Habilitation à diriger la recherche : Periodic and half-periodic fermionic systems

David Gontier

CEREMADE, Université Paris-Dauphine \& DMA, École Normale Supérieure de Paris

January 15, 2024

Dauphine \mid PSL* CEREMADE

Fermions (= electrons in this talk)

Pauli principle: «two identical fermions cannot be in the same quantum state».
A system of N (uncorrelated) fermions is described by N-orthonormal functions (the orbitals)... or by the orthogonal projector on these N functions.

In my work, a system of N fermions is described an orthogonal projector of rank N.

Fermions (= electrons in this talk)
Pauli principle: «two identical fermions cannot be in the same quantum state».
A system of N (uncorrelated) fermions is described by N-orthonormal functions (the orbitals)... or by the orthogonal projector on these N functions.

In my work, a system of N fermions is described an orthogonal projector of rank N.

In this habilitation, we are interested in systems with infinitely many fermions \equiv orthogonal projectors of infinite rank.

Outline of the manuscript:

- Low energy spectrum of periodic systems
(with É. Cancès, H. Cornean, V. Ehrlacher, A. Levitt, D. Lombardi, D. Monaco, S. Perrin-Roussel, S. Siraj-Dine). Wannier functions, homotopy of projectors, Brillouin zone integration, ...
- Semi-periodic systems

Bulk-edge correspondence, edge modes, spectral flows, ...

- The Hartree-Fock gas (and Peierls model)
(with M. Lewin, Ch. Hainzl, A. Kouandé. É. Séré).
Spin symmetry breaking, spatial symmetry breaking, SSH model for polyacetylene, ...
- Lieb-Thirring (and related) inequalities
(with R.L. Frank, M. Lewin, F.Q. Nazar).
Lieb-Thirring inequalities, fermionic non-linear Schrödinger, ...

Semi-periodic systems

Start with a single atom in \mathbb{R}^{d}. We study the spectrum of the (one-body) Schrödinger operator

$$
H=-\Delta+V(\mathbf{x}), \quad \text { e.g. } \quad V(\mathbf{x})=\frac{-Z}{|\mathbf{x}|}
$$

- Discrete spectrum (= eigenvalues). The energy levels are quantized.
- The N fermions occupies the N first eigenvectors/orbitals (associated to the N lowest eigenvalues).

Then take two atoms in \mathbb{R}^{d}.

$$
H=-\Delta+V\left(\mathbf{x}-\frac{R}{2}\right)+V\left(\mathbf{x}+\frac{R}{2}\right) .
$$

- When $R=\infty$, the spectrum is copied twice (each eigenvalue doubles its multiplicity);
- When $R \gg 1$, tunnelling effect = interaction of eigenvectors \Rightarrow splitting of the eigenvalues;
- The eigenvectors are delocalized between the two atoms.

Now take an infinity of atoms in \mathbb{R}^{d}, located along a lattice (= material)

$$
H=-\Delta+\sum_{\mathbf{v} \in R \mathbb{Z}^{d}} V(\mathbf{x}-\mathbf{v})
$$

- When $R=\infty$, each eigenvalue is of infinite multiplicity;
- When $R \gg 1$, each eigenvalue becomes a band of essential spectrum;
- Each band represents «one electron per unit cell»;
- When R decreases, the bands may overlap.

The spectrum of $-\Delta+V$ with V-periodic has a band-gap structure! One band = one electron per unit cell.

Usual proof with the Bloch transform (\sim discrete version of the Fourier transform).

Motivation: Spectral pollution

Let's compute numerically the spectrum of the (simple, one-dimensional) operator

$$
H:=-\partial_{x x}^{2}+V(x), \quad \text { with } \quad V(x)=50 \cdot \cos (2 \pi x)+10 \cdot \cos (4 \pi x)
$$

The potential V is 1-periodic. We expect a band-gap structure for the spectrum. We study H in a box $[t, t+L]$ with Dirichlet boundary conditions, and with finite difference.

Motivation: Spectral pollution

Let's compute numerically the spectrum of the (simple, one-dimensional) operator

$$
H:=-\partial_{x x}^{2}+V(x), \quad \text { with } \quad V(x)=50 \cdot \cos (2 \pi x)+10 \cdot \cos (4 \pi x)
$$

The potential V is 1-periodic. We expect a band-gap structure for the spectrum. We study H in a box $[t, t+L]$ with Dirichlet boundary conditions, and with finite difference.

Depending on where we fix the origin t, the spectrum differs... There are branches of spurious eigenvalues = spectral pollution (they appear for all L).
The corresponding eigenvectors are edge modes: they are localized near the boundaries.

Setting

Let V be a 1-periodic potential, and consider the cut (one-dimensional) Hamiltonian

$$
H_{t}^{\sharp}=-\partial_{x x}^{2}+V(x-t) \quad \text { on } \quad L^{2}\left(\mathbb{R}^{+}\right)
$$

with Dirichlet boundary conditions (with domain $H^{2}\left(\mathbb{R}^{+}\right) \cap H_{0}^{1}\left(\mathbb{R}^{+}\right)$).
Since V is 1-periodic, the map $t \mapsto H_{t}^{\sharp}$ is also 1-periodic.

Theorem (Korotyaev 2000, Hempel Kohlmann 2011, DG 2020)

In the n-th essential gap, there is a flow of n eigenvalues going downwards as t goes from 0 to 1.
These eigenvalues are simple, and their associated eigenvectors are exponentially localised (= edge modes).

Figure: (Left) Spectrum of $H^{\sharp}(t)$ for $t \in[0,1]$. (Right) Spectrum of the operator on $[t, t+L]$.
D. Gontier, J. Math. Phys. 61, 2020.

Idea of the proof

Step 1. Prove the result for dislocations (following Hempel and Kohlmann).
Introduce the dislocated operator

$$
H_{t}^{\text {disloc }}:=-\partial_{x x}^{2}+[V(x) \mathbb{1}(x<0)+V(x-t) \mathbb{1}(x>0)], \quad \text { on } \quad L^{2}(\mathbb{R}) .
$$

Let $L \in \mathbb{N}$ be a (large) integer. Consider the periodic dislocated operator

$$
H_{L, t}^{\text {disloc }}:=-\partial_{x x}^{2}+[V(x) \mathbb{1}(x<0)+V(x-t) \mathbb{1}(x>0)], \quad \text { on } \quad L^{2}\left(\left[-\frac{1}{2} L, \frac{1}{2} L+t\right]\right)
$$

with periodic boundary conditions.

Remarks

- The branches of eigenvalues of $t \mapsto H_{L, t}^{\text {disloc }}$ are continuous;
- At $t=0$, the system is 1-periodic, on a box of size L. Each «band» contributes to L eigenvalues;
- At $t=1$, the system is 1 -periodic, on a box of size $L+1$. Each «band» contributes to $L+1$ eigenvalues.

Figure: Spectrum of $H_{L, t}^{\text {disloc }}$ for $L=6$ at $t=0(6$ cells $)$ and $t=1$ (7 cells $)$.

Figure: Spectrum of $H_{L, t}^{\text {disloc }}$ for all $t \in[0,1]$.
The presence and the number of the red lines are independent of $L \in \mathbb{N}$. They survive in the limit $L \rightarrow \infty$.

This implies that there the result holds for the family of dislocated operators $t \mapsto H_{t}^{\text {disloc }}$.

The Spectral flow

If $t \mapsto A_{t}$ is a 1-periodic and continuous family of self-adjoint operators, and if $E \notin \sigma_{\text {ess }}\left(A_{t}\right)$ for all t, we can define its Spectral flow as

Sf $\left(A_{t}, E\right):=$ number of eigenvalues going downwards in the essential gap where E lies.

The previous result can be formulated as:

$$
\operatorname{Sf}\left(H_{t}^{\text {disloc }}, E\right)=\mathcal{N}(E), \quad \mathcal{N}(E):=\text { number of bands below } E
$$

Facts :

- If $t \mapsto K_{t}$ is a 1-periodic continuous family of compact operators, then

$$
\operatorname{Sf}\left(A_{t}, E\right)=\operatorname{Sf}\left(A_{t}+K_{t}, E\right)
$$

- If $f: \mathbb{R} \rightarrow \mathbb{R}$ is strictly increasing, then

$$
\operatorname{Sf}\left(f\left(A_{t}\right), f(E)\right)=\operatorname{Sf}\left(A_{t}, E\right)
$$

Step 2. From the dislocated case to the Dirichlet case.
Recall that the dislocated operator is

$$
H_{t}^{\text {disloc }}:=-\partial_{x x}^{2}+[V(x) \mathbb{1}(x<0)+V(x-t) \mathbb{1}(x>0)] \quad \text { on } \quad L^{2}(\mathbb{R})
$$

Consider the cut Hamiltonian

$$
H_{t}^{\text {cut }}:=-\partial_{x x}^{2}+[V(x) \mathbb{1}(x<0)+V(x-t) \mathbb{1}(x>0)] \quad \text { on } \quad L^{2}(\mathbb{R})=L^{2}\left(\mathbb{R}^{-}\right) \cup L^{2}\left(\mathbb{R}^{+}\right)
$$

and with Dirichlet boundary conditions at $x=0$ (only the domain differs).
Fact: For any Σ negative enough (below the essential spectra of all operators), we have

$$
K_{t}:=\left(\Sigma-H_{t}^{\text {cut }}\right)^{-1}-\left(\Sigma-H_{t}^{\text {disloc }}\right)^{-1} \quad \text { is compact (here, it is finite rank). }
$$

So

$$
\operatorname{Sf}\left(\left(\Sigma-H_{t}^{\text {disloc }}\right)^{-1},(\Sigma-E)^{-1}\right)=\operatorname{Sf}\left(\left(\Sigma-H_{t}^{\text {cut }}\right)^{-1},(\Sigma-E)^{-1}\right)
$$

Since $f(x):=(\Sigma-x)^{-1}$ is strictly increasing on $x>\Sigma$, we have

$$
\mathcal{N}(E)=\operatorname{Sf}\left(H_{t}^{\text {disloc }}, E\right)=\operatorname{Sf}\left(H_{t}^{\text {cut }}, E\right)=\operatorname{Sf}\left(H_{t}^{\sharp,+}, E\right)
$$

The case of junctions
Take two 1-periodic potentials

$$
V_{L}(x)=50 \cos (2 \pi x)+10 \cos (4 \pi x), \quad V_{R}(x)=10 \cos (2 \pi x)+50 \cos (4 \pi x)
$$

Consider the junction Hamiltonian

$$
H_{t}^{\text {junct }}:=-\partial_{x x}^{2}+\left(V_{L}(x) \mathbb{1}(x<0)+V_{R}(x-t) \mathbb{1}(x>0)\right) \quad \text { on } \quad L^{2}(\mathbb{R}) .
$$

Reasoning as before (using a cut as a compact perturbation), one can prove that $\operatorname{Sf}\left(H_{t}^{\text {junct }}, E\right)=\mathcal{N}_{R}(E)$.

The case of junctions

Take two 1-periodic potentials

$$
V_{L}(x)=50 \cos (2 \pi x)+10 \cos (4 \pi x), \quad V_{R}(x)=10 \cos (2 \pi x)+50 \cos (4 \pi x)
$$

Consider the junction Hamiltonian

$$
H_{t}^{\text {junct }}:=-\partial_{x x}^{2}+\left(V_{L}(x) \mathbb{1}(x<0)+V_{R}(x-t) \mathbb{1}(x>0)\right) \quad \text { on } \quad L^{2}(\mathbb{R}) .
$$

Reasoning as before (using a cut as a compact perturbation), one can prove that $\operatorname{Sf}\left(H_{t}^{\text {junct }}, E\right)=\mathcal{N}_{R}(E)$.

Figure: Spectrum of $H_{t}^{\text {junc }}$ as a function of t.
A typical spectrum contains:

- The essential spectrum of the left and right side.
- Additional edge modes at the junction.

A «fun» analogy

The «Grand Hilbert Hotel»

An infinite number of floors, and an infinite number of rooms per floor.

Idea: each unit cell represents 1 room (per floor), each spectral band represents one floor.

As t moves from 0 to $1 \ldots$

... a new room is created on each floor!

As t moves from 0 to $1 \ldots$

... a new room is created on each floor!

In order to fill the new rooms,

- 1 person from floor 2 must come down to floor 1 ;
- 2 persons from floor 3 must come down to floor 2;
- and so on.

If we reverse the motion, (we delete rooms, or new guests arrive), then people climb up instead.

The two-dimensional case.

Let V be a \mathbb{Z}^{2}-periodic potential. We study the edge operator

$$
H^{\sharp}(t)=-\Delta+V(x-t, y), \quad \text { on } \quad L^{2}\left(\mathbb{R}_{+} \times \mathbb{R}\right), \quad \text { with Dirichlet boundary conditions. }
$$

The two-dimensional case.

Let V be a \mathbb{Z}^{2}-periodic potential. We study the edge operator

$$
H^{\sharp}(t)=-\Delta+V(x-t, y), \quad \text { on } \quad L^{2}\left(\mathbb{R}_{+} \times \mathbb{R}\right), \quad \text { with Dirichlet boundary conditions. }
$$

After a Bloch transform in the y-direction, we need to study the family of operators

$$
H_{k}^{\sharp}(t)=-\partial_{x x}^{2}+\left(-\mathrm{i} \partial_{y}+k\right)^{2}+V(x-t, y), \quad \text { on the tube } \quad L^{2}\left(\mathbb{R}_{+} \times[0,1]\right) .
$$

- Consider again the «Grand Hilbert Hotel» (= on a tube).
- For each k, as t moves from 0 to 1 , a new room is created on each floor \Longrightarrow spectral flow.
- As k varies, each branch of eigenvalue becomes of branch of essential spectrum.

There is a «spectral flow» of essential spectrum appearing in each gap.
The corresponding modes can only propagate along the boundary.

The two-dimensional twisted case.
We rotate V by θ.

The two-dimensional twisted case.

We rotate V by θ.

Commensurate case $\left(\tan \theta=\frac{p}{q}\right.$)
Considering a Supercell of size $L=\sqrt{p^{2}+q^{2}}$, we recover a $L \mathbb{Z}^{2}$-periodic potential. On the tube $\mathbb{R}^{+} \times[0, L]$ (at the k-Bloch point $k=0$ for instance),
«Ast moves from 0 to L, L^{2} new rooms are created»

Key remark:

- The map $t \mapsto H_{\theta}^{\sharp}(t)$ is now $1 / L$-periodic (up to some x_{2} shifts)
- So the map $t \mapsto \sigma\left(H_{\theta}^{\sharp}(t)\right)$ is $1 / L$ periodic.
«Ast moves from 0 to $\frac{1}{L}$, 1 new room is created»

In-commensurate case $(\tan \theta \notin \mathbb{Q}$, corresponds to $L \rightarrow \infty)$

Theorem (DG 2021)

If $\tan \theta \notin \mathbb{Q}$, the spectrum of H_{θ}^{\sharp} is of the form $[\Sigma, \infty)$.
Remarks:

- The spectrum of $H^{\sharp}(t)$ is independent of t (ergodicity);
- All bulk gaps are filled with edge spectrum.

(a) Uncut two-dimensional material

(b) Two-dimensional material with incommensurate cut

Open question

Is the edge spectrum pure point (\sim Anderson localization), or absolutely continuous (travelling waves)?
D. Gontier, Comptes Rendus Mathématique, 359(8), 949-958 (2021).

The Grand Hilbert Hotel, by Étienne Lécroart.

Crystallization in Lieb-Thirring inequalities

Joint work with Rupert L. Frank, Mathieu Lewin and Faizan Q. Nazar.

Keller problem (1961).
Among all potentials V with $\int_{\mathbb{R}^{d}} V^{p}$ fixed, which one minimizes $\lambda_{1}(-\Delta-V)$?

- Existence of an optimal potential in all dimensions (explicit in dimension $d=1$).
- Links with Gagliardo-Niremberg inequality, non-linear Schrödinger equation, ...

Theorem (Keller/Gagliardo-Niremberg inequality)

For all $\gamma>\max \left(0,1-\frac{d}{2}\right)$, there is an optimal (smallest) constant $L_{\gamma, d}^{(1)}$ so that, for all $V \in L^{\gamma+\frac{d}{2}}\left(\mathbb{R}^{d}, \mathbb{R}^{+}\right)$,

$$
\left|\lambda_{1}(-\Delta-V)\right|^{\gamma} \leq L_{\gamma, d}^{(1)} \int_{\mathbb{R}^{d}} V^{\gamma+\frac{d}{2}} . \quad \text { (Keller inequality). }
$$

Keller problem (1961).
Among all potentials V with $\int_{\mathbb{R}^{d}} V^{p}$ fixed, which one minimizes $\lambda_{1}(-\Delta-V)$?

- Existence of an optimal potential in all dimensions (explicit in dimension $d=1$).
- Links with Gagliardo-Niremberg inequality, non-linear Schrödinger equation, ...

Theorem (Keller/Gagliardo-Niremberg inequality)

For all $\gamma>\max \left(0,1-\frac{d}{2}\right)$, there is an optimal (smallest) constant $L_{\gamma, d}^{(1)}$ so that, for all $V \in L^{\gamma+\frac{d}{2}}\left(\mathbb{R}^{d}, \mathbb{R}^{+}\right)$,

$$
\left|\lambda_{1}(-\Delta-V)\right|^{\gamma} \leq L_{\gamma, d}^{(1)} \int_{\mathbb{R}^{d}} V^{\gamma+\frac{d}{2}} . \quad \text { (Keller inequality). }
$$

This inequality was then extended by Lieb and Thirring to the (infinite) sum of eigenvalues:

Theorem (Lieb-Thirring inequality, '75-76)

For all $\gamma>\max \left(0,1-\frac{d}{2}\right)$, there is an optimal (smallest) constant $L_{\gamma, d}$ so that, for all $V \in L^{\gamma+\frac{d}{2}}\left(\mathbb{R}^{d}, \mathbb{R}^{+}\right)$,

$$
\sum_{n=1}^{\infty}\left|\lambda_{n}(-\Delta-V)\right|^{\gamma} \leq L_{\gamma, d} \int_{\mathbb{R}^{d}} V^{\gamma+\frac{d}{2}} . \quad \text { (Lieb-Thirring inequality). }
$$

"Open question": is there an optimal potential V for Lieb-Thirring?

Finite rank Lieb-Thirring.
For all $\gamma>\max \left(0,1-\frac{d}{2}\right)$, there is an optimal (smallest) constant $L_{\gamma, d}^{(N)}$ so that

$$
\sum_{n=1}^{N}\left|\lambda_{n}(-\Delta-V)\right|^{\gamma} \leq L_{\gamma, d}^{(N)} \int_{\mathbb{R}^{d}} V^{\gamma+\frac{d}{2}}
$$

Basic fact: The sequence $N \mapsto L_{\gamma, d}^{(N)}$ is increasing, and $L_{\gamma, d}=\lim \uparrow L_{\gamma, d}^{(N)}$.

Theorem (R.L. Frank, DG, M. Lewin (2024?))

For all $\gamma>\max \left(0,1-\frac{d}{2}\right)$, and all integer $N>0$, there is an optimal potential $V_{N} \in L^{\gamma+\frac{d}{2}}\left(\mathbb{R}^{d}, \mathbb{R}^{+}\right)$. In addition, if $\gamma>\max \left(0,2-\frac{d}{2}\right)$, then $L_{\gamma, d}^{(2 N)}>L_{\gamma, d}^{(N)}$.

In particular, if $\gamma>\max \left(0,2-\frac{d}{2}\right)$, then $L_{\gamma, d}>L_{\gamma, d}^{(N)}$ for all N.
If the problem defining $L_{\gamma, d}$ has an optimal potential V_{*} (?), then this one must generate an infinite number of eigenvalues.

Finite rank Lieb-Thirring.
For all $\gamma>\max \left(0,1-\frac{d}{2}\right)$, there is an optimal (smallest) constant $L_{\gamma, d}^{(N)}$ so that

$$
\sum_{n=1}^{N}\left|\lambda_{n}(-\Delta-V)\right|^{\gamma} \leq L_{\gamma, d}^{(N)} \int_{\mathbb{R}^{d}} V^{\gamma+\frac{d}{2}}
$$

Basic fact: The sequence $N \mapsto L_{\gamma, d}^{(N)}$ is increasing, and $L_{\gamma, d}=\lim \uparrow L_{\gamma, d}^{(N)}$.

Theorem (R.L. Frank, DG, M. Lewin (2024?))

For all $\gamma>\max \left(0,1-\frac{d}{2}\right)$, and all integer $N>0$, there is an optimal potential $V_{N} \in L^{\gamma+\frac{d}{2}}\left(\mathbb{R}^{d}, \mathbb{R}^{+}\right)$. In addition, if $\gamma>\max \left(0,2-\frac{d}{2}\right)$, then $L_{\gamma, d}^{(2 N)}>L_{\gamma, d}^{(N)}$.
In particular, if $\gamma>\max \left(0,2-\frac{d}{2}\right)$, then $L_{\gamma, d}>L_{\gamma, d}^{(N)}$ for all N.
If the problem defining $L_{\gamma, d}$ has an optimal potential V_{*} (?), then this one must generate an infinite number of eigenvalues.

Proof of the second part: Consider the test function

$$
V_{R}(x):=\left[V_{N}^{q}\left(x-\frac{R}{2}\right)+V_{N}^{q}\left(x+\frac{R}{2}\right)\right]^{\frac{1}{q}}, \quad q:=\gamma+\frac{d}{2}-1 \geq 0
$$

and compute the contribution of the tunnelling effect. If $q>1$, we find $L_{\kappa, d}^{(2 N)}>L_{\kappa, d}^{(N)}$.

Similar phenomenon for the fermionic non-linear Schrödinger inequality

Figure: Optimal density for $J_{p, d}^{\mathrm{NLS}}$ in the case $d=1, p=1.3$ and $N=3,4,5,13$.
D. Gontier, M. Lewin, F.Q. Nazar. ARMA 240(3), 1203-1254 (2021).

Figure: Optimal density for $J_{p, d}^{\mathrm{NLS}}$ in the case $d=2, p=1.5$ and for N from 1 to 7 .

Figure: Optimal density for $J_{p, d}^{\mathrm{NLS}}$ in the case $d=2, p=1.5$ and for N from 1 to 7 .
\Longrightarrow There is a crystallization phenomenon!
Conjecture: If $\gamma>\max \left\{0,2-\frac{d}{2}\right\}$, The sequence $\left(V_{N}\right)_{N}$ "converges" to a periodic potential.

Lemma (RL. Frank, DG, M. Lewin (2021))

Let $\gamma>\max \left\{0,1-\frac{d}{2}\right\}$. Then, for all periodic $V \in L_{\mathrm{loc}}^{\gamma+\frac{d}{2}}\left(\mathbb{R}^{d}, \mathbb{R}^{+}\right)$, we have

$$
\underline{\operatorname{Tr}}\left((-\Delta-V)_{-}^{\gamma}\right) \leq L_{\gamma, d} f V^{\gamma+\frac{d}{2}}
$$

with the same best Lieb-Thirring constant $L_{\gamma, d}$.
Remark. Taking the test function $V=c s t$ shows that

$$
\left.L_{\gamma, d} \geq L_{\gamma, d}^{\mathrm{sc}}:=\frac{1}{(2 \pi)^{d}} \int_{\mathbb{R}^{d}}\left(|\mathbf{k}|^{2}-1\right)^{\gamma} \mathrm{d} \mathbf{k} . \quad \text { (semi-classical constant }\right) .
$$

Lieb-Thirring "conjecture": $\quad L_{\gamma, d} \stackrel{?}{=} \max \left\{L_{\gamma, d}^{(1)}, L_{\gamma, d}^{\text {sc }}\right\}$.
The optimal scenario is either the one-bound state, or the semi-classical one $=$ fluid phase.

Lemma (RL. Frank, DG, M. Lewin (2021))

Let $\gamma>\max \left\{0,1-\frac{d}{2}\right\}$. Then, for all periodic $V \in L_{\mathrm{loc}}^{\gamma+\frac{d}{2}}\left(\mathbb{R}^{d}, \mathbb{R}^{+}\right)$, we have

$$
\underline{\operatorname{Tr}}\left((-\Delta-V)_{-}^{\gamma}\right) \leq L_{\gamma, d} f V^{\gamma+\frac{d}{2}}
$$

with the same best Lieb-Thirring constant $L_{\gamma, d}$.
Remark. Taking the test function $V=c s t$ shows that

$$
\left.L_{\gamma, d} \geq L_{\gamma, d}^{\mathrm{sc}}:=\frac{1}{(2 \pi)^{d}} \int_{\mathbb{R}^{d}}\left(|\mathbf{k}|^{2}-1\right)^{\gamma} \mathrm{d} \mathbf{k} . \quad \text { (semi-classical constant }\right) .
$$

Lieb-Thirring "conjecture": $\quad L_{\gamma, d} \stackrel{?}{=} \max \left\{L_{\gamma, d}^{(1)}, L_{\gamma, d}^{\text {sc }}\right\}$.
The optimal scenario is either the one-bound state, or the semi-classical one $=$ fluid phase.
Facts.

- In all dimensions d, there is $1 \leq \gamma_{\mathrm{sc}}(d) \leq \frac{3}{2}$ so that

$$
\begin{cases}\text { if } \gamma<\gamma_{\mathrm{sc}}(d), & L_{\gamma, d}>L_{\gamma, d}^{\mathrm{sc}} \\ \text { if } \gamma \geq \gamma_{\mathrm{sc}}(d), & L_{\gamma, d}=L_{\gamma, d}^{\mathrm{sc}}\end{cases}
$$

- In dimension $d=2$, we have $\gamma_{\mathrm{sc}}(2) \geq 1.165378$.

In dimension $d=2$, for $\gamma \in\left(1, \gamma_{\mathrm{sc}}(2)\right)$, we expect crystallization.

Figure: Numerical computation of the optimal periodic potential in dimension $d=2$, for $\gamma=1.165400$.

The integrable case $\gamma=3 / 2$ in dimension $d=1$.
In the original article by Lieb-Thirring 1976, they proved

$$
L_{3 / 2,1}=L_{3 / 2,1}^{(1)}=L_{3 / 2,1}^{(N)}=L_{3 / 2,1}^{\mathrm{sc}}=\frac{3}{16}
$$

The optimal potentials for $L_{\gamma, d}^{(N)}$ is the set of N-solitons (links with the Korteweg-de-Vries equation)

The integrable case $\gamma=3 / 2$ in dimension $d=1$.

In the original article by Lieb-Thirring 1976, they proved

$$
L_{3 / 2,1}=L_{3 / 2,1}^{(1)}=L_{3 / 2,1}^{(N)}=L_{3 / 2,1}^{\mathrm{sc}}=\frac{3}{16} .
$$

The optimal potentials for $L_{\gamma, d}^{(N)}$ is the set of N-solitons (links with the Korteweg-de-Vries equation)

Theorem (R.L. Frank, DG, M. Lewin (2021))

For all $0<k<1$, the potential $V_{k}(x):=1+k^{2}-2 k^{2} \operatorname{sn}(x \mid k)^{2}$ with minimal period $2 K(k)$, is an optimizer for the periodic problem at $\gamma=3 / 2$ and $d=1$. Here, $\operatorname{sn}(\cdot \mid k)$ is the facobi elliptic function, and $K(\cdot)$ is the complete elliptic integral of the first kind. In addition,

$$
\lim _{k \rightarrow 0} V_{k}(x)=1\left(\text { semi-classical) } \quad \text { and } \quad \lim _{k \rightarrow 1} V_{k}(x)=\frac{2}{\cosh ^{2}(x)}(1 \text {-soliton }) .\right.
$$

This potential is sometime called the periodic Lamé potential, or the cnoidal wave.

Known facts about Lieb-Thirring

- $\gamma \mapsto L_{\gamma, d} / L_{\gamma, d}^{\mathrm{sc}}$ is decreasing (Aizenmann-Lieb, 1978), and ≥ 1.

There is a unique point $\gamma_{\mathrm{c}}(d)>0$ so that $L_{\gamma, d}=L_{\gamma, d}^{\mathrm{sc}}$ iff $\gamma \geq \gamma_{c}(d)$.

- $\gamma=3 / 2$ in dimension $d=1 . L_{\gamma, d}=L_{\gamma, d}^{(N)}=L_{\gamma, d}^{\mathrm{sc}}=\frac{3}{16}$. (Lieb-Thirring 1976).
- $\gamma \geq 3 / 2$ is semi-classical: $L_{\gamma, d}=L_{\gamma, d}^{\text {sc }}$ for all $\gamma \geq \frac{3}{2}$. (Laptev-Weidl 2000).
- $\gamma=1 / 2$ in dimension $d=1$. $L_{\frac{1}{2}, 1}=L_{\frac{1}{2}, 1}^{(1)}$. (Hundertmark-Lieb-Thomas, 1998).
- $\gamma<1$ is not semi-classical. $L_{\gamma, d}>L_{\gamma, d}^{\mathrm{sc}}$ for all $\gamma<1$. (Hellfer-Robert, 2010).

Appendix

A degenerate case

Consider $\Omega \subset \mathbb{R}^{2}$ a nice bounded set, and repeat it on a \mathbb{Z}^{2} grid.
Consider $H=-\Delta$ on $L^{2}\left(\mathbb{R}^{2}\right)$, with Dirichlet boundary conditions «everywhere».

In the un-cut situation, the spectrum equals $\sigma\left(-\left.\Delta\right|_{\Omega}\right)$, and each eigenvalue is of infinite multiplicities.

A degenerate case

Consider $\Omega \subset \mathbb{R}^{2}$ a nice bounded set, and repeat it on a \mathbb{Z}^{2} grid.
Consider $H=-\Delta$ on $L^{2}\left(\mathbb{R}^{2}\right)$, with Dirichlet boundary conditions «everywhere».

In the un-cut situation, the spectrum equals $\sigma\left(-\left.\Delta\right|_{\Omega}\right)$, and each eigenvalue is of infinite multiplicities. In the cut situation:

- If $\tan \theta \in \mathbb{Q}$, a finite number of new motifs appear, each one appears infinitely many times
\Rightarrow finite number of new eigenvalues appear in each gap (all of infinite multiplicities)
- If $\tan \theta \notin \mathbb{Q}$, an infinite (countable) number of new motifs appear \Longrightarrow pure-point spectrum everywhere.

