Spectral properties of materials cut in half

David Gontier

CEREMADE, Université Paris-Dauphine & DMA, École Normale Supérieure de Paris

May 20 2022 Séminaire du groupe analyse du LMR, Reims

Goal of the talk

- Make a connection between spectral properties of materials, and electronic transport
- The case of periodic materials.
- The case of periodic materials, cut in half.

Start with a single atom in \mathbb{R}^d . We study the spectrum of the Schrödinger operator

- Discrete spectrum (= eigenvalues), and continuous/essential spectrum.
- lowest part of the spectrum = ground state energy, then excited state energy.
- An electron needs energy to *jump* from one level to the next (quantum).

Then take two atoms in \mathbb{R}^d .

- When $R = \infty$, the spectrum is copied twice (each eigenvalue doubles its multiplicity);
- When $R \gg 1$, *tunnelling* effect = interaction of eigenvectors \implies splitting of the eigenvalues;
- The eigenvectors are delocalized between the two atoms;

Now take an infinity of atoms in \mathbb{R}^d , located along a lattice (= material)

- When $R = \infty$, each eigenvalue is of infinite multiplicity;
- When $R \gg 1$, each eigenvalue becomes a **band of essential spectrum**;
- Each band represents «one electron per unit cell »;
- $\bullet\,$ When R decreases, the bands may overlap.

The spectrum of $-\Delta + V$ with V-periodic has a band-gap structure!

Rigorous proof using the *Bloch transform* (\sim discrete version of the Fourier transform).

Motivation: Spectral pollution

Let's compute numerically the spectrum of the (simple, one-dimensional) operator

$$H := -\partial_{xx}^{2} + V(x), \quad \text{with} \quad V(x) = 50 \cdot \cos(2\pi x) + 10 \cdot \cos(4\pi x).$$

The potential V is 1-periodic. We expect a band-gap structure for the spectrum. We study H in a box [t, t + L] with Dirichlet boundary conditions, and with finite difference.

Depending on where we fix the origin t, the spectrum differs... There are branches of spurious eigenvalues = spectral pollution (they appear for all L).

The corresponding eigenvectors are edge modes: they are localized near the boundaries.

In this talk: understand why edge modes *must* appear.

Setting

Let V be a 1-periodic potential, and consider the cut (one-dimensional) Hamiltonian

$$H^{\sharp}_t = -\partial^2_{xx} + V(x-t) \quad \text{on} \quad L^2(\mathbb{R}^+),$$

with Dirichlet boundary conditions, that is with domain $H^2(\mathbb{R}^+) \cap H^1_0(\mathbb{R}^+)$. Since V is 1-periodic, the map $t \mapsto H^{\sharp}_t$ is also 1-periodic.

Theorem (Korotyaev 2000, Hempel Kohlmann 2011, DG 2020)

In the n-th essential gap, there is a flow of n eigenvalues going downwards as t goes from 0 to 1. In addition, these eigenvalues are simple, and their associated eigenvectors are exponentially localised.

Figure: (left) Spectrum of $H^{\sharp}(t)$ for $t \in [0, 1]$. (right) Spectrum of the operator on [t, t + L]. We provide here two proofs, applications, and extensions of this theorem.

E. Korotyaev, Commun. Math. Phys., 213(2):471-489, 2000.

R. Hempel and M. Kohlmann, J. Math. Anal. Appl., 381(1):166-178, 2011.

D. Gontier, J. Math. Phys. 61, 2020.

First proof: «compute» everything

Preliminaries.

Potential: Let $V \in C^1(\mathbb{R}, \mathbb{R})$ be any potential (not necessarily 1-periodic).

 $\begin{array}{ll} \mbox{Hamiltonian:} & H:=-\partial_{xx}^2+V \mbox{ as an operator on } L^2(\mathbb{R}).\\ \mbox{Associated ODE:} & -u''+V(x)u=Eu, \mbox{ on } \mathbb{R}.\\ \mbox{Vector space of solutions: Let } \mathcal{L}_V(E) \mbox{ denote the vectorial space of solutions of the ODE.}\\ \mbox{Since it is a second order ODE, } \dim \mathcal{L}_V(E)=2, \mbox{ and } \end{array}$

$$\mathcal{L}_{V}(E) = \operatorname{Ran}\left\{c_{E}, s_{E}\right\}, \quad \begin{cases} -c_{E}'' + Vc_{E} = Ec_{E} \\ c_{E}(0) = 1, \ c_{E}'(0) = 0 \end{cases}, \quad \begin{cases} -s_{E}'' + Vs_{E} = Es_{E} \\ s_{E}(0) = 0, \ s_{E}'(0) = 1 \end{cases}$$

Lemma (definition?)

 $E \in \mathbb{R}$ is an eigenvalue of H iff $\mathcal{L}_V(E) \cap L^2(\mathbb{R}) \neq \emptyset$.

Transfer matrix

$$T_E(x) := \begin{pmatrix} c_E(x) & c'_E(x) \\ s_E(x) & s'_E(x) \end{pmatrix}.$$

Lemma

For all $x \in \mathbb{R}$, we have det $T_E(x) = 1$

Indeed, det T_E is the Wronskian of the ODE. At x = 0, we have $T_E(0) = \mathbb{I}_2$, and

$$(\det T_E)' = (c_E s'_E - s_E c'_E)' = c_E s''_E - s_E c''_E = c_E (V - E) s_E - s_E (V - E) c_E = 0$$

David Gontier

Case of periodic potentials.

We now assume that V is 1-periodic. If u(x) is colution to the ODE then as is u(x+1). In particular there are con-

If u(x) is solution to the ODE, then so is $u(\cdot + 1)$. In particular there are constants $\alpha, \beta, \gamma, \delta$ such that

$$\begin{cases} c_E(x+1) = \alpha c_E(x) + \beta s_E(x) \\ s_E(x+1) = \gamma c_E(x) + \delta s_E(x). \end{cases} \quad \text{or equivalently} \quad T_E(x+1) = \begin{pmatrix} \alpha & \gamma \\ \beta & \delta \end{pmatrix} T_E(x).$$

At x = 0, we recognise $T_E(x = 1)$, so $T_E(x + 1) = T_E(1)T_E(x)$.

So for any solution $u \in \mathcal{L}_E$, we have

$$\begin{pmatrix} u(x+n) \\ u'(x+n) \end{pmatrix} = [T_E(1)]^n \begin{pmatrix} u(x) \\ u'(x) \end{pmatrix}.$$

 \Rightarrow The behaviour of solutions at infinity is given by the singular values of $T_E(1)$.

If λ_1 and λ_2 are the singular values of $T_E(1)$, then

- $\lambda_1 \lambda_2 = \det T_E(1) = 1.$
- $\lambda_1 + \lambda_2 = \operatorname{Tr}(T_E) \in \mathbb{R}.$

Two cases.

- if $|\lambda_1| > 1$, then $|\lambda_2| < 1$. This implies $\lambda_1, \lambda_2 \in \mathbb{R}$ and $\lfloor |\operatorname{Tr}(T_E)| > 2 \rfloor$. There is one mode exponentially increasing at $+\infty$ and exponentially decreasing at $-\infty$. There is one mode exponentially increasing at $-\infty$ and exponentially decreasing at $+\infty$. The elements of \mathcal{L}_E cannot be approximated in L^2 , which implies $E \notin \sigma(H)$.
- if $|\lambda_1| = 1$, then $|\lambda_2| = 1$. This implies $|\lambda_1| = 1$, $\lambda_2 = \overline{\lambda_1}$ and $|\operatorname{Tr}(T_E)| \le 2$ All solutions in \mathcal{L}_E are bounded (quasi-periodic). All solutions in \mathcal{L}_E can be approximated in L^2 , which implies $E \in \sigma_{\mathrm{ess}}(H)$.

The spectrum of H can be read from the (continuous) map $E \mapsto Tr(T_E)$.

Example: for $V(x) := 50 \cdot \cos(2\pi x) + 10 \cdot \cos(4\pi x)$,

David Gontier

Theorem (Spectrum of 1-dimensional periodic operators)

If V is 1-periodic, the spectrum $H := -\partial_{xx}^2 + V(x)$ is purely essential (no eigenvalues). It is composed of bands:

$$\sigma(H) = \sigma_{\text{ess}}(H) = \bigcup_{n \ge 1} [E_n^-, E_n^+].$$

Essential gap: The interval $g_n := (E_n^+, E_{n+1}^-)$ is called the n-th essential gap of the operator H.

Physical interpretation:

- If $E \in \sigma(H)$, electrons with energy E can travel through the medium (quasi-periodic solutions);
- If $E \notin \sigma(H)$, electrons cannot propagate: they are exponentially attenuated in the medium.

Example: If V = 0, then $H = -\partial_{xx}^2$. We have -u'' = Eu if $u = \alpha e^{i\sqrt{E}} + \beta e^{-i\sqrt{E}}$.

- If $E \ge 0$, $\sqrt{E} \in \mathbb{R}$, and we have travelling waves;
- If $E < 0, \sqrt{E} \in i\mathbb{R}$, and we have *exponential waves*.
- The spectrum of $-\partial_{xx}^2$ is $[0,\infty)$.

How about the half system?

Let $E \notin \sigma(H)$. The set of solutions can be split as

 $\mathcal{L}_V(E) = \mathcal{L}_V^+(E) \oplus \mathcal{L}_V^-(E), \quad \mathcal{L}_V^{\pm}(E) := \left\{ u \in \mathcal{L}_V(E), \quad u \in L^2(\mathbb{R}^{\pm}) \right\}.$

They are both of dimension 1.

We define the discrete set $\mathbb{Z}_V^+[u] := u^{-1}(\{0\})$ for $u \in \mathcal{L}_V^+(E)$.

- The set $\mathcal{Z}_V^+ \subset \mathbb{R}$ depends only on \mathcal{L}_V^+ (not on u).
- The set \mathcal{Z}_V^+ is 1-periodic (because if $u \in \mathcal{L}_V^+(E)$, then $u(\cdot 1) \in \mathcal{L}_V^+(E)$, hence $u(\cdot 1) = \alpha u$).

Key remark: If $0 \in \mathbb{Z}^+$, then E is an eigenvalue of H^{\sharp} (with corresponding eigenspace \mathcal{L}_V^+).

How about the half system?

Let $E \notin \sigma(H)$. The set of solutions can be split as

 $\mathcal{L}_V(E) = \mathcal{L}_V^+(E) \oplus \mathcal{L}_V^-(E), \quad \mathcal{L}_V^{\pm}(E) := \left\{ u \in \mathcal{L}_V(E), \quad u \in L^2(\mathbb{R}^{\pm}) \right\}.$

They are both of dimension 1.

We define the discrete set $\mathbb{Z}_V^+[u] := u^{-1}(\{0\})$ for $u \in \mathcal{L}_V^+(E)$.

- The set $\mathcal{Z}_V^+ \subset \mathbb{R}$ depends only on \mathcal{L}_V^+ (not on u).
- The set \mathcal{Z}_V^+ is 1-periodic (because if $u \in \mathcal{L}_V^+(E)$, then $u(\cdot 1) \in \mathcal{L}_V^+(E)$, hence $u(\cdot 1) = \alpha u$).

Key remark: If $0 \in \mathbb{Z}^+$, then E is an eigenvalue of H^{\sharp} (with corresponding eigenspace \mathcal{L}_V^+).

Consider now $V_t(x) = V(x-t), H_t = -\partial_{x^x}^2 + V_t, \mathcal{L}_t^{\pm}(E) = \mathcal{L}_{V_t}^{\pm}(E), \mathcal{Z}_t^+ := \mathcal{Z}_{V_t}^+, \dots$

- We have $\mathcal{Z}_t^+ = \mathcal{Z}_0^+ + t$ (the set of roots is shifted);
- If $0 \in \mathcal{Z}_t^+$, then $E \in \sigma\left(H_t^{\sharp}\right)$.

So, the number of $t \in [0, 1)$ so that $E \in \sigma\left(H_t^{\sharp}\right)$ equals the number of points of \mathcal{Z}_V^+ in (-1, 0].

Lemma

If E is in the n-th gap, and if $u \in \mathcal{L}_V(E)$ is any non null solution, then u has n zeros in (-1, 0].

Proof.

Step 1. If $x_0 \in \mathcal{Z}_0$, then $x_0 + 1 \in \mathcal{Z}_0$. In particular, $(E, u_{t=0}|_{[x_0, x_0+1]})$ is an eigenpair of the Dirichlet problem

$$\begin{cases} \left(-\partial_{xx}^2 + V(x)\right)u = Eu, \text{ on } (x_0, x_0 + 1) \\ u(x_0) = u(x_0 + 1) = 0. \end{cases}$$

We want to evaluate \mathcal{M} , the number of roots of u in $[x_0, x_0 + 1)$

Step 2 (deformation). For $0 \le s \le 1$, we introduce $(E(s), \widetilde{u_s})$ the Dirichlet eigenpair of

$$\begin{cases} \left(-\partial_{xx}^2 + sV(x)\right)\widetilde{u_s} = E_s\widetilde{u_s}, & \text{on} \quad (x_0, x_0 + 1)\\ \widetilde{u_s}(x_0) = \widetilde{u_s}(x_0 + 1) = 0. \end{cases}$$

which is a continuation of (E, u) at s = 1, and by \mathcal{M}_s the number of zeros of $\widetilde{u_s}$ in the interval $[x_0, x_0 + 1)$.

By continuity, E(s) cannot cross the essential spectrum, so E(s) is always in the *n*-th gap. By Cauchy-Lipschitz, two zeros cannot merge, so \mathcal{M}_s is independent of s, and $\mathcal{M} = \mathcal{M}_{s=1}$. At s = 0, we recover the usual Laplacian (hence $u_{s=0}(x) \approx \sin(\pi(n+1)x)$)

We deduce that E(s) is the branch of *n*-th eigenvalues, and that $\mathcal{M} = n$.

Lemma

If $\widetilde{E}(t)$ is a branch of eigenvalues of H_t^{\sharp} in the gap, then E'(t) < 0 (all branches go downwards).

If $(\tilde{E}(t), \tilde{u}(t))$ is a branch of eigenpair for H_t^{\sharp} with $\|\tilde{u}_t\|^2 = 1$. We have $H(t)\tilde{u}(t) = \tilde{E}(t)$, and $\tilde{E}(t) = \langle \tilde{u}(t), H(t)\tilde{u}(t) \rangle$. Differentiating in t gives (Hellmann-Feynman argument) $\tilde{E}'(t) = \langle \tilde{u}_t, \partial_t H_t \tilde{u}_t \rangle + \langle \partial_t \tilde{u}_t, H_t \tilde{u}_t \rangle + \langle \tilde{u}_t, H_t \partial_t \tilde{u}_t \rangle$ $= \langle \tilde{u}_t, (\partial_t V_t) \tilde{u}_t \rangle + \tilde{E}(t) \underbrace{(\langle \partial_t \tilde{u}_t, \tilde{u}_t \rangle + \langle \tilde{u}_t, \partial_t \tilde{u}_t \rangle)}_{=\partial_t \|\tilde{u}_t\|^2 = 0} = \int_0^\infty (\partial_t V_t) |\tilde{u}_t|^2 dx.$

On the other hand, if u(t) = u(x - t) is a branch of functions in $\mathcal{L}_t^+(E)$ (E is fixed now), then

$$(-\partial_{xx}^2 + V_t - E)u_t = 0.$$

These functions do not satisfy Dirichlet in general! Differentiating in t gives

$$(-\partial_{xx}^2 + V_t - E)\partial_t u_t + (\partial_t V_t) u_t = 0.$$

We multiply by u_t and integrate on \mathbb{R}^+ . We integrate by part and obtain (now we have boundary terms)

$$\int_0^\infty \left(\partial_t V_t\right) |u_t|^2 = \partial_x u_t(0) \partial_t u_t(0).$$

Of course, at the point t, we have $u_t = \widetilde{u_t}$. Since $u_t(x) = u(x - t)$, we obtain

$$\widetilde{E}'(t) = -|\partial_t u_t|^2(0) < 0.$$

David Gontier

An application: junctions and dislocations

The Spectral flow

If $t \mapsto A_t$ is a 1-periodic and *continuous* family of self-adjoint operators, and if $E \notin \sigma_{ess}(A_t)$ for all t, we can define the Spectral flow

 $Sf(A_t, E) :=$ number of eigenvalues going **downwards** in the essential gap where E lies.

The previous result can be formulated as:

$$\mathrm{Sf}\left(H_{t}^{\sharp}, E\right) = \mathcal{N}(E), \quad \mathcal{N}(E) := \mathrm{number} \text{ of bands below } E.$$

Facts :

• If $t \mapsto K_t$ is a 1-periodic continuous family of **compact** operators, then

$$\operatorname{Sf}(A_t, E) = \operatorname{Sf}(A_t + K_t, E).$$

• If $f:\mathbb{R}\to\mathbb{R}$ is strictly increasing, then

$$Sf(f(A_t), f(E)) = Sf(A_t, E)$$

Application: Junctions between two materials

Let V_L and V_R be two 1-periodic potentials. We consider the junction operator

$$H_t^{\text{junction}} := -\partial_{xx}^2 + \left[V_L(x) \mathbb{1}(x < 0) + V_R(x - t) \mathbb{1}(x > 0) \right] \quad \text{on} \quad L^2(\mathbb{R})$$

Theorem

If $E \in \mathbb{R}$ is in the resolvent set of all left and right bulk operators, then

 $\mathrm{Sf}(H^{\mathrm{junction}}_t,E)=\mathcal{N}^+(E).$

Application: Junctions between two materials

Let V_L and V_R be two 1-periodic potentials. We consider the junction operator

$$H^{\text{junction}}_t := -\partial_{xx}^2 + [V_L(x)\mathbbm{1}(x<0) + V_R(x-t)\mathbbm{1}(x>0)] \quad \text{on} \quad L^2(\mathbb{R})$$

Theorem

If $E \in \mathbb{R}$ is in the resolvent set of all left and right bulk operators, then

 $\mathrm{Sf}(H_t^{\mathrm{junction}}, E) = \mathcal{N}^+(E).$

Idea of the proof

Consider the cut Hamiltonian

$$H_t^{\rm cut} := -\partial_{xx}^2 + [V_L(x)\mathbb{1}(x<0) + V_R(x-t)\mathbb{1}(x>0)] \quad \text{on} \quad L^2(\mathbb{R}) = L^2(\mathbb{R}^-) \cup L^2(\mathbb{R}^+),$$

and with Dirichlet boundary conditions at x = 0.

For any Σ negative enough (below the essential spectra of all operators), we have

$$K_t := \left(\Sigma - H_t^{\text{cut}}\right)^{-1} - \left(\Sigma - H_t^{\text{junction}}\right)^{-1}$$
 is compact (here, it is finite rank).

So

$$\operatorname{Sf}\left(\left(\Sigma - H_t^{\text{junction}}\right)^{-1}, (\Sigma - E)^{-1}\right) = \operatorname{Sf}\left(\left(\Sigma - H_t^{\text{cut}}\right)^{-1}, (\Sigma - E)^{-1}\right).$$

Since $f(x) := (\Sigma - x)^{-1}$ is strictly increasing on $x > \Sigma$, we have

$$\operatorname{Sf}\left(H_{t}^{\operatorname{junction}}, E\right) = \operatorname{Sf}\left(H_{t}^{\operatorname{cut}}, E\right) = \operatorname{Sf}\left(H_{t}^{\sharp, +}, E\right) = \mathcal{N}^{+}(E).$$

Remarks on this first proof

Good points

Can be generalized in different settings.

Instead of a *flow* of roots (the set Z_V^+), we use the notion of *Maslov index* = *crossings of Lagrangian planes* (tools of symplectic geometry).

• Vector valued operators

$$H_t := -\Delta + \mathbb{V}_t(x), \quad \text{on} \quad L^2(\mathbb{R}, \mathbb{C}^N).$$

We prove that if $E \notin \sigma(H)$, then dim (\mathcal{L}_V^{\pm}) are both of dimension N.

• We can change the boundary conditions (and have a *t*-dependent boundary conditions). For instance, we prove that for the family of operators

$$H_t^{\sharp} := -\Delta + V(x), \quad \text{with Robin domain} \quad \sin(\pi t)u(0) = \cos(\pi t)u'(0),$$

we have $Sf(H_t^{\sharp}, E) = -1$ in all gaps (including the 0-th one!)

Bad point

Not really adapted to the two-dimensional setting ...

Second proof (by Hempel and Kohlmann)

Idea of the proof

Idea: Prove the result in the dislocated case.

Let $L \in \mathbb{N}$ be a (large) integer. Consider the family of operators

$$\mathcal{H}_{L,t}^{\text{junction}} := -\partial_{xx}^2 + \left[V(x) \mathbb{1}(x < 0) + V(x - t) \mathbb{1}(x > 0) \right], \quad \text{on} \quad L^2([-\frac{1}{2}L, \frac{1}{2}L + t])$$

with periodic boundary conditions.

- The branches of eigenvalues of $t \mapsto \mathcal{H}_{L,t}^{\text{junction}}$ are continuous;
- At t = 0, the system is 1-periodic, on a box of size L. Each «band» contributes to L eigenvalues.
- At t = 1, the system is 1-periodic, on a box of size L + 1. Each «band» contributes to L + 1 eigenvalues.
- ⇒ The extra eigenvalue must come from an upper band...
- ⇒ There is a «spectral flow» of 1 between the second band and the first one There is a «spectral flow» of 2 between the third band and the second one,...

A «fun» analogy

The *«Grand Hilbert Hotel»* An infinity of floors, an infinity of rooms in each floor.

Idea: each period represents 1 room (per floor), each spectral band represents one floor.

As $t \bmod 0$ to 1...

... a new room is created on each floor!

As t moves from 0 to 1...

... a new room is created on each floor!

In order to fill the new rooms,

- 1 person from floor 2 must come down to floor 1;
- 2 persons from floor 3 must come down to floor 2;
- and so on.

Remark: the proof can be generalized to higher dimensions!

The two-dimensional case

Let V be a \mathbb{Z}^2 -periodic potential, and we study the edge operator

 $H^{\sharp}(t) = -\Delta + V(x-t,y), \quad \text{on} \quad L^2(\mathbb{R}_+\times\mathbb{R}), \quad \text{with Dirichlet boundary conditions}.$

Let V be a $\mathbb{Z}^2\text{-periodic potential, and we study the edge operator$

 $H^{\sharp}(t) = -\Delta + V(x - t, y), \quad \text{on} \quad L^{2}(\mathbb{R}_{+} \times \mathbb{R}), \quad \text{with Dirichlet boundary conditions}.$

- For $L \in \mathbb{N}$, consider the model in the **tube** $\mathbb{R}_+ \times [0, L]$ with **periodic boundary conditions** in x_2 .
- Consider the «Two-dimensional Grand Hilbert Hotel».
- As t moves from 0 to 1, L new rooms are created on each floor.
- Let $L \to \infty$...

There is a spectral flow of **essential spectrum** appearing in each gap. The corresponding modes can only propagate along the boundary.

The two-dimensional twisted case.

We rotate V by $\theta.$

The two-dimensional twisted case.

We rotate V by θ .

Commensurate case $(\tan \theta = \frac{p}{q})$ Considering a **Supercell** of size $L = \sqrt{p^2 + q^2}$, we recover a $L\mathbb{Z}^2$ -periodic potential. « As t moves from 0 to L, L^2 new rooms are created»

Key remark:

- The map $t \mapsto H^{\sharp}_{\theta}(t)$ is now 1/L-periodic (up to some x_2 shifts)
- So the map $t \mapsto \sigma(H^{\sharp}_{\theta}(t))$ is 1/L periodic.

«As t moves from 0 to $\frac{1}{L}$, 1 new room is created»

In-commensurate case (tan $\theta \notin \mathbb{Q}$, corresponds to $L \to \infty$)

- The spectrum of $H^{\sharp}(t)$ is independent of t (ergodicity);
- All bulk gaps are filled with edge spectrum!

Theorem (DG, Comptes Rendus. Mathématique, Tome 359 (2021))

If $\tan \theta \notin \mathbb{Q}$, the spectrum of H_{θ}^{\sharp} is of the form (Σ, ∞) .

(a) Uncut two-dimensional material

(b) Two-dimensional material with incommensurate cut

Idea of the proof

Remark: The map $\theta \mapsto H_{\theta}$ is not *norm-resolvent* continuous... so the convergence of the spectrum is not guaranteed, and we need to prove it *by hand*.

Limiting procedure

Consider a sequence $\theta_n \to \theta$, with $\tan(\theta_n) = \frac{p_n}{q_n} \in \mathbb{Q}$, and set $L_n := \sqrt{p_n^2 + q_n^2}$. By the commensurate case result, there is $t_n \in [0, \frac{1}{L_n}]$ and $\phi_n \in L^2_{\text{per}}(\mathbb{R}^+ \times [0, L_n])$ so that

$$(-\Delta + V_{\theta_n}(t - t_n) - E)\phi_n = 0, \qquad \int_{\mathbb{R}^+ \times [0, L_n]} |\phi_n|^2 = 1.$$

It is tempting to extract a weak-limit of ϕ_n , but this will fail (we would get $\phi_* = 0$ at the end)...

Idea of the proof

Remark: The map $\theta \mapsto H_{\theta}$ is not *norm-resolvent* continuous... so the convergence of the spectrum is not guaranteed, and we need to prove it *by hand*.

Limiting procedure

Consider a sequence $\theta_n \to \theta$, with $\tan(\theta_n) = \frac{p_n}{q_n} \in \mathbb{Q}$, and set $L_n := \sqrt{p_n^2 + q_n^2}$. By the commensurate case result, there is $t_n \in [0, \frac{1}{L_n}]$ and $\phi_n \in L^2_{\text{per}}(\mathbb{R}^+ \times [0, L_n])$ so that

$$(-\Delta + V_{\theta_n}(t - t_n) - E)\phi_n = 0, \qquad \int_{\mathbb{R}^+ \times [0, L_n]} |\phi_n|^2 = 1.$$

It is tempting to extract a weak-limit of ϕ_n , but this will fail (we would get $\phi_* = 0$ at the end)...

Idea: Normalize the functions in L^∞ Consider the functions

$$\Psi_n := \frac{\phi_n}{\|\phi_n\|_{L^{\infty}}}, \quad \text{so that} \quad (-\Delta + V_{\theta_n}(t - t_n) - E)\Psi_n = 0, \quad \|\Psi_n\|_{L^{\infty}} = 1.$$

(the parameter L_n is no longer here).

$$(-\Delta + V_{\theta_n}(t - t_n) - E)\Psi_n = 0, \quad \|\Psi_n\|_{L^\infty} = 1.$$

Step 1: Control the mass

Consider $x_n \in \mathbb{R}^2$ so that $\Psi_n(x_n) > \frac{1}{2}$.

- Upon shifting the whole system in the x_2 -direction (which effectively corresponds to changing t_n), we may assume $x_{n,2} = 0$.
- Since $E \notin \sigma_{\text{ess}}(H)$, the function Ψ_n is exponentially decaying away from the boundary (the bulk is an insulator). So there is C > 0 independent of n so that $0 < x_{n,1} < C$ (the full proof uses Combes-Thomas estimates).

Step 2: Regularity and taking the limit

- Since $\|(-\Delta \Psi_n)\| \leq C$, there is $\delta > 0$ so that $\Psi_n(x) > \frac{1}{4}$ for all $x \in \mathcal{B}(x_n, \delta)$.
- Take the limit $n \to \infty$, and sub-sequences. $\Psi_n \to \Psi_*$ weakly-* in L^{∞} .
- We have, in the distributional sense

$$(-\Delta + V_{\theta}(x - t^*) - E)\Psi_* = 0.$$

- We have $\|\Psi_*\|_{\infty} \leq 1$, and since $\int_{\mathcal{B}(0,\delta)} \Psi_* \neq 0$, we have $\Psi_* \neq 0$.
- This implies that $E \in \sigma(H_{\theta})$.

$$(-\Delta + V_{\theta_n}(t - t_n) - E)\Psi_n = 0, \quad \|\Psi_n\|_{L^\infty} = 1.$$

Step 1: Control the mass

Consider $x_n \in \mathbb{R}^2$ so that $\Psi_n(x_n) > \frac{1}{2}$.

- Upon shifting the whole system in the x_2 -direction (which effectively corresponds to changing t_n), we may assume $x_{n,2} = 0$.
- Since $E \notin \sigma_{\text{ess}}(H)$, the function Ψ_n is exponentially decaying away from the boundary (the bulk is an insulator). So there is C > 0 independent of n so that $0 < x_{n,1} < C$ (the full proof uses Combes-Thomas estimates).

Step 2: Regularity and taking the limit

- Since $\|(-\Delta \Psi_n)\| \leq C$, there is $\delta > 0$ so that $\Psi_n(x) > \frac{1}{4}$ for all $x \in \mathcal{B}(x_n, \delta)$.
- Take the limit $n \to \infty$, and sub-sequences. $\Psi_n \to \Psi_*$ weakly-* in L^{∞} .
- We have, in the distributional sense

$$(-\Delta + V_{\theta}(x - t^*) - E)\Psi_* = 0.$$

- We have $\|\Psi_*\|_{\infty} \leq 1$, and since $\int_{\mathcal{B}(0,\delta)} \Psi_* \neq 0$, we have $\Psi_* \neq 0$.
- This implies that $E \in \sigma(H_{\theta})$.

Open question

Is *E* an eigenvalue of H_{θ} (~ Anderson localization), or in the essential spectrum (travelling waves).

Another application: the definition of the kilo

May 20, 2019: New definition of the kg by the Bureau International des Poids et Mesures (BIPM)¹ : "Le kilogramme, symbole kg, est l'unité de masse du SI. Il est défini en prenant la valeur numérique fixée de la constante de Planck, h, égale à 6, 626 070 15 × 10⁻³⁴ J.s."

Question: How do you measure h? How do you measure h with 10^{-9} accuracy?

Comments by von Klitzing²: "The discovery of the QHE led to a new type of electrical resistor [...]. This resistor is universal for all 2D electron systems in strong magnetic fields with an uncertainty of less than one part in 10^{10} ."

QHE = Quantum Hall Effect³ (von Klitzing got Nobel prize in 1985 for discovery of Quantum Hall Effect).

³K. von Klitzing; G. Dorda; M. Pepper, Phys. Rev. Lett. 45 (6): 494-497, 1980.

David Gontier

¹https://www.bipm.org/fr/measurement-units/

²von Klitzing, Nature Physics 13, 2017

In this setting, the magnetic field A plays the role of the pump.

$$H_B = -\partial_{xx}^2 + (-\mathrm{i}\partial_y + Bx)^2.$$

After a Fourier transform in y, we get

$$H_{B,k_y} = -\partial_{xx}^2 + (k_y + Bx)^2 = -\partial_{xx}^2 + B^2(x-t)^2, \quad \text{with} \quad t = \frac{-k_y}{B}$$

Lemma

If $B \neq 0$, the bulk Hamiltonian has discrete spectrum. $\sigma(H_B) = |B|(2\mathbb{N} + 1)$. (Landau operator). The edge Hamiltonian $H_{B,t}^{\sharp}$ has flows of eigenvalues between the Landau levels. In particular $\sigma(H_B^{\sharp}) = [|B|, \infty)$.

The *plateaus* observed by von Klitzing correspond to these spectral flows.

In this setting, the magnetic field A plays the role of the *pump*.

$$H_B = -\partial_{xx}^2 + (-\mathrm{i}\partial_y + Bx)^2.$$

After a Fourier transform in y, we get

$$H_{B,k_y} = -\partial_{xx}^2 + (k_y + Bx)^2 = -\partial_{xx}^2 + B^2(x-t)^2$$
, with $t = \frac{-k_y}{B}$

Lemma

If $B \neq 0$, the bulk Hamiltonian has discrete spectrum. $\sigma(H_B) = |B|(2\mathbb{N} + 1)$. (Landau operator). The edge Hamiltonian $H_{B,t}^{\sharp}$ has flows of eigenvalues between the Landau levels. In particular $\sigma(H_B^{\sharp}) = [|B|, \infty)$.

The plateaus observed by von Klitzing correspond to these spectral flows.

Thank you for your attention!