Density Functional Theory for two-dimensional homogeneous materials

David Gontier
joint work with Salma Lahbabi and Abdallah Maichine

CEREMADE, Université Paris-Dauphine \& École Normale Supérieure de Paris

Séminaire EMC2
LJLL and LCT (Sorbonne University), November 18, 2022

Dauphine IPSL太 CEREMADE

Goal: study two-dimensional materials (embedded in 3d space).

$\neq 2 \mathrm{~d}$ material in 2d space (e.g. with the 2 d Coulomb kernel).

Questions:

- What should be the size of the «simulation box»?
- What is the decay of the electronic density or mean-field potential away from the plane?

In this talk, we consider homogeneous materials, modelled by a charge density

$$
\mu\left(x_{1}, x_{2}, x_{3}\right)=\mu\left(x_{3}\right) \in L^{1}(\mathbb{R})
$$

and study the properties of the electronic density in Thomas-Fermi and Kohn-Sham models.

Remarks

- Very crude approximation (we lose the microscopic details of the material);
- This model should have the correct decay properties away from the slab (the details fade away).

Thomas-Fermi model

Recall the (three-dimensional) Thomas-Fermi energy (assume $\mu \in C_{0}^{\infty}\left(\mathbb{R}^{3}\right)$)

$$
\forall \rho \in L^{1}\left(\mathbb{R}^{3}\right) \cap L^{5 / 3}\left(\mathbb{R}^{3}\right), \rho \geq 0, \quad \mathcal{E}_{3}^{\mathrm{TF}}(\rho):=c_{\mathrm{TF}} \int_{\mathbb{R}^{3}} \rho^{5 / 3}+\frac{1}{2} \mathcal{D}_{3}(\rho-\mu)
$$

with the three-dimensional Coulomb energy

$$
\mathcal{D}_{3}(f):=\iint_{\mathbb{R}^{3} \times \mathbb{R}^{3}} \frac{f(x) f(y)}{|x-y|} \mathrm{d} x \mathrm{~d} y .
$$

The model is convex in ρ. In particular, if μ satisfies some symmetries, then ρ satisfies the same symmetries. If μ only depends on x_{3}, we may assume that ρ also depends on x_{3} only.
We define the Thomas-Fermi energy per unit surface

$$
\forall \rho \in L^{1}(\mathbb{R}) \cap L^{5 / 3}(\mathbb{R}), \rho \geq 0, \quad \mathcal{E}_{1}^{\mathrm{TF}}(\rho):=c_{\mathrm{TF}} \int_{\mathbb{R}} \rho^{5 / 3}+\frac{1}{2} \mathcal{D}_{1}(\rho-\mu),
$$

with the one-dimensional Coulomb energy

$$
\mathcal{D}_{1}(f) \stackrel{? ?}{=}-2 \pi \iint_{\mathbb{R} \times \mathbb{R}} f(x) f(y)|x-y| \mathrm{d} x \mathrm{~d} y
$$

First technical problem: The \mathcal{D}_{1} functional is not convex! It will be on $\left\{\rho, \int \rho=\int \mu\right\}$, see later. Thomas-Fermi minimization (for neutral systems only)

$$
\rho_{\mathrm{TF}}:=\operatorname{argmin}\left\{\mathcal{E}_{1}^{\mathrm{TF}}(\rho), \rho \in L^{1}(\mathbb{R}) \cap L^{5 / 3}(\mathbb{R}), \quad \rho \geq 0, \quad \int_{\mathbb{R}} \rho=\int_{\mathbb{R}} \mu=: Z\right\}
$$

$$
\rho_{\mathrm{TF}}:=\operatorname{argmin}\left\{\mathcal{E}_{1}^{\mathrm{TF}}(\rho), \rho \in L^{1}(\mathbb{R}) \cap L^{5 / 3}(\mathbb{R}), \quad \rho \geq 0, \quad \int_{\mathbb{R}} \rho=Z\right\}
$$

Key remark: It is a (very) simple model (one-dimensional, no derivatives, ...).

Proposition

There is a unique minimizer ρ_{TF}. It is the (unique) solution to the Thomas-Fermi equation

$$
\left\{\begin{array}{l}
\frac{5}{3} c_{\mathrm{TF}} \rho_{\mathrm{TF}}^{2 / 3}=\left(\lambda-\Phi_{\mathrm{TF}}\right)_{+} \\
-\Phi_{\mathrm{TF}}^{\prime \mathrm{T}}=4 \pi\left(\rho_{\mathrm{TF}}-\mu\right), \quad \Phi_{\mathrm{TF}}^{\prime}(\pm \infty)=0, \quad \Phi_{\mathrm{TF}}(0)=0 .
\end{array}\right.
$$

Here, $\lambda \in \mathbb{R}$ is the Fermi level, chosen so that $\int_{\mathbb{R}} \rho=Z$, and Φ_{TF} is defined as the unique solution of the second equation.

Remark: There is no reference energy in 1d (the 1d Green's function does not have a limit at infinity). Only the difference $V_{\mathrm{TF}}:=\Phi_{\mathrm{TF}}-\lambda$, called the mean-field potential, makes sense.

The proof is similar to the ones of the usual Thomas-Fermi model (see [Lieb/Simon, Adv. Math. 23, 1977]).

Screening properties

Let $f \in C_{0}^{\infty}(\mathbb{R})$ be such that $\int_{\mathbb{R}} f=0$. The potential generated by f is formally

$$
\Phi_{f}(x):=-2 \pi \int_{\mathbb{R}} f(y)|x-y| \mathrm{d} y .
$$

We have $\Phi_{f}(\infty)=2 \pi \int_{\mathbb{R}} f(y) y \mathrm{~d} y$ and $\Phi_{f}(-\infty)=-2 \pi \int_{\mathbb{R}} f(y) y \mathrm{~d} y$.
The difference $\Phi_{f}(\infty)-\Phi_{f}(-\infty)=4 \pi \int_{\mathbb{R}} f(y) y \mathrm{~d} y$ is called the dipolar moment.

Proposition (perfect screening)

Assume $|x| \mu(x) \in L^{1}(\mathbb{R})$. Then $|x| \rho_{\mathrm{TF}}(x) \in L^{1}(\mathbb{R})$ as well, and the Thomas-Fermi potential V_{TF} satisfies

$$
\lim _{x \rightarrow \infty} V_{\mathrm{TF}}(x)=\lim _{x \rightarrow-\infty} V_{\mathrm{TF}}(x)=0 . \quad \text { (no dipolar moment.) }
$$

Proposition (Sommerfeld estimates)

Assume μ is compactly supported in $[a, b]$. Then, there is $x_{a}, x_{b} \in \mathbb{R}$ so that

$$
\begin{aligned}
& \forall x<a, \quad V_{\mathrm{TF}}(x)=\frac{-c_{1}}{\left(x-x_{a}\right)^{4}}, \quad \text { and } \quad \rho_{\mathrm{TF}}(x)=\frac{c_{2}}{\left(x-x_{a}\right)^{6}}, \\
& \forall x>b, \quad V_{\mathrm{TF}}(x)=\frac{-c_{1}}{\left(x-x_{b}\right)^{4}}, \quad \text { and } \quad \rho_{\mathrm{TF}}(x)=\frac{c_{2}}{\left(x-x_{b}\right)^{6}} .
\end{aligned}
$$

with the constants $c_{1}:=\frac{5^{5} c_{\mathrm{TF}}^{3}}{27 \pi^{2}}$ and $c_{2}:=\frac{5^{6} c_{\mathrm{TF}}^{3}}{27 \pi^{3}}$.
See [Sommerfeld, Zeitschrift für Physik 78(5-6) (1932)] and [Solovej, Ann. Math., (2003)] in the usual case.

Proof of Sommerfeld estimates.
Assume that $V_{\mathrm{TF}} \leq 0$ (this fact comes from the maximum principle).
For $x>b$, we have $\mu(x)=0$, so the Thomas Fermi equation becomes

$$
\left\{\begin{array}{l}
\frac{5}{3} c_{\mathrm{TF}} \rho_{\mathrm{TF}}^{2 / 3}=-V_{\mathrm{TF}} \\
-V_{\mathrm{TF}}^{\prime \prime}=4 \pi \rho_{\mathrm{TF}}
\end{array} \quad \text { hence } \quad \forall x>b, \quad V_{\mathrm{TF}}^{\prime \prime}=-4 \pi\left(\frac{3}{5 c_{\mathrm{TF}}}\right)^{3 / 2}\left(-V_{\mathrm{TF}}\right)^{3 / 2}\right.
$$

We now solve the $O D E$. We multiply by V_{TF}^{\prime} and integrate:

$$
\frac{1}{2}\left|V_{\mathrm{TF}}^{\prime}\right|^{2}=4 \pi\left(\frac{3}{5 c_{\mathrm{TF}}}\right)^{3 / 2} \frac{2}{5}\left(-V_{\mathrm{TF}}\right)^{5 / 2}, \quad \text { hence } \quad \frac{V_{\mathrm{TF}}^{\prime}}{\left(-V_{\mathrm{TF}}\right)^{5 / 4}}=\frac{4 \sqrt{\pi}}{\sqrt{5}}\left(\frac{3}{5 c_{\mathrm{TF}}}\right)^{3 / 4}
$$

We integrate a second time and get

$$
\frac{4}{\left(-V_{\mathrm{TF}}\right)^{1 / 4}}=-\frac{4 \sqrt{\pi}}{\sqrt{5}}\left(\frac{3}{5 c_{\mathrm{TF}}}\right)^{3 / 4}\left(x-x_{b}\right), \quad \text { so } \quad V_{\mathrm{TF}}(x)=\frac{-c_{1}}{\left(x-x_{b}\right)^{4}}
$$

Remarks:

- Simple proof (solve an ODE) due to the one-dimensional nature of the problem.
- Highlights some features of the Thomas-Fermi model (e.g. perfect screening, Sommerfeld estimates)

In the Thomas Fermi model, $\rho_{\mathrm{TF}}(x) \approx|x|^{-6}$ and $V_{\mathrm{TF}}(x) \approx|x|^{-4}$ away from the slab.

Interlude: the 1d Coulomb operator

For $L>0$, we consider the $L \mathbb{Z}^{2}$-periodic Green's function G_{L}, solution to

$$
-\Delta_{3} G_{L}=4 \pi \sum_{\left(R_{1}, R_{2}\right) \in L \mathbb{Z}^{2}} \delta_{\left(R_{1}, R_{2}, 0\right)}
$$

A computation shows that (we write $\mathbf{x}=\left(x_{1}, x_{2}\right)$)

$$
G_{L}\left(\mathbf{x}, x_{3}\right)=-\frac{2 \pi}{L^{2}}\left|x_{3}\right|+\frac{2 \pi}{L^{2}} \sum_{\mathbf{k} \in(2 \pi / L) \mathbb{Z}^{2} \backslash\{0\}} \frac{\mathrm{e}^{-|\mathbf{k}| \cdot\left|x_{3}\right|}}{|\mathbf{k}|} \mathrm{e}^{\mathrm{i} \mathbf{k} \cdot \mathbf{x}}
$$

- We recognize the 1 d Coulomb kernel in red.
- The other part is oscillating in \mathbf{x}, and exponentially decaying away from the slab («details fade away»). If $f\left(\mathbf{x}, x_{3}\right)=f\left(x_{3}\right)$ only depends on the third variable, then

$$
\int_{[0, L]^{2} \times \mathbb{R}} f\left(\mathbf{y}, y_{3}\right) G_{L}\left(\mathbf{x}-\mathbf{y} ; x_{3}-y_{3}\right) \mathrm{d} \mathbf{y d} y_{3}=-2 \pi \int_{\mathbb{R}} f\left(y_{3}\right)\left|x_{3}-y_{3}\right| \mathrm{d} y_{3}
$$

and, with obvious notation,

$$
\frac{1}{L^{2}} \mathcal{D}_{3, L}(f)=\widetilde{\mathcal{D}_{1}}(f)
$$

with the Hartree term

$$
\widetilde{\mathcal{D}_{1}}(f):=-2 \pi \iint_{\mathbb{R} \times \mathbb{R}} f(x) f(y)|x-y| \mathrm{d} x \mathrm{~d} y
$$

First Hartree term

$$
\left.\widetilde{\mathcal{D}_{1}}(f):=-2 \pi \iint_{\mathbb{R} \times \mathbb{R}} f(x) f(y)|x-y| \mathrm{d} x \mathrm{~d} y, \quad \text { (well-defined whenever }(1+|x|) f(x) \in L^{1}(\mathbb{R})\right) .
$$

Warning: The map $f \mapsto \widetilde{\mathcal{D}_{1}}(f)$ is not convex.

$$
\widetilde{\mathcal{D}_{1}}(t f+(1-t) g)-t \widetilde{\mathcal{D}_{1}}(f)-(1-t) \widetilde{\mathcal{D}_{1}}(g)=-t(1-t) \widetilde{\mathcal{D}_{1}}(f-g) .
$$

If $f-g=: h$ is positive pointwise, then $\widetilde{\mathcal{D}_{1}}(f-g)=\widetilde{\mathcal{D}_{1}}(h)<0$.

We define a regularized version of the Hartree term,

$$
\mathcal{D}_{1}(f):=4 \pi \int_{\mathbb{R}} \frac{|\widehat{f}(k)|^{2}}{k^{2}} \mathrm{~d} k=4 \pi \int_{\mathbb{R}}\left|W_{f}\right|^{2}(x) \mathrm{d} x, \quad \text { with } \quad W_{f}(x):=\int_{-\infty}^{x} f(y) \mathrm{d} y .
$$

This is well-defined whenever $W_{f} \in L^{2}(\mathbb{R})$. In particular, $W(\infty)=\int_{\mathbb{R}} f=0$ (neutral system only).

Lemma

- The map $f \mapsto \mathcal{D}_{1}(f)$ is strictly convex on $\mathcal{C}:=\left\{f \in L^{1}(\mathbb{R}), W_{f} \in L^{2}(\mathbb{R})\right\}$.
- If $f \in \mathcal{C}$ satisfies $|x| f(x) \in L^{1}(\mathbb{R})$, then $\mathcal{D}_{1}(f)=\widetilde{\mathcal{D}_{1}}(f)$.
- If $f \in \mathcal{C}$, then $\mathcal{D}_{1}(f)=4 \pi \iint_{\left(\mathbb{R}_{+}\right)^{2} \cup\left(\mathbb{R}_{-}\right)^{2}} \min \{|x|,|y|\} f(x) f(y) \mathrm{d} x \mathrm{~d} y=\int_{\mathbb{R}} f(x) \Phi_{f}(x) \mathrm{d} x$.

Idea of the proof. $\quad|x|+|y|-|x-y|= \begin{cases}2 \min \{|x|,|y|\} & \text { on }\left(\mathbb{R}_{+}\right)^{2} \cup\left(\mathbb{R}_{-}\right)^{2} \\ 0 & \text { else. }\end{cases}$

Kohn-Sham models (reduced Hartree-Fock)

One-body density matrix: $\gamma \in \mathcal{S}\left(L^{2}\left(\mathbb{R}^{3}\right)\right)$ satisfying the Pauli principle $0 \leq \gamma \leq 1$. For homogeneous 2 d materials, we request that γ commutes with all \mathbb{R}^{2} translations:

$$
\forall \mathbf{R} \in \mathbb{R}^{2} \subset \mathbb{R}^{3}, \quad \tau_{\mathbf{R}} \gamma=\gamma \tau_{\mathbf{R}}, \quad \text { with } \quad \tau_{\mathbf{R}} f\left(\mathbf{x}, x_{3}\right):=f\left(\mathbf{x}-\mathbf{R}, x_{3}\right)
$$

Equivalently, $\gamma\left(\mathbf{x}, x_{3} ; \mathbf{y}, y_{3}\right)=\gamma\left(\mathbf{x}-\mathbf{y}, x_{3} ; \mathbf{0}, y_{3}\right)=: \gamma\left(\mathbf{x}-\mathbf{y}, x_{3}, y_{3}\right)$.
For such one-body density matrix, the density $\rho_{\gamma}\left(\mathbf{x}, x_{3}\right):=\gamma\left(\mathbf{x}, x_{3} ; \mathbf{x}, x_{3}\right)$ satisfies

$$
\rho_{\gamma}\left(\mathbf{x}, x_{3}\right)=\rho_{\gamma}\left(x_{3}\right)
$$

Trace per unit surface. Set $\Gamma:=[0,1]^{2} \times \mathbb{R} \subset \mathbb{R}^{3}$ (tube),

$$
\underline{\operatorname{Tr}}(\gamma):=\operatorname{Tr}_{3}\left(\mathbb{1}_{\Gamma} \gamma \mathbb{1}_{\Gamma}\right)=\int_{\mathbb{R}} \rho_{\gamma}\left(x_{3}\right) \mathrm{d} x_{3} .
$$

reduced Hartree-Fock energy per unit surface

$$
\mathcal{E}_{3}^{\mathrm{rHF}}(\gamma):=\frac{1}{2} \underline{\operatorname{Tr}}\left(-\Delta_{3} \gamma\right)+\frac{1}{2} \mathcal{D}_{1}\left(\rho_{\gamma}-\mu\right)
$$

Remark: This energy still depends on the three-dimensional object $\gamma \in \mathcal{S}\left(L^{2}\left(\mathbb{R}^{3}\right)\right)$.
Can we find a reduced one-dimensional model?

Minimization set $=\mathcal{P} \cap\{\gamma, \underline{\operatorname{Tr}}(\gamma)=Z\}$ (neutrality condition) with

$$
\mathcal{P}:=\left\{\gamma \in \mathcal{S}\left(L^{2}\left(\mathbb{R}^{3}\right)\right), \quad 0 \leq \gamma \leq 1, \quad \forall \mathbf{R} \in \mathbb{R}^{2}, \tau_{\mathbf{R}} \gamma=\gamma \tau_{\mathbf{R}}\right\} .
$$

Theorem (DG, Lahbabi, Maichine, 2021)

Introduce $\mathcal{G}:=\left\{G \in \mathcal{S}\left(L^{2}(\mathbb{R})\right), \quad G \geq 0, \quad \operatorname{Tr}_{1}(G)<\infty\right\}$. Then, for any (representable) density ρ,

$$
\inf \left\{\frac{1}{2} \underline{\operatorname{Tr}}\left(-\Delta_{3} \gamma\right), \quad \gamma \in \mathcal{P}, \quad \rho_{\gamma}=\rho\right\}=\inf \left\{\frac{1}{2} \operatorname{Tr}_{1}\left(-\Delta_{1} G\right)+\pi \operatorname{Tr}\left(G^{2}\right), \quad G \in \mathcal{G}, \quad \rho_{G}=\rho\right\}
$$

Remarks:

- Works for general Kohn-Sham models (assuming no «in-plane» symmetry breaking).
- The new minimization problem is set on operators acting on $L^{2}\left(\mathbb{R}^{1}\right)$.
- There is no Pauli principle for G. It is replaced by a penalization term $+\pi \operatorname{Tr}\left(G^{2}\right)$ in the energy.
- The term $\operatorname{Tr}\left(G^{2}\right)$ is sometime called the Tsallis or Rényi entropy.

Constrained-search

$$
\begin{aligned}
\inf _{\gamma}\left\{\mathcal{E}_{3}^{\mathrm{rHF}}(\gamma)\right\} & =\inf _{\rho}\left\{\frac{1}{2} \mathcal{D}_{1}(\rho-\mu)+\inf _{\gamma \rightarrow \rho}\left\{\frac{1}{2} \underline{\operatorname{Tr}}\left(-\Delta_{3} \gamma\right)\right\}\right\} \\
& =\inf _{\rho}\left\{\frac{1}{2} \mathcal{D}_{1}(\rho-\mu)+\inf _{G \rightarrow \rho}\left\{\frac{1}{2} \operatorname{Tr}_{1}\left(-\Delta_{1} G\right)+\pi \operatorname{Tr}_{1}\left(G^{2}\right)\right\}\right\}=\inf _{G} \mathcal{E}_{1}^{\mathrm{rHF}}(G)
\end{aligned}
$$

with the reduced rHF model

$$
\mathcal{E}_{1}^{\mathrm{rHF}}(G):=\frac{1}{2} \operatorname{Tr}_{1}\left(-\Delta_{1} G\right)+\pi \operatorname{Tr}_{1}\left(G^{2}\right)+\frac{1}{2} \mathcal{D}_{1}\left(\rho_{G}-\mu\right) .
$$

Proof of the theorem

Consider $\mathcal{F}: L^{2}\left(\mathbb{R}^{3}\right) \rightarrow L^{2}\left(\mathbb{R}^{3}\right)$ the partial Fourier transform

$$
(\mathcal{F} f)\left(\mathbf{k}, x_{3}\right)=\frac{1}{(2 \pi)} \int_{\mathbb{R}^{2}} \mathrm{e}^{\mathrm{i} \mathbf{k} \cdot \mathbf{x}} f\left(\mathbf{x}, x_{3}\right) \mathrm{d} \mathbf{x}
$$

Bloch theory. Since $\gamma \in \mathcal{P}$ commutes with \mathbb{R}^{2}-translations, there is $\left\{\gamma_{\mathbf{k}}\right\}_{\mathbf{k} \in \mathbb{R}^{2}}$ with $\gamma_{\mathbf{k}} \in \mathcal{S}\left(L^{2}(\mathbb{R})\right)$ so that

$$
\mathcal{F} \gamma \mathcal{F}^{-1}=\int_{\mathbb{R}^{2}}^{\oplus} \gamma_{\mathbf{k}} \mathrm{d} \mathbf{k}, \quad \text { in the sense } \quad(\mathcal{F} \gamma f)(\mathbf{k}, \cdot)=\gamma_{\mathbf{k}}[(\mathcal{F} f)(\mathbf{k}, \cdot)]
$$

We have

$$
0 \leq \gamma_{\mathbf{k}} \leq 1, \quad \rho_{\gamma}=\frac{1}{(2 \pi)^{2}} \int_{\mathbb{R}^{2}} \rho_{\gamma_{\mathbf{k}}}, \quad \text { and } \quad \underline{\operatorname{Tr}}(\gamma)=\frac{1}{(2 \pi)^{2}} \int_{\mathbb{R}^{2}} \operatorname{Tr}_{1}\left(\gamma_{\mathbf{k}}\right)
$$

Now, we set

$$
G:=\frac{1}{(2 \pi)^{2}} \int_{\mathbb{R}^{2}} \gamma_{\mathbf{k}} \mathrm{d} \mathbf{k}, \quad \text { in the sense } \quad G f=\frac{1}{(2 \pi)^{2}} \int_{\mathbb{R}^{2}}\left(\gamma_{\mathbf{k}} f\right) \mathrm{d} \mathbf{k}
$$

We have

$$
G \geq 0, \quad \rho_{G}=\frac{1}{(2 \pi)^{2}} \int_{\mathbb{R}^{2}} \rho_{\gamma_{\mathbf{k}}}=\rho_{\gamma}, \quad \operatorname{Tr}_{1}(G)=\frac{1}{(2 \pi)^{2}} \int_{\mathbb{R}^{2}} \operatorname{Tr}_{1}\left(\gamma_{\mathbf{k}}\right)=\underline{\operatorname{Tr}}(\gamma)
$$

Illustration of the reduction

$$
\gamma=\left(\begin{array}{cccc}
\gamma_{1} & & & 0 \\
& \gamma_{2} & & \\
& & \gamma_{3} & \\
0 & & & \ddots
\end{array}\right), \quad \text { versus } \quad G=\gamma_{1}+\gamma_{2}+\ldots
$$

Kinetic energy
Since $\mathcal{F}\left(-\Delta_{3}\right) \mathcal{F}^{-1}=|\mathbf{k}|^{2}+\left(-\Delta_{1}\right)$,

$$
\begin{aligned}
\underline{\operatorname{Tr}}\left(-\Delta_{3} \gamma\right) & =\frac{1}{(2 \pi)^{2}} \int_{\mathbb{R}^{2}}\left(|\mathbf{k}|^{2} \operatorname{Tr}\left(\gamma_{\mathbf{k}}\right)+\operatorname{Tr}_{1}\left(-\Delta_{1} \gamma_{\mathbf{k}}\right)\right) \mathrm{d} \mathbf{k} \\
& =\frac{1}{(2 \pi)^{2}} \int_{\mathbb{R}^{2}}|\mathbf{k}|^{2} \operatorname{Tr}\left(\gamma_{\mathbf{k}}\right) \mathrm{d} \mathbf{k}+\operatorname{Tr}_{1}\left(-\Delta_{1} G\right) .
\end{aligned}
$$

Write $G=\sum g_{j}\left|\phi_{j}\right\rangle\left\langle\phi_{j}\right|$, with $g_{j} \geq 0$ and $\sum g_{j}=\operatorname{Tr}_{1}(G)$, and define

$$
m_{j}(k):=\left\langle\phi_{j}, \gamma_{\mathbf{k}} \phi_{j}\right\rangle, \quad \text { so that } \quad 0 \leq m_{j}(\mathbf{k}) \leq 1 \quad \text { and } \quad \frac{1}{(2 \pi)^{2}} \int_{\mathbb{R}^{2}} m_{j}(\mathbf{k}) \mathrm{d} \mathbf{k}=g_{j} .
$$

Then

$$
\begin{aligned}
& \frac{1}{(2 \pi)^{2}} \int_{\mathbb{R}^{2}}|\mathbf{k}|^{2} \operatorname{Tr}\left(\gamma_{\mathbf{k}}\right) \mathrm{d} \mathbf{k}=\frac{1}{(2 \pi)^{2}} \sum_{j} \int_{\mathbb{R}^{2}}|\mathbf{k}|^{2} m_{j}(\mathbf{k}) \mathrm{d} \mathbf{k} \\
& \quad \geq \frac{1}{(2 \pi)^{2}} \sum_{j} \min \left\{\int_{\mathbb{R}^{2}}|\mathbf{k}|^{2} m(\mathbf{k}) \mathrm{d} \mathbf{k}, 0 \leq m(\mathbf{k}) \leq 1, \frac{1}{(2 \pi)^{2}} \int_{\mathbb{R}^{2}} m(\mathbf{k}) \mathrm{d} \mathbf{k}=g_{j}\right\} .
\end{aligned}
$$

«Bathtub principle»: the minimum is obtained for $m_{j}^{*}(\mathbf{k})=\mathbb{1}\left(|\mathbf{k}|<k_{j}\right)$ with $k_{j}=2 \sqrt{\pi g_{j}}$. This proves

$$
\frac{1}{(2 \pi)^{2}} \int_{\mathbb{R}^{2}}|\mathbf{k}|^{2} \operatorname{Tr}\left(\gamma_{\mathbf{k}}\right) \mathrm{d} \mathbf{k} \geq 2 \pi \sum_{j} g_{j}^{2}=2 \pi \operatorname{Tr}_{1}\left(G^{2}\right)
$$

Conversely, given $G=\sum_{j} g_{j}\left|\phi_{j}\right\rangle\left\langle\phi_{j}\right|$, we have equality for γ^{*} defined by

$$
\gamma^{*}:=\int_{\mathbb{R}^{2}}^{\oplus} \gamma_{\mathbf{k}}^{*}, \quad \text { with } \quad \gamma_{\mathbf{k}}^{*}:=\sum_{j} m_{j}^{*}(\mathbf{k})\left|\phi_{j}\right\rangle\left\langle\phi_{j}\right| .
$$

We now study the one-dimensional minimization problem

$$
\inf \left\{\frac{1}{2} \operatorname{Tr}_{1}(-\Delta G)+\pi \operatorname{Tr}_{1}\left(G^{2}\right)+\frac{1}{2} \mathcal{D}_{1}\left(\rho_{G}-\mu\right), \quad G \in \mathcal{S}\left(L^{2}(\mathbb{R})\right), G \geq 0, \operatorname{Tr}_{1}(G)=Z\right\}
$$

Proposition

There is a unique minimizer G_{*}. This minimizer satisfies the Euler-Lagrange equations

$$
\left\{\begin{array}{l}
G_{*}=\frac{1}{2 \pi}\left(\lambda-H_{*}\right)_{+} \\
H_{*}:=-\frac{1}{2} \Delta+\Phi_{*} \\
-\Phi_{*}^{\prime \prime}=4 \pi\left(\rho_{*}-\mu\right), \quad \Phi_{*}^{\prime}(\pm \infty)=0, \quad \Phi_{*}(0)=0
\end{array}\right.
$$

Remarks

- The problem is strictly convex in G, due to the $\operatorname{Tr}_{1}\left(G^{2}\right)$ term (hence uniqueness of the minimizer).
- We have $G_{*}=\frac{1}{2 \pi}\left(\lambda-H_{*}\right)_{+}$instead of the usual $\gamma_{*}=\mathbb{1}\left(\lambda-H_{*}>0\right)$.
- In particular, since $\lambda \mapsto \operatorname{Tr}\left(\lambda-H_{*}\right)_{+}$is strictly increasing, the Fermi level is unique.

Proposition

Assume $|x|^{3} \mu(x) \in L^{1}(\mathbb{R})$. Then, if $|x|^{3} \rho(x) \in L^{1}(\mathbb{R})$ as well, G_{*} is finite rank, and its density ρ_{*} is exponentially decaying away from the slab.

The proof relies on Bargmann's bound (very specific to one-dimension):
If $V: \mathbb{R} \rightarrow \mathbb{R}$ satisfies $\int_{\mathbb{R}}|x| V_{-}(x)<\infty$, then $-\partial_{x x}^{2}+V$ has a finite number of negative eigenvalues.

Numerical illustrations

Numerical results 1

$$
\mu_{1}(x)=\mathbb{1}(|x|<2)
$$

Remarks

- The Thomas-Fermi density $\rho_{\text {TF }}$ and rHF density ρ_{*} are very close!
- The optimal G_{*} has 15 positive eigenvalues. The largest one is around 1.07.

Numerical results 2 (with dipolar moment)

$$
\mu_{2}(x)=\mathbb{1}(-5<x<-2)+2 \cdot \mathbb{1}(1<x<3)
$$

Remarks

- The Thomas-Fermi density $\rho_{\text {TF }}$ and rHF density ρ_{*} are very close!
- The optimal G_{*} has 17 positive eigenvalues. The largest one is around 1.44.
- The screening in the rHF model is close to perfect!

Numerical results 3 (smooth case)

$$
\mu_{3}(x)=\mathrm{e}^{-\frac{1}{4}(x+2)^{2}}+2 \cdot \mathrm{e}^{-(x-2)^{2}}
$$

Remarks

- The Thomas-Fermi density ρ_{TF} and rHF density ρ_{*} are extremely close!
- The optimal G_{*} has 19 positive eigenvalues. The largest one is around 1.32.
- The screening in the rHF model is close to perfect!

Extension to magnetic case

We now consider the same setting, but with a perpendicular constant magnetic field $\mathbf{B}=(0,0, b)$.
The kinetic energy per unit surface is now

$$
\frac{1}{2} \underline{\operatorname{Tr}}_{3}\left(\mathbf{L}_{3}^{\mathrm{A}} \gamma\right), \quad \text { instead of } \quad \frac{1}{2} \underline{\operatorname{Tr}}_{3}(-\Delta \gamma),
$$

with the Landau operator

$$
L_{3}^{\mathbf{A}}=L_{2}^{\mathbf{A}}+\partial_{x_{3} x_{3}}^{2}, \quad L_{2}^{\mathbf{A}}:=-\partial_{x_{1} x_{1}}^{2}+\left(b x_{1}-\mathbf{i} \partial_{x_{2}}\right)^{2} .
$$

Spectral decomposition

$$
L_{2}^{\mathbf{A}}=\sum_{n=0}^{\infty} \varepsilon_{n} P_{n}, \quad \varepsilon_{n}:=(2 n+1) b, \quad P_{n} \text { projection on the } n \text {-th Landau level. }
$$

Remark: The density of P_{n} is $\rho_{P_{n}}(\mathbf{x}):=P_{n}(\mathbf{x}, \mathbf{x})=\frac{b}{2 \pi}$, independent of $n \in \mathbb{N}_{0}$.
"There are $O(1 / b)$ Landau levels in a fixed energy window, each Landau level contributes to $O(b)$ electrons (per unit surface)".

This time, we consider states $\gamma \in \mathcal{S}\left(L^{2}\left(\mathbb{R}^{3}\right)\right), 0 \leq \gamma \leq 1$ which commute with magnetic translations. Up to some details, they are of the form

$$
\begin{equation*}
\gamma=\sum_{n=0}^{\infty} P_{n} \otimes \gamma_{n}, \quad \gamma_{n} \in \mathcal{S}\left(L^{2}(\mathbb{R})\right), \quad 0 \leq \gamma_{n} \leq 1 \tag{*}
\end{equation*}
$$

For such a state, the trace per unit surface and kinetic energy per unit surface are

$$
\underline{\operatorname{Tr}}_{3}(\gamma)=\frac{b}{2 \pi} \sum_{n=0}^{\infty} \operatorname{Tr}_{1}\left(\gamma_{n}\right), \quad \text { and } \quad \frac{1}{2} \underline{\operatorname{Tr}}_{3}\left(\mathbf{L}_{3}^{\mathbf{A}} \gamma\right)=\frac{b}{4 \pi} \sum_{n=0}^{\infty}\left(\varepsilon_{n} \operatorname{Tr}_{1}\left(\gamma_{n}\right)+\operatorname{Tr}_{1}\left(-\Delta_{1} \gamma_{n}\right)\right)
$$

Theorem (DG, Lahbabi, Maichine, 2022)

Introduce $\mathcal{G}:=\left\{G \in \mathcal{S}\left(L^{2}(\mathbb{R})\right), \quad G \geq 0, \quad \operatorname{Tr}_{1}(G)<\infty\right\}$. Then, for any (representable) density ρ,

$$
\inf _{\substack{\gamma \text { of the form (\%) } \\ \rho_{\gamma}=\rho}}\left\{\frac{1}{2} \underline{\operatorname{Tr}}\left(L_{3}^{\mathbf{A}} \gamma\right)\right\}=\inf _{\substack{G \in \mathcal{G} \\ \rho_{G}=\rho}}\left\{\frac{1}{2} \operatorname{Tr}_{1}\left(-\Delta_{1} G\right)+\operatorname{Tr}\left(F_{b}(G)\right)\right\},
$$

with the function

$$
F_{b}(g):=\pi g^{2}+\frac{b^{2}}{4 \pi}\left\{\frac{2 \pi g}{b}\right\}\left(1-\left\{\frac{2 \pi g}{b}\right\}\right)
$$

Remarks

- This time, we take $G:=\frac{b}{2 \pi} \sum_{n=0}^{\infty} \gamma_{n}$. The proof is similar.
- The blue term is positive. The energy is higher with magnetic fields (diamagnetic inequality).
- Again, no Pauli principle after the reduction.

Plot of the function

$$
F_{b}(g):=\pi g^{2}+\frac{b^{2}}{4 \pi}\left\{\frac{2 \pi g}{b}\right\}\left(1-\left\{\frac{2 \pi g}{b}\right\}\right)
$$

- $F_{b}(\cdot)$ is piece-wise linear;
- We have $\pi g^{2} \leq F_{b}(g) \leq \pi g^{2}+\frac{b^{2}}{16 \pi}$.

Bonus: a Lieb-Thirring type inequality

General dimension
Let $\gamma \in \mathcal{S}\left(L^{2}\left(\mathbb{R}^{s+d}\right)\right)$ be translationally invariant in its first s variables, and so that $0 \leq \gamma \leq 1$. Then there is $G \in \mathcal{S}\left(L^{2}\left(\mathbb{R}^{d}\right)\right)$ so that $\rho_{\gamma}=\rho_{G}$ and

$$
\underline{\operatorname{Tr}}\left(-\Delta_{s+d} \gamma\right) \geq \operatorname{Tr}_{d}\left(-\Delta_{d} G\right)+2 c_{\mathrm{TF}}(s) \operatorname{Tr}_{d}\left(G^{1+\frac{2}{s}}\right) .
$$

Conversely, for each G, there is a γ such that we have equality.
If there is equality, the «Lieb-Thirring» inequality for γ gives

$$
\operatorname{Tr}_{d}\left(-\Delta_{d} G\right)+2 c_{\mathrm{TF}}(s) \operatorname{Tr}_{d}\left(G^{1+\frac{2}{s}}\right)=\underline{\operatorname{Tr}}\left(-\Delta_{s+d} \gamma\right) \geq K_{\mathrm{LT}}(d+s) \int_{\mathbb{R}^{d}} \rho_{G}^{1+\frac{2}{d+s}}
$$

After optimization over scaling $\lambda \mapsto \lambda G$, we obtain

Theorem (Lieb-Thirring type inequality)

There is a constant K so that, for all $G \in \mathcal{S}\left(L^{2}\left(\mathbb{R}^{d}\right)\right)$ with $G \geq 0$, and for all $s \in \mathbb{N}$,

$$
K\left(\int_{\mathbb{R}^{d}} \rho_{G}^{1+\frac{2}{s+d}}\right)^{1+\frac{s}{d}} \leq\left(\operatorname{Tr}_{d}\left(G^{1+\frac{s}{d}}\right)\right)^{s / d} \operatorname{Tr}_{d}\left(-\Delta_{d} G\right)
$$

This type of inequalities was studied in [Frank/Gontier/Lewin, Commun. Math. Phys. 384 (2021)].

Theorem (Frank, DG, Lewin, 2021)

For all $d \geq 1$ and all $1 \leq p \leq 1+\frac{2}{d}$, there is an optimal constant $K_{p, d}$ so that, for all $G \in \mathcal{S}\left(L^{2}\left(\mathbb{R}^{d}\right)\right)$,

$$
K_{p, d}\left(\int_{\mathbb{R}^{d}} \rho_{G}^{p}\right)^{\theta_{1}} \leq\left(\operatorname{Tr}_{d}\left(G^{q}\right)\right)^{\theta_{2}} \operatorname{Tr}_{d}\left(-\Delta_{d} G\right), \quad \text { where } \quad q:=\frac{2 p+d-d p}{2+d-d p}
$$

In addition, $K_{p, d}$ is the dual constant of the usual Lieb-Thirring constant $L_{\gamma, d}$, in the sense

$$
K_{p, d}\left(L_{\gamma, d}\right)^{\frac{2}{d}}=\left(\frac{\gamma}{\gamma+\frac{d}{2}}\right)^{\frac{2 \gamma}{d}}\left(\frac{d}{2 \gamma+d}\right), \quad \text { with } \quad \gamma+\frac{d}{2}=\frac{p}{p-1}, \quad \text { so that } \quad \frac{\gamma}{\gamma-1}=q
$$

The previous case corresponds to $p=1+\frac{2}{d+s}$, which gives $\gamma=1+\frac{s}{2}$.
In particular, $\gamma \geq \frac{3}{2}$: the best constant is the semi-classical one.
In other words, for all $d \in \mathbb{N}$ and $s \in \mathbb{N}$,

$$
\frac{1}{2} \operatorname{Tr}_{d}\left(-\Delta_{d} G\right)+c_{\mathrm{TF}}(s) \operatorname{Tr}_{d}\left(G^{1+\frac{2}{s}}\right) \geq c_{\mathrm{TF}}(d+s) \int_{\mathbb{R}^{d}} \rho_{G}^{1+\frac{2}{d+s}}
$$

The reduced rHF energy is greater than the reduced Thomas-Fermi one.

Conclusion

For Homogeneous two-dimensional slab in three-dimensional space:
Thomas-Fermi

- $\rho_{\text {TF }}$ decays as $|x|^{-6}$ away from the slab;
- perfect screening.
reduced Hartree-Fock
- ρ_{*} decays exponentially fast away from the slab (up to some technical assumption)
- ρ_{*} and ρ_{TF} are very close.
- Very good screening property.

The Pauli principle is replaced by a Tsallis entropy term through the collapse of dimensions.
References:

- Gontier/Lahbabi/Maichine, Commun. Math. Phys (2021).
- Gontier/Lahbabi/Maichine, soon on arXiv. (for the magnetic case).
- Frank/Gontier/Lewin, Commun. Math. Phys (2021). (for Lieb-Thirring inequalities).

Thank you for your attention

