Phase transition in Peierls/SSH model

David Gontier joint work with Adéchola Kouandé et Éric Séré

CEREMADE, Université Paris-Dauphine & DMA, École Normale Supérieure

MSQM Toulouse 12 janvier 2024

Polyacetylene

- Conductivity of undopped polyacetylene: $4.4 \times 10^{-5} \ \Omega^{-1} \cdot \text{cm}^{-1}$.
- Conductivité of dopped (with iode) polyacetylene: $38 \ \Omega^{-1} \cdot \text{cm}^{-1}$.
- Nobel prize to Heeger, MacDiarmid, Shirakawa for «conductive polymers» (2000).

In this talk: understand how conductivity changes with temperature.

Peierls model

- L Carbon *classical* atoms, linked by springs of stiffness K and rest length d_{\sharp} . We denote by $\{d_1, \dots, d_L\}$ the distances between the Carbon atoms (with periodicity).
- Quantum non-interacting electrons in a tight-binding Hamiltonian generated by the Carbon atoms. We denote by γ the one-body matrix representing the electrons: $0 \le \gamma = \gamma^* \le 1$ (Pauli principle).

Hamiltonian

$$T := T(\mathbf{t}) = \begin{pmatrix} 0 & t_1 & 0 & 0 & \cdots & t_L \\ t_1 & 0 & t_2 & \cdots & 0 & 0 \\ 0 & t_2 & 0 & t_3 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & t_{L-2} & 0 & t_{L-1} \\ t_L & 0 & \cdots & 0 & t_{L-1} & 0 \end{pmatrix}$$

Peierls energy (\sim 1930)

(Peierls? Hueckel? Su-Schrieffer-Heeger (SSH)?)

$$\mathcal{E}_L(\mathbf{t},\gamma) := \frac{K}{2} \sum_{n=1}^L (d_n - d_{\sharp})^2 + 2 \mathrm{Tr} \left(T\gamma\right).$$

We will assume a linear relation between t_n and d_n , of the form $(t_n - t_{\sharp}) = -\alpha(d_n - d_{\sharp})$.

Reduction of the energy

After setting $\mu := \frac{Kt_{\sharp}}{\alpha^2}$, we end up with the rescaled energy

$$\mathcal{E}_L(\mathbf{t},\gamma) := \frac{\mu}{2} \sum_{n=1}^L (t_n - 1)^2 + 2 \operatorname{Tr}(T\gamma) \,.$$

We want to minimize the energy for all $t_n \in \mathbb{R}_+$ and all $0 \leq \gamma = \gamma^* \leq 1$.

Lemma (Exercice 1)

For all matrix $T \in S_L(\mathbb{C})$ with $\operatorname{Tr}(T) = 0$, we have: $\inf_{\substack{\gamma \in S_L \\ 0 \le \gamma \le 1}} \{2\operatorname{Tr}(T\gamma)\} = -2\operatorname{Tr}(T_-) = -\operatorname{Tr}\left(\sqrt{T^2}\right)$. The minimum is obtained for $\gamma = \mathbb{1}(T \le 0)$.

Reduced energy to minimize

$$\mathcal{E}_L(\mathbf{t}) := \frac{\mu}{2} \sum_{n=1}^L (t_n - 1)^2 - \operatorname{Tr}\left(\sqrt{T^2}\right).$$

Remarks:

- There is only one parameter in the model μ (and L, but soon, we will take $L \to \infty$).
- The energy is invariant by translation.

The even case

Theorem ((even case) Kennedy/Lieb, 1987)

If L = 2N is even, there are at most 2 minimizers, of the form

$$t_n = W + (-1)^n \delta$$
 or $t_n = W - (-1)^n \delta$, with $\delta \ge 0$.

(Also true for much more complex model, such as Hubbard 1d model, see Lieb/Nachtergaele (1995)).

The corresponding Hamiltonian is of the form

	/0	a	0	0		b
	[a	0	b		0	0
	0	b	0	a		0
T =						
	1:			·.		
	ŀ	•	•	•	•	·
	0	0		b	0	a
	$\backslash b$	0		0	a	- 0/

$$\sigma(T) = \bigcup_{k \in \frac{2\pi}{L}} \left\{ \pm |a + b \mathbf{e}^{\mathbf{i}k}| \right\}, \qquad \begin{cases} a = W + \delta \\ b = W - \delta. \end{cases}$$

There is a gap of size 2δ around the origin.

Case $\delta > 0$. There is dimerization: the translation symmetry is broken. There are two distinct minimizers in this case. The corresponding model is insulating.

Case $\delta = 0$.

There is a unique minimizer.

The corresponding model is metallic.

Thermodynamic limit $(L \to \infty)$

We are left with only two variable in the energy, namely W and δ . The limit $\underline{\mathcal{E}} := \lim_{L \to \infty} \frac{1}{L} \mathcal{E}_L$ (energy per unit cell) is well-defined, and given by

$$\begin{split} \underline{\mathcal{E}}(W,\delta) &= \frac{\mu}{2} \left[(W-1)^2 + \delta^2 \right] - \frac{1}{2\pi} \int_0^{2\pi} \sqrt{4W^2 \cos^2(s) + 4\delta^2 \sin^2(s)} \mathrm{d}s \\ &= \frac{\mu}{2} \left[(W-1)^2 + \delta^2 \right] - \frac{4W}{\pi} E \left(1 - \frac{\delta^2}{W^2} \right). \quad (E \text{ is the complete elliptic integral of the second kind}) \\ &\approx \frac{\mu}{2} \left[(W-1)^2 + \delta^2 \right] - \frac{4W}{\pi} \left(1 + \frac{\delta^2}{2W^2} \log \left(\frac{\delta}{2W} \right) \right). \end{split}$$

Lemma (Peierls dimerization always occur)

For all $\mu > 0$, we have $\delta > 0$.

Remark (Exercice?). The gain of energy due to Peierls dimerization is of order $\Delta E \approx C e^{-\frac{\pi}{2}\mu}$.

We now add the temperature $\theta>0$ Peierls free energy

$$\mathcal{E}_L^{\theta}(\mathbf{t},\gamma) := \frac{\mu}{2} \sum_{n=1}^L (t_n - 1)^2 + 2\mathrm{Tr}\left(T\gamma\right) + 2\theta\mathrm{Tr}\left(\underbrace{\gamma\log(\gamma) + (1 - \gamma)\log(1 - \gamma)}_{\text{fermionic entropy of the electrons}}\right).$$

Lemma (Exercice 2)

For all matrix $T \in S_L(\mathbb{C})$ with Tr(T) = 0, we have

$$\inf_{\substack{\gamma \in \mathcal{S}_L \\ 0 < \gamma < 1}} 2\left\{ \operatorname{Tr}(T\gamma) + \theta \operatorname{Tr}\left(\gamma \log(\gamma) + (1 - \gamma) \log(1 - \gamma)\right) \right\} = -\operatorname{Tr}\left[h_{\theta}(T^2)\right]$$

with
$$h_{\theta}(x) := 2\theta \log \left(2 \cosh \left(\frac{\sqrt{x}}{2\theta}\right)\right)$$
.
The minimum is attained for $\gamma = \left(1 + e^{\frac{T}{\theta}}\right)^{-1}$

The key property is that h_{θ} is a concave function. We can *copy-paste* Kennedy-Lieb's proof, and obtain

Lemma ((even case))

If L=2N is even, for all $\theta \geq 0$, there are at most 2 minimizers, of the form

 $t_n = W + (-1)^n \delta$ ou $t_n = W - (-1)^n \delta$, with $\delta \ge 0$.

Thermodynamic limit (with temperature)

We can perform the thermodynamic limit again, and obtain the free energy per unit cell

$$\underline{\mathcal{F}}(W,\delta) = \frac{\mu}{2} \left[(W-1)^2 + \delta^2 \right] - \frac{1}{2\pi} \int_0^{2\pi} h_\theta \left(4W^2 \cos^2(s) + 4\delta^2 \sin^2(s) \right) \mathrm{d}s.$$

Theorem (DG, Kouandé, Séré)

For all $\mu > 0$, there is a critical temperature $\theta_c(\mu) > 0$ such that:

- If $\theta < \theta_c(\mu)$, we have $\delta > 0$ (Peierls dimerization);
- Si $\theta \ge \theta_c(\mu)$, we have $\delta = 0$.

In addition, for large μ , we have $\theta_c(\mu) \sim_{\mu \to \infty} C e^{-\frac{\pi}{4}\mu}$.

Idea of the proof

Well, it is a problem with two parameters (μ and θ), and two variables to optimize (W and δ)...

The Euler–Lagrange equation for (W,δ) reads (we set $h(y):=2\log(2\cosh(\sqrt{y})))$

$$\begin{cases} \mu(W-1) &= \frac{W}{\theta \pi} \int_0^{2\pi} h' \left(\frac{W^2}{\theta^2} \cos^2(s) + \frac{\delta^2}{\theta^2} \sin^2(s) \right) \cdot \cos^2(s) \mathrm{d}s \\ \\ \mu \delta &= \frac{\delta}{\theta \pi} \int_0^{2\pi} h' \left(\frac{W^2}{\theta^2} \cos^2(s) + \frac{\delta^2}{\theta^2} \sin^2(s) \right) \cdot \sin^2(s) \mathrm{d}s. \end{cases}$$

- Step 1. The second equation always admit $\delta = 0$ as a solution \implies branch of 1-periodic solutions.
- We can select the branch of dimerized solution by dividing the second equation by δ (removing the $\delta = 0$ branch).
- Step 2. We can detect when this branch of dimerized solution also have $\delta = 0$ by solving the equation with $\delta = 0$.

The critical temperature θ_c is the temperature for which there exists W solution to

$$\begin{cases} \mu(W-1) &= \frac{W}{\theta \pi} \int_0^{2\pi} h' \left(\frac{W^2}{\theta^2} \cos^2(s)\right) \cdot \cos^2(s) \mathrm{d}s \\ \\ \mu &= \frac{1}{\theta \pi} \int_0^{2\pi} h' \left(\frac{W^2}{\theta^2} \cos^2(s)\right) \cdot \sin^2(s) \mathrm{d}s. \end{cases}$$

Idea of the proof (2)

$$\begin{cases} \mu(W-1) &= \frac{W}{\theta \pi} \int_0^{2\pi} h' \left(\frac{W^2}{\theta^2} \cos^2(s) \right) \cdot \cos^2(s) \mathrm{d}s \\ \\ \mu W &= \frac{W}{\theta \pi} \int_0^{2\pi} h' \left(\frac{W^2}{\theta^2} \cos^2(s) \right) \cdot \sin^2(s) \mathrm{d}s. \end{cases}$$

Take the difference of the two equations:

$$\mu = \frac{W}{\theta \pi} \int_0^{2\pi} h' \left(\frac{W^2}{\theta^2} \cos^2(s) \right) \cdot \left[\sin^2(s) - \cos^2(s) \right] \mathrm{d}s =: \mathcal{J} \left(\frac{W}{\theta} \right).$$

Fact: The function $x \mapsto \mathcal{J}(x)$ is increasing. So $\frac{W}{\theta} = \mathcal{J}^{-1}(\mu)$ is well-defined. The second equation then gives the value of W (hence of $\theta = \theta_c$).

Extension to graphene?

(current work with Thaddeus Roussigné and Éric Séré).

(a) Undistorted graphene

(b) Kekule deformation

Theorem (???)

There is a critical value μ_c so that, for $\mu < \mu_c$ graphene is Kekule distorted, while for $\mu \ge \mu_c$, it is not distorted.

Question: What is the physical value of μ ?

Kinks in the Peierls/SSH model

Let's go back to polyacetylene in the $\theta = 0$ case. In the even (L = 2N) case, there are two minimizers $\mathbf{t}_n^{\pm} = W \pm (-1)^n \delta$.

Theorem ((odd case) Garcia-Arroyo/Séré, 2011)

If L = 2N + 1 is odd, minimizers look like «kinks» : If $\mathbf{t}(2N + 1)$ is a centered minimiser, then $\lim_{N\to\infty} \mathbf{t}(2N + 1)_n =: t_n$ exists, and

$$\lim_{n \to \infty} |t_n - t_n^+| = \lim_{n \to \infty} |t_n - t_n^-| = 0.$$
 heteroclinic configuration.

Same phenomena with a billiard

We maximise the periodic billiard path with L points...

L = 10

L = 11

Edge modes

The corresponding Hamiltonian can be seen as a junction between T^+ and T^- .

Lemma (Exercice 3)

Consider any positive sequence t_n with $\lim_{n\to\infty} |t_n - t_n^+| = \lim_{n\to\infty} |t_n - t_n^-| = 0$, and consider the corresponding tight-binding Hamiltonian $(T\psi)_n = t_n\psi_{n+1} + t_{n-1}\psi_{n-1}$. Then $0 \in \sigma(T)$.

In addition, if $\delta > 0$ (so $\mathbf{t}^+ \neq \mathbf{t}^-$), then 0 is an eigenvalue of multiplicity 1, and the corresponding eigenvector is exponentially localised (= edge mode).

Example of topologically protected states (Majorana states?).

Theorem (DG, Kouandé, Séré)

If (t_n) is any (heteroclinic) positive critical point of the infinite Peierls model, then the convergence of t_n to t_n^{\pm} at $\pm \infty$ is exponential.

Critical point?

Difference energy

$$\mathcal{F}_{\mathbf{t}}(\mathbf{h}) := "\mathcal{E}(\mathbf{t} + \mathbf{h}) - \mathcal{E}(\mathbf{t})" = \frac{\mu}{2} \sum_{n \in \mathbb{Z}} (h_n + 2t_n - 2)h_n - 2\mathrm{Tr}\left[(T + H)_- - T_-\right].$$

 (t_n) is a critical point if $(\nabla \mathcal{F}_{\mathbf{t}})(\mathbf{0}) = 0$.

 \implies Existence of *N*-*multi*-*kinks* critical points, for all *N*.