L)Z2\{0}

@ We recognize the 1d Coulomb kernel in red.

@ The other part is oscillating in x, and exponentially decaying away from the slab («details fade away»).

If f(x,z3) = f(x3) only depends on the third variable, then
/ f(y,y3)GL(x — y; 23 — y3)dydys = 7277/ f(y3)lzs — ys|dys.
[0,L]2 xR R

and, with obvious notation,

David Gontier



Define the Hartree term

Di(f) == —2m //]RX]R f@)f(y)|x — yldady, | (well-defined whenever (1 + |z|) f(x) € L*(R)).

Warning: The map f — Dy (f) is not convex.
Di(tf + (1= )g) = tD1(f) = (1 = )D1(g) = —t(1 = D1(f = 9).

If f — g =: his positive pointwise, thenﬁl(f' —g) = ﬁ(h) < 0.

We define a regularized version of the Hartree term,

|F(k)[?
k:2

Di(f) = 47r/]R dk :47r/R|Wf|2(cc)dz, with Wy (z) := /j f(y)dy.

This is well-defined whenever Wy € L?(R). In particular, W (c0) = [; f = 0 (neutral system only).

Lemma

o The map f +— D1 (f) is strictly convex on C := {f € LY(R), Wy € L2(R)}.
o Iff € C satisfies |z| f(z) € L1(R), then D1(f) = D1(f).

sysec D =tn [[ 0 mindel, ) Sty = [ @0 @
+ —

2min{|z, [y[}  on (Ry)?U(R-)?

Idea of the proof.  |z|+ |y| — |z —y| = {0 .
else.
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Kohn-Sham models (reduced Hartree-Fock)




One-body density matrix: v € S(L2(R3)) satisfying the Pauli principle 0 < v < 1.
For homogeneous 2d materials, we request that v commutes with all R? translations:
VR e R2 C R?, 7y =7, with mRf(x, z3) = f(x — R, x3).

Equivalently, v(x, z3;y,y3) = 7(x — y,23;0,y3) =: v(x — y, Z3, y3).

For such one-body density matrix, the density p~ (x, z3) := v(x, x3; X, 3) satisfies

pv (X, 23) = py(x3).

Trace per unit surface. Set T' := [0, 1]? x R C R3 (tube),

Tr(y) := Trz(Irylr) = /pr(xg)d:cg.

reduced Hartree-Fock energy per unit surface

1 1
£ (7) = STr(=As7) + 5 Dilpy — )

Remark: This energy still depends on the three-dimensional object v € S(L?(R?)).

Can we find a reduced one-dimensional model?
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Minimization set = P N {, Tr (v) = Z} (neutrality condition) with

Pi={yeS(L*R?), 0<y<1, VRER? mgy=7mR}.

Theorem (DG, Lahbabi, Maichine, 2021)
Introduce G := {G € S(L2(R)), G >0, Tri(G)< o0} . Then, for any (representable) density p,

1 1
inf{im—m), YEP, py= p} - inf{ETn(—AlG) +7TH(G?), GEG, pg= p} .

Remarks:
@ Works for general Kohn-Sham models (assuming no «in-plane» symmetry breaking).
o The new minimization problem is set on operators acting on L?(R').
o There is no Pauli principle for G. It is replaced by a penalization term +7Tr(G?) in the energy.
o The term Tr(G?) is sometime called the Tsallis or Rényi entropy.

Constrained-search
1 1
inf { £4HF =infq =D1(p — inf ¢ —Tr(—A
inf {57 (1)} = inf{ S D1l —p) + inf | STr(=As7)

1 1
= inf{fDl (p—p) + inf {7Tr1(—A1G) + wTry (Gz)}} = inf &M (@)
P 2 G—p | 2 G

with the reduced rHF model

1 ].
EM(G) = ST (=A1G) + 7T (GP) + S Di(pG — ).
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Proof of the theorem
Consider F : L?(R3) — L?(R3) the partial Fourier transform

- e*X f(x, x3)dx
(Foms) = o [ rnm)ax

Bloch theory. Since v € P commutes with R2-translations, there is {i }xcr2 With 1 € S(L2(R)) so
that

Fart= [ k| inthesense (P1f) () = w [(F)0 )]

We have
1 1

0< 1 <1, = — , and Tr(y)= —— [ T .
SwsLhop =g /Rz Py; and Tr(y) @2 /Rz 11 (Vi)

Now, we set

1 " X 1
G:= e /R? Ykdk, | inthe sense Gf = W /]1&2 (v f)dk.
We have
1 1
G20, pc= W B2 P = Py, Tri(G) = 2m)2 Jr2 Tr1 () = Tr (7).
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Kinetic energy
Since F(—A3)F~1 = k|2 + (A1),

Tr (—Azy) = (2;)2 /R2 (|kI*Tr(vie) + Tr1(—A1me))dk
- # /R2 [k|>Tr(vi)dk + Tr1 (—A1G).

Write G = Y g;|¢;) (0], with g; > 0and > g; = Tr1(G), and define

1
‘m](k) = (¢j:’7k¢j>7‘ sothat 0 <mj(k) <1 and W/R? mj(k)dk = g;.

Then

L[ kT dk = —1 2,0
@2 '/RQ P Temdle = 53 XJ:/RQ |k|?m; (k)dk

S 2 U otk g,
> @2 zj:mm{/R2 [k|*m(k)dk, 0 < m(k) <1, E /R2 (k)dk gj}.

«Bathtub principle»: the minimum is obtained for m} (k) = 1 (k| < k;) with k; = 2,/7g;.
This proves
1

@ /32 k[*Tr(n)dk > 27 Y g2 = 2nTry (G?).

J

Conversely, given G = 3~ g;|$;)(4; |, we have equality for v* defined by

(52}
. :/R e with = S m (016 (e O
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We now study the one-dimensional minimization problem

inf{%Trl(fAG) + 7T (G?) + %Dl (0 — ), G €S(LA(R)), G >0, Try(G) = z} .

Proposition
There is a unique minimizer G. This minimizer satisfies the Euler-Lagrange equations
1
Gy = 5-(A— Hi)4

H.:=—1A+d,
—® =dm(px —p), Pi(xo0) =0, 24(0) =0.

Remarks
o The problem is strictly convex in G, due to the Tr1 (G?) term (hence uniqueness of the minimizer).
o We have G, = i()\ — H.)4 instead of the usual v« = 1 (A — Hy > 0).

o In particular, since A — Tr(A — Hy )y is strictly increasing, the Fermi level is unique.

Proposition

Assume |z|3p(x) € LY(R). Then, if |z|3p(z) € L' (R) as well, G is finite rank, and its density ps is
exponentially decaying away from the slab.
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Numerical illustrations




Numerical results 1

pi(z) = 1(Jz| < 2)
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Remarks

o The Thomas-Fermi density prr and rHF density p+ are very close!

o The optimal G« has 15 positive eigenvalues. The largest one is around 1.07.




Numerical results 2 (with dipolar moment)

po(z) =1(-5 <z < -2)+2-1(l <z < 3)
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Remarks

o The Thomas-Fermi density prr and rHF density p4 are very close!
@ The optimal G« has 17 positive eigenvalues. The largest one is around 1.44.

o The screening in the rHF model is close to perfect!
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Numerical results 3 (smooth case)

pn3(x) = e (e +2)? +2- e (@)%,
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Remarks

@ The Thomas-Fermi density prr and rHF density p« are extremely close!
o The optimal G« has 19 positive eigenvalues. The largest one is around 1.32.

o The screening in the rHF model is close to perfect!
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Numerical results 3 (smooth case)
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Remarks

@ The Thomas-Fermi density prr and rHF density p« are extremely close!
o The optimal G« has 19 positive eigenvalues. The largest one is around 1.32.

o The screening in the rHF model is close to perfect!

Thank you for your attention
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A Lieb-Thirring type inequality




General dimension
Let v € S(L?(R*T%)) be translationally invariant in its first s variables, and so that 0 < v < 1.
Then there is G € S(L?(R%)) so that p, = pg and

Tr (—Ayrq) > Trg (—AgG) + 2e1p(s)Trag (G 2). ‘

Conversely, for each G, there is a 7y such that we have equality.
If there is equality, the «Lieb-Thirring» inequality for y gives
142 I+t
Trd (—AdG) =+ QCTF(S)TI’d(G 5 ) = E(—Asﬁ»d’y) 2 KLT(d =+ S) 4 Pa c.
R

After optimization over scaling A — AG, we obtain

Theorem (Lieb-Thirring type inequality)
There is a constant K so that, for all G € S(L? (Rd)) with G > 0, and forall s € N,

1+-2 1\ 1+3 s\ s/d
K (/Rd Pa s+d) < (Trd(GHd)) Trg (—AqG) .
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This type of inequalities was recently studied in [Frank/Gontier/Lewin, Commun. Math. Phys. 384 (2021)].

Theorem (Frank, DG, Lewin, 2021)
Foralld > 1andalll <p <1+ %, there is an optimal constant K, 4 so that, for all G € S(L?(R?)),

2p+d—dp

01
0
Kpa ([, oh) " < @@ Tea (-06), where = ZEI=A

In addition, K}, 4 is the dual constant of the usual Lieb-Thirring constant L, g, in the sense

2y

2 o d( d ) . d D ¥
K L d — ,  with 4+ —-=——, sothat —— =q.
pat (L.a) <7+g> 2y +d R R y—1 1

The previous case corresponds top = 1 + d%rs’ which gives y = 1 + 3.

In particular, v > %: the best constant is the semi-classical one.

In other words, foralld € Nand s € N,
1 1+2 I+ g3
ETrd (—A4G) + etr(s)Trg(G T5) > erp(d + ) L Pa .
JR

The reduced rHF energy is greater than the reduced Thomas-Fermi one.
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