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Goal of the talk
o Make a connection between spectral properties of materials, and electronic transport
@ The case of periodic materials.

@ The case of periodic materials, cut in half.
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Start with a single atom in R?. We study the spectrum of the Schrédinger operator

H=-A+V(x), eg V(x)= —Z

x|

@ Discrete spectrum (= eigenvalues), and continuous/essential spectrum.
@ lowest part of the spectrum = ground state energy, then excited state energy.

@ An electron needs energy to jump from one level to the next (quantum).
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Then take two atoms in R®.

H:—A—&—V(x—?)—i—‘/(x—l—g).

@ When R = oo, the spectrum is copied twice (each eigenvalue doubles its multiplicity);
e When R >> 1, tunnelling effect = interaction of eigenvectors => splitting of the eigenvalues;

o The eigenvectors are delocalized between the two atoms;
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Now take an infinity of atoms in R, located along a lattice (= material)

H=-A+ Z V(x—v)
veRzd

(] (] (] (] o o

@ When R = oo, each eigenvalue is of infinite multiplicity;
o When R >> 1, each eigenvalue becomes a band of essential spectrum,;
o Each band represents «one electron per unit cell »;

@ When R decreases, the bands may overlap.
The spectrum of —A + V with V-periodic has a band-gap structure!

Rigorous proof using the Bloch transform (~ discrete version of the Fourier transform).
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Motivation: Spectral pollution
Let’s compute numerically the spectrum of the (simple, one-dimensional) operator

H:=-8%,4+V(z), with V(z)=50-cos(2rz) + 10 - cos(4rz).

The potential V' is 1-periodic. We expect a band-gap structure for the spectrum.
We study H in a box [t, t + L] with Dirichlet boundary conditions, and with finite difference.

Spectrum of H on [t, £+5]

0.0 0.z 0.4 0.6 vk} 10

Depending on where we fix the origin ¢, the spectrum differs...
There are branches of spurious eigenvalues = spectral pollution (they appear for all L).
The corresponding eigenvectors are edge modes: they are localized near the boundaries.

In this talk: understand why edge modes must appear.
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Setting

Let V be a 1-periodic potential, and consider the cut (one-dimensional) Hamiltonian
Hf = —82, +V(z—t) on L*RM),

with Dirichlet boundary conditions, that is with domain H2(R*) N H}(RT).

Since V' is 1-periodic, the map ¢ HtIj is also 1-periodic.

Theorem (Kormyaev 2000, Hempel Kohlmann 2011, DG 2020)

In the n-th essential gap, there is a flow of n eigenvalues going downwards ast goes from 0 to 1.
In addition, these eigenvalues are simple, and their associated eigenvectors are exponentially localised.

Spectrum of H on [t, t+5]
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Figure: (left) Spectrum of H¥ (t) for ¢t € [0, 1]. (right) Spectrum of the operator on [t, t + L].

E. Korotyaev, Commun. Math. Phys., 213(2):471-489, 2000.
R. Hempel and M. Kohlmann, J. Math. Anal. Appl., 381(1):166-178, 2011.

D. Gontier, J. Math. Phys. 61, 2020.
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Idea of the proof

Step 1. Prove the result for dislocations (following Hempel and Kohlmann).
Introduce the dislocated operator

Hislee .= 92 4 [V(2)L(z < 0) + V(z —t)L(z > 0)], on L*(R).
Let L € N be a (large) integer. Consider the periodic dislocated operator
H%ﬂ"c =—02, + [V(@)l(x <0)+ V(z—t)L(z > 0)], on L*([-iL,L1L+1])
with periodic boundary conditions.

t=0 . t=03 . . t=05 . t=1

VU WAVULE WAL AZRAAE ]

Remarks
@ The branches of eigenvalues of t — H' %is};’“ are continuous;
o Att = 0, the system is 1-periodic, on a box of size L. Each «band» contributes to L eigenvalues;

e Att = 1, the system is 1-periodic, on a box of size L + 1. Each «band» contributes to L + 1
eigenvalues.
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Figure: Spectrum of H%s}fc for L = 6att = 0(6cells)and t = 1 (7 cells).




Figure: Spectrum of H%’lf‘ forallt € [0, 1].

The presence and the number of the red lines are independent of L € N.
They survive in the limit L — oco.

This implies that there the result holds for the family of dislocated operators t — H. 5“51"“.
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The Spectral flow
If t — Ay is a 1-periodic and continuous family of self-adjoint operators, and if E ¢ oess(A¢) for all ¢, we
can define its Spectral flow as

Sf (A, E) := number of eigenvalues going downwards in the essential gap where F lies.

The previous result can be formulated as:
St (HS““’“, E) =N(E), N(E) := number of bands below E.

Facts :
e Ift — K is a 1-periodic continuous family of compact operators, then

Sf(At, E) = Sf(At + K, E) .
o If f : R — IR is strictly increasing, then
SE(f (Ae), F(E)) = St (As, E) .
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Step 2. From the dislocated case to the Dirichlet case.

Recall that the dislocated operator is
Hfsoe .= 92 1+ [V(z)I(x <0)+ V(z—t)I(x >0)] on L3(R).
Consider the cut Hamiltonian
HM = —02 + [V(2)1(xz <0)+ V(z —t)I(z >0)] on L>*(R)=L*(R™)UL?*R"),
and with Dirichlet boundary conditions at z = 0.
Fact: For any ¥ negative enough (below the essential spectra of all operators), we have
Ky = (E — Hf“t) -t (E - Hfi51°c> ! is compact (here, it is finite rank).

So
Sf((E - Hf“sl"C)_1 (= — E)—l) = Sf((E —H M (2 - E)—l) .

Since f(z) := (X — )~ ! is strictly increasing on = > ¥, we have

N(E) = Sf (Hf“sl“, E) = Sf(HS™, E) = Sf (Hf’*, E) .o
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A «fun» analogy

The «Grand Hilbert Hotel»
An infinity of floors, an infinity of rooms in each floor.

~ HILEERT—

o~ o~ -3 = “.xv ... Floor 3.
X X =X = = ... Floor 2. .

&
G

x = * x = ... Floor 1. ‘

I
I




As t moves from O to 1...

t=00 t=025 t=05 t=075 t=10

... anew room is created on each floor!

t—t41
(3 (5 ... Floor3.
-5 -5 5 5 Floor 2. .

3 ... Floor 1. ' l— —




As t moves from O to 1...

t=00 t=025 t=05 t=075 t=10

... anew room is created on each floor!

t—t+1

—tt

%] %1 3 -1 & ... Floor 3.
3 % 3 -1 & ... Floor 2.
& %1 % & &5 | .. Floor1.

In order to fill the new rooms,
@ 1 person from floor 2 must come down to floor 1;
@ 2 persons from floor 3 must come down to floor 2;

@ and so on.

properti



The case of junctions
Take two 1-periodic potentials

Vi (x) = 50 cos(27mz) + 10 cos(4rmz), Vr(z) = 10cos(2mx) + 50 cos(4mrz)
Consider the junction Hamiltonian

HI™ = —92, + (Vi (2)1(x < 0) + Vr(z — )1 (x > 0)) on L3(R).

Reasoning as before (using a cut as a compact perturbation), one can prove that Sf (H{““Ct, E) = Ng(E).
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The case of junctions
Take two 1-periodic potentials

Vi (x) = 50 cos(27mz) + 10 cos(4rmz), Vr(z) = 10cos(2mx) + 50 cos(4mrz)
Consider the junction Hamiltonian

HI™ = —92, + (Vi (2)1(x < 0) + Vr(z — )1 (x > 0)) on L3(R).

Reasoning as before (using a cut as a compact perturbation), one can prove that Sf (H i"mt, E) = Ng(E).

@

A typical spectrum contains:
o The essential spectrum of the left and right side.
o Additional edge mode at the junction
Remark. This works for any junction, say of the form V,x + Vr (1 — x), with x a switch function.
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The two-dimensional case
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Let V be a Z2-periodic potential, and we study the edge operator
HY(t)=—-A+V(z—ty), on L?*(Ry xR), withDirichlet boundary conditions.
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Let V be a Z2-periodic potential, and we study the edge operator
HY(t)= —A+V(z—t,y), on L?(Ry XR), withDirichlet boundary conditions.

After a Bloch transform in the y-direction, we need to study the family of operators

HE(t) = =02, + (—idy + k) + V(z — t,y), onthetube L2(Ry x [0,1]).

o Consider the «Two-dimensional Grand Hilbert Hotel» (= on a tube).
o For each k, as t moves from O to 1, a new room is created on each floor = spectral flow.
@ As k varies, each branch of eigenvalue becomes of branch of essential spectrum.

There is a «spectral flow» of essential spectrum appearing in each gap.
The corresponding modes can only propagate along the boundary.
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The two-dimensional twisted case.
We rotate V' by 6.




The two-dimensional twisted case.
We rotate V' by 6.

Commensurate case (tan § = %)

Considering a Supercell of size L = /p2 + ¢2, we recover a LZ?-periodic potential.
On the tube R™ x [0, L] (at the k-Bloch point k£ = 0 for instance),

«Ast moves from O to L, L2 new rooms are created»

Key remark:
o The map ¢ — Hg (t) is now 1/ L-periodic (up to some x2 shifts)
@ So the map ¢t — O'(Hg (t)) is 1/ L periodic.

«Ast moves from 0 to % 1 new room is created»
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In-commensurate case (tan 6 ¢ Q, corresponds to L — 00)
o The spectrum of H#(t) is independent of ¢ (ergodicity);
o All bulk gaps are filled with edge spectrum!

Theorem (DG, Comptes Rendus. Mathématique, Tome 359 (2021) )

Iftan 0 ¢ Q, the spectrum ong is of the form (2, 00).

5 5
4 4
Bulk spectrum Bulk spectrum
3 3
Edge spectrum
2 2
1 1
o o
00 0z 04 06 08 Lo 0.0 02 04 06 08 10
(a) Uncut two-dimensional material (b) Two-dimensional material with incommensurate cut

id Gontier



Idea of the proof

Remark: The map 6 — Hy is not norm-resolvent continuous...
so the convergence of the spectrum is not guaranteed, and we need to prove it.

Limiting procedure
Consider a sequence 0, — 0, with tan(6,,) = % € Q,and set Ly, := \/p2 + q2.

By the commensurate case result, there is ¢, € [0, %] and ¢, € L2, (RT X [0, Ly]) so that
n

(—A+Vp, (t —tn) — E)én =0, / l¢n]® = 1.
R+ x[0,Ly]

It is tempting to extract a weak-limit of ¢, but this will fail (we would get ¢« = 0 at the end)...
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Idea of the proof

Remark: The map 6 — Hy is not norm-resolvent continuous...
so the convergence of the spectrum is not guaranteed, and we need to prove it.

Limiting procedure
Consider a sequence 0, — 0, with tan(6,,) = % € Q,and set Ly, := \/p2 + q2.

By the commensurate case result, there is ¢, € [0, %] and ¢, € L2, (RT X [0, Ly]) so that
n

(—A+Vp, (t —tn) — E)én =0, / l¢n]® = 1.
R+ x[0,Ly]

It is tempting to extract a weak-limit of ¢, but this will fail (we would get ¢« = 0 at the end)...

Idea: Normalize the functions in L°°
Consider the functions

U, = ¢7", sothat (=A+Vp, (t—tn) — E)¥p =0, [¥nllree =1.

l[#nllzee

(the parameter L, is no longer here).
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(—A 4V, (t —tn) — E)Vyp =0, ||¥nlpe =1.
Step 1: Control the mass
Consider x,, € R? so that ¥, (x5,) > %

e Upon shifting the whole system in the x2-direction (which effectively corresponds to changing ¢r,),
we may assume Ty 2 = 0.

o Since E ¢ gess(H ), the function W, is exponentially decaying away from the boundary (the bulk is
an insulator). So there is C' > 0 independent of n so that 0 < ;1 < C (the full proof uses
Combes-Thomas estimates).

Step 2: Regularity and taking the limit
@ Since ||[(=AW¥,)|| < C, thereis § > 0 so that U, (z) > % forall z € B(zn, d).
o Take the limit n — oo, and sub-sequences. ¥,, — ¥, weakly-* in L°°.

@ We have, in the distributional sense
(A + Vy(xz —t*) — E)¥, = 0.

e We have | ¥4 ||co < 1, and since fB(O 5) ¥ #0, Wi #£0.
o This implies that E € o(Hy).
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(—A 4V, (t —tn) — E)Vyp =0, ||¥nlpe =1.
Step 1: Control the mass
Consider x,, € R? so that ¥, (x5,) > %

e Upon shifting the whole system in the x2-direction (which effectively corresponds to changing ¢r,),
we may assume Ty 2 = 0.

o Since E ¢ gess(H ), the function W, is exponentially decaying away from the boundary (the bulk is
an insulator). So there is C' > 0 independent of n so that 0 < ;1 < C (the full proof uses
Combes-Thomas estimates).

Step 2: Regularity and taking the limit
@ Since ||[(=AW¥,)|| < C, thereis § > 0 so that U, (z) > % forall z € B(zn, d).
o Take the limit n — oo, and sub-sequences. ¥,, — ¥, weakly-* in L°°.

@ We have, in the distributional sense
(A + Vy(xz —t*) — E)¥, = 0.

e We have | ¥4 ||co < 1, and since fB(O 5) ¥ #0, Wi #£0.
o This implies that E € o(Hy).

Open question
Is E an eigenvalue of Hy (~ Anderson localization), or in the essential spectrum (travelling waves).

David Gontier Spectral properties of materials cut in half



A degenerate case

Consider Q C R2, and repeat it on a Z? grid.
Consider H = —A on L?(R?), with Dirichlet boundary conditions «everywhere».

L A A XX XX X X X J
000000000

000000000
L X A X X-X X X X X J
00000000

In the un-cut situation, the spectrum equals o (—A|q), and each eigenvalue is of infinite multiplicities.
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A degenerate case

Consider Q C R2, and repeat it on a Z? grid.
Consider H = —A on L?(R?), with Dirichlet boundary conditions «everywhere».

L XA XX XX X X X J
900000000

P00 000000
L X X X XX X X X X J
000000000

In the un-cut situation, the spectrum equals o (—A|q), and each eigenvalue is of infinite multiplicities.
In the cut situation:

e Iftan# € Q, a finite number of new motifs appear
= finite number of new eigenvalues appear in each gap (all of infinite multiplicities)

o Iftan 6 ¢ Q, an infinite (countable) number of new motifs appear
=> pure-point spectrum everywhere.
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Another application: the definition of the kilo
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May 20, 2019: New definition of the kg by the Bureau International des Poids et Mesures (BIPM)! :
“Le kilogramme, symbole kg, est I'unité de masse du SL Il est défini en prenant la valeur numérique fixée de la
constante de Planck, h, égale d 6,626 070 15 x 10734 757

Question: How do you measure h? How do you measure h with 109 accuracy?
Comments by von Klitzing?: ”The discovery of the QHE led to a new type of electrical resistor [...]. This
resistor is universal for all 2D electron systems in strong magnetic fields with an uncertainty of less than one

part in 1010

QHE = Quantum Hall Effect® (von Klitzing got Nobel prize in 1985 for discovery of Quantum Hall Effect).

0o 2 4 6 8 10 12 1
35
10
Pox 30 Py
08
k(¥sq 2° hié
20 5%
15
04
10
02
05
0 2 00
I 4 6 8 10 12 14

Magnetic Field (T)

"https://www.bipm.org/fr/measurement-units/
2yon Klitzing, Nature Physics 13, 2017
3K. von Klitzing; G. Dorda; M. Pepper, Phys. Rev. Lett. 45 (6): 494-497, 1980.
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In this setting, the magnetic field A plays the role of the pump.
Hp = —82, + (—idy + Bz)2.
After a Fourier transform in y, we get

—k
Hp, = —02, + (ky + Bz)> = =02, + B*(z —t)?, with t= ?y.

If B # 0, the bulk Hamiltonian has discrete spectrum. c(Hp) = |B|(2N + 1). (Landau operator).
The edge Hamiltonian HﬁB . has flows of eigenvalues between the Landau levels.

Inparticularo(H%) = [|B|, ).

The plateaus observed by von Klitzing correspond to these spectral flows.
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In this setting, the magnetic field A plays the role of the pump.
Hp = —82, + (—idy + Bz)2.
After a Fourier transform in y, we get

—k
Hp, = —02, + (ky + Bz)> = =02, + B*(z —t)?, with t= ?y.

If B # 0, the bulk Hamiltonian has discrete spectrum. c(Hp) = |B|(2N + 1). (Landau operator).
The edge Hamiltonian HﬁB . has flows of eigenvalues between the Landau levels.

Inparticularo(H%) = [|B|, ).

The plateaus observed by von Klitzing correspond to these spectral flows.

Thank you for your attention!
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