Spectral properties of materials cut in half

David Gontier

CEREMADE, Université Paris-Dauphine \& DMA, École Normale Supérieure de Paris

May 232022
MAS-MP Seminar

Dauphine \mid PSL* CEREMADE
 PSLぇ ENS

Goal of the talk

- Make a connection between spectral properties of materials, and electronic transport
- The case of periodic materials.
- The case of periodic materials, cut in half.

Start with a single atom in \mathbb{R}^{d}. We study the spectrum of the Schrödinger operator

$$
H=-\Delta+V(\mathbf{x}), \quad \text { e.g. } \quad V(\mathbf{x})=\frac{-Z}{|\mathbf{x}|}
$$

- Discrete spectrum (= eigenvalues), and continuous/essential spectrum.
- lowest part of the spectrum = ground state energy, then excited state energy.
- An electron needs energy to jump from one level to the next (quantum).

Then take two atoms in \mathbb{R}^{d}.

$$
H=-\Delta+V\left(\mathbf{x}-\frac{R}{2}\right)+V\left(\mathbf{x}+\frac{R}{2}\right) .
$$

- When $R=\infty$, the spectrum is copied twice (each eigenvalue doubles its multiplicity);
- When $R \gg 1$, tunnelling effect = interaction of eigenvectors \Rightarrow splitting of the eigenvalues;
- The eigenvectors are delocalized between the two atoms;

Now take an infinity of atoms in \mathbb{R}^{d}, located along a lattice (= material)

$$
H=-\Delta+\sum_{\mathbf{v} \in R \mathbb{Z}^{d}} V(\mathbf{x}-\mathbf{v})
$$

- When $R=\infty$, each eigenvalue is of infinite multiplicity;
- When $R \gg 1$, each eigenvalue becomes a band of essential spectrum;
- Each band represents «one electron per unit cell»;
- When R decreases, the bands may overlap.

The spectrum of $-\Delta+V$ with V-periodic has a band-gap structure!
Rigorous proof using the Bloch transform (\sim discrete version of the Fourier transform).

Motivation: Spectral pollution

Let's compute numerically the spectrum of the (simple, one-dimensional) operator

$$
H:=-\partial_{x x}^{2}+V(x), \quad \text { with } \quad V(x)=50 \cdot \cos (2 \pi x)+10 \cdot \cos (4 \pi x) .
$$

The potential V is 1-periodic. We expect a band-gap structure for the spectrum.
We study H in a box $[t, t+L]$ with Dirichlet boundary conditions, and with finite difference.

Depending on where we fix the origin t, the spectrum differs...
There are branches of spurious eigenvalues $=$ spectral pollution (they appear for all L). The corresponding eigenvectors are edge modes: they are localized near the boundaries.

In this talk: understand why edge modes must appear.

Setting

Let V be a 1-periodic potential, and consider the cut (one-dimensional) Hamiltonian

$$
H_{t}^{\sharp}=-\partial_{x x}^{2}+V(x-t) \quad \text { on } \quad L^{2}\left(\mathbb{R}^{+}\right)
$$

with Dirichlet boundary conditions, that is with domain $H^{2}\left(\mathbb{R}^{+}\right) \cap H_{0}^{1}\left(\mathbb{R}^{+}\right)$.
Since V is 1-periodic, the map $t \mapsto H_{t}^{\sharp}$ is also 1-periodic.

Theorem (Korotyaev 2000, Hempel Kohlmann 2011, DG 2020)

In the n-th essential gap, there is a flow of n eigenvalues going downwards as t goes from 0 to 1. In addition, these eigenvalues are simple, and their associated eigenvectors are exponentially localised.

Figure: (left) Spectrum of $H^{\sharp}(t)$ for $t \in[0,1]$. (right) Spectrum of the operator on $[t, t+L]$.

Idea of the proof

Step 1. Prove the result for dislocations (following Hempel and Kohlmann).
Introduce the dislocated operator

$$
H_{t}^{\text {disloc }}:=-\partial_{x x}^{2}+[V(x) \mathbb{1}(x<0)+V(x-t) \mathbb{1}(x>0)], \quad \text { on } \quad L^{2}(\mathbb{R}) .
$$

Let $L \in \mathbb{N}$ be a (large) integer. Consider the periodic dislocated operator

$$
H_{L, t}^{\text {disloc }}:=-\partial_{x x}^{2}+[V(x) \mathbb{1}(x<0)+V(x-t) \mathbb{1}(x>0)], \quad \text { on } \quad L^{2}\left(\left[-\frac{1}{2} L, \frac{1}{2} L+t\right]\right)
$$

with periodic boundary conditions.

Remarks

- The branches of eigenvalues of $t \mapsto H_{L, t}^{\text {disloc }}$ are continuous;
- At $t=0$, the system is 1-periodic, on a box of size L. Each «band» contributes to L eigenvalues;
- At $t=1$, the system is 1 -periodic, on a box of size $L+1$. Each «band» contributes to $L+1$ eigenvalues.

Figure: Spectrum of $H_{L, t}^{\text {disloc }}$ for $L=6$ at $t=0(6$ cells $)$ and $t=1$ (7 cells).

Figure: Spectrum of $H_{L, t}^{\text {disloc }}$ for all $t \in[0,1]$.

The presence and the number of the red lines are independent of $L \in \mathbb{N}$. They survive in the limit $L \rightarrow \infty$.

This implies that there the result holds for the family of dislocated operators $t \mapsto H_{t}^{\text {disloc }}$.

The Spectral flow

If $t \mapsto A_{t}$ is a 1-periodic and continuous family of self-adjoint operators, and if $E \notin \sigma_{\text {ess }}\left(A_{t}\right)$ for all t, we can define its Spectral flow as

Sf $\left(A_{t}, E\right):=$ number of eigenvalues going downwards in the essential gap where E lies.

The previous result can be formulated as:

$$
\operatorname{Sf}\left(H_{t}^{\text {disloc }}, E\right)=\mathcal{N}(E), \quad \mathcal{N}(E):=\text { number of bands below } E
$$

Facts :

- If $t \mapsto K_{t}$ is a 1-periodic continuous family of compact operators, then

$$
\operatorname{Sf}\left(A_{t}, E\right)=\operatorname{Sf}\left(A_{t}+K_{t}, E\right)
$$

- If $f: \mathbb{R} \rightarrow \mathbb{R}$ is strictly increasing, then

$$
\operatorname{Sf}\left(f\left(A_{t}\right), f(E)\right)=\operatorname{Sf}\left(A_{t}, E\right)
$$

Step 2. From the dislocated case to the Dirichlet case.
Recall that the dislocated operator is

$$
H_{t}^{\text {disloc }}:=-\partial_{x x}^{2}+[V(x) \mathbb{1}(x<0)+V(x-t) \mathbb{1}(x>0)] \quad \text { on } \quad L^{2}(\mathbb{R})
$$

Consider the cut Hamiltonian

$$
H_{t}^{\text {cut }}:=-\partial_{x x}^{2}+[V(x) \mathbb{1}(x<0)+V(x-t) \mathbb{1}(x>0)] \quad \text { on } \quad L^{2}(\mathbb{R})=L^{2}\left(\mathbb{R}^{-}\right) \cup L^{2}\left(\mathbb{R}^{+}\right)
$$

and with Dirichlet boundary conditions at $x=0$.
Fact: For any Σ negative enough (below the essential spectra of all operators), we have

$$
K_{t}:=\left(\Sigma-H_{t}^{\text {cut }}\right)^{-1}-\left(\Sigma-H_{t}^{\text {disloc }}\right)^{-1} \quad \text { is compact (here, it is finite rank). }
$$

So

$$
\operatorname{Sf}\left(\left(\Sigma-H_{t}^{\text {disloc }}\right)^{-1},(\Sigma-E)^{-1}\right)=\operatorname{Sf}\left(\left(\Sigma-H_{t}^{\text {cut }}\right)^{-1},(\Sigma-E)^{-1}\right)
$$

Since $f(x):=(\Sigma-x)^{-1}$ is strictly increasing on $x>\Sigma$, we have

$$
\mathcal{N}(E)=\operatorname{Sf}\left(H_{t}^{\text {disloc }}, E\right)=\operatorname{Sf}\left(H_{t}^{\text {cut }}, E\right)=\operatorname{Sf}\left(H_{t}^{\sharp,+}, E\right)
$$

A «fun» analogy

The «Grand Hilbert Hotel»

An infinity of floors, an infinity of rooms in each floor.

Idea: each period represents 1 room (per floor), each spectral band represents one floor.

\qquad

As t moves from 0 to $1 \ldots$

$$
\mathrm{t}=0.0
$$

$$
t=0.25
$$

$$
t=0.5
$$

$\mathrm{t}=0.75$
$\mathrm{t}=1.0$

... a new room is created on each floor!

As t moves from 0 to $1 \ldots$

... a new room is created on each floor!

In order to fill the new rooms,

- 1 person from floor 2 must come down to floor 1 ;
- 2 persons from floor 3 must come down to floor 2 ;
- and so on.

The case of junctions
Take two 1-periodic potentials

$$
V_{L}(x)=50 \cos (2 \pi x)+10 \cos (4 \pi x), \quad V_{R}(x)=10 \cos (2 \pi x)+50 \cos (4 \pi x)
$$

Consider the junction Hamiltonian

$$
H_{t}^{\text {junct }}:=-\partial_{x x}^{2}+\left(V_{L}(x) \mathbb{1}(x<0)+V_{R}(x-t) \mathbb{1}(x>0)\right) \quad \text { on } \quad L^{2}(\mathbb{R}) .
$$

Reasoning as before (using a cut as a compact perturbation), one can prove that $\operatorname{Sf}\left(H_{t}^{\text {junct }}, E\right)=\mathcal{N}_{R}(E)$.

The case of junctions

Take two 1-periodic potentials

$$
V_{L}(x)=50 \cos (2 \pi x)+10 \cos (4 \pi x), \quad V_{R}(x)=10 \cos (2 \pi x)+50 \cos (4 \pi x)
$$

Consider the junction Hamiltonian

$$
H_{t}^{\text {junct }}:=-\partial_{x x}^{2}+\left(V_{L}(x) \mathbb{1}(x<0)+V_{R}(x-t) \mathbb{1}(x>0)\right) \quad \text { on } \quad L^{2}(\mathbb{R}) .
$$

Reasoning as before (using a cut as a compact perturbation), one can prove that $\operatorname{Sf}\left(H_{t}^{\text {junct }}, E\right)=\mathcal{N}_{R}(E)$.

A typical spectrum contains:

- The essential spectrum of the left and right side.
- Additional edge mode at the junction

Remark. This works for any junction, say of the form $V_{L} \chi+V_{R}(1-\chi)$, with χ a switch function.

The two-dimensional case

Let V be a \mathbb{Z}^{2}-periodic potential, and we study the edge operator

$$
H^{\sharp}(t)=-\Delta+V(x-t, y), \quad \text { on } \quad L^{2}\left(\mathbb{R}_{+} \times \mathbb{R}\right), \quad \text { with Dirichlet boundary conditions. }
$$

Let V be a \mathbb{Z}^{2}-periodic potential, and we study the edge operator

$$
H^{\sharp}(t)=-\Delta+V(x-t, y), \quad \text { on } \quad L^{2}\left(\mathbb{R}_{+} \times \mathbb{R}\right), \quad \text { with Dirichlet boundary conditions. }
$$

After a Bloch transform in the y-direction, we need to study the family of operators

$$
H_{k}^{\sharp}(t)=-\partial_{x x}^{2}+\left(-\mathrm{i} \partial_{y}+k\right)^{2}+V(x-t, y), \quad \text { on the tube } \quad L^{2}\left(\mathbb{R}_{+} \times[0,1]\right) .
$$

- Consider the «Two-dimensional Grand Hilbert Hotel» (= on a tube).
- For each k, as t moves from 0 to 1 , a new room is created on each floor \Rightarrow spectral flow.
- As k varies, each branch of eigenvalue becomes of branch of essential spectrum.

There is a «spectral flow» of essential spectrum appearing in each gap.
The corresponding modes can only propagate along the boundary.

The two-dimensional twisted case.
We rotate V by θ.

The two-dimensional twisted case.

We rotate V by θ.

Commensurate case $\left(\tan \theta=\frac{p}{q}\right.$)
Considering a Supercell of size $L=\sqrt{p^{2}+q^{2}}$, we recover a $L \mathbb{Z}^{2}$-periodic potential.
On the tube $\mathbb{R}^{+} \times[0, L]$ (at the k-Bloch point $k=0$ for instance),
«As t moves from 0 to L, L^{2} new rooms are created»

Key remark:

- The map $t \mapsto H_{\theta}^{\sharp}(t)$ is now $1 / L$-periodic (up to some x_{2} shifts)
- So the map $t \mapsto \sigma\left(H_{\theta}^{\sharp}(t)\right)$ is $1 / L$ periodic.
«Ast moves from 0 to $\frac{1}{L}$, 1 new room is created»

In-commensurate case $(\tan \theta \notin \mathbb{Q}$, corresponds to $L \rightarrow \infty$)

- The spectrum of $H^{\sharp}(t)$ is independent of t (ergodicity);
- All bulk gaps are filled with edge spectrum!

Theorem (DG, Comples Rendus. Mathématique, Tome 359 (ev21))

If $\tan \theta \notin \mathbb{Q}$, the spectrum of H_{θ}^{\sharp} is of the form (Σ, ∞).

(a) Uncut two-dimensional material

(b) Two-dimensional material with incommensurate cut

Idea of the proof

Remark: The map $\theta \mapsto H_{\theta}$ is not norm-resolvent continuous... so the convergence of the spectrum is not guaranteed, and we need to prove it.

Limiting procedure
Consider a sequence $\theta_{n} \rightarrow \theta$, with $\tan \left(\theta_{n}\right)=\frac{p_{n}}{q_{n}} \in \mathbb{Q}$, and set $L_{n}:=\sqrt{p_{n}^{2}+q_{n}^{2}}$.
By the commensurate case result, there is $t_{n} \in\left[0, \frac{1}{L_{n}}\right]$ and $\phi_{n} \in L_{\text {per }}^{2}\left(\mathbb{R}^{+} \times\left[0, L_{n}\right]\right)$ so that

$$
\left(-\Delta+V_{\theta_{n}}\left(t-t_{n}\right)-E\right) \phi_{n}=0, \quad \int_{\mathbb{R}^{+} \times\left[0, L_{n}\right]}\left|\phi_{n}\right|^{2}=1 .
$$

It is tempting to extract a weak-limit of ϕ_{n}, but this will fail (we would get $\phi_{*}=0$ at the end)...

Idea of the proof

Remark: The map $\theta \mapsto H_{\theta}$ is not norm-resolvent continuous... so the convergence of the spectrum is not guaranteed, and we need to prove it.

Limiting procedure
Consider a sequence $\theta_{n} \rightarrow \theta$, with $\tan \left(\theta_{n}\right)=\frac{p_{n}}{q_{n}} \in \mathbb{Q}$, and set $L_{n}:=\sqrt{p_{n}^{2}+q_{n}^{2}}$.
By the commensurate case result, there is $t_{n} \in\left[0, \frac{1}{L_{n}}\right]$ and $\phi_{n} \in L_{\mathrm{per}}^{2}\left(\mathbb{R}^{+} \times\left[0, L_{n}\right]\right)$ so that

$$
\left(-\Delta+V_{\theta_{n}}\left(t-t_{n}\right)-E\right) \phi_{n}=0, \quad \int_{\mathbb{R}^{+} \times\left[0, L_{n}\right]}\left|\phi_{n}\right|^{2}=1 .
$$

It is tempting to extract a weak-limit of ϕ_{n}, but this will fail (we would get $\phi_{*}=0$ at the end)...
Idea: Normalize the functions in L^{∞}
Consider the functions

$$
\Psi_{n}:=\frac{\phi_{n}}{\left\|\phi_{n}\right\|_{L^{\infty}}}, \quad \text { so that } \quad\left(-\Delta+V_{\theta_{n}}\left(t-t_{n}\right)-E\right) \Psi_{n}=0, \quad\left\|\Psi_{n}\right\|_{L^{\infty}}=1
$$

(the parameter L_{n} is no longer here).

$$
\left(-\Delta+V_{\theta_{n}}\left(t-t_{n}\right)-E\right) \Psi_{n}=0, \quad\left\|\Psi_{n}\right\|_{L^{\infty}}=1
$$

Step 1: Control the mass

Consider $x_{n} \in \mathbb{R}^{2}$ so that $\Psi_{n}\left(x_{n}\right)>\frac{1}{2}$.

- Upon shifting the whole system in the x_{2}-direction (which effectively corresponds to changing t_{n}), we may assume $x_{n, 2}=0$.
- Since $E \notin \sigma_{\text {ess }}(H)$, the function Ψ_{n} is exponentially decaying away from the boundary (the bulk is an insulator). So there is $C>0$ independent of n so that $0<x_{n, 1}<C$ (the full proof uses Combes-Thomas estimates).

Step 2: Regularity and taking the limit

- Since $\left\|\left(-\Delta \Psi_{n}\right)\right\| \leq C$, there is $\delta>0$ so that $\Psi_{n}(x)>\frac{1}{4}$ for all $x \in \mathcal{B}\left(x_{n}, \delta\right)$.
- Take the limit $n \rightarrow \infty$, and sub-sequences. $\Psi_{n} \rightarrow \Psi_{*}$ weakly-* in L^{∞}.
- We have, in the distributional sense

$$
\left(-\Delta+V_{\theta}\left(x-t^{*}\right)-E\right) \Psi_{*}=0
$$

- We have $\left\|\Psi_{*}\right\|_{\infty} \leq 1$, and since $\int_{\mathcal{B}(0, \delta)} \Psi_{*} \neq 0, \Psi_{*} \neq 0$.
- This implies that $E \in \sigma\left(H_{\theta}\right)$.

$$
\left(-\Delta+V_{\theta_{n}}\left(t-t_{n}\right)-E\right) \Psi_{n}=0, \quad\left\|\Psi_{n}\right\|_{L^{\infty}}=1
$$

Step 1: Control the mass

Consider $x_{n} \in \mathbb{R}^{2}$ so that $\Psi_{n}\left(x_{n}\right)>\frac{1}{2}$.

- Upon shifting the whole system in the x_{2}-direction (which effectively corresponds to changing t_{n}), we may assume $x_{n, 2}=0$.
- Since $E \notin \sigma_{\text {ess }}(H)$, the function Ψ_{n} is exponentially decaying away from the boundary (the bulk is an insulator). So there is $C>0$ independent of n so that $0<x_{n, 1}<C$ (the full proof uses Combes-Thomas estimates).

Step 2: Regularity and taking the limit

- Since $\left\|\left(-\Delta \Psi_{n}\right)\right\| \leq C$, there is $\delta>0$ so that $\Psi_{n}(x)>\frac{1}{4}$ for all $x \in \mathcal{B}\left(x_{n}, \delta\right)$.
- Take the limit $n \rightarrow \infty$, and sub-sequences. $\Psi_{n} \rightarrow \Psi_{*}$ weakly-* in L^{∞}.
- We have, in the distributional sense

$$
\left(-\Delta+V_{\theta}\left(x-t^{*}\right)-E\right) \Psi_{*}=0
$$

- We have $\left\|\Psi_{*}\right\|_{\infty} \leq 1$, and since $\int_{\mathcal{B}(0, \delta)} \Psi_{*} \neq 0, \Psi_{*} \neq 0$.
- This implies that $E \in \sigma\left(H_{\theta}\right)$.

Open question

Is E an eigenvalue of H_{θ} (\sim Anderson localization), or in the essential spectrum (travelling waves).

A degenerate case

Consider $\Omega \subset \mathbb{R}^{2}$, and repeat it on a \mathbb{Z}^{2} grid.
Consider $H=-\Delta$ on $L^{2}\left(\mathbb{R}^{2}\right)$, with Dirichlet boundary conditions «everywhere».

In the un-cut situation, the spectrum equals $\sigma\left(-\left.\Delta\right|_{\Omega}\right)$, and each eigenvalue is of infinite multiplicities.

A degenerate case

Consider $\Omega \subset \mathbb{R}^{2}$, and repeat it on a \mathbb{Z}^{2} grid.
Consider $H=-\Delta$ on $L^{2}\left(\mathbb{R}^{2}\right)$, with Dirichlet boundary conditions «everywhere».

In the un-cut situation, the spectrum equals $\sigma\left(-\left.\Delta\right|_{\Omega}\right)$, and each eigenvalue is of infinite multiplicities. In the cut situation:

- If $\tan \theta \in \mathbb{Q}$, a finite number of new motifs appear
\Longrightarrow finite number of new eigenvalues appear in each gap (all of infinite multiplicities)
- If $\tan \theta \notin \mathbb{Q}$, an infinite (countable) number of new motifs appear
\Rightarrow pure-point spectrum everywhere.

Another application: the definition of the kilo

May 20, 2019: New definition of the kg by the Bureau International des Poids et Mesures (BIPM) ${ }^{1}$:
"Le kilogramme, symbole kg, est l'unité de masse du SI. Il est défini en prenant la valeur numérique fixée de la constante de Planck, h, égale à 6, 62607015×10^{-34} f.s."

Question: How do you measure h ? How do you measure h with 10^{-9} accuracy?
Comments by von Klitzing ${ }^{2}$: "The discovery of the QHE led to a new type of electrical resistor [...]. This resistor is universal for all 2D electron systems in strong magnetic fields with an uncertainty of less than one part in 10^{10}."

QHE = Quantum Hall Effect ${ }^{3}$ (von Klitzing got Nobel prize in 1985 for discovery of Quantum Hall Effect).

[^0]In this setting, the magnetic field A plays the role of the pump.

$$
H_{B}=-\partial_{x x}^{2}+\left(-\mathrm{i} \partial_{y}+B x\right)^{2}
$$

After a Fourier transform in y, we get

$$
H_{B, k_{y}}=-\partial_{x x}^{2}+\left(k_{y}+B x\right)^{2}=-\partial_{x x}^{2}+B^{2}(x-t)^{2}, \quad \text { with } \quad t=\frac{-k_{y}}{B}
$$

Lemma

If $B \neq 0$, the bulk Hamiltonian has discrete spectrum. $\sigma\left(H_{B}\right)=|B|(2 \mathbb{N}+1)$. (Landau operator). The edge Hamiltonian $H_{B, t}^{\sharp}$ has flows of eigenvalues between the Landau levels. In particular $\sigma\left(H_{B}^{\sharp}\right)=[|B|, \infty)$.

The plateaus observed by von Klitzing correspond to these spectral flows.

In this setting, the magnetic field A plays the role of the pump.

$$
H_{B}=-\partial_{x x}^{2}+\left(-\mathrm{i} \partial_{y}+B x\right)^{2}
$$

After a Fourier transform in y, we get

$$
H_{B, k_{y}}=-\partial_{x x}^{2}+\left(k_{y}+B x\right)^{2}=-\partial_{x x}^{2}+B^{2}(x-t)^{2}, \quad \text { with } \quad t=\frac{-k_{y}}{B}
$$

Lemma

If $B \neq 0$, the bulk Hamiltonian has discrete spectrum. $\sigma\left(H_{B}\right)=|B|(2 \mathbb{N}+1)$. (Landau operator). The edge Hamiltonian $H_{B, t}^{\sharp}$ has flows of eigenvalues between the Landau levels. In particular $\sigma\left(H_{B}^{\sharp}\right)=[|B|, \infty)$.

The plateaus observed by von Klitzing correspond to these spectral flows.

Thank you for your attention!

[^0]: ${ }^{1}$ https://www.bipm.org/fr/measurement-units/
 ${ }^{2}$ von Klitzing, Nature Physics 13, 2017
 ${ }^{3}$ K. von Klitzing; G. Dorda; M. Pepper, Phys. Rev. Lett. 45 (6): 494-497, 1980.

