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Goal: study two-dimensional materials (embedded in 3d space).

6= 2d material in 2d space (e.g. with the 2d Coulomb kernel).

Questions:
What should be the size of the «simulation box»?
What is the decay of the electronic density or mean-field potential away from the plane?

In this talk, we consider homogeneous materials, modelled by a charge density

µ(x1, x2, x3) = µ(x3) ∈ L1(R).

and study the properties of the electronic density in Thomas-Fermi and Kohn-Sham models.

Remarks
Very crude approximation (we lose the microscopic details of the material);
This model should have the correct decay properties away from the slab (the details fade away).
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Thomas-Fermimodel
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Recall the (three-dimensional) Thomas-Fermi energy (assume µ ∈ C∞
0 (R3))

∀ρ ∈ L1(R3) ∩ L5/3(R3), ρ ≥ 0, ETF
3 (ρ) := cTF

ˆ
R3

ρ5/3 +
1

2
D3(ρ− µ),

with the three-dimensional Coulomb energy

D3(f) :=

¨
R3×R3

f(x)f(y)

|x− y|
dxdy.

The model is convex in ρ. In particular, if µ satisfies some symmetries, then ρ satisfies the same symmetries.

If µ only depends on x3, we may assume that ρ also depends on x3 only.

We define the Thomas-Fermi energy per unit surface

∀ρ ∈ L1(R) ∩ L5/3(R), ETF
1 (ρ) := cTF

ˆ
R
ρ5/3 +

1

2
D1(ρ− µ),

with the one-dimensional Coulomb energy

D1(f) := −2π

¨
R×R

f(x)f(y)|x− y|dxdy.

Thomas-Fermi minimization (for neutral systems only)

ρTF := argmin
{
ETF
1 (ρ), ρ ∈ L1(R) ∩ L5/3(R), ρ ≥ 0,

ˆ
R
ρ =

ˆ
R
µ =: Z

}
.
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ρTF := argmin
{
ETF
1 (ρ), ρ ∈ L1(R) ∩ L5/3(R), ρ ≥ 0,

ˆ
R
ρ = Z

}
.

Key remark: It is a (very) simple model (one-dimensional, no derivatives, …).

Proposition
There is a unique minimizer ρTF. It is the (unique) solution to the Thomas-Fermi equation{

5
3
cTFρ

2/3
TF = (λ− ΦTF)+

−Φ′′
TF = 4π(ρTF − µ), Φ′

TF(±∞) = 0, ΦTF(0) = 0.

Here, λ ∈ R is the Fermi level, chosen so that
´
R ρ = Z , and ΦTF is defined as the unique solution of the

second equation.

Remark: There is no reference energy in 1d (the 1d Green’s function does not have a limit at infinity).
Only the difference VTF := ΦTF − λ, called the mean-field potential, makes sense.

The proof is similar to the ones of the usual Thomas–Fermi model (see [Lieb/Simon, Adv. Math. 23, 1977]).
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Screening properties
Let f ∈ C∞

0 (R) be such that
´
R f = 0. The potential generated by f is formally

Φf (x) := −2π

ˆ
R
f(y)|x− y|dy.

We have Φf (∞) = 2π

ˆ
R
f(y)ydy and Φf (−∞) = −2π

ˆ
R
f(y)ydy.

The difference Φf (∞)− Φf (−∞) = 4π
´
R f(y)ydy is called the dipolar moment.

Proposition (perfect screening)
Assume |x|µ(x) ∈ L1(R). Then |x|ρTF(x) ∈ L1(R) as well, and the Thomas-Fermi potential VTF satisfies

lim
x→+∞

VTF(x) = lim
x→−∞

VTF(x) = 0. (no dipolar moment.)

Proposition (Sommerfeld estimates)
Assume µ is compactly supported in [a, b]. Then, there is xa, xb ∈ R so that

∀x < a, VTF(x) =
−c1

(x− xa)4
, and ρTF(x) =

c2

(x− xa)6
,

∀x > b, VTF(x) =
−c1

(x− xb)4
, and ρTF(x) =

c2

(x− xb)6
.

with the constants c1 :=
55c3TF
27π2

and c2 :=
56c3TF
27π3

.

See [Sommerfeld, Zeitschrift für Physik 78(5–6) (1932)] and [Solovej, Ann. Math., (2003)] in the usual case.
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Interlude: the 1dCoulomboperator
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For L > 0, we consider the LZ2-periodic Green’s function GL, solution to

−∆3GL = 4π
∑

(R1,R2)∈LZ2

δ(R1,R2,0).

A computation shows that (we write x = (x1, x2))

GL(x, x3) = −
2π

L2
|x3|+

2π

L2

∑
k∈(2π/L)Z2\{0}

e−|k|·|x3|

|k|
eik·x.

We recognize the 1d Coulomb kernel in red.
The other part is oscillating in x, and exponentially decaying away from the slab («details fade away»).

If f(x, x3) = f(x3) only depends on the third variable, then
ˆ
[0,L]2×R

f(y, y3)GL(x − y;x3 − y3)dydy3 = −2π

ˆ
R
f(y3)|x3 − y3|dy3.

and, with obvious notation,
1

L2
D3,L(f) = D1(f).
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Define the Hartree term

D̃1(f) := −2π

¨
R×R

f(x)f(y)|x− y|dxdy, (well-defined whenever (1 + |x|)f(x) ∈ L1(R)).

Warning: The map f 7→ D̃1(f) is not convex.
D̃1(tf + (1 − t)g) − tD̃1(f) − (1 − t)D̃1(g) = −t(1 − t)D̃1(f − g).

If f − g =: h is positive pointwise, then D̃1(f − g) = D̃1(h) < 0.

We define a regularized version of the Hartree term,

D1(f) := 4π

ˆ
R

|f̂(k)|2

k2
dk = 4π

ˆ
R
|Wf |2(x)dx, with Wf (x) :=

ˆ x

−∞
f(y)dy.

This is well-defined whenever Wf ∈ L2(R). In particular, W (∞) =
´
R f = 0 (neutral system only).

Lemma
The map f 7→ D1(f) is strictly convex on C := {f ∈ L1(R), Wf ∈ L2(R)}.

If f ∈ C satisfies |x|f(x) ∈ L1(R), then D1(f) = D̃1(f).

If f ∈ C, then D1(f) = 4π

¨
(R+)2∪(R−)2

min{|x|, |y|}f(x)f(y)dxdy =

ˆ
R
f(x)Φf (x)dx.

Idea of the proof. |x|+ |y| − |x− y| =
{
2min{|x|, |y|} on (R+)2 ∪ (R−)2

0 else.
David Gontier DFT for 2d materials 9 / 19



Kohn-Shammodels (reducedHartree-Fock)
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One-body density matrix: γ ∈ S(L2(R3)) satisfying the Pauli principle 0 ≤ γ ≤ 1.

For homogeneous 2d materials, we request that γ commutes with all R2 translations:

∀R ∈ R2 ⊂ R3, τRγ = γτR, with τRf(x, x3) := f(x − R, x3).

Equivalently, γ(x, x3; y, y3) = γ(x − y, x3; 0, y3) =: γ(x − y, x3, y3).

For such one-body density matrix, the density ργ(x, x3) := γ(x, x3; x, x3) satisfies

ργ(x, x3) = ργ(x3).

Trace per unit surface. Set Γ := [0, 1]2 × R ⊂ R3 (tube),

Tr (γ) := Tr3(1Γγ1Γ) =

ˆ
R
ργ(x3)dx3.

reduced Hartree-Fock energy per unit surface

E rHF
3 (γ) :=

1

2
Tr (−∆3γ) +

1

2
D1(ργ − µ).

Remark: This energy still depends on the three-dimensional object γ ∈ S(L2(R3)).

Can we find a reduced one-dimensional model?
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Minimization set = P ∩ {γ, Tr (γ) = Z} (neutrality condition) with

P :=
{
γ ∈ S(L2(R3)), 0 ≤ γ ≤ 1, ∀R ∈ R2, τRγ = γτR

}
.

Theorem (DG, Lahbabi, Maichine, 2021)
Introduce G :=

{
G ∈ S(L2(R)), G ≥ 0, Tr1(G) < ∞

}
. Then, for any (representable) density ρ,

inf
{
1

2
Tr (−∆3γ), γ ∈ P, ργ = ρ

}
= inf

{
1

2
Tr1(−∆1G) + πTr(G2), G ∈ G, ρG = ρ

}
.

Remarks:
Works for general Kohn-Sham models (assuming no «in-plane» symmetry breaking).
The new minimization problem is set on operators acting on L2(R1).
There is no Pauli principle for G. It is replaced by a penalization term +πTr(G2) in the energy.
The term Tr(G2) is sometime called the Tsallis or Rényi entropy.

Constrained-search

inf
γ

{
E rHF
3 (γ)

}
= inf

ρ

{
1

2
D1(ρ− µ) + inf

γ→ρ

{
1

2
Tr (−∆3γ)

}}
= inf

ρ

{
1

2
D1(ρ− µ) + inf

G→ρ

{
1

2
Tr1(−∆1G) + πTr1(G2)

}}
= inf

G
E rHF
1 (G)

with the reduced rHF model

E rHF
1 (G) :=

1

2
Tr1(−∆1G) + πTr1(G2) +

1

2
D1(ρG − µ).
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Proof of the theorem
Consider F : L2(R3) → L2(R3) the partial Fourier transform

(Ff)(k, x3) =
1

(2π)

ˆ
R2

eik·xf(x, x3)dx.

Bloch theory. Since γ ∈ P commutes with R2-translations, there is {γk}k∈R2 with γk ∈ S(L2(R)) so
that

FγF−1 =

ˆ ⊕

R2
γkdk, in the sense (Fγf) (k, ·) = γk [(Ff)(k, ·)] .

We have
0 ≤ γk ≤ 1, ργ =

1

(2π)2

ˆ
R2

ργk , and Tr (γ) =
1

(2π)2

ˆ
R2

Tr1(γk).

Now, we set

G :=
1

(2π)2

ˆ
R2

γkdk, in the sense Gf =
1

(2π)2

ˆ
R2

(γkf)dk.

We have

G ≥ 0, ρG =
1

(2π)2

ˆ
R2

ργk = ργ , Tr1(G) =
1

(2π)2

ˆ
R2

Tr1(γk) = Tr (γ).
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Kinetic energy
Since F(−∆3)F−1 = |k|2 + (−∆1),

Tr (−∆3γ) =
1

(2π)2

ˆ
R2

(
|k|2Tr(γk) + Tr1(−∆1γk)

)
dk

=
1

(2π)2

ˆ
R2

|k|2Tr(γk)dk + Tr1(−∆1G).

Write G =
∑

gj |φj〉〈φj |, with gj ≥ 0 and
∑

gj = Tr1(G), and define

mj(k) := 〈φj , γkφj〉, so that 0 ≤ mj(k) ≤ 1 and
1

(2π)2

ˆ
R2

mj(k)dk = gj .

Then
1

(2π)2

ˆ
R2

|k|2Tr(γk)dk =
1

(2π)2

∑
j

ˆ
R2

|k|2mj(k)dk

≥
1

(2π)2

∑
j

min
{ˆ

R2
|k|2m(k)dk, 0 ≤ m(k) ≤ 1,

1

(2π)2

ˆ
R2

m(k)dk = gj

}
.

«Bathtub principle»: the minimum is obtained for m∗
j (k) = 1 (|k| < kj) with kj = 2

√
πgj .

This proves
1

(2π)2

ˆ
R2

|k|2Tr(γk)dk ≥ 2π
∑
j

g2j = 2πTr1
(
G2
)
.

Conversely, given G =
∑

j gj |φj〉〈φj |, we have equality for γ∗ defined by

γ∗ :=

ˆ ⊕

R2
γ∗
k , with γ∗

k :=
∑
j

m∗
j (k)|φj〉〈φj |.
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We now study the one-dimensional minimization problem

inf
{
1

2
Tr1(−∆G) + πTr1(G2) +

1

2
D1(ρG − µ), G ∈ S(L2(R)), G ≥ 0, Tr1(G) = Z

}
.

Proposition
There is a unique minimizer G∗. This minimizer satisfies the Euler-Lagrange equations

G∗ = 1
2π

(λ−H∗)+

H∗ := − 1
2
∆+Φ∗

−Φ′′
∗ = 4π(ρ∗ − µ), Φ′

∗(±∞) = 0, Φ∗(0) = 0.

Remarks
The problem is strictly convex in G, due to the Tr1(G2) term (hence uniqueness of the minimizer).
We have G∗ = 1

2π
(λ−H∗)+ instead of the usual γ∗ = 1 (λ−H∗ > 0).

In particular, since λ 7→ Tr(λ−H∗)+ is strictly increasing, the Fermi level is unique.

Proposition
Assume |x|3µ(x) ∈ L1(R). Then, if |x|3ρ(x) ∈ L1(R) as well, G∗ is finite rank, and its density ρ∗ is
exponentially decaying away from the slab.
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Numerical illustrations
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Numerical results 1

µ1(x) = 1(|x| < 2)

Remarks
The Thomas-Fermi density ρTF and rHF density ρ∗ are very close!
The optimal G∗ has 15 positive eigenvalues. The largest one is around 1.07.
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Numerical results 2 (with dipolar moment)

µ2(x) = 1(−5 < x < −2) + 2 · 1(1 < x < 3)

Remarks
The Thomas-Fermi density ρTF and rHF density ρ∗ are very close!
The optimal G∗ has 17 positive eigenvalues. The largest one is around 1.44.
The screening in the rHF model is close to perfect!
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Numerical results 3 (smooth case)

µ3(x) = e−
1
4
(x+2)2 + 2 · e−(x−2)2 .

Remarks
The Thomas-Fermi density ρTF and rHF density ρ∗ are extremely close!
The optimal G∗ has 19 positive eigenvalues. The largest one is around 1.32.
The screening in the rHF model is close to perfect!

Thank you for your attention
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ALieb-Thirring type inequality
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General dimension
Let γ ∈ S(L2(Rs+d)) be translationally invariant in its first s variables, and so that 0 ≤ γ ≤ 1.
Then there is G ∈ S(L2(Rd)) so that ργ = ρG and

Tr (−∆s+dγ) ≥ Trd (−∆dG) + 2cTF(s)Trd(G1+ 2
s ).

Conversely, for each G, there is a γ such that we have equality.

If there is equality, the «Lieb-Thirring» inequality for γ gives

Trd (−∆dG) + 2cTF(s)Trd(G1+ 2
s ) = Tr (−∆s+dγ) ≥ KLT(d+ s)

ˆ
Rd

ρ
1+ 2

d+s

G .

After optimization over scaling λ 7→ λG, we obtain

Theorem (Lieb-Thirring type inequality)
There is a constantK so that, for all G ∈ S(L2(Rd)) with G ≥ 0, and for all s ∈ N,

K

(ˆ
Rd

ρ
1+ 2

s+d

G

)1+ s
d

≤
(
Trd(G1+ s

d )
)s/d

Trd (−∆dG) .
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This type of inequalities was recently studied in [Frank/Gontier/Lewin, Commun. Math. Phys. 384 (2021)].

Theorem (Frank, DG, Lewin, 2021)
For all d ≥ 1 and all 1 ≤ p ≤ 1 + 2

d
, there is an optimal constantKp,d so that, for all G ∈ S(L2(Rd)),

Kp,d

(ˆ
Rd

ρpG

)θ1

≤ (Trd(Gq))θ2 Trd (−∆dG) , where q :=
2p+ d− dp

2 + d− dp
.

In addition,Kp,d is the dual constant of the usual Lieb-Thirring constant Lγ,d, in the sense

Kp,d

(
Lγ,d

) 2
d =

(
γ

γ + d
2

) 2γ
d ( d

2γ + d

)
, with γ +

d

2
=

p

p− 1
, so that

γ

γ − 1
= q.

The previous case corresponds to p = 1 + 2
d+s

, which gives γ = 1 + s
2
.

In particular, γ ≥ 3
2
: the best constant is the semi-classical one.

In other words, for all d ∈ N and s ∈ N,

1

2
Trd (−∆dG) + cTF(s)Trd(G1+ 2

s ) ≥ cTF(d+ s)

ˆ
Rd

ρ
1+ 2

d+s

G .

The reduced rHF energy is greater than the reduced Thomas–Fermi one.
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