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Start with a single atom in Rd. We study the spectrum of the Schrödinger operator

H = −∆+ V (x), e.g. V (x) =
−Z
|x|

.

σ(H)

Discrete spectrum (= eigenvalues), and continuous/essential spectrum.
lowest part of the spectrum = ground state energy, then excited state energy.
An electron needs energy to jump from one level to the next (quantum).
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Then take two atoms in Rd.

H = −∆+ V

(
x−

R

2

)
+ V

(
x+

R

2

)
.

σ(H)

When R = ∞, the spectrum is copied twice (each eigenvalue doubles its multiplicity);
When R � 1, tunnelling effect = interaction of eigenvectors =⇒ splitting of the eigenvalues;
The eigenvectors are delocalized between the two atoms;
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Now take an infinity of atoms in Rd, located along a lattice (= material)

H = −∆+
∑

v∈RZd

V (x− v)

σ(H)

When R = ∞, each eigenvalue is of infinite multiplicity;
When R � 1, each eigenvalue becomes a band of essential spectrum;
Each band represents «one electron per unit cell »;
When R decreases, the bands may overlap.

The spectrum of −∆+ V with V -periodic has a band-gap structure!
One band = one electron per unit cell

Usual proof with the Bloch transform (∼ discrete version of the Fourier transform).
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Motivation: Spectral pollution
Let’s compute numerically the spectrum of the (simple, one-dimensional) operator

H := −∂2xx + V (x), with V (x) = 50 · cos(2πx) + 10 · cos(4πx).

The potential V is 1-periodic. We expect a band-gap structure for the spectrum.
We studyH in a box [t, t+ L] with Dirichlet boundary conditions, and with finite difference.

Depending on where we fix the origin t, the spectrum differs…
There are branches of spurious eigenvalues = spectral pollution (they appear for all L).
The corresponding eigenvectors are edge modes: they are localized near the boundaries.

In this talk: understand why edge modes must appear.

David Gontier Spectral properties of materials cut in half 5 / 22



Motivation: Spectral pollution
Let’s compute numerically the spectrum of the (simple, one-dimensional) operator

H := −∂2xx + V (x), with V (x) = 50 · cos(2πx) + 10 · cos(4πx).

The potential V is 1-periodic. We expect a band-gap structure for the spectrum.
We studyH in a box [t, t+ L] with Dirichlet boundary conditions, and with finite difference.

Depending on where we fix the origin t, the spectrum differs…
There are branches of spurious eigenvalues = spectral pollution (they appear for all L).
The corresponding eigenvectors are edge modes: they are localized near the boundaries.

In this talk: understand why edge modes must appear.
David Gontier Spectral properties of materials cut in half 5 / 22



Setting
Let V be a 1-periodic potential, and consider the cut (one-dimensional) Hamiltonian

H]
t = −∂2xx + V (x− t) on L2(R+),

with Dirichlet boundary conditions, that is with domainH2(R+) ∩H1
0 (R+).

Since V is 1-periodic, the map t 7→ H]
t is also 1-periodic.

Theorem (Korotyaev 2000, Hempel Kohlmann 2011, DG 2020)

In the n-th essential gap, there is a flow of n eigenvalues going downwards as t goes from 0 to 1.
In addition, these eigenvalues are simple, and their associated eigenvectors are exponentially localised.

Figure: (left) Spectrum of H](t) for t ∈ [0, 1]. (right) Spectrum of the operator on [t, t + L].

E. Korotyaev, Commun. Math. Phys., 213(2):471–489, 2000.
R. Hempel and M. Kohlmann, J. Math. Anal. Appl., 381(1):166–178, 2011.
D. Gontier, J. Math. Phys. 61, 2020.
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Idea of the proof
Step 1. Prove the result for dislocations (following Hempel and Kohlmann).
Introduce the dislocated operator

Hdisloc
t := −∂2xx +

[
V (x)1(x < 0) + V (x− t)1(x > 0)

]
, on L2(R).

Let L ∈ N be a (large) integer. Consider the periodic dislocated operator

Hdisloc
L,t := −∂2xx +

[
V (x)1(x < 0) + V (x− t)1(x > 0)

]
, on L2([− 1

2
L, 1

2
L+ t])

with periodic boundary conditions.

Remarks
The branches of eigenvalues of t 7→ Hdisloc

L,t are continuous;

At t = 0, the system is 1-periodic, on a box of size L. Each «band» contributes to L eigenvalues;
At t = 1, the system is 1-periodic, on a box of size L+ 1. Each «band» contributes to L+ 1
eigenvalues.
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Figure: Spectrum of Hdisloc
L,t for L = 6 at t = 0 (6 cells) and t = 1 (7 cells).
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Figure: Spectrum of Hdisloc
L,t for all t ∈ [0, 1].

The presence and the number of the red lines are independent of L ∈ N.
They survive in the limit L→ ∞.

This implies that there the result holds for the family of dislocated operators t 7→ Hdisloc
t .
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The Spectral flow
If t 7→ At is a 1-periodic and continuous family of self-adjoint operators, and if E /∈ σess(At) for all t, we
can define its Spectral flow as

Sf (At, E) := number of eigenvalues going downwards in the essential gap where E lies.

The previous result can be formulated as:

Sf
(
Hdisloc

t , E
)
= N (E), N (E) := number of bands below E.

Facts :
If t 7→ Kt is a 1-periodic continuous family of compact operators, then

Sf (At, E) = Sf (At +Kt, E) .

If f : R → R is strictly increasing, then

Sf (f (At) , f(E)) = Sf (At, E) .
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Step 2. From the dislocated case to the Dirichlet case.

Recall that the dislocated operator is

Hdisloc
t := −∂2xx + [V (x)1(x < 0) + V (x− t)1(x > 0)] on L2(R).

Consider the cut Hamiltonian

Hcut
t := −∂2xx + [V (x)1(x < 0) + V (x− t)1(x > 0)] on L2(R) = L2(R−) ∪ L2(R+),

and with Dirichlet boundary conditions at x = 0 (only the domain differs).

Fact: For any Σ negative enough (below the essential spectra of all operators), we have

Kt :=
(
Σ−Hcut

t

)−1 −
(
Σ−Hdisloc

t

)−1
is compact (here, it is finite rank).

So
Sf
((

Σ−Hdisloc
t

)−1
, (Σ− E)−1

)
= Sf

((
Σ−Hcut

t

)−1
, (Σ− E)−1

)
.

Since f(x) := (Σ− x)−1 is strictly increasing on x > Σ, we have

N (E) = Sf
(
Hdisloc

t , E
)
= Sf

(
Hcut

t , E
)
= Sf

(
H],+

t , E
)
.
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A «fun» analogy

The «Grand Hilbert Hotel»
An infinity of floors, an infinity of rooms in each floor.

Idea: each period represents 1 room (per floor), each spectral band represents one floor.

😴 😴 😴 😴 😴

… Floor 1.

😴 😴 😴 😴 😴

… Floor 2.

😴 😴 😴 😴 😴

… Floor 3.

...
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As t moves from 0 to 1…

… a new room is created on each floor!

😴 😴 😴 😴 😴 😴

… Floor 1.

😴 😴 😴 😴 😴 😴

… Floor 2.

😴 😴 😴 😴 😴 😴

… Floor 3.

t→t+1−−−−−→

In order to fill the new rooms,
1 person from floor 2 must come down to floor 1;
2 persons from floor 3 must come down to floor 2;
and so on.

This phenomenon is sometimes called «charge pumping».
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The case of junctions
Take two 1-periodic potentials

VL(x) = 50 cos(2πx) + 10 cos(4πx), VR(x) = 10 cos(2πx) + 50 cos(4πx)

Consider the junction Hamiltonian

H
junct
t := −∂2xx + (VL(x)1(x < 0) + VR(x− t)1(x > 0)) on L2(R).

Reasoning as before (using a cut as a compact perturbation), one can prove that Sf
(
H

junct
t , E

)
= NR(E).

Figure: Spectrum of H junc
t as a function of t.

A typical spectrum contains:
The essential spectrum of the left and right side.
Additional edge modes at the junction.

Remark. This also works for junctions of the form VLχ+ VR(1− χ), with χ a switch function.
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Thetwo-dimensional case
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Let V be a Z2-periodic potential, and we study the edge operator

H](t) = −∆+ V (x− t, y), on L2(R+ × R), with Dirichlet boundary conditions.

After a Bloch transform in the y-direction, we need to study the family of operators

H]
k(t) = −∂2xx + (−i∂y + k)2 + V (x− t, y), on the tube L2(R+ × [0, 1]).

Consider again the «Grand Hilbert Hotel» (= on a tube).
For each k, as t moves from 0 to 1, a new room is created on each floor =⇒ spectral flow.
As k varies, each branch of eigenvalue becomes of branch of essential spectrum.

There is a «spectral flow» of essential spectrum appearing in each gap.
The corresponding modes can only propagate along the boundary.
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The two-dimensional twisted case.
We rotate V by θ.

Commensurate case (tan θ = p
q
)

Considering a Supercell of size L =
√
p2 + q2, we recover a LZ2-periodic potential.

On the tube R+ × [0, L] (at the k-Bloch point k = 0 for instance),
« As t moves from 0 to L, L2 new rooms are created»

Key remark:

The map t 7→ H]
θ(t) is now 1/L-periodic (up to some x2 shifts)

So the map t 7→ σ(H]
θ(t)) is 1/L periodic.

«As t moves from 0 to 1
L
, 1 new room is created»
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In-commensurate case (tan θ /∈ Q, corresponds to L→ ∞)
The spectrum ofH](t) is independent of t (ergodicity);
All bulk gaps are filled with edge spectrum!

Theorem (DG, Comptes Rendus. Mathématique, Tome 359 (2021) )

If tan θ /∈ Q, the spectrum ofH]
θ is of the form [Σ,∞).

(a) Uncut two-dimensional material (b) Two-dimensional material with incommensurate cut

David Gontier Spectral properties of materials cut in half 17 / 22



Idea of the proof
Remark: The map θ 7→ Hθ is not norm-resolvent continuous.
The convergence of the spectrum is not guaranteed, and we need to prove it.

Limiting procedure
Consider a sequence θn → θ, with tan(θn) = pn

qn
∈ Q, and set Ln :=

√
p2n + q2n.

By the commensurate case result, there is tn ∈ [0, 1
Ln

] and φn ∈ L2
per(R+ × [0, Ln]) so that

(−∆+ Vθn (t− tn)− E)φn = 0,

ˆ
R+×[0,Ln]

|φn|2 = 1.

It is tempting to extract a weak limit of φn in L2, but this will fail (we would get φ∗ = 0 at the end).

Idea: Normalize the functions in L∞

Consider the functions

Ψn :=
φn

‖φn‖L∞
, so that (−∆+ Vθn (t− tn)− E)Ψn = 0, ‖Ψn‖L∞ = 1.

(the parameter Ln is no longer here).

It is tempting to extract a weak-* limit of ψn in L∞, but this can fail (we could get ψ∗ = 0 at the end).
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(−∆+ Vθn (t− tn)− E)Ψn = 0, ‖Ψn‖L∞ = 1.

Step 1: Control the mass …
Consider xn ∈ R2 so that Ψn(xn) >

1
2
.

vertically: Upon shifting the whole system in the x2-direction (which effectively corresponds to
changing tn), we may assume xn,2 = 0.
horizontally: Since E /∈ σess(H), the function Ψn is exponentially decaying away from the
boundary («the bulk is an insulator»). So there is C > 0 independent of n so that 0 < xn,1 < C .
(the full proof uses Combes-Thomas estimates).

Step 2: Regularity and taking the limit
Since ‖(−∆Ψn)‖ ≤ C , there is δ > 0 so that Ψn(x) >

1
4
for all x ∈ B(xn, δ).

Take the limit n→ ∞, and sub-sequences. Ψn → Ψ∗ weakly-* in L∞.
We have, in the distributional sense

(−∆+ Vθ(x− t∗)− E)Ψ∗ = 0.

We have ‖Ψ∗‖∞ ≤ 1, and since
´
B(0,δ) Ψ∗ 6= 0, Ψ∗ 6= 0.

This implies that E ∈ σ(Hθ).

Open question
Is the spectrum pure point (∼ Anderson localization), or absolutely continuous (travelling waves)?
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A degenerate case
Consider Ω ⊂ R2 a nice bounded set, and repeat it on a Z2 grid.
ConsiderH = −∆ on L2(R2), with Dirichlet boundary conditions «everywhere».

In the un-cut situation, the spectrum equals σ (−∆|Ω), and each eigenvalue is of infinite multiplicities.

In the cut situation:
If tan θ ∈ Q, a finite number of new motifs appear, each one appears infinitely many times
=⇒ finite number of new eigenvalues appear in each gap (all of infinite multiplicities)
If tan θ /∈ Q, an infinite (countable) number of new motifs appear
=⇒ pure-point spectrum everywhere.
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Bonus: «QuantumHall Effect»
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Consider a 2d electron gas, under a constant magnetic field B orthogonal to the plane.
We choose the gauge

A = A(x, y) =
(

0
Bx

)
.

We obtain the Landau Hamiltonian

HB = −∂2xx + (−i∂y +Bx)2.

After a Fourier transform in y, we get

HB,ky = −∂2xx + (ky +Bx)2 = −∂2xx +B2(x− t)2, with t =
−ky
B

.

The Fourier momentum ky plays the role of the pump.

Lemma
If B 6= 0, the bulk Hamiltonian has discrete spectrum. σ(HB) = |B|(2N0 + 1). (Landau operator).
The edge HamiltonianH]

B,t has flows of eigenvalues, going downwards.

In particular σ(H]
B) = [|B|,∞).

Thank you for your attention!
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