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Fermions (= electrons in this talk)
Pauli principle: «two identical fermions cannot be in the same quantum state».
A system of N (uncorrelated) fermions is described by N–orthonormal functions (the orbitals)…
or by the orthogonal projector on these N functions.

In my work, a system of N fermions is described an orthogonal projector of rank N .

In this habilitation, we are interested in systems with infinitely many fermions
≡ orthogonal projectors of infinite rank.

Outline of the manuscript:
Low energy spectrum of periodic systems
(with É. Cancès, H. Cornean, V. Ehrlacher, A. Levitt, D. Lombardi, D. Monaco, S. Perrin-Roussel, S. Siraj-Dine).
Wannier functions, homotopy of projectors, Brillouin zone integration, …
Semi-periodic systems
Bulk-edge correspondence, edge modes, spectral flows, …
The Hartree–Fock gas (and Peierls model)
(with M. Lewin, Ch. Hainzl, A. Kouandé. É. Séré).
Spin symmetry breaking, spatial symmetry breaking, SSH model for polyacetylene, …
Lieb–Thirring (and related) inequalities
(with R.L. Frank, M. Lewin, F.Q. Nazar).
Lieb–Thirring inequalities, fermionic non-linear Schrödinger, …
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Semi-periodic systems
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Start with a single atom in Rd. We study the spectrum of the (one–body) Schrödinger operator

H = −∆+ V (x), e.g. V (x) =
−Z

|x|
.

σ(H)

Discrete spectrum (= eigenvalues). The energy levels are quantized.
The N fermions occupies the N first eigenvectors/orbitals (associated to the N lowest eigenvalues).
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Then take two atoms in Rd.

H = −∆+ V

(
x−

R

2

)
+ V

(
x+

R

2

)
.

σ(H)

When R = ∞, the spectrum is copied twice (each eigenvalue doubles its multiplicity);
When R � 1, tunnelling effect = interaction of eigenvectors =⇒ splitting of the eigenvalues;
The eigenvectors are delocalized between the two atoms.

David Gontier HDR Gontier 5 / 27



Now take an infinity of atoms in Rd, located along a lattice (= material)

H = −∆+
∑

v∈RZd

V (x− v)

σ(H)

When R = ∞, each eigenvalue is of infinite multiplicity;
When R � 1, each eigenvalue becomes a band of essential spectrum;
Each band represents «one electron per unit cell »;
When R decreases, the bands may overlap.

The spectrum of −∆+ V with V -periodic has a band-gap structure!
One band = one electron per unit cell.

Usual proof with the Bloch transform (∼ discrete version of the Fourier transform).
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Motivation: Spectral pollution
Let’s compute numerically the spectrum of the (simple, one-dimensional) operator

H := −∂2
xx + V (x), with V (x) = 50 · cos(2πx) + 10 · cos(4πx).

The potential V is 1-periodic. We expect a band-gap structure for the spectrum.
We study H in a box [t, t+ L] with Dirichlet boundary conditions, and with finite difference.

Depending on where we fix the origin t, the spectrum differs…
There are branches of spurious eigenvalues = spectral pollution (they appear for all L).
The corresponding eigenvectors are edge modes: they are localized near the boundaries.
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Setting
Let V be a 1-periodic potential, and consider the cut (one-dimensional) Hamiltonian

H]
t = −∂2

xx + V (x− t) on L2(R+),

with Dirichlet boundary conditions (with domain H2(R+) ∩H1
0 (R+)).

Since V is 1-periodic, the map t 7→ H]
t is also 1-periodic.

Theorem (Korotyaev 2000, Hempel Kohlmann 2011, DG 2020)

In the n-th essential gap, there is a flow of n eigenvalues going downwards as t goes from 0 to 1.
These eigenvalues are simple, and their associated eigenvectors are exponentially localised ( = edge modes).

Figure: (Left) Spectrum of H](t) for t ∈ [0, 1]. (Right) Spectrum of the operator on [t, t + L].

E. Korotyaev, Commun. Math. Phys., 213(2):471–489, 2000.
R. Hempel and M. Kohlmann, J. Math. Anal. Appl., 381(1):166–178, 2011.
D. Gontier, J. Math. Phys. 61, 2020.
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Idea of the proof
Step 1. Prove the result for dislocations (following Hempel and Kohlmann).
Introduce the dislocated operator

Hdisloc
t := −∂2

xx +
[
V (x)1(x < 0) + V (x− t)1(x > 0)

]
, on L2(R).

Let L ∈ N be a (large) integer. Consider the periodic dislocated operator

Hdisloc
L,t := −∂2

xx +
[
V (x)1(x < 0) + V (x− t)1(x > 0)

]
, on L2([− 1

2
L, 1

2
L+ t])

with periodic boundary conditions.

Remarks
The branches of eigenvalues of t 7→ Hdisloc

L,t are continuous;

At t = 0, the system is 1-periodic, on a box of size L. Each «band» contributes to L eigenvalues;
At t = 1, the system is 1-periodic, on a box of size L+ 1. Each «band» contributes to L+ 1
eigenvalues.
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Figure: Spectrum of Hdisloc
L,t for L = 6 at t = 0 (6 cells) and t = 1 (7 cells).

The presence and the number of the red lines are independent of L ∈ N.
They survive in the limit L → ∞.

This implies that there the result holds for the family of dislocated operators t 7→ Hdisloc
t .
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Figure: Spectrum of Hdisloc
L,t for all t ∈ [0, 1].

The presence and the number of the red lines are independent of L ∈ N.
They survive in the limit L → ∞.

This implies that there the result holds for the family of dislocated operators t 7→ Hdisloc
t .
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The Spectral flow
If t 7→ At is a 1-periodic and continuous family of self-adjoint operators, and if E /∈ σess(At) for all t, we
can define its Spectral flow as

Sf (At, E) := number of eigenvalues going downwards in the essential gap where E lies.

The previous result can be formulated as:

Sf
(
Hdisloc

t , E
)
= N (E), N (E) := number of bands below E.

Facts :
If t 7→ Kt is a 1-periodic continuous family of compact operators, then

Sf (At, E) = Sf (At +Kt, E) .

If f : R → R is strictly increasing, then

Sf (f (At) , f(E)) = Sf (At, E) .
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Step 2. From the dislocated case to the Dirichlet case.

Recall that the dislocated operator is

Hdisloc
t := −∂2

xx + [V (x)1(x < 0) + V (x− t)1(x > 0)] on L2(R).

Consider the cut Hamiltonian

Hcut
t := −∂2

xx + [V (x)1(x < 0) + V (x− t)1(x > 0)] on L2(R) = L2(R−) ∪ L2(R+),

and with Dirichlet boundary conditions at x = 0 (only the domain differs).

Fact: For any Σ negative enough (below the essential spectra of all operators), we have

Kt :=
(
Σ−Hcut

t

)−1 −
(
Σ−Hdisloc

t

)−1
is compact (here, it is finite rank).

So
Sf
((

Σ−Hdisloc
t

)−1
, (Σ− E)−1

)
= Sf

((
Σ−Hcut

t

)−1
, (Σ− E)−1

)
.

Since f(x) := (Σ− x)−1 is strictly increasing on x > Σ, we have

N (E) = Sf
(
Hdisloc

t , E
)
= Sf

(
Hcut

t , E
)
= Sf

(
H],+

t , E
)
.
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The case of junctions
Take two 1-periodic potentials

VL(x) = 50 cos(2πx) + 10 cos(4πx), VR(x) = 10 cos(2πx) + 50 cos(4πx)

Consider the junction Hamiltonian

H
junct
t := −∂2

xx + (VL(x)1(x < 0) + VR(x− t)1(x > 0)) on L2(R).

Reasoning as before (using a cut as a compact perturbation), one can prove that Sf
(
H

junct
t , E

)
= NR(E).

Figure: Spectrum of H junc
t as a function of t.

A typical spectrum contains:
The essential spectrum of the left and right side.
Additional edge modes at the junction.
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A «fun» analogy

The «Grand Hilbert Hotel»
An infinite number of floors, and an infinite number of rooms per floor.

Idea: each unit cell represents 1 room (per floor), each spectral band represents one floor.

😴 😴 😴 😴 😴

… Floor 1.

😴 😴 😴 😴 😴

… Floor 2.

😴 😴 😴 😴 😴

… Floor 3.

...
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As t moves from 0 to 1…

… a new room is created on each floor!

😴 😴 😴 😴 😴 😴

… Floor 1.

😴 😴 😴 😴 😴 😴

… Floor 2.

😴 😴 😴 😴 😴 😴

… Floor 3.

t→t+1−−−−−→

In order to fill the new rooms,
1 person from floor 2 must come down to floor 1;
2 persons from floor 3 must come down to floor 2;
and so on.

If we reverse the motion, (we delete rooms, or new guests arrive), then people climb up instead.
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The two-dimensional case.
Let V be a Z2-periodic potential. We study the edge operator

H](t) = −∆+ V (x− t, y), on L2(R+ × R), with Dirichlet boundary conditions.

After a Bloch transform in the y-direction, we need to study the family of operators

H]
k(t) = −∂2

xx + (−i∂y + k)2 + V (x− t, y), on the tube L2(R+ × [0, 1]).

Consider again the «Grand Hilbert Hotel» (= on a tube).
For each k, as t moves from 0 to 1, a new room is created on each floor =⇒ spectral flow.
As k varies, each branch of eigenvalue becomes of branch of essential spectrum.

There is a «spectral flow» of essential spectrum appearing in each gap.
The corresponding modes can only propagate along the boundary.
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The two-dimensional twisted case.
We rotate V by θ.

Commensurate case (tan θ = p
q
)

Considering a Supercell of size L =
√

p2 + q2, we recover a LZ2-periodic potential.
On the tube R+ × [0, L] (at the k-Bloch point k = 0 for instance),

« As t moves from 0 to L, L2 new rooms are created»

Key remark:

The map t 7→ H]
θ(t) is now 1/L-periodic (up to some x2 shifts)

So the map t 7→ σ(H]
θ(t)) is 1/L periodic.

«As t moves from 0 to 1
L
, 1 new room is created»
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In-commensurate case (tan θ /∈ Q, corresponds to L → ∞)

Theorem (DG 2021)

If tan θ /∈ Q, the spectrum of H]
θ is of the form [Σ,∞).

Remarks:
The spectrum of H](t) is independent of t (ergodicity);
All bulk gaps are filled with edge spectrum.

(a) Uncut two-dimensional material (b) Two-dimensional material with incommensurate cut

Open question
Is the edge spectrum pure point (∼ Anderson localization), or absolutely continuous (travelling waves)?

D. Gontier, Comptes Rendus Mathématique, 359(8), 949-958 (2021).

David Gontier HDR Gontier 18 / 27



The Grand Hilbert Hotel, by Étienne Lécroart.
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Crystallization in Lieb-Thirring inequalities

Joint work with Rupert L. Frank, Mathieu Lewin and Faizan Q. Nazar.
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Keller problem (1961).
Among all potentials V with

´
Rd V p fixed, which one minimizes λ1(−∆− V )?

Existence of an optimal potential in all dimensions (explicit in dimension d = 1).
Links with Gagliardo–Niremberg inequality, non-linear Schrödinger equation, …

σ(−∆− V )

0

Theorem (Keller/Gagliardo–Niremberg inequality)

For all γ > max(0, 1− d
2
), there is an optimal (smallest) constant L(1)

γ,d so that, for all V ∈ Lγ+ d
2 (Rd,R+),

|λ1(−∆− V )|γ ≤ L
(1)
γ,d

ˆ
Rd

V γ+ d
2 . (Keller inequality).

This inequality was then extended by Lieb and Thirring to the (infinite) sum of eigenvalues:

Theorem (Lieb-Thirring inequality, ’75-76)

For all γ > max(0, 1− d
2
), there is an optimal (smallest) constant Lγ,d so that, for all V ∈ Lγ+ d

2 (Rd,R+),

∞∑
n=1

|λn(−∆− V )|γ ≤ Lγ,d

ˆ
Rd

V γ+ d
2 . (Lieb-Thirring inequality).

”Open question”: is there an optimal potential V for Lieb–Thirring?

J.B. Keller, J. Mathematical Phys. 2 (1961), 262–266.
E.H. Lieb, W.E. Thirring, Phys. Rev. Lett. 35 (1975), 687–689.
E.H. Lieb, W.E. Thirring, Studies in Math. Phys. (1976), 269–303.
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Finite rank Lieb-Thirring.
For all γ > max(0, 1− d

2
), there is an optimal (smallest) constant L(N)

γ,d so that
N∑

n=1

|λn(−∆− V )|γ ≤ L
(N)
γ,d

ˆ
Rd

V γ+ d
2 .

Basic fact: The sequence N 7→ L
(N)
γ,d is increasing, and Lγ,d = lim ↑ L

(N)
γ,d .

Theorem ( R.L. Frank, DG, M. Lewin (2024?) )

For all γ > max(0, 1− d
2
), and all integer N > 0, there is an optimal potential VN ∈ Lγ+ d

2 (Rd,R+).

In addition, if γ > max(0, 2− d
2
), then L

(2N)
γ,d > L

(N)
γ,d .

In particular, if γ > max(0, 2− d
2
), then Lγ,d > L

(N)
γ,d for all N .

If the problem defining Lγ,d has an optimal potential V∗ (?),
then this one must generate an infinite number of eigenvalues.

Proof of the second part: Consider the test function

VR(x) :=

[
V q
N

(
x−

R

2

)
+ V q

N

(
x+

R

2

)] 1
q

, q := γ +
d

2
− 1 ≥ 0,

and compute the contribution of the tunnelling effect. If q > 1, we find L
(2N)
κ,d > L

(N)
κ,d .

σ(−∆− VR)

R.L. Frank, D. Gontier, M. Lewin, accepted in American Journal of Mathematics.
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Similar phenomenon for the fermionic non-linear Schrödinger inequality

Figure: Optimal density for JNLS
p,d in the case d = 1, p = 1.3 and N = 3, 4, 5, 13.

D. Gontier, M. Lewin, F.Q. Nazar. ARMA 240(3), 1203–1254 (2021).

Figure: Optimal density for JNLS
p,d in the case d = 2, p = 1.5 and for N from 1 to 7.

=⇒ There is a crystallization phenomenon!
Conjecture: If γ > max{0, 2 − d

2
}, The sequence (VN )N ”converges” to a periodic potential.

D. Gontier, M. Lewin, F.Q. Nazar. ARMA 240(3), 1203–1254 (2021).
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Periodic Lieb–Thirring inequality

Lemma ( R.L. Frank, DG, M. Lewin (2021))

Let γ > max{0, 1− d
2
}. Then, for all periodic V ∈ L

γ+ d
2

loc (Rd,R+), we have

Tr
(
(−∆− V )γ−

)
≤ Lγ,d

 
V γ+ d

2 .

with the same best Lieb–Thirring constant Lγ,d.

Remark. Taking the test function V = cst shows that

Lγ,d ≥ Lsc
γ,d :=

1

(2π)d

ˆ
Rd

(|k|2 − 1)γdk. (semi–classical constant).

Lieb-Thirring ”conjecture”: Lγ,d
?
=max{L(1)

γ,d, L
sc
γ,d}.

The optimal scenario is either the one-bound state, or the semi-classical one = fluid phase.

Facts.
In all dimensions d, there is 1 ≤ γsc(d) ≤ 3

2
so that{

if γ < γsc(d), Lγ,d > Lsc
γ,d

if γ ≥ γsc(d), Lγ,d = Lsc
γ,d.

In dimension d = 2, we have γsc(2) ≥ 1.165378.
In dimension d = 2, for γ ∈ (1, γsc(2)), we expect crystallization.

R.L. Frank, D. Gontier, M. Lewin. Partial Differential Equations, Spectral Theory, and Mathematical Physics. The Ari Laptev Anniversary
Volume, volume 18. EMS Publishing House (2021).
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2
so that{

if γ < γsc(d), Lγ,d > Lsc
γ,d

if γ ≥ γsc(d), Lγ,d = Lsc
γ,d.

In dimension d = 2, we have γsc(2) ≥ 1.165378.
In dimension d = 2, for γ ∈ (1, γsc(2)), we expect crystallization.

R.L. Frank, D. Gontier, M. Lewin. Partial Differential Equations, Spectral Theory, and Mathematical Physics. The Ari Laptev Anniversary
Volume, volume 18. EMS Publishing House (2021).
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Figure: Numerical computation of the optimal periodic potential in dimension d = 2, for γ = 1.165400.
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The integrable case γ = 3/2 in dimension d = 1.
In the original article by Lieb-Thirring 1976, they proved

L3/2,1 = L
(1)
3/2,1

= L
(N)
3/2,1

= Lsc
3/2,1 =

3

16
.

The optimal potentials for L(N)
γ,d is the set of N -solitons (links with the Korteweg-de-Vries equation)

Theorem ( R.L. Frank, DG, M. Lewin (2021))

For all 0 < k < 1, the potential Vk(x) := 1 + k2 − 2k2sn (x|k)2 with minimal period 2K(k), is an

optimizer for the periodic problem at γ = 3/2 and d = 1. Here, sn(·|k) is the Jacobi elliptic function, and
K(·) is the complete elliptic integral of the first kind. In addition,

lim
k→0

Vk(x) = 1 (semi-classical) and lim
k→1

Vk(x) =
2

cosh2(x)
(1-soliton).

This potential is sometime called the periodic Lamé potential, or the cnoidal wave.
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Figure: The potential Vk for some values of k.
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Known facts about Lieb-Thirring
γ 7→ Lγ,d/L

sc
γ,d is decreasing (Aizenmann-Lieb, 1978), and ≥ 1.

There is a unique point γc(d) > 0 so that Lγ,d = Lsc
γ,d iff γ ≥ γc(d).

γ = 3/2 in dimension d = 1. Lγ,d = L
(N)
γ,d = Lsc

γ,d = 3
16

. (Lieb-Thirring 1976).

γ ≥ 3/2 is semi-classical: Lγ,d = Lsc
γ,d for all γ ≥ 3

2
. (Laptev-Weidl 2000) .

γ = 1/2 in dimension d = 1. L 1
2
,1 = L

(1)
1
2
,1
. (Hundertmark-Lieb-Thomas, 1998).

γ < 1 is not semi-classical. Lγ,d > Lsc
γ,d for all γ < 1. (Hellfer-Robert, 2010).

d = 1 γ

0 1/2

one-bound state
1 3/2

semi-classicalnot semi-classical
Conjecture: one-bound state

d = 2 γ

γc(2) ∈ (1.1654, 3/2]
semi-classical

not semi-classical not sc, not N
«crystallisation»

d = 3 γ

γc(3) ∈ [1, 3/2]
semi-classical

not sc, not N
«crystallisation»

not semi-classical Conjecture: γc(3) = 1
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Appendix
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A degenerate case
Consider Ω ⊂ R2 a nice bounded set, and repeat it on a Z2 grid.
Consider H = −∆ on L2(R2), with Dirichlet boundary conditions «everywhere».

In the un-cut situation, the spectrum equals σ (−∆|Ω), and each eigenvalue is of infinite multiplicities.

In the cut situation:
If tan θ ∈ Q, a finite number of new motifs appear, each one appears infinitely many times
=⇒ finite number of new eigenvalues appear in each gap (all of infinite multiplicities)
If tan θ /∈ Q, an infinite (countable) number of new motifs appear
=⇒ pure-point spectrum everywhere.
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