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Résumé

Ce mémoire d’HDR comporte quatre parties :

• Nous faisons le lien entre l’existence des fonctions de Wannier en matière condensée, et l’existence
d’homotopies pour une famille de projecteurs.

• Nous étudions l’apparition de mode de bords lorsqu’un matériau est coupé (systèmes semi-
périodiques), et donnons un cadre général pour l’étude du spectre des opérateurs correspondants.

• Nous calculons quelques propriétés du diagramme de phase du gaz de fermions, dans l’approxi-
mation de Hartree-Fock.

• Nous étudions les inégalités de Lieb-Thirring de rang fini, et montrons un phénomène de cristalli-
sation pour ses minimiseurs.

Abstract

This Habilitation consists in four parts:

• We link the existence of Wannier functions in condensed matter with the existence of homotopies
for a family of projectors.

• We consider the emergence of edge modes when one cuts a material (half-periodic systems), and
we give a general framework to study the spectrum of such operators.

• We describe some properties of the phase diagram of the fermionic gas, in the Hartree-Fock
approximation.

• We study finite rank Lieb-Thirring inequalities, and exhibit a cristallisation phenomenon for its
minimisers.

Mots clés : Analyse non linéaire, théorie spectrale, inégalités fonctionnelles, physique mathéma-
tiques, matière condensée, systèmes fermioniques

Keywords: Nonlinear analysis, spectral theory, fonctional inequality, mathematical physics, con-
densed matter, fermionic systems
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INTRODUCTION

Some researchers are able to present their work in a way that tells a cohesive story, with a clear
motivation and logical sequence of questions and answers. In this case, the Habilitation becomes a
story: there is a red threat motivating all the research presented in the manuscript, and the results
are organised in a logical sequence. Unfortunately, we could not find a single red thread for what we
wanted to present, so we decided to write four different chapters. They are all about infinite fermionic
systems in mean–fields regimes, but they all tell a different story:

• In Chapter 1, we study crystalline structures from condensed matter. The goal is to describe
the low energy spectrum of periodic Schrödinger operators. We explain the construction of
Wannier functions, review part of the Kitaev table for topological insulators, and give methods
to numerically compute physical quantities for such crystals.

• In Chapter 2, we study the spectrum of half materials, described by «semi»–periodic linear
Schrödinger operators. We show that an edge spectrum appears when one cuts a crystalline
structure, and that this one is linked to the presence of a spectral flow. We then give a general
framework to study this edge spectrum in various contexts.

• In Chapter 3, we focus on the fermionic electron gas, under the Hartree–Fock approximation,
and study its phase diagram. We show that there is a spin–symmetry breaking at low density
and low temperature. We also show that there is no symmetry breaking at high density or high
temperature.

• In Chapter 4, we study the existence of optimizers in Lieb-Thirring (and related) inequalities.
We prove that, for some values of the parameters, a fermionic state with a finite number of
particles can never be optimal. We provide numerical simulations suggesting that the optimal
state might describe an infinite crystalline structure.

The main goal of the present manuscript is to introduce the works done by the author after his
PhD. In order to avoid repeating already written articles, and to keep a good reading flow for the
reader, we decided to skip most details of the proofs, and to only provide some ideas behind them,
and some flavours of the techniques used. The reader can always refer to the corresponding articles
for the details of the proofs, and for further remarks on the results. The style is therefore not rigorous,
and we will prefer analogies and pictures rather than formal proofs to explain our results.
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CHAPTER 1
LOW ENERGY SPECTRUM OF PERIODIC SYSTEMS

1.1 Introduction
In this chapter, we study numerical methods to compute the properties of operators which commute
with lattice translations. Such operators appear naturally in the context of condensed matter, where
one studies the microscopic feature of crystalline structure. In most applications, we are only interested
in the low-energy spectrum of such operators, so we can ask the following questions:

• How to encode efficiently the information contained in the low-energy spectrum?

• How to numerically compute some physical quantities, such as the energy per unit cell of a
crystal?

The first question is linked to the construction of Wannier functions, and will be the main object of
this Chapter. The second is linked to Brillouin zone integration, and will be studied in Section 1.5

Notation

Let us fix the notation of this Chapter. Our main object of interest is a self-adjoint operator H acting
on H := `2(Zd,CM ) with M ∈ N. We restrict ourselves to tight-binding models, as it is enough for our
purpose, and simplifies some arguments, while keeping all the main ideas of the proofs. Most of our
results can be generalized to the infinite dimensional case where the Hilbert space is L2(Rd) (which
somehow corresponds to M = ∞). After an undisplayed Bloch transform, we are lead to study an
analytic family

Td 3 k 7→ H(k) ∈ S(CM ).
Here, Td ≈ [0, 1]d denotes the d-dimensional torus and S(H) the set of self–adjoint operators on the
Hilbert space H. The set S(CM ) can be identified with the set of M ×M hermitian matrices.

Let ε1,k ≤ ε2,k ≤ · · · be the eigenvalues of H(k), ranked in increasing order, and counting mul-
tiplicities. Let also {ψn,k}1≤n≤M be a corresponding orthonormal basis of eigenvectors. The map
k 7→ εn(k) is called the n-th Bloch band. It is a classical result these maps are continuous [Kat13],
and are analytic outside the band crossings. The set of crossings between the N -th and (N + 1)-th
Bloch bands is

KN :=
{

k ∈ Td, εN,k = εN+1,k
}
.

If k /∈ KN , then we have the strict inequality εN,k < εN+1,k, and one can define the spectral projector
PN (k) onto the N first eigenvectors, namely

PN (k) :=
N∑

n=1
|ψn,k〉〈ψn,k| = 1

2iπ

˛
C

dz
z −Hk

,
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where we used the Cauchy residual formula in the last equality. Here, C is a positively oriented loop of
the form C = (Σ+i) → (Σ− i) → (E− i) → (E+i) → (Σ+i), where Σ < ε1,k, and εN,k < E < εN+1,k.
The curve C depends on k, but, for a fixed curve C0 valid for k0, the Cauchy residual formula remains
valid in a neighbourhood of k0, proving that k 7→ PN (k) is analytic on Td \KN .

For k ∈ KN , the projector PN (k) is not well-defined, due to the degeneracy of the N -th eigenvalue.
On the other hand, if KN = ∅, there is a (relative) gap above the N -th Bloch band. This is sometimes
called the (relative) insulating case. In this case, PN is analytic and periodic on the whole torus Td.

For all k ∈ Td \ KN , PN (k) is an orthogonal projector of rank N , hence an element of the
Grassmannian

GM
N :=

{
P ∈ S(CM ), P 2 = P, Tr(P ) = N

}
.

Let us also introduce the set of frames

FM
N := {Φ ∈ MM×N (C), (Φ∗)Φ = IN } .

A matrix Φ is in FM
N iif its column vectors Φ = (φ1, · · · , φN ) are orthonormal in CM . For Φ =

(φ1, · · · , φN ) ∈ FM
N , one can associate the orthogonal projector PΦ onto the vectorial space spanned

by {φ1, · · · , φN }. Explicitly, PΦ =
∑N

i=1 |φi〉〈φi|, which we write in matrix form as PΦ = ΦΦ∗. The
map Φ 7→ PΦ from FM

N to GM
N is well-defined and onto. However, it is not one-to-one: if Φ0 ∈ FM

N is
a frame for P , then, for any unitary U ∈ U(N), Φ = Φ0U is also a frame for P .

1.2 Applications
Given a smooth and periodic family P : Td → GM

N of projectors, we say that P admits a global smooth
frame Φ = (φ1, · · · , φN ) if P (k) =

∑N
i=1 |φi(k)〉〈φi(k)| for all k ∈ Td. The main goal of this section is

to construct such frames.
Before we turn to the results, let us explain why the construction of frames can provide efficient

numerical tools to study the low-energy spectrum of a family of Hamiltonians.

1.2.1 Wannier functions

First, the constructions of frames gives a powerful way to numerically store the map k 7→ P (k).
Indeed, given P : Td → GM

N , one could record the Fourier coefficients of this map, and write

P (k) =
∑

R∈Zd

PRei2πk·R,

where each coefficient PR is an M×M matrix. Using the relation P (k) = Φ(k)Φ∗(k), one can instead
store the Fourier coefficients of the frame Φ itself, that is

Φ(k) =
∑

R∈Zd

W (R)ei2πk·R,

where each coefficient W (R) is an M ×N matrix. This is more efficient that storing PR in the regime
where N � M (one stores N vectors of size M instead of a full M ×M matrix), which is usually the
case for real-life systems.

The columns of W (R) = (w1(R), · · · , wN (R)) are called the Wannier functions. Explicitly,

∀R ∈ Zd, W (R) =
ˆ
Td

Φ(k)e−i2πk·Rdk, or wn(R) =
ˆ
Td

φn,ke−i2πk·Rdk.

In the case where k 7→ Φ(k) is smooth, the Fourier coefficients R 7→ W (R) (hence the Wannier func-
tions) decay fast. They decay faster than any polynomial when k 7→ Φ(k) is C∞, and exponentially
fast when it is analytic.
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1.2.2 Construction of reduced model

The construction of Wannier functions has applications in condensed matter physics, where one is
interested in the low-energy spectrum of self-adjoint operators.

Assume one can construct a smooth frame Φ(k) = {φ1,k, · · · , φn,k} for PN (k). Then one can also
construct the N ×N hermitian matrix M(k) with coefficients

∀1 ≤ i, j ≤ N, Mij(k) :=
〈
φi,k,H(k)φj,k

〉
.

This is the operator H(k) projected onto PN (k). By construction, the map k 7→ M(k) is smooth,
and the min-max principle shows that the eigenvalues of M(k) are exactly ε1,k ≤ · · · ≤ εN,k. In other
words, the (small) matrix M reproduces exactly the low-energy spectrum of the (large) matrix H.
The map k 7→ M(k) therefore provides a reduced model for the low-energy properties of k 7→ H(k).

To numerically compute the Fourier coefficients of the smooth periodic map M(k), one can dis-
cretize the integral over Td using a uniform coarse grid of size Ld. This provides accurate coefficients,
with an error exponentially small in L (see Lemma 1.16 below). This is sometimes called Wannier
interpolation [Yat+07].

1.2.3 Tight-binding models

Once the smooth and periodic map k 7→ M(k) has been constructed, one can consider its Fourier
coefficients, and write

M(k) =
∑

R∈Zd

MRei2πk·R.

Since k 7→ M(k) is smooth, the Fourier coefficients MR, which are now N ×N matrices, decay fast in
R. There is a nice interpretation for the coefficients MR. Indeed, consider the convolution operator
M : `2(Zd,CN ) → `2(Zd,CN ) defined by

∀Ψ = (ψR)R∈Zd , (Mψ)R0
:=

∑
R∈Zd

MRψR0−R =
∑

R∈Zd

MR0−RψR. (1.1)

The operator M acting on the discrete Hilbert space `2(Zd,CN ) is called a tight binding model. It
models a periodic lattice system in which, at each location R0 ∈ Zd, a «particle» with N degrees of
freedom can hop at a location R ∈ Zd, with a transition matrix MR−R0 . When the sum in (1.1) is
truncated to |R| < R0, one obtains a model which is local. For instance, when the sum is truncated
to |R|∞ ≤ 1, we get a next-to-nearest neighbour model. This approximation is accurate whenever the
coefficients MR with |R|∞ > R0 can be neglected.

Since the operator M is a discrete convolution operator, it can be diagonalized in Fourier space,
and, if F : `2(Zd,CN ) → L2(Td,CN ) denotes the Fourier transform, we have

FMF∗ =
ˆ ⊕

Td

M(k)dk, in the sense, F (Mψ) (k) = M(k)(Fψ)(k).

In particular, the tight-binding model reproduces the same low energy band diagrams as the original
operator H.

1.3 Construction of Wannier functions for insulators
This section is based on ideas developed in [G2], in collaboration with Antoine Levitt and Sami
Siraj–Dine.
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We now explain how to construct fast decaying Wannier functions, or equivalently smooth frames
Φ(k) for a given P (k). Let us first focus on the insulating case. In this case, the map P (k) := PN (k) is
well–defined, analytical and periodic. So we consider a general smooth and periodic map of projectors

P = P (k) ∈ C∞(Td,GM
N ). (1.2)

Here, we consider C∞ functions instead of analytical, as we will construct C∞ functions in the case
of metallic system (Section 1.4). Some results of this chapter are valid in the analytical case. More
specifically, if P admits a continuous frame, then it also admits a frame which has the same smoothness
as P . One way to see this is as follows: if Φ0 ∈ FM

N is a continuous frame for P , we first consider
Ψ an analytical map on MM,N (C) close to Φ0 (take Ψ a trigonometric polynomial for instance, with
‖Φ0 − Ψ‖∞ ≤ ε). Then, one can check that Φ1 := PΨ(Ψ∗Ψ)−1/2 is a frame for P , and has the same
regularity as P .

1.3.1 Results

Our main result is a constructive proof of the following. This proof is given in the next section.

Theorem 1.1. Let d ≥ 1, let 1 ≤ N < M < ∞, and let P ∈ C∞(Td,GM
N ). Consider the following

two assertions:

(i) The map P is smoothly contractible: there is a smooth map [0, 1] 3 s 7→ Ps ∈ C∞(Td,GM
N ) so

that Ps=0(k) = P0 and Ps=1(k) = P (k), where P0 is any constant projector in GM
N .

(ii) There exists a global smooth frame for P , that is a smooth map Φ = Φ(k) = C∞(Td,FM
N ) so

that, in matrix form,

∀k ∈ Td, P (k) = Φ(k)Φ∗(k), and Φ∗(k)Φ(k) = IN .

Then we always have (i) =⇒ (ii), with a frame Φ which is smoothly contractible. If in addition
d ≤ 2(M −N), then (ii) =⇒ (i) as well.

In practice, we have M � N , and d ∈ {1, 2, 3}, in which case the condition d ≤ 2(M − N) is
satisfied. This leaves open the case d = 3 and M = N + 1. Actually, the proof below will show that
(i) ⇐⇒ (ii) also in the case d = 3 and M ≥ 3. As for the remaining case d = 3 and (N,M) = (1, 2),
we have

Lemma 1.2 (Case d = 3 and (N,M) = (1, 2)). There exists P ∈ C∞(T3,G2
1) which admits a global

smooth frame, but which is not contractible.

Proof. Let v(k) : T3 → S3 be a smooth map which has a non-vanishing degree and let φ := (v1 +
iv2, v3 + iv4)T ∈ C2 be its representation in the unit sphere of C2. The projector P (k) := |φ(k)〉〈φ(k)|
is a smooth rank-one projector in C2, which, by construction, admits the global smooth frame φ.

Assume P is contractible, and let s 7→ Ps be a contraction from P (k) to the constant map
P0 = |φ0〉〈φ0|. Using the map s 7→ Ps(k) to transport the frame φ(k) (see Lemma 1.4 below), we
obtain a contraction s 7→ φs from φ(k) to a frame of the form θ(k)φ0, where k 7→ θ(k) is a smooth
phase from T3 → S1. Since the image of θ(·) is one–dimensional, it cannot contribute to the three–
dimensional degree, so deg3(v) = deg3(φ) = deg3(φ0) = 0, a contradiction.

In low dimensions d ∈ {1, 2, 3}, one can characterize the maps P which are contractible. Let us
recall the definition of the (first) Chern number. Let S be a compact connected manifold of dimension
d = 2. The Chern number of P ∈ C∞(S,GM

N ) is

Ch (P, S) := 1
2iπ

ˆ
S

Tr(PdP ∧ dP ). (1.3)

It is a well-known fact that Ch (P, S) is integer valued. It equals the winding number of an obstruction
matrix, see for instance [G1].
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Theorem 1.3.

• (Case d = 1). Any P (k) ∈ C∞(T1,GM
N ) is contractible.

• (Case d = 2). A map P (k) ∈ C∞(T2,GM
N ) is contractible iff Ch (P,T2) = 0

• (Case d = 3). If P (k) ∈ C∞(T2,GM
N ) is contractible, then

Ch (P (0, ·, ·),T2) = Ch (P (·, 0, ·),T2) = Ch (P (·, ·, 0),T2) = 0.

If in addition (N,M) 6= (1, 2), the converse holds.

Proof. Since the Chern number is integer valued, and has an expression continuous in P , this integer
depends only on the homotopy class of P . In particular, if P is smoothly contractible, we must have
Ch (P, S) = Ch (P0, S) = 0.

The converse is proved by constructing a global frame for P . A complete construction can be
found in [G2], following ideas from [CHN16; FMP16; Can+17].

Together with Theorem 1.1, we deduce that P admits global frame iff the Chern numbers of P
vanishes (and (d,N,M) 6= (3, 1, 2)). This happens for instance whenever P is time-reversal symmetric
(see Definition 1.6 below). Hence, for time–reversal symmetric systems, one can always construct
Wannier functions.

This result appears first in the work of Panati [Pan07; Bro+07] in the context of condensed matter,
following some preliminary works by Kohn [Koh59], des Cloizeaux [Clo64a; Clo64b], Nenciu [Nen83]
and Hellfer–Sjöstrand [HS89] (where the authors studied the case N = 1). The first algorithm to con-
struct such frames (or, equivalently, Wannier functions) is the Marzari–Vanderbild algorithm [MV97].
It was known to fail for some ill-prepared initial conditions. A method to construct well-prepared ini-
tial conditions was then proposed in [CHN16; FMP16], and implemented in [Can+17]. As we explain
below, it uses the technique of parallel transport, and reduces the problem to contracting a family
of unitaries U(k) : Td−1 → U(N). This last problem was only partially answered in these previous
works (but covers the important case of time-reversal symmetric systems). In our work [G2], we gave
a general algorithm, that we called column interpolation method, to contract such families of unitaries
in dimension d ∈ {1, 2, 3}. We illustrate this method in the next section.

1.3.2 Proof of Theorem 1.1 with the column interpolation method

We first record the following well-known Lemma by Levi-Civita.

Lemma 1.4 (Parallel transport of frames). Let [0, 1] 3 s 7→ P (s) be a C1 curve of projectors in GM
N ,

and let Φ0 be any matrix in MM,K(C). Then, the (unique) solution to the Cauchy problem{
Φ′(s) = [P ′(s), P (s)] Φ(s),
Φ(s = 0) = Φ0,

(1.4)

satisfies Φ∗(s)Φ(s) = Φ∗(0)Φ(0) and Φ∗(s)P (s)Φ(s) = Φ∗(0)P (0)Φ(0). In particular,

(a) If Φ0 is a frame for P0, then Φ(s) is a frame for P (s) for all s.

(b) If Φ0 is an orthonormal family in RanP⊥
0 , then Φs is an orthonormal family in RanP (s)⊥ for

all s.

Proof. We first note that the adjoint matrix Φ∗ satisfies (Φ∗)′ = −Φ∗[P ′, P ]. This gives

(Φ∗Φ)′ = (Φ∗)′Φ + Φ∗Φ′ = −Φ∗[P ′, P ]Φ + Φ∗[P ′, P ]Φ = 0,
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which proves the first point. For the second point, we recall that P 2 = P , so P ′P + PP ′ = P ′.
Multiplying by P on the left and on the right, we get PP ′P = 0. This gives

(Φ∗PΦ)′ = (Φ∗)′PΦ + Φ∗P ′Φ + Φ∗PΦ′ =
(
−Φ∗[P ′, P ]

)
PΦ + Φ∗P ′Φ + Φ∗P [P ′, P ]Φ

= Φ∗ (−P ′P + PP ′P + P ′ + PP ′P − PP ′)Φ = 0.

We now prove (a). We have Φ∗
0Φ0 = IN , hence Φ(s)∗Φ(s) = IN , so Φ(s) is a frame. We also have

Φ∗
0P0Φ0 = IN , hence Φ(s)∗P (s)Φ(s) = IN = Φ(s)∗Φ(s). This implies Φ∗(s)(1 − P (s))Φ(s) = 0, so the

matrix A := (1 − P (s))Φ(s) satisfies A∗A = 0. We deduce that A = 0, that is P (s)Φ(s) = Φ(s). So
Φ(s) is a frame for P (s). The proof of (b) is similar.

The results below will not use the fact that the transport is parallel (any transport would do).
However, Equation (1.4) has at least two interesting features. First, the Cauchy problem can be solved
numerically. In addition, by usual regularity theory of ordinary differential equations, if (s,k) 7→ Ps(k)
is smooth both in s and k, and if Φ0(k) is a smooth family of initial conditions, then the constructed
frame (s,k) 7→ Φ(s,k) is also smooth in s and k.

We also record the following Lemma.

Lemma 1.5. If N > d, then any smooth map v : Td → SN is smoothly contractible.

Since the sphere is path–connected, v can be contracted to any vector of the sphere.

Proof. According to Sard’s Lemma, and since N > d, the map v cannot be onto, and we can find
v0 ∈ SN so that v 6= −v0. We set

vs := (1 − s)v + sv0
‖(1 − s)v + sv0‖

.

The denominator never cancels since v 6= −v0. Hence the map s 7→ vs is well-defined and provides a
smooth contraction.

We are now in position to prove Theorem 1.1.

Proof of Theorem 1.1. Assume first that there is a smooth map Ps(k) connecting P0 and P (k). Choose
a constant frame Φ0(k) = Φ0 for P0. Transporting the frame Φ0(k) along Ps(k), we obtain, at s = 1,
a frame Φs=1(k) for P (k), which is smooth in k. So (i) always implies (ii), with a contractible frame
Φ for P .

Conversely, let Φ(k) be a smooth frame for P (k). We construct a contraction for Φ(k) by induction
on N . Assume we already know how to contract a frame Φ̃(k) of rank K to the constant frame
Φ̃0 := {e1, · · · , eK}, for all 0 ≤ K ≤ N − 1. We isolate the last vector (column) of Φ(k), and write

Φ(k) =
(
Φ̃(k), φN (k)

)
.

By induction, there is a smooth map Φ̃s(k) connecting Φ̃(k) to Φ̃0. Denote by P̃s(k) := Φ̃s(k)Φ̃∗
s(k)

the corresponding projector of rank N − 1. For all k ∈ Td, we use the family s 7→ P̃s(k) to transport
the last vector φN (k). According to Lemma 1.4 (b), we obtain a map φN,s(k) so that

Φs(k) :=
(
Φ̃s(k), φN,s(k)

)
is a frame for all s ∈ [0, 1] and all k ∈ Td. At s = 1, this frame is of form

Φs=1(k) = {e1, · · · , eN−1, φN,1(k)} .
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It remains to contract φN,1(k) to the constant vector eN , while keeping orthogonality with the first
(N − 1) other vectors. To do so, we notice that since φN,1(k) is orthogonal to {e1, · · · , eN−1}, it is of
the form

ΦN,1(k) = (0, 0, · · · , 0,v(k)),

where v(k) is a smooth map from Td to the unit sphere of CM−(N−1), isomorphic to S2(M−N)+1. Since
d ≤ 2(M − N), one can smoothly contract v(k) to v0 = (1, 0, · · · , 0) ∈ S2(M−N)+1 by Lemma 1.5.
This map contracts ΦN,1(k) to eN as wanted. Concatenating the homotopies, we obtain a smooth
contraction of frames Φs(k) connecting Φ(k) to the constant frame Φ0. The map s 7→ Ps(k) :=
Φs(k)Φ∗

s(k) gives the desired homotopy.

Case d = 3. We now focus on the case d = 3. Our goal is to prove that if M ≥ 3, then the existence
of a frame implies that P is contractible. We already proved that it was the case if d ≥ 2(M − N).
When d = 3, this is not satisfied for N = M or M = N + 1. In the first case M = N , there is a
unique projector P ∈ GM

M , which is the identity operator, and the result is trivial. It remains to study
the case M = N + 1. Assume P (k) has a smooth frame Φ(k) = (φ1(k), · · · , φM−1(k)). Consider the
(Hodge dual of the) exterior product

φM (k) := φ1(k) ∧ φ2(k) ∧ · · · ∧ φM−1(k).

It is the element in CM so that, for all v ∈ CM , 〈φM , v〉CM = det (φ1, · · · , φM−1, v). The map
k 7→ φM (k) is a smooth frame for the rank–1 projector Q(k) = 1 − P (k) = P⊥(k). Note that P is
contractible iff Q := Q⊥ is contractible. We now apply the previous result for the rank–1 projector
Q(k). When d = 3 < 2(M−1), that is when M ≥ 3, Q(k) admits the frame φM (k), hence is smoothly
contractible. So P (k) = 1 − Q(k) = Q⊥(k) is also contractible. The case d = 3, M = 2 and N = 1
was considered in Lemma 1.2.

The idea to transport the columns one by one to construct homotopies has numerous applications.
In [G2], we used it to give a constructive proof of the well-known fact that a map T1 3 t 7→ U(t) of
unitaries is contractible iff the winding number of t 7→ det(U(t)) vanishes.

1.3.3 Symmetries, and a simple derivation of the Kitaev’s table

In this section, we describe the results in [G4]. This is joint work with Domenico Monaco and Solal
Perrin-Roussel.

In the previous section, we proved that the existence of global frames is linked to the homotopy
class of P . We now study these classes, and ask under which conditions a family of projectors P0 can
be smoothly deformed in another family of projectors P1. In practice, the projectors P come from
condensed matter problems, and the variable k is the Bloch momentum. In this case, some symmetries
of the system induce symmetries on the map P . There are three important symmetries that one often
encounters. Recall that our Hilbert space is H ∼ CM , and that a map T : H → H is anti-unitary if it
is anti-linear T (λx) = λT (x) and

∀x, y ∈ H, 〈Tx, Ty〉H = 〈y, x〉H (= 〈x, y〉H).

Definition 1.6 (Time-reversal symmetry). Let T : H → H be an anti-unitary operator such that
T 2 = εT IH with εT ∈ {−1, 1}. We say that a P : Td → GM

N satisfies time-reversal symmetry if

T−1P (k)T = P (−k), (T -symmetry).

If εT = 1, this T -symmetry is said to even, and if εT = −1 it is odd.
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Definition 1.7 (Charge-conjugation/particle-hole symmetry). Let C : H → H be an anti-unitary
operator such that C2 = εCIH with εC ∈ {−1, 1}. We say that a continuous map P : Td → Gn(H)
satisfies charge-conjugation symmetry (also called particle-hole symmetry) if

C−1P (k)C = IH − P (−k), (C-symmetry).

If εC = 1, this C-symmetry is said to even, and if εC = −1 it is odd.

Definition 1.8 (Chiral symmetry). Let S : H → H be a unitary operator such that S2 = IH. We say
that P : Td → Gn(H) satisfies chiral or sublattice symmetry, or in short S-symmetry, if

S−1P (k)S = IH − P (k), (S-symmetry).

In general, it is assumed that when two symmetries are present, then so is the third one. For
instance, when T− and C− symmetries are both present, we assume that the product S := TC is
an S-symmetry. This is equivalent to require that the operators T and C commute or anti-commute
among each other, depending on their even/odd nature. Indeed, the product S := TC satisfies S2 = IH
iff

TCTC = IH ⇐⇒ TC = C−1T−1 = εT εCCT.

Taking into account all possible types of symmetries leads to 10 symmetry classes for maps P :
Td 7→ GN (H), the famous tenfold way of topological insulators [Ryu+10], following [AZ97; HHZ05]. The
names of these classes are given in Table 1.1, and are taken from the original works of E. Cartan [Car26;
Car27] for the classification of symmetric spaces. For a dimension d ∈ N0, a rank N ∈ N, and a
Cartan label X of one of these 10 symmetry classes, we denote by X(d,N,M) the set of continuous
maps P : Td → GM

N respecting the symmetry requirements of class X.

Given two continuous maps P0, P1 ∈ X(d,N,M), we ask whether we can find explicit index maps
from X(d,N,M) to Z or [Z mod 2], so that Index(P0) = Index(P1) iff P0 and P1 are path-connected
in X(d,N,M)?

In [G4], we answer this problem (and construct explicit homotopies when possible) for all 10
symmetry classes, and for d ∈ {0, 1}. The topological indices that we find are summarized in Table 1.1.

Symmetry Constraints Indices Cartan symmetric space
Cartan label T C S N M d = 0 d = 1

A 0 0 0 0 0 U(M)/U(N) × U(M −N)
AIII 0 0 1 M = 2N 0 Z U(N)
AI 1 0 0 0 0 O(M)/O(N) × O(M −N)

BDI 1 1 1 M = 2N Z2 Z2 × Z O(N)
D 0 1 0 M = 2N Z2 Z2 × Z2 O(2N)/U(N)

DIII −1 1 1 N = 2n M = 2N = 4n 0 Z2 U(2n)/Sp(n)
AII −1 0 0 N = 2n M = 2m ∈ 2N 0 0 Sp(m)/Sp(n) × Sp(m− n)
CII −1 −1 1 N = 2n M = 2N = 4n 0 Z Sp(n)
C 0 −1 0 M = 2N 0 0 Sp(N)/U(N)
CI 1 −1 1 M = 2N 0 0 U(N)/O(N)

Table 1.1: The Kitaev table in dimension d ∈ {0, 1}. For d = 0, we can identify each class with a
Cartan symmetric space.

The results of [G4] are not new, but we gave a comprehensive and constructive proof for this table,
using simple linear algebra. As an example of the strategy used, let us prove the AIII(d = 1) part of
the table. We assume that there is a unitary S : H → H with S2 = IH so that S−1P (k)S = IH −P (k)
for all k ∈ Td.
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Lemma 1.9. If AIII(d,N,M) is non empty, then M = 2N , and there is a basis of H in which S has
the block structure

S =
(
IN 0
0 −IN

)
. (1.5)

In this basis, a projection P ∈ G2N
N satisfies S−1PS = I − P iff it has the block structure

P = 1
2

(
IN Q
Q∗ IN

)
, with Q ∈ U(N).

Proof. If AIII(d,N,M) is non empty, there is P0 ∈ GM
N so that S−1P0S = I−P0. Since P0 is unitarily

equivalent to I − P0, we have M = 2N . Let (ψ1, · · · , ψN ) be an orthonormal basis for Ran(P0). We
set, for i ∈ {1, · · · , N},

φi := 1√
2

(
ψi + Sψi

)
, φN+i := 1√

2

(
ψi − Sψi

)
.

We can check that (ψ1, · · · , ψ2N ) is an orthonormal basis for H, and in this basis, S has the form (1.5).

Let P be any projector in G2N
N so that S−1PS = I − P , and write

P = 1
2

(
P11 P12
P21 P22

)
.

The equation S−1PS = I − P implies that P11 = P22 = IN , and the equation P 2 = P shows that
Q := P12 is unitary.

Since the map P 7→ Q is one-to-one, any map P : Td → AIII(d = 0, N,M) translates into a
map Q : Td → U(N) (this is the U(N) appearing in the last column of our Table 1.1 for AIII). In
dimension d = 1, it is a classical result that such maps are contractible iff the Winding number of
det(Q) vanishes. Actually, the Z appearing in the Kitaev table for AIII(1, N, 2N) corresponds to the
index

Index : P ∈ AIII(d = 1, N,M) 7→ Winding
(
det(Q),T1

)
∈ Z.

The other cells of the table are constructed in a similar way.

1.4 Construction of Wannier functions in the general case
We now generalize the previous results to metallic systems and to projectors which are not contractible.
The main message of this section is that, by allowing P to be over–represented, that is by allowing
extra vectors in the frames, one can lift band crossings and/or topological obstructions.

1.4.1 Metallic systems

In this section, we describe the results in [G1]. This is joint work with Horia D. Cornean, Domenico
Monaco and Antoine Levitt.

We now come back to the setting described in the introduction. Recall that PN (k) is the projection
on the N first eigenvectors. It is not defined on the crossing set KN :=

{
k ∈ Td, εN,k = εN+1,k

}
, but

is smooth (analytic) on Td \KN .

We say that KN satisfies Assumption A if KN is a finite union of isolated points and piecewise
smooth curves. This assumption is satisfied for most systems in practice. The main result of [G1] is
the following.
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Theorem 1.10 ([G1], Theorem 2.1). Let d = 3. Assume KN and KN+1 satisfies Assumption A,
and that KN ∩ KN+1 = ∅. Then there exists P ∈ C∞(T3,GM

N+1) so that, for all k /∈ KN , we have
PN (k) ⊂ P (k).

In other words, we add one vector to gain smoothness.

Remark 1.11. As will be clear from the proof, if KN ∩KN+1 6= ∅, then we look for an integer L ∈ N
so that KN ∩KN+L 6= ∅, and we need to add L extra vectors.

Remark 1.12. We do not know a priori that the constructed map P (k) is smoothly contractible.
However, in the important time-reversal symmetric case (TRS), it is possible to construct P to be
TRS as well, in which case it is always contractible.

As discussed in Section 1.2, this Theorem has direct numerical applications. Indeed, for numerical
purpose, the cost of adding a vector and to represent P instead of PN is irrelevant, and since the
information of PN is contained in P , one does not loose any information. In the case where P admits
a global frame, one can create a reduced model M(k) of size (N + 1) × (N + 1). By the min–max
principle, the N lowest eigenvalues of M(k) coincide with the ones of the initial operator H(k).

The idea to add functions to handle metallic systems was first considered algorithmically by Souza,
Marzari and Vanderbild [SMV01], and later by Damle, Levitt, Lin and Ying in their SCDM algo-
rithm [DLY17; DLL19]. In some sense, our Theorem shows that it is indeed possible to smooth the
projectors by adding functions («the set of solutions is non empty»).

Before we turn to the proof, we need a Lemma. Let Ω be a compact manifold of dimension d ≥ 2,
and let P : Ω → GM

N be smooth. The Berry curvature of P is the two-form

F [P ] := −iTr (PdP ∧ dP ) = −i
∑

1≤α<β≤d

Tr (P [∂αP, ∂βP ]) dkα ∧ dkβ.

When Ω = S is two-dimensional, the Chern number of P defined in (1.3) is the integral of F [P ] over
S, up to a 2π factor. Let Φ(k) be a local frame for P (k) around some k0 (local frames always exist),
a computation shows that

F [P ] = dA[Φ], where A[Φ] := −iTr (Φ∗dΦ)

is the (trace of the) Berry connection of Φ. Although the Berry connection depends on the frame
Φ, the Berry curvature dA[Φ] only depends on P = ΦΦ∗, the corresponding projector. We deduce the
following facts.

Lemma 1.13.

• (Bianchi’s identity) The Berry curvature is a closed form: dF [P ] = 0.

• If P,Q are projectors so that P ⊥ Q, then F [P +Q] = F [P ] + F [Q].

The first point comes from the fact that dF = d2A = 0. For the second point, if ΦP and ΦQ

are (local) frames for P and Q respectively, then (ΦP ,ΦQ) is a local frame for P + Q, and we get
A[(ΦP ,ΦQ)] = A[ΦP ] + A[ΦQ].

We can now provide some ideas behind the proof of Theorem 1.10.

Proof. If N = M − 1, we can choose P = ICM , so we only need to focus on the case N ≤ M − 2.
The main idea is to cut the torus Td appropriately around KN+1. Since KN+1 ∩KN = ∅, we can

find a smooth connected open set Ω ⊂ T3 so that KN+1 ⊂ Ω and KN ⊂ T3 \ Ω. Our Assumption A
ensures that Ω can be chosen to be a δ–neighbourhood of some one-dimensional connected skeleton G
(see Figure 1.1).
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Td

KN+1

KN

Ω

Td

G

Figure 1.1: 2D sketch of the set Ω ⊂ Td enclosing the set KN+1 but avoiding the set KN , and its
skeleton G.

Since KN+1 ⊂ Ω, the projector PN+1 is well-defined and smooth on T3 \ Ω. On the other hand,
since KN ⊂ T3 \ Ω, the map PN is well defined and smooth on Ω. We therefore look for an operator
P (k) of the form

P (k) :=
{
PN+1(k) for k /∈ Ω
PN (k) + p(k) for k ∈ Ω.

Our goal is to construct a smooth map p(k) on Ω, which is orthogonal to PN (k), and which equals
p̃(k) := PN+1(k) − PN (k) at the boundary ∂Ω.

Let us explain how to construct an extension of p̃ in Ω. First, we have, by Lemma 1.13,

Ch (p̃, ∂Ω) = Ch (PN+1, ∂Ω) − Ch (PN , ∂Ω) .

Since PN+1 is well-defined on T3 \ Ω, we have, using Stokes’ theorem and the fact that dF = 0 (see
again Lemma 1.13),

Ch (PN+1, ∂Ω) = 1
2π

ˆ
∂(T3\Ω)

F [PN+1] = ±1
2π

ˆ
T3\Ω

dF [PN+1] = 0.

Similarly, since PN is well-defined on Ω, we have Ch (PN , ∂Ω) = 0, and we deduce that Ch (p̃, ∂Ω) = 0
as well. This implies that there is a smooth frame φ̃ for p̃ on ∂Ω, which is contractible (this is a
combination of Theorems 1.1 and 1.3). It remains to extend this frame to the interior of Ω, while
keeping orthogonality with PN . We refer to [G1] for the end of the proof.

1.4.2 Removing topological obstructions

In the previous section, we explained how to handle band crossing problems by adding vectors to
the frame. For completeness, we now show how to use similar ideas to lift topological obstruction by
adding one vector and two dimensions. This idea is not new, and be found for instance in [CMM19].
Our method is different, and relies on the following result (stated here in dimension d = 2).

Theorem 1.14. For all m ∈ Z, there is an analytic map Pm : T2 → G2
1 so that Ch (Pm,T2) = m.

The fact that such a map exists follows from general considerations. Here, we provide a formula
for Pm, which can be implemented easily.

Proof. If P1(k1, k2) satisfies Ch (P1,T2) = 1, then Pm(k1, k2) := P1(k1,mk2) satisfies Ch (Pm,T2) = m
for all m ∈ Z. So we only need to focus on the case m = 1.
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Let us first present an idea that will fail, but will guide us in the construction of P1. We define

φ(k1, k2) :=
∑
n∈Z

ϕ(k1 − n)e−i2πk2(k1−n), with ϕ(x) := e−πx2
.

One recognizes a Bloch transform of ϕ, where k1 plays the role of x, and (−2πk2) the role of the Bloch
momentum. By construction, φ is analytic and satisfies

φ(k1 + 1, k2) = φ(k1, k2), and φ(k1, k2 + 1) = e−i2πk1φ(k1, k2). (1.6)

Assume that ‖φ‖ 6= 0 on T1 × [0, 1], and let P be the 1-dimensional projector on Ran {φ}. Then φ/‖φ‖
would be a continuous frame for P on the two–dimensional cut torus T1 × [0, 1]. Note that this frame
is not continuous over the full torus T2, since φ(k1, 1) 6= φ(k1, 0). It is a classical result that the Chern
of P is the winding of the obstruction of φ (see for instance [G1]), that is

Ch (P,T2) = Winding (U(k1),T1), with U(k1) =
〈
φ(k1, 1)

‖φ(k1, 1)‖ ,
φ(k1, 0)

‖φ(k1, 0)‖

〉
.

Using (1.6) we find that U(k1) = ei2πk1 , which has a winding equal to 1. So Ch (P,T2) = 1 as wanted.

Unfortunately, we cannot have ‖φ‖ 6= 0 everywhere on T1 × [0, 1]. One reason is that P is a
projector of rank 1 on C, so is the identity, hence has Ch (P,T2) = 0. One therefore rather considers
the two–dimensional vector

φ̃(k) :=
(

φ(k)
φ(k + K)

)
,

where K is a fixed vector of the form K = (K1, 0), chosen so that ‖φ̃(k)‖ 6= 0 over the full space
k ∈ R2. Now, the projector P1 : T2 → G2

1 onto Vect(φ̃) is a well-defined rank–1 projector on C2, and
has Ch (P1,T2) = 1 by the previous reasoning.

Remark 1.15. One can start with any initial function ϕ which is analytic and decays fast on R. In
the case where ϕ(x) = e−πx2, one gets

φ(k1, k2) =
∞∑

n=−∞
e−π(k1−n)2e−2iπk2(k1−n) = e−πk2

1 e−2iπk1k2
∞∑

n=−∞
e−πn2+2πn(k1+ik2)

= e−πk2
1 e−2iπk1k2ϑ (−ik1 + k2, i) ,

where ϑ is the usual Jacobi ϑ–function, defined by

ϑ(z, τ) =
∑
n∈Z

exp
(
iπn2τ + i2πnz

)
.

The map z 7→ ϑ(z, i) vanishes only for z = 1
2(1 + i) in the first square [0, 1] + i[0, 1]. So we can take

any vector K of the form K = (K1, 0) with K1 /∈ Z.

With this at hand, one can augment the Hilbert space H = CM and add two dimensions in order
to lift topological obstructions. We set H̃ = H ⊕C2 ∼ CM+2. If P ∈ C∞(T2,GM

N ) has a non vanishing
Chern m ∈ Z, one considers the projector

P̃ := P ⊕ P−m ∈ C∞(T2,GM+2
N+1 ).

Using Lemma 1.13, P̃ has Chern 0 (hence admits frames). In matrix form, this is also

P̃ =
(
P 0
0 P−m

)
∈ MM+2,M+2.
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Let Φ̃ ∈ FM+2
N+1 be a frame for P̃ , and write it of the form

Φ̃ =
(
Φ v

)
, with Φ ∈ MM,N+2, v ∈ M1,N+2.

Then Φ is not necessarily a frame (it usually does not satisfy Φ∗Φ = IN ), but it satisfies ΦΦ∗ = P .
For numerical purpose, it is therefore enough to store Φ (or Φ̃) to encode the family of projectors P
(see Section 1.2.1).

In the case where P represents the low-energy spectrum of a Hamiltonian, we have P (k) =
1(H(k) < ε(k)). Then, for Σ negative enough (lower than the infk inf σ(H(k))), we have P̃ (k) =
1(H̃(k) < ε(k)), where we set

H̃(k) = H(k) ⊕ (ΣP−m(k)) =
(
H(k) 0

0 ΣP−m(k)

)
.

We can introduce the reduced model M̃(k) ∈ MN+1,N+1 with coefficients

M̃ij := 〈φ̃i, H̃φ̃j〉 = 〈φi,Hφj〉 + Σ〈vi, vj〉.

By the min-max principle, the spectrum of M̃(k) is exactly the spectrum of H(k) below ε(k), plus the
extra eigenvalue Σ. This method therefore gives an efficient way to encode the low-energy spectrum
of topologically obstructed Hamiltonians.

1.5 Brillouin zone integration
In this section, we describe the results in [G3]. This is joint work with Éric Cancès, Antoine Levitt,
Damiano Lombardi and Virginie Ehrlacher.

We now explain how to numerical compute some physical properties from the family H(k) (which
can represent either a general Hamiltonian or a reduced model M(k) obtained from Wannier inter-
polation). For simplicity, we assume again that H(k) acts on a finite dimensional space CM (the
parameter M can be small in the case of reduced models).

Our main goal is to compute the total energy per unit cell. To define this quantity, we introduce
the integrated density of states N : R → R and the integrated density of energy E : R → R defined
respectively by

N (ε) :=
ˆ
Td

Tr
(
1(H(k) < ε)

)
dk =

M∑
n=1

ˆ
Td

1(εn,k ≤ ε)dk,

E(ε) :=
ˆ
Td

Tr
(
H(k)1(H(k) < ε)

)
dk =

M∑
n=1

ˆ
Td

εn,k1(εn,k ≤ ε)dk.

The map N is continuous non–decreasing, with N (−∞) = 0, and N (∞) = M . For any 0 < N < M
a fixed chosen number (usually an integer), representing the number of particles per unit cell, there is
εF ∈ R so that N (εF ) = N . This number may not be unique, and any solution ε ∈ R to N (ε) = N
is called a Fermi level. If N −1(N) = {εF } is unique, the system is said to be metallic while if
N −1(N) = [a, b] with a < b, the system is insulating. In the latter case, N is always an integer. It is
the index for which we have the inequalities

∀k ∈ Td, εN,k ≤ a, while b ≤ εN+1,k.

In particular, E(ε) is independent of ε ∈ N −1(N). This quantity E = E(εF ) is called the total energy
per unit cell.

Our goal is to numerically estimate this energy. More specifically, we ask how to discretize the
integrals appearing in the definition of N and E . Note that to compute E, one should first estimate
N (·), in order to approximate the Fermi level εF , to finally compute E(εF ).
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1.5.1 The insulating case

Let us first recall what is known in the insulating case. We already mentioned that in this case, N
is an integer, and εN,k < εF < εN+1,k. In particular, the projector PN (k) on the N first bands is
well-defined and smooth, and equals PN (k) = 1(H(k) < εF ). The total energy simplifies into

E = E(εF ) =
ˆ
Td

Tr
(
H(k)PN (k)

)
dk.

The key remark is that the integrand f(k) := Tr
(
H(k)PN (k)

)
is analytic and periodic. In particular,

its integral can be well approximated by a Riemann sum on a uniform grid. For L ∈ N a discretization
parameter, we define the uniform grid with L points per direction as

Td
L := Td ∩ L−1Zd. (1.7)

We recall the following well-known result (see for instance [GL16, Lemma 5.1])

Lemma 1.16. There is C ≥ 0 and α > 0 so that, for all Y > 0, all L ∈ N and all functions f : Td → R
periodic and analytic on SY := Td + i[−Y, Y ], we have∣∣∣∣∣∣∣

ˆ
Td

f(k)dk − 1
Ld

∑
k∈Td

L

f(k)

∣∣∣∣∣∣∣ ≤ C

Y d

(
sup

z∈SY

|f(z)|
)

e−αY L.

We deduce that there is a constant C ′ ≥ 0 and α′ > 0 so that, for all L ∈ N, we have∣∣∣E − EL
∣∣∣ ≤ C ′e−α′L, with EL := 1

Ld

∑
k∈Td

L

Tr
(
H(k)PN (k)

)
.

In other words, we have exponential speed of convergence in L when we approximate the Brillouin
zone integration by the corresponding Riemann sum on a regular mesh. In practice, this means that
we only need to compute the spectrum of H(k) for k on a coarse grid Td

L. This grid contains Ld

points. Using the symmetries of the system, one can restrict the computations for k in the so-called
reduced Brillouin zone.

The idea to take uniform grids originates from the work of Monkhorst and Pack [MP76], and the
fact that it leads to exponential speed of convergence is folklore in the community. This speed is also
attained in some non–linear Kohn–Sham models, such as the reduced Hartree–Fock model [GL16].

1.5.2 The metallic case

We now turn to the metallic case. In our work [G3], we presented two different methods to compute
the Fermi level εF and the total energy energy per unit cell E. The first one follows an idea of Blöchl,
Jepsen and Andersen [BJA94] (see also [Zah05]), and consists into splitting the Brillouin zone Td into
a union of simplices (tetrahedra if d = 3) Td =

⋃
j Tj , interpolating the maps k 7→ εn,k by piece–wise

polynomial functions on these simplices, and evaluating quantities of the form
ˆ

T
p(k)1 (q(k) ≤ ε) dk,

where p and q are (low–order) polynomials approximating the maps k 7→ εn,k on T . We will not
present the results of this first method here.

The idea of the second one is to smear the function 1(x < 0) appearing in the definition of N
and E . Let p ∈ N be some chosen order, and let δ1 be a function which is analytic on some complex
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strip of the form R+ i[−Y Y ], and such that, when restricted to the real line, δ1 : R 7→ R is a Schwartz
function satisfying ˆ

R
δ1 = 1, and ∀1 ≤ n ≤ p,

ˆ
R
δ1(x)xn = 0.

We say that δ1 is a mollifier of order p. For p = 1, one can take δ1 ≥ 0 a positive function, but for
p ≥ 2, δ1 must alternate sign, since we must have

´
δ1(x)x2 = 0. Typical choices for the function δ1

are

• the Fermi–Dirac smearing δ1(x) = 1
1+ex+e−x , which is positive, of order p = 1;

• the Gaussian smearing δ1(x) = π−1/2e−x2 , which is positive, of order p = 1;

• smearings of the form δ1(x) = P (x)e−x2 with P a polynomial chosen so that δ1 is of order
p. This includes the Marzari–Vanderbild cold smearings [Mar+99], and the Methfessel–Paxton
smearings [MP89].

For σ > 0 a smearing parameter, we set δσ(x) := σ−1δ1(σ−1x), and we approximate the function
f(x) := 1(x < 0) by the smooth function

fσ(x) :=
(
f ∗ δσ

)
(x) =

ˆ ∞

x
δσ(s)ds = f1(σ−1x).

Let us introduce the smoothed quantities

N σ(ε) :=
ˆ
Td

Tr
(
fσ(H(k) − ε)

)
dk and Eσ(ε) :=

ˆ
Td

Tr
(
H(k)fσ(H(k) − ε)

)
dk.

A computation shows that N σ = N ∗ δσ and Eσ = E ∗ δσ. This time, the map ε 7→ N σ(ε) is strictly
increasing (also in the insulating case). The approximate Fermi level is εσ

F solution to N σ(εσ
F ) = N

and the approximate total energy is Eσ := Eσ(εσ
F ).

The function N σ is expected to be a good approximation of N in the regions where N is smooth.
Unfortunately, the map ε 7→ N (ε) is not smooth in general, due to the possible band crossings. For
our purpose, we will assume smoothness. More specifically, we define the Fermi surfaces S(ε) ⊂ Td

and Sn(ε) ⊂ Td as the sets

S(ε) :=
⋃

1≤n≤M

Sn(ε), where Sn(ε) :=
{

k ∈ Td, εn,k = ε
}
.

Lemma 1.17 ([G3] Lemmas 5.5-5.6). Under the following two assumptions:

• Assumption 1 (no band crossings at εF ): ∀n 6= m, Sn(εF ) ∩ Sm(εF ) = ∅;

• Assumption 2 (no flat bands at εF ): ∀1 ≤ n ≤ M , ∀k ∈ Sn(εF ), ∇kεn,k 6= 0,

the maps N and E are smooth on a neighbourhood U of εF . There is C ≥ 0 so that, for all σ > 0,{
∀ε ∈ U , |N (ε) − N σ(ε)| ≤ Cσp+1, |E(ε) − Eσ(ε)| ≤ Cσp+1,

|εF − εσ
F | ≤ Cσp+1, and |E − Eσ| ≤ Cσp+1.

We skip the proof for brevity. Assumption 2 implies in particular that Sn(εF ) is a well-defined
smooth manifold of dimension d−1. Together with Assumption 1, we get that the Fermi surface S(εF )
is also a smooth manifold of dimension d− 1. The proof of smoothness uses the co-area formula, and
the estimates comes from a Taylor expansion of N and E , and the fact that δ1 decays fast, and is of
order p (hence cancels polynomials of degree p).

Unfortunately, the quantities N σ and Eσ can not be computed numerically, as they still involve an
integration over the whole Brillouin zone Td. However, the integrands are now smooth and periodic,
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hence the integrals can be well approximated by the corresponding Riemann sums. Recall that the
uniform Td

L was defined in (1.7). We introduce the approximate quantities N σ,L and Eσ,L by

N σ,L(ε) := 1
Ld

∑
k∈Td

L

Tr
(
fσ(H(k) − ε)

)
, Eσ,L(ε) := 1

Ld

∑
k∈Td

L

Tr
(
H(k)fσ(H(k) − ε)

)
.

The approximate Fermi level is εσ,L
F , unique solution to N σ,L(εσ,L

F ) = N , and the approximate total
energy per unit cell is Eσ,L := Eσ,L(εσ,L

F ). All these quantities can be computed numerically. Our main
result is the following. We skip its proof, and only emphasize that it uses Lemma 1.16 on Riemann
sums, and the fact that δ1 is analytic on R + i[−Y, Y ].

Theorem 1.18 ([G3] Lemmas 5.10, Theorem 5.11). There is a neighbourhood U of εF , and constants
C > 0 and η > 0 so that, for all σ > 0 and all L ∈ N∗, ∀ε ∈ U ,

∣∣∣N σ(ε) − N σ,L(ε)
∣∣∣ ≤ Cσ−(d+1)e−ησL,

∣∣∣Eσ(ε) − Eσ,L(ε)
∣∣∣ ≤ Cσ−(d+1)e−ησL,∣∣∣εσ

F − εσ,L
F

∣∣∣ ≤ Cσ−(d+1)e−ησL, and
∣∣∣Eσ − Eσ,L

∣∣∣ ≤ Cσ−(d+1)e−ησL.

In particular,∣∣∣εF − εσ,L
F

∣∣∣ ≤ C
(
σp+1 + σ−(d+1)e−ησL

)
, and

∣∣∣Eσ − Eσ,L
∣∣∣ ≤ C

(
σp+1 + σ−(d+1)e−ησL

)
.

We can now optimize the parameters σ and L to obtain some desired accuracy. Since the number
of grid points grows as Ld, it affects strongly the computational time. On the contrary, the parameter
δ is irrelevant for numerical time, and can be tuned as wanted. The choice σ ≈ log(L)L−1 leads to an
error of order O(L−(p+1)) up to log factors.

The speed of convergence in the metallic case is therefore worse that in the insulating case, at least
for the smearing method: we have polynomial speed of convergence, instead of exponential speed.

1.6 Perspectives
In [G2], we designed an algorithm to explicitly contract a loop T1 → U(N) when this is possible. A
natural next step would be to design an algorithm to contract maps from Td → U(N). Our proof
can handle the case d = 1 and d = 2, but when d = 3, some other obstructions appear. Using our
column interpolation method, we can reduce the problem to the following question (see also the recent
work [MR23]):

Given a map U : T3 → SU(2) which is contractible, how to numerically construct a contraction?

Using the identification SU(2) ∼ S3, this is related to the following question: given a contractible
map F : Td → Sd with null degree, how to numerically contract it?



CHAPTER 2
SEMI-PERIODIC SYSTEMS

2.1 Introduction
In this chapter, we study the spectrum of periodic operators, when they are cut. We start from a
periodic Schrödinger operator of the form

H := −∆ + V acting on L2(Rd),

where V is a bounded Zd–periodic potential. It is a standard result that the spectrum of H is purely
essential, composed of bands and gaps. We then cut this operator, and study the edge Hamiltonian

H] := −∆ + V acting on L2(Rd
+), Rd

+ := R+ × Rd−1,

with some boundary conditions at the cut Rd
0 := {0}×Rd−1 (typically Dirichlet boundary conditions).

Using Bloch–Floquet theory together with the Weyl’s characterization of the essential spectrum,
it is not difficult to see that σ(H) = σess(H) ⊂ σ(H]) (the bulk spectrum is purely essential, and is
contained in the cut spectrum). However, edge modes can appear at the cut, so that the edge spectrum

σedge := σ(H) \ σ(H])

is not empty in general. The main goal of this chapter is to describe σedge in various situations.

Notation, Hamiltonians on a channel

By periodicity of V , both operators H and H] are periodic in the last (d− 1)–variables. After a Bloch
transform in these directions, we obtain smooth families of Hamiltonians Hk and H]

k with k ∈ Rd−1,
of the form

Hk := −∆ + V acting on L2(Ω), and H]
k := −∆ + V acting on L2(Ω+),

where Ω := R × (0, 1)d−1 is a channel in the first direction, and Ω± := R± × (0, 1)d−1. The operator
Hk and H]

k have domains Dk and D]
k reflecting the k-quasi periodic boundary conditions along the

(d − 1) last variables. We assume Dirichlet boundary conditions at the cut {0} × (0, 1)d−1, although
our results can be extended to other boundary conditions. The maps k 7→ Hk and k 7→ H]

k are
Zd−1–periodic, so we write k ∈ Td−1.

In what follows, we consider a slightly different setting, and study a family of Hamiltonians T1 3
t 7→ Ht acting on L2(Ω), and with corresponding edge Hamiltonians H]

t acting on L2(Ω+). The main
difference is that t is now a real (one–dimensional) parameter. The previous case falls in this setting
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when d = 2 and t = k. Our results will therefore be appropriate to study edge states in 2-dimensional
materials. This setting also allows to study family of Hamiltonians of the form

Ht := −∆ + Vt, acting on L2(Ω),

where t 7→ Vt is a smooth periodic map of potentials, and where Ω := R × Td−1, that is we assume
periodic boundary conditions for the last (d − 1) variables. This is not mandatory, but avoids the
discussion of boundary conditions at ∂Ω for the definition of self–adjoint extensions. In particular,
the domain of Ht is H2(Ω), independent of t ∈ T1.

When t is seen as a time variable, Ht models a Thouless pump [Tho83; BGO10]. Note we need not
assume that Vt(·) is periodic in this general case. We will extensively study the dislocated case where
Vt(x) = V (x − t). In this case, the periodicity in t implies that V (·) is 1-periodic. The operator H]

t

can be seen to describe a fixed periodic system −∆ + V which is cut at {t} × Td−1, for some t ∈ R.

2.2 From the cut Hamiltonian to the junction Hamiltonian
In this section, we describe the results in [G6].

We first consider the case where Ht = −∆ + Vt. We define the bulk/edge index for such a family
as a spectral flow of t 7→ H]

t , and show that this definition allows to predict the spectrum of general
junctions.

2.2.1 Spectral flows

First, we recall some basic facts on the Spectral flow [APS76; Phi96].

Let T1 3 t 7→ At be a periodic map of self-adjoint operators acting on the same Hilbert space H.
We assume that this map is norm-resolvent continuous, which implies in particular that the spectrum
t 7→ σ(At) is continuous. We define the spectrum and essential spectrum of the family At respectively
as the closure of the unions

σ({At}) :=
⋃

t∈T1

σ(At), and σess({At}) :=
⋃

t∈T1

σess(At).

An interval (a, b) in R\σess({At}) is an essential gap of the family At. If E is in an essential gap (a, b)
of the family At, we define the spectral flow of At at energy E, noted

Sf(At, E,T1),

as the net number of branches of eigenvalues of T1 3 t 7→ At going downwards in the essential gap
where E lies. In particular, the spectral flow is an integer, and is independent of E in the essential
gap (a, b) (see Figure 2.1).

The following results are standard (see for instance [Phi96]).

Lemma 2.1.

• If E /∈ σ({At}), then Sf
(
At, E,T1

)
= 0.

• If f : R → R is a strictly increasing function, then Sf
(
f(At), f(E),T1

)
= Sf

(
At, E,T1

)
.

• If T1 3 t 7→ Kt is a norm continuous periodic map of compact operators, then

Sf
(
At +Kt, E,T1

)
= Sf

(
At, E,T1

)
.
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Figure 2.1: The spectral flow is n in the n-th lowest essential gap.

For the first point, we note that no eigenvalue touches E, hence there is no flow. The second
point comes from the fact that if t 7→ λt is a branch of eigenvalue of At crossing E downwards (resp.
upwards), then t 7→ f(λt) is a branch of eigenvalue of f(At) crossing E downwards (resp. upwards).
For the last point, we first note that the addition of a compact operator does not change the essential
spectrum, so if E /∈ σess({At}), then E /∈ σess({At+Kt}) as well. By continuity of the spectral flow with
respect to the operator norm topology (see [Phi96; G7] for details), the map s 7→ Sf

(
At + sKt, E,T1)

is continuous and integer valued, hence constant.

2.2.2 The bulk/edge index

Let T1 3 t 7→ Ht be a continuous family of Schrödinger operators acting on the full channel L2(Ω).
We focus on the case where Ht is of the form Ht := −∆ +Vt, but our results can be extended to other
cases. We define the bulk/edge index of Ht as the spectral flow of its cut counterpart t 7→ H]

t , with
Dirichlet boundary conditions. In order to do so, we need a Lemma (see below for the proof).

Lemma 2.2 ([G6] Theorem 43). For all t ∈ T1, we have σess(Ht) = σess(H],+
t ) ∪ σess(H],−

t ). In
particular, if E /∈ σess({Ht}), then E /∈ σess({H],±

t }), and the spectral flows Sf(H],±
t , E,T1) are well-

defined. If in addition E /∈ σ({Ht}), then

Sf(H],+
t , E,T1) + Sf(H],−

t , E,T1) = 0.

Definition 2.3. For E /∈ σ({Ht}), we define the bulk/edge index of Ht at energy E as the spectral
flow of H],+

t , that is

I
(
Ht, E,T1

)
:= Sf(H],+

t , E,T1) = −Sf(H],−
t , E,T1).

With our definition, the bulk/edge index is an edge quantity. We note however that it only
depends on bulk properties, namely on the potential Vt, hence our denomination bulk/edge. Here, we
made a specific choice for the edge boundary conditions, namely Dirichlet, but we prove below that
this index is independent of the chosen (fixed) boundary conditions. In the community of bulk-edge
correspondence, the bulk index has many definitions depending on the situations: for two–dimensional
periodic systems, it is usually defined as the Chern number of P (k) := 1(H(k) < E). This is the case
for instance in [Hat93a; Hat93b] (see also [ASV13]).

We note that our Definition 2.3 is independent of the situation, and turns out to be quite flexible.
For instance, we do not assume the potentials Vt(·) to be periodic (but only that t 7→ Vt is periodic).
The fact that all known bulk and edge definitions coincide («bulk-edge correspondence») has been a
fertile area of research, starting from the works of Hatsugai [Hat93a; Hat93b] (see [Tho+82; Hal82] for
earlier works). One should mention the numerous works by Graf and co-authors [EG02; EGS05; Gra07;
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GO08; BGO10; GP13; GS18]. Some proofs of bulk-edge correspondence involve K-theory [SKR00;
KRS02; PS16], micro-local analysis [Dro21b; Dro21a], and so on.

Proof of Lemma 2.2. We consider the set Ωcut = Ω− ∪ Ω+ = Ω \ Γ where Γ := {0} × Td−1 is the cut.
Note that L2(Ω) = L2(Ωcut). We introduce the cut operator

Hcut
t := −∆ + Vt acting on L2(Ω), with domain H2(Ωcut) ∩H1

0 (Ωcut). (2.1)

It has an action similar to Ht, but with a domain which reflects Dirichlet boundary conditions at the
cut Γ.

Let Σ ∈ R be a negative enough number so that

∀t ∈ T1, Σ < σ(Ht) and Σ < σ(Hcut
t ).

It is a classical result that there is m ∈ N large enough, depending on the dimension d, so that, for all
t ∈ T1, the operator

Kt := (Σ −Ht)−m − (Σ −Hcut
t )−m (2.2)

is compact, see for instance [RS79, Theorem XI.79]. This already proves that

σess
(
(Σ −Ht)−m

)
= σess

(
(Σ −Hcut

t )−m
)
, hence σess

(
Ht

)
= σess

(
Hcut

t

)
.

In addition, since the left and right channels are decoupled in Hcut
t , we have σ(Hcut

t ) = σ(H],−
t ) ∪

σ(H],+
t ) and σess(Hcut

t ) = σess(H],−
t ) ∪ σess(H],+

t ). This proves the first point.

In addition, the map t 7→ Kt is continuous and periodic. Using Lemma 2.1, we deduce that, for
any E /∈ σess({Ht}), we have

Sf
(
(Σ −Ht)−1, (Σ − E)−1,T1

)
= Sf

(
(Σ −Hcut

t )−1, (Σ − E)−1,T1
)
.

The map f : x 7→ (Σ − x)−1 is strictly increasing. By Lemma 2.1, we obtain

Sf(Ht, E,T1) = Sf(Hcut
t , E,T1).

Again, the Dirichlet boundary conditions at the cut disentangles the left and right sides of Hcut
t , so

Sf(Hcut
t , E,T1) = Sf(H],+

t , E,T1) + Sf(H],−
t , E,T1).

If E /∈ σ({Ht}), then Sf(Ht, E,T1) = 0, which implies Sf(H],+
t , E,T1) + Sf(H],−

t , E,T1) = 0.

2.2.3 Junctions between two Hamiltonians

As we see from the proof of Lemma 2.2, cutting the channel induces a compact perturbation of the
resolvent, and does not affect the spectral flow. This allows to compute the spectral flows of general
junctions.

Let t 7→ V L
t and t 7→ V R

t be two periodic continuous families of potentials (L/R stands for
Left/Right), and let t 7→ H

L/R
t := −∆ + V

L/R
t be the corresponding bulk operators. Let χ : R → R

be any switch function, so that χ(x) = 1 for x < −X while χ(x) = 0 for x > X, for some X large.
We consider the junction operator

H junction
t := −∆ + V L

t (x)χ(x) + V R
t (x)(1 − χ(x)) acting on L2(Ω), with domain H2(Ω). (2.3)

This operator models a transition between the potential V L
t on the left, and the potential V R

t on the
right, hence the denomination «junction».
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Theorem 2.4 ([G6] Theorem 44). Let E ∈ R be such that E /∈ σ({HL
t }) and E /∈ σ({HR

t }). Then
E /∈ σess({H junction

t }), and

Sf
(
H junction

t , E,T1
)

:= I
(
HR

t , E,T1
)

− I
(
HL

t , E,T1
)
.

Proof. The proof is similar to the one of Lemma 2.2. This time, we cut at x = −X and at x = X.
On the middle part, we have a Schrödinger operator on the relatively compact space (−X,X) ×Td−1.
The middle operator is therefore compact resolvent and does not contribute to the spectral flow. The
result follows.

If E /∈ σess({H junction
t } is an eigenvalue of the junction operator H junction

t for some t ∈ T1, then
the corresponding eigenfunction ψE ∈ L2(Ω), called the edge mode, must be localised at the junc-
tion. In most situations (for instance if V R

t and V L
t are bounded functions), the Combes-Thomas

estimates [CT73] imply that ψE must be exponentially decaying away from the junction.

A corollary of Theorem 2.4 is that the bulk/edge index is independent of the choice of boundary
conditions at the cut. We only require that the corresponding operator K̃t in (2.2) is compact for this
new boundary conditions. This happens in particular for Neumann boundary conditions, see [RS79,
Theorem XI.79]. In this case, one can repeat all the previous arguments. Let us prove that the spectral
flow is the same in the Neumann and Dirichlet cases.

Lemma 2.5. Let H]N ,±
t be the edge operators with Neumann boundary conditions at the cut. Then,

we have E /∈ σess({H]N ,±
t }) iff E /∈ σess({H],±

t }), and, in this case,

Sf
(
H]N ,±

t , E,T1
)

= Sf
(
H],±

t , E,T1
)
.

Proof. We prove the result for the right channel. We write Ht := −∆ + Vt, and we set V R
t := Vt and

V L
t := Λ, with Λ > E. We consider the corresponding junction operator H junction

t as in (2.3). Since
Λ > E, the energy E is not in the spectrum of the left operator HL

t with Dirichlet nor Neumann
boundary conditions. So

Sf
(
H junction

t , E,T1
)

= Sf
(
H],+

t , E,T1
)
, and similarly, Sf

(
H junction

t , E,T1
)

= Sf
(
H]N ,+

t , E,T1
)
.

One should think of these proofs as a LEGO® game. One has left and right pieces, representing
respectively V L

t and V R
t , all labelled by some integers, representing their bulk/edge indices. One can

assemble a left and a right piece using a switch function χ. We obtain a new integer, which is the
difference between the right and the left indices. Now, making specific choices for the left piece, for
the right piece and for the switch function χ, allows to identify non trivial identities between these
indices.

2.3 The dislocated model
Let us give an application of the previous theory. We focus on the special case of dislocations, where
one can compute explicitly the bulk/edge index. This allows to describe precisely the spectrum of a
general junction between two materials.

2.3.1 Exact computation in the case of dislocations

We focus on the special case Vt(x,y) = V (x−t,y), where V : Ω → R is 1-periodic in the first direction:
V (x+ 1,y) = V (x,y) for all (x,y) ∈ Ω = R × Td−1. Explicitly,

Ht := −∆ + V (x− t,y), acting on L2(Ω), with domain H2(Ω). (2.4)
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We assume for simplicity that V is a continuous potential, which implies in particular that t 7→ Ht

is norm-resolvent continuous. Since V is 1-periodic, the maps t 7→ Ht and t 7→ H],±
t are indeed

1–periodic. Actually, Ht is a translated version of H0 := Ht=0, so the spectrum of Ht is independent
of t ∈ T1.

Since V is 1–periodic in the first direction, the operator H0 can be Bloch diagonalized in this
direction. For E /∈ σ(H0), we denote by

N (E) := number of Bloch bands of H0 below E.

It is also the number of Bloch bands of Ht below E for any t.

In this special case, one can compute the bulk/edge index of Ht. The following result was proved
in dimension d = 1 by Korotyaev [Kor00; Kor05], Drouot [Dro21b] (under an extra assumption),
and the author [G5]. The general case d ≥ 1 was proved by Hempel and Kohlmann in a series of
papers [HK11b; HK11a; HK12; Hem+15].

Theorem 2.6. In the case of dislocations, when Ht is of the form (2.4), we have, for all E /∈ σ(H0),

I(Ht, E,T1) = N (E).

The main idea of the proof of Hempel and Kohlmann is to consider a dislocated model, that is a
junction between a left (constant) potential V L

t (x) = V (x), and a right potential V R
t (x) = V (x1−t,y),

namely

Hdisloc := −∆ + V (x1,y)1(x1 < 0) + V (x1 − t,y)1(x1 ≥ 0), acting on L2(Ω), with domain H2(Ω).

Consider the state γt(E) := 1(Hdisloc
t ≤ E). It corresponds to a Fermi sea of fermions filling the

material described by Hdisloc
t at Fermi level E. At t = 0 or t = 1, we recover the bulk potential with

no dislocation, and the operator γt(E) describes a Fermi sea with N (E) particles per unit cell. As t
moves from 0 to 1, a new cell is created near the cut x1 = 0, and N (E) new particles must fill this
new cell. The proof of Hempel and Kohlmann shows that these new particles are pumped from upper
energies. This reflects the spectral flow of N (E) eigenvalues coming downwards.

We display below in Figure 2.2 a numerical computation of the spectrum of Hcut
t , defined in (2.1),

as a function of t, in the case d = 1 and Vt(x) := V (x− t) with V (x) = 50 · cos(2πx) + 10 · cos(4πx).
In this figure, one clearly sees that the spectral flow equals n in the n-th essential gap.

2.3.2 The Grand Hilbert Hotel

We find the following analogy useful. Let us first recall that the story of the Hilbert Hotel, this
famous hotel with infinitely many rooms, numbered 1,2,3, and so on. At the beginning of the story,
the hotel is fully occupied, with infinitely many guests. A new guest arrives. To accommodate him,
the manager asks everyone to shift one room to the right. So an infinite hotel, even full, can welcome
a finite number of new guests. The next day, the manager buys the land next to its hotel, and creates
a new ”room 0”. In order to fill it, he asks everyone to shift one room to the left.

The story goes on, and the Hilbert bus arrives (a bus with infinitely many seats, numbered 1,2,3,
and so on). The bus is full of travellers. The manager can still accommodate all these new people: he
would ask the guest currently occupying Room n to go to Room 2n, and the traveller seated in Seat
m to go to Room 2m− 1. So the fully occupied Hilbert hotel can also welcome infinitely (countable)
many new guests.

The Grand Hilbert Hotel is similar, but it has an infinite number of floors, numbered 1,2,3,...
and an infinity of rooms per floor (floor 1 room 1, ...). As in the original story, the hotel is fully
occupied at the beginning of the story. When the Hilbert car arrives, the manager can welcome
everyone using the previous strategy (e.g. moving only the people from floor 1, or shifting everyone to
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😴 😴 😴 😴 😴 😴

... Floor 1.

😴 😴 😴 😴 😴 😴

... Floor 2.

😴 😴 😴 😴 😴 😴

... Floor 3.

The Grand Hilbert Hotel

Figure 2.2: The Grand Hilbert Hotel, and the spectral flow of Hcut
t . Recall that σ(Hcut

t ) = σ(H],+
t ) ∪

σ(H],−
t ). The blue lines reflect the spectral flow of H],+

t , and the dotted black lines the one of H],−
t .

As t moves from 0 to 1, the wall shifts to the right, so one cell is deleted for H],+
t , and one cell is

created for H],−
t .

the right). But another strategy is possible. He can ask one guest from the first floor to go upstairs.
This frees a room at Floor 1, and allow to welcome the traveller seated in Seat 1. He would then ask
two people from Floor 2 to go upstairs, hence freeing two rooms: one for the traveller in Seat 2, and
one for the previous guest from Floor 1. And so on: he asks n people from Floor n to go to Floor
n + 1. At the end of the process, the traveller in Seat n occupies Floor n-Room 1, and the original
guests either do not move, or move one floor upstairs and shift right. This strategy is somehow better
than the one from the usual Hilbert Hotel story, since guests moves at the maximum upstairs and
right, and only a finite number of people are moving for each given floor.

The next day, the manager successfully buys the land near its hotel, and constructs a new room
per floor on the left. At each Floor n, a new empty ”Floor n- Room 0” is created. In the classical
story, the manager would ask everyone to shift one room to the left in order to fill all these new rooms.
But in the Grand Hilbert Hotel, he can also ask someone of the second floor to go down one floor.
Then, the first floor is filled, but there are now two empty rooms in the second floor. So the manager
asks two people from the third floor to come down, and so on.

By analogy, this second solution explains well the spectral flow that we observe. One should think
of the particles as the people in the room, and the Bloch bands as the floors. When t moves from 0
to 1, a new cell is created at the left boundary of the system. This means that a new cell is created
per Bloch band. One needs particles to fill these new cells, and they can only come from upper energy
bands. The motion of people going down reflects the spectral flow, see Figure 2.2.

2.3.3 The spectrum of a general junction between two–dimensional Hamiltonians

We now describe the spectrum of a general two–dimensional Hamiltonian of the form

Hs,t := −∆ + V L(x− s, y)χ(x) + V R(x− t, y)(1 − χ(x)), acting on L2(R2),

where V L and V R are two Z2–periodic potentials. The cut-off function χ only depends on the x
variable, and is chosen as before: on the left-side (resp. right-side), we observe the potential V L (resp.
V R). In practice, we are only interested in a specific value of s and t, but since V L and V R are not
related a priori, it makes sense to study the whole family (s, t) 7→ Hs,t. For simplicity, we set s = 0
and drop the s notation. So we study t 7→ Ht := Hs=0,t.

After a Bloch transform in the y-direction, we obtain a family (k, t) 7→ Hk,t of operators acting on
the tube Ω. Our goal is to study the spectrum of Ht for a fixed t ∈ T1. It is the union of the spectra
of k 7→ Hk,t. However, in order to understand the structure of this spectrum, it is easier to first fix
k0 ∈ T1, and consider the family t 7→ Hk0,t. So we study

Hk0,t := −∆ + V L(x, y)χ(x) + V R(x− t, y)(1 − χ(x)), acting on L2(Ω),
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and with domain reflecting the k0-quasi periodic boundary conditions in the y–direction. The map
t 7→ Hk0,t is of the junction form studied previously. We proved that the essential spectrum of Hk0,t

is independent of t. Actually, with obvious notation,

σess ({Hk0,t}) = σess
(
HL

k0

)
∪ σess

(
HR

k0

)
.

In addition, a spectral flow of eigenvalues appears in each essential gap. More specifically, if E is in
such a gap, the spectral flow equals the number of Bloch bands of the right operator HR below E (it
is independent of the left operator HL).

We now fix t0 ∈ T1, and let λ0 be an eigenvalue of Hk0,t0 . By continuity in k and t, this eigenvalue
can be continued in a map (k, t) 7→ λ(k, t). In particular, each flow of eigenvalue t 7→ λk0(t) becomes,
when taking the union in k ∈ T1, a flow of essential spectrum t 7→

⋃
k∈T1 λ(k, t) for Ht. In addition,

each corresponding eigenvector of λ(k, t) is localized near the cut.

This proves the following structure for the spectrum of Ht. First, it is purely essential by Bloch
theory (the operator is periodic in the y–direction), and contains σess(HR) and σess(HL) for all t ∈ T1.
In addition, we have

σ(Ht) = σess(HL) ∪ σess(HR) ∪ σedge(Ht),
where we defined σedge(Ht) the edge spectrum of Ht by

σedge(Ht) :=
⋃

k∈T1

σedge(Hk,t), σedge(Hk,t) := σ(Hk,t) \ σess(Hk,t).

This edge spectrum is purely essential. The previous discussion shows that, as t runs through T1, this
edge spectrum exhibits a ”spectral flow of essential spectrum”. These flows are linked to the number
of Bloch bands of the right operator HR below the considered energy. These flows can overlap, can
overlap with σess(HL/R), and may fill the bulk gaps for some values of t.

To sum up, we proved the following. When t = t0 is fixed, we obtain an operator Ht0 with three
types of essential spectrum. First, we have σess(HL), describing modes propagating to the left and
σess(HR) describing modes propagating to the right. These spectra are independent of t0. In addition,
we have the edge spectrum σedge(Ht0) describing modes that propagates along the cut. This edge
spectrum depends on t, and exhibit a spectral flow motion as t moves from 0 to 1. A schematic figure
is shown in Figure 2.3.

Since only the right potential depends on t, this spectral flow only depends on the number of
bands for the right operator below E (the blue bands in Figure 2.3). By contrast, let us restore the s
variable, and study the family s 7→ Hs,t=0. In the case, only the left potential depends on s, and cells
are now deleted as s moves from 0 to 1. Using our Grand Hilbert Hotel analogy, one would deduce
that, for the family s 7→ Hs, there is a spectral flow of eigenvalues going upwards, and depending only
on the number of red bands below E.

2.3.4 Application: two–dimensional materials cut with a general angle

In this section, we describe the results in [G7].
We now consider the case of a two-dimensional periodic material which is cut at any angle. Our

goal is to study the edge operator

H](θ) := −∆ + Vθ acting on L2(R2
+) with domain H2(R2

+) ∩H1
0 (R2

+).

This operator acts on the half space R2
+ := R+ ×R, and has Dirichlet boundary conditions at the cut

{0} × R. The potential Vθ is a θ-rotated version of a Z2–periodic potential V , that is

Vθ(x) := V (R−1
θ x), Rθ :=

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
.
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Figure 2.3: Schematic view of the spectrum of t 7→ Hk0,t (left) and k 7→ Hk,t0 (right). The red (resp.
blue) part is the essential spectrum of the left (resp. right) operator, and the black lines correspond
to the edge spectrum. The spectral flow of t 7→ Hk0,t equals the number of blue bands below it. The
spectrum of Ht0 is the union of spectra of the right figure, and is the union of the left/right essential
spectra, and of the edge essential spectrum.

The bulk operator Hθ := −∆ + Vθ acting on L2(R2) with domain H2(R2) is a rotated version of
Hθ=0, hence has a spectrum independent of θ. Its spectrum σbulk has the band-gap structure by Bloch
theory.

When tan(θ) is a rational number, of the form tan(θ) = p
q , the operator H](θ) is still L–periodic

in the x2–direction, with L :=
√
p2 + q2, so its spectrum also has the band-gap structure. Our main

result concerns the case tan(θ) /∈ Q.

Theorem 2.7 ([G7] Theorem 1). If tan(θ) /∈ Q, then σ
(
H](θ)

)
= [Σ,∞), where Σ := inf σ(H0).

In other words, all bulk gaps are filled with edge spectrum. Unfortunately, our proof does not
provide any insight on the nature of this edge spectrum. When tan(θ) is rational, it is absolutely
continuous by Bloch theory, but when tan(θ) is not rational, everything could happen a priori. For
instance, one could expect pure point edge spectrum, describing Anderson localization for edge modes.

Proof. Let us give some ideas of the proof. We consider the family of bulk operators

Ht(θ) := −∆ + Vθ(x1 − t, x2).

Assume first that tan(θ) = p
q is rational, and set L :=

√
p2 + q2. As we already mentioned, these

operators, and their cut versions, are periodic in the x2–direction, and can be Bloch diagonalized in
this direction. We obtain a family of Hamiltonians Hk,t(θ) acting on the channel R × (0, L), with
domains reflecting the k quasi–periodic boundary conditions. In what follows, we study the operator
with k = 0, which has periodic boundary conditions. Specifically,

H0,t(θ) = −∆ + Vθ(x1 − t, x2) acting on L2
(
R × (LT1)

)
with domain H2

(
R × (LT1)

)
.

One can also check that the map t 7→ H0,t is L–periodic. Using our Grand Hilbert Hotel analogy, we
see that L2 new cells are created in the channel as t moves from 0 to L (we create a big square of
area L2, filled with unit cells of area 1). Since there are N (E) electrons per unit cell, we deduce as in
Theorem 2.6 that

Sf
(
H]

0,t, E, LT
1
)

= N2N (E).

Simple geometrical considerations shows that the operator H]

0,t+ 1
L

is a translated version of H]
0,t in

the x2–direction. So the spectrum of t 7→ H]
0,t is actually 1

L–periodic, and we can write, with a slight
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abuse of notation,
Sf
(
H]

0,t, E, (1/L)T1
)

= N (E). (2.5)

This already implies that there must be numerous eigenvalues in each bulk gap.

Lemma 2.8 ([G7] Lemma 6). Assume V is ν–Lipschitz. Then, for any t ∈ R, any k ∈ R, and any
gap (a, b) of σbulk, there are at least ⌊(b− a)L

ν

⌋
N (E)

eigenvalues of H]
k,t(θ) in the essential gap (a, b).

The idea of the proof is that, since V is ν-Lipschitz, all branches of eigenvalues t 7→ λ(t) are
ν-Lipschitz as well, hence cannot cross the gap very fast. But since these branches must produce a
non-null spectral flow, they must «wind» several times, see Fig. 2.4.

Figure 2.4: These two situations have a spectral flow of 1, but in left figure, the branch of eigenvalues
have a smaller Lipschitz constant.

This result suggests that as L → ∞, the edge spectrum will fill the whole gap. To make this
precise, we make the following construction.

We fix θ ∈ R so that tan(θ) /∈ Q, and consider a sequence θn → θ with tan(θn) ∈ Q. We set
Ln :=

√
p2

n + q2
n, which is a sequence diverging to ∞. Using (2.5), we deduce that for all n, there is

tn ∈ [0, 1] and ψn so that
(−∆ + Vθn,tn)ψn = Eψ in the distributional sense D′(R2

+)
ψn ∈ H2(Ω+

n ) ∩H1
0 (Ω+

n ), Ω+
n := R+ × (0, Ln)

ψn(x1, x2 + Ln) = ψn(x1, x2)
‖ψn‖L∞(R2

+) = 1.

Note that we normalized our functions ψn in L∞(R2
+) instead of the usual L2(Ω+

n ). This is because
the space L∞(R2

+) is independent of n. Taking weak limits as n → ∞ proves the existence of t∗ and
ψ∗ ∈ L∞(R2

+) satisfying
(−∆ + Vθ,t∗)ψ∗ = Eψ∗.

At this point, it may happen that ψ∗ = 0, in which case one cannot conclude. In order to have a
non-null limit, we need to control the mass of the sequence (ψn).

By general elliptic estimates and the fact that ‖ψn‖∞ = 1, there is δ > 0 independent of n and a
sequence (xn) in R2

+ so that
∀x ∈ B(xn, δ), |ψn|(x) ≥ 1/2. (2.6)
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We claim that the sequence (xn) can be chosen to be bounded.

First, upon shifting the whole system in the x2–direction (which amounts to changing tn), we
may assume xn,2 = 0. Then, using Combes-Thomas estimates, we can prove that ψn is exponentially
decaying away from the cut. This implies that there is X > 0 independent of n so that 0 ≤ xn,1 ≤ X.
This proves our claim. Now, the sequence (xn) lies in the compact [0, X] × {0}. Up to a subsequence,
it converges to some x∗ ∈ R2

+. Together with (2.6), it implies that ψ∗ is non null in a neighbourhood of
x∗, and in particular that ψ∗ 6= 0. We refer to [G7] for the details. We deduce that E ∈ σ(−∆+Vθ,t∗).
Finally, by ergodicity in the irrational case, the spectrum of H]

t (θ) is independent of t, so E ∈ σ(H](θ)).
Since this holds whenever N (E) ≥ 1, we obtain that all bulk gaps are filled with edge spectrum, as
wanted. Finally, the fact that Σ = inf σ(H0), i.e. the bottom of the spectrum of H](θ) equals the one
of the bulk operator H0, comes from the fact that the core domain of H](θ), which is C∞

0 (R+ × R) is
strictly contained in the one of Hθ, which is C∞(R2).

2.4 Perspectives

2.4.1 Soft wall models

A natural extension of these results concerns the tight-binding setting. In this case, the Hilbert space
is `2(Z2) for the bulk–operator. It is however unclear how to define the Hilbert space for the edge
operator, in particular in the context of dislocations. One would like to consider a Hilbert space of
the form

Ht := `2 ((Z ∩ [t,∞)) × Z) ,

but then the Hilbert space changes with t and we can no longer define spectral flows. One promising
idea is to replace the hard truncation (encoded with Dirichlet boundary condition) by the addition of
a wall W , which is a continuous function W : R → R with

lim
x→−∞

W (x) = +∞ and lim
x→∞

W (x) = 0.

We can then consider the family of edge operators

H]
t := −∆ + V (x, y) +W (x+ t).

Since W → ∞ on the left, the particles can no longer propagate to the left–side, so the presence of
W confines the particles on the right-side, hence the denomination soft wall. If V is 1–periodic in the
x–direction, then t 7→ H]

t is (quasi)–periodic in t, and we can define the spectral flows of t 7→ H]
t .

This soft-wall model can be extended to the tight-binding setting. In particular, the Hilbert space
for the edge operator will always be `2(Z2), independent of t.

We started to study this soft wall model with Hanne Van Den Bosch and Camilo Gómez Araya.

2.4.2 Lagrangian setting

In [G6], we made the following observation that

Ker(H] − E) = Ker(H]
max − E) ∩ D, (2.7)

where H]
max is the maximal operator H]

max := −∆+V with domain H2(R2
+) (no boundary conditions),

and D is the set of wave–vectors satisfying Dirichlet boundary conditions. The first set Ker(H]
max −E)

is a bulk quantity, since it does not depend on the specific boundary conditions at the edge, and the
second set D is an edge quantity, since it does not depend on the potential V . So we can detect edge
spectrum as the crossing between a bulk set and an edge set.
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In addition, we proved that a wave vector ψ in any of these two sets can be encoded by its bound-
ary value at the cut (say (ψ(0), ψ′(0)) in the one-dimensional setting). As a consequence, we are able
to reformulate (2.7) as the crossing of two Lagrangian planes in a symplectic boundary space. In the
case where H] depends periodically on t, the spectral flow of t 7→ H]

t becomes a Maslov index for the
corresponding Lagrangian planes.

We believe that one can interpret the Kitaev table (see Table 1.1) as the classification of Lagrangian
planes satisfying some symmetries. This would eventually prove the common belief that edge modes
always appear in the junction of two 2d materials having different bulk indices. Note that in the previous
Section 1.3.3, we study homotopies within the class of bulk operators (or rather bulk projectors). The
classification we obtained does not provide any information about non-periodic systems, such as a
junction between two different periodic materials.
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The Grand Hilbert Hôtel (by Étienne Lécroart).



CHAPTER 3
THE HARTREE–FOCK GAS

3.1 Introduction
In this chapter, we study the electron gas, also called quantum Fermi sea, or jellium. The goal is to
describe the gas of interacting fermions with average density ρ ≥ 0, and at a temperature T ≥ 0,
put into an homogeneous positive and neutralizing background. This model was first introduced by
Wigner [Wig38], and is one of the main object behind Density Functional Theory [KS65; LLS19]. In
the Coulomb case, the existence of the thermodynamic limit, for all reasonable physical quantities,
was proved by Lieb and Narnhofer in [LN75], and precise Quantum Monte–Carlo computations have
been performed by Ceperley and Alder in [CA80] (more recent and more precise numerical simulations
are available in [CBC04; HM20]).

Here is what is expected (but not proved) for this jellium (see also Figure 3.2 below). At low
temperature and low density, the gas is crystallized: due to the low–density of the electrons, they
somehow keep their particle identity, and arrange themselves on some lattice, called the Wigner
lattice. As the density increases, there is a phase transition from the Wigner crystal to the fluid
phase, where the jellium is invariant by translations. This fluid is first ferromagnetic, but becomes
smoothly paramagnetic at high density (Stoner transition). In addition, we expect the jellium to
always be a paramagnetic fluid when the temperature is high enough, or when the density is high
enough. The lowest critical temperature temperature Tc for which the gas is a paramagnetic fluid for
all densities is called the Curie temperature.

In this chapter, we focus on a simpler model to describe the Fermi sea, namely the Hartree–Fock
gas. In this situation, the electronic state is described by a one-body density matrix γ, which is a
self adjoint operator satisfying the Pauli principle 0 ≤ γ ≤ 1. This model can be obtained from the
general quantum setting by restricting all minimizations to Slater determinants. To define this model,
we use a standard thermodynamic limit.

For L > 0, we denote by LTd := [−1
2L,

1
2L]d a box of size L, seen as a torus (that is with periodic

boundary conditions). The set of supercell one-body density matrices with average density ρ > 0 is
defined by

PL(ρ) :=
{
γ ∈ S(L2(LTd,C2)), 0 ≤ γ ≤ 1, Tr(γ) = ρLd

}
.

Here, C2 stands for the spin, and we often write γ =
(
γ↑↑ γ↑↓

γ↓↑ γ↓↓

)
. For such an operator, the electronic

density of γ is ργ(x) = trC2γ(x,x), where γ(x,y) is the kernel of the operator γ. The equality
Tr(γ) = ρLd states that γ represents an electronic state with ρLd particles in the box LTd, hence with
an average density ρ. For γ ∈ PL(ρ), we consider the (supercell) Hartree–Fock free energy per unit
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volume

FHF
ρ,T,L(γ) := 1

Ld

[1
2TrL (−∆Lγ) + 1

2

¨
(LTd)2

(ργ − ρ)(x)(ργ − ρ)(y)wL(x − y)dxdy

− 1
2

¨
(LTd)2

trC2 |γ(x,y)|2wL(x − y)dxdy + T TrL S(γ)
]
. (3.1)

The first term is the kinetic energy of the electrons, the second term is the Hartree energy, which
represents a mean-field interaction between the electrons and the constant positive background of
constant density ρ. The third term is the Fock term, and amounts to a fermionic correction of the
Hartree term. The last term is the entropy, with the usual (convex) fermionic entropy function

S(x) := x log(x) + (1 − x) log(1 − x).

When T = 0, the entropy term is absent, and we obtain the Hartree–Fock energy per unit volume. In
what follows, we will mainly focus on potentials wL which are periodized Riesz interactions. In this
case, wL is defined as the inverse Fourier transform of

∀k ∈
(

2π
L

)
Zd \ {0}, ŵL(k) := cd,s

|k|d−s
, ŵL(0) = cL, with cd,s :=

2
d−s

2 Γ
(

d−s
2

)
2

s
2 Γ
(

s
2
) . (3.2)

The null Fourier coefficient ŵL(0) = cL, which corresponds to the average of wL, is chosen so that
minwL = 0. Note that ŵL(k) = ŵ(k) is independent of L, and that we have the pointwise convergence
wL(x) → w(x), where

ŵ(k) = cd,s

|k|d−s
is the Fourier transform of w(x) := 1

|x|s
.

The usual Coulomb case corresponds to d = 3 and s = d − 2 = 1. For ρ, T ≥ 0, we define the
Hartree–Fock (free) energy per unit cell as the limit

FHF(ρ, T ) := lim inf
L→∞

FL(ρ, T ), with FHF
L (ρ, T ) := inf

{
FHF

ρ,T,L(γ), γ ∈ PL(ρ)
}
.

There are two parameters in the model, namely the density ρ > 0 and the temperature T ≥ 0, and
our goal is to describe phase transitions of the Hartree–Fock energy, in the (ρ, T ) plane.

3.2 Phase diagram in the translation–invariant setting
In this section, we describe the results of [G8]. This is joint work with Mathieu Lewin.

We first focus on a simpler case where we restrict γ to commute with all translations. In terms of
kernel, this means that γ(x,y) = γ(x − y). In this case, the density of γ is constant: ρ(x) = γ(0).
In particular, we have ρ(x) = ρ, and the Hartree term vanishes in (3.1). In addition, γ is a Fourier
multiplier. In what follows, we denote the corresponding Fourier multiplier by

G(k) := (2π)d/2γ̂(k) =
ˆ
Rd

γ(x)e−ik·xdk =
(
g↑↑(k) g↑↓(k)
g↓↑(k) g↓↓(k)

)
.

The operator inequality 0 ≤ γ ≤ 1 translates into the pointwise inequality 0 ≤ G(k) ≤ I2, and the
density condition ρ = γ(0) becomes (2π)−d

´
trC2G = ρ. Taking the limit L → ∞ in the free energy

gives the translation invariant limit (we use the tilde notation for translation invariant quantities)

F̃HF
T (G) = 1

2(2π)d

ˆ
Rd

|k|2trC2 [G(k)] dk − 1
2(2π)d

ˆ
Rd

trC2
[
G(k)G(k′)

]
W (k − k′)dkdk′

+ T

(2π)d

ˆ
Rd

trC2S(G(k))dk.
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Note that the Fock term
´

|γ(x − y)|2w(x − y)dx (independent of y) has a convolution form in
Fourier space. Here, we set W (k) = (2π)−d/2ŵ(k). It is the Fourier transform of the interaction,

up to a (2π)−d/2 factor. In the case of Riesz potentials for instance, we have W (k) = c̃d,s

|k|d−s
, with

c̃d,s = (2π)−d/2cd,s. The argument G is now a 2 × 2 hermitian matrix valued function (instead of an
operator). We obtain the minimization problem

F̃HF(ρ, T ) := inf
{

F̃HF
T (G), 0 ≤ G(k) = G(k)∗ ≤ I2,

1
(2π)d

ˆ
Rd

trC2G = ρ

}
.

3.2.1 Reduction to the no-spin case

We say that G is diagonal if it is of the form

G(k) = U

(
g↑(k) 0

0 g↓(k)

)
U∗, for some U ∈ SU(2) independent of k ∈ Rd. (3.3)

When g↑ = g↓, G describes a paramagnetic state, when g↓ = 0 or g↑ = 0, it describes a ferromagnetic
state, and G describes a general ferromagnetic state otherwise.

For G a diagonal state, its energy simplifies into

F̃HF
T (G) = F̃HF

T,no−spin(g↑) + F̃HF
T,no−spin(g↓),

with the no–spin free energy

F̃HF
T,no−spin(g) := 1

2(2π)d

ˆ
Rd

|k|2g(k)dk − 1
2(2π)d

ˆ
Rd

g(k)g(k′)W (k − k′)dkdk′ + T

(2π)d

ˆ
Rd

S(g(k))dk.

The corresponding no–spin minimization problem is

F̃HF
no−spin(ρ, T ) := inf

{
F̃HF

T,no−spin(g), 0 ≤ g(k) ≤ 1, 1
(2π)d

ˆ
Rd

g = ρ

}
.

Lemma 3.1 ([G8] Lemma 2.1 and Theorem 2.2).
• Assume W ∈ L1(Rd) + L∞(Rd). For all ρ > 0 and T ≥ 0, the minimization problems defining
F̃HF(ρ, T ) and F̃HF

no−spin(ρ, T ) are well-posed, and have minimizers.
• Assume in addition that W > 0. Then any minimizer of F̃HF(ρ, T ) is diagonal, of the form (3.3).
In particular,

F̃HF(ρ, T ) = inf
0≤t≤1

{
F̃HF

no−spin(tρ, T ) + F̃HF
no−spin((1 − t)ρ, T )

}
. (3.4)

• Any minimizer g of F̃HF
no−spin(ρ, T ) satisfies the Euler-Lagrange equation

g(k) =


(

1 + e
1
T

(
1
2 |k|2−g∗W (k)−µ

))−1
if T > 0

1
(

1
2 |k|2 − g ∗W (k) < µ

)
+ g̃(k) if T = 0,

(3.5)

where µ is the Fermi level, chosen so that (2π)−d
´
g = ρ. In the latter case T = 0, we have g̃(k) 6= 0

only for k so that
(

1
2 |k|2 − g ∗W (k) = µ

)
. We have similar Euler-Lagrange equations for minimizers

of F̃HF.
• If W is radial decreasing, then so is any minimizer of F̃HF

no−spin(ρ, T ).

The optimal t in (3.4) is sometimes called the polarization of the gas. If t = 1
2 , the gas is param-

agnetic, and if t = 0 (or t = 1) it is ferromagnetic.
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Proof. The first and third points are standard. Note that from the conditions 0 ≤ G ≤ 1 and
(2π)−d

´
trC2G = ρ, G is bounded in L∞(Rd) ∩ L1(Rd), so the convolution G ∗ W is well–defined

whenever W ∈ L1(Rd) + L∞(R). For the last point, if W is radial decreasing, then F̃HF
T,no−spin(g∗) ≤

F̃HF
T,no−spin(g), where g∗ is the symmetric decreasing re-arrangement of g. Finally, the second point

comes from the following inequality: if D1 =
(
λ1 0
0 µ1

)
and D2 =

(
λ2 0
0 µ2

)
are two diagonal matrices

with λi ≥ µi, then, for any U ∈ SU(2), we have

trC2 [D1D2] − trC2 [D1UD2U
∗] = (λ1 − µ1)(λ2 − µ2)[1 − |U11|2] ≥ 0.

In particular, writing the diagonalization of the hermitian matrix G(k) as G(k) = U(k)G̃(k)U∗(k),
where G̃(k) is of the form (3.3) with g↑ ≥ g↓, we obtain

F̃HF
T (G) − F̃HF

T (G̃) = 1
2(2π)d

×
ˆ
Rd

{
trC2

[
G̃(k)G̃(k′)

]
− trC2

[
G̃(k)U∗(k)U(k′)G̃(k′)U∗(k′)U(k)

]}
W (k − k′)dkdk′ ≥ 0.

Equation (3.4) shows that one can focus on the no–spin functional F̃HF
T,no−spin. We make the

important remark that if G is a minimizer of the spin–polarized free energy F̃HF
T of the diagonal

form (3.3), then the Euler–Lagrange equation for G takes the form

g↑ =
(

1 + e
1
T

(
1
2 |k|2−g↑∗W (k)−µ

))−1
and g↓ =

(
1 + e

1
T

(
1
2 |k|2−g↓∗W (k)−µ

))−1
.

So both g↑ and g↓ satisfies (3.5) for the same Fermi level µ. In particular, if g↑ 6= g↓, then the Euler–
Lagrange equations (3.5) must have at least two solutions for this µ. Conversely, if µ is such that the
Euler–Lagrange equations (3.5) have a unique solution, then g↑ = g↓, and G is a paramagnetic state.

3.2.2 The free Fermi gas at null temperature

We first focus on the case T = 0. Our main result in the no–spin setting is the following.

Theorem 3.2 ([G8] Theorem 2.6). Assume W ∈ L1(Rd)+L∞(Rd) is radial decreasing positive. Then
at T = 0, the no–spin problem has a unique minimizer given by

g0(k) := 1 (|k| ≤ kF ) , with kF := 2π
(

d

|Sd−1|

)1/d

ρ1/d.

We call this state the free Fermi gas at null temperature.

Proof. Let us give a short proof of this fact. Since W is radial decreasing, so is any minimizer g. This
implies that k 7→ |k|2

2 − g ∗ W (k) is a radial increasing function. In particular, the Euler–Lagrange
equation (3.5) at T = 0 shows that g is also of the form g = 1 (|k| ≤ kF ) + g̃(k). The level lines of |k|
are spheres, hence of null Lebesgue measure, so g̃ = 0 a.e. Finally, the value of kF is found with the
constraint that (2π)−d

´
g = ρ.

Let us give another proof in the case where Ŵ is also positive (this is the case for Riesz potentials).
Then, the energy g 7→ F̃HF

T =0,no−spin(g) is concave in g. So g must saturates the constraint 0 ≤ g ≤ 1,
that is g(k) ∈ {0, 1}. Since g is radial decreasing, g can only be the characteristic function of a
ball.
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Theorem 3.2 states that the free Fermi gas is always the minimizer of the translational invariant
Hartree–Fock gas, for any repulsive interaction w, that is for any w so that ŵ = (2π)d/2W is positive
radial decreasing. This theorem allows to compute exactly the function ρ 7→ F̃HF

no−spin(ρ) (hence also

F̃HF using (3.4)). In the Riesz case where W (k) = c̃d,s

|k|d−s , we find that

F̃HF
no−spin(ρ, T = 0) = cno−spin

TF (d)ρ1+ 2
d + λ(d, s)ρ1+ s

d ,

for some (undisplayed) positive constants cno−spin
TF (d) and λ(d, s). Note that for large ρ, the kinetic

energy ρ1+ 2
d dominates only in the case s < 2. When the spin is taken into account, we can prove the

following at T = 0 (see [G8, Theorem 3.1]):

• If 0 < s < min(2, d), there is a sharp phase transition at some ρc > 0, where the system is
ferromagnetic for ρ < ρc and paramagnetic for ρ > ρc;

• if 2 < s < d, there is a smooth phase transition. There is 0 < ρc,1 < ρc,2 < ∞ so that the
system is ferromagnetic for ρ ≤ ρc,1, general ferromagnetic if ρc,1 < ρ < ρc,2, and paramagnetic
for ρ ≥ ρc,2.

In particular, without assuming further constraints on the potential W , paramagnetism is not
always the best scenario at high densities. Also, when the potential is more complex, several spin
phase transitions may appear. We display in [G8] such a situation using an interaction of the form
W (k) = κ1

|k|d−s1 + κ2
|k|d−s2 with κ1, κ2 ≥ 0 and s1 < 2 < s2, that is for a combination of two Riesz

potentials.

3.2.3 Phase transitions with temperature

When the temperature is positive, we observe phase transitions between (generalized) ferromagnetic
states to paramagnetic states. We focus only on the case d ≥ 2 and 1 ≤ s < 2 in what follows. The
case 1 < s < 2 is sometimes called the short range case, while the case s = 1 is critical and called the
long-range case. It corresponds to the important Coulomb case in dimension d = 3. We start with
the no–spin situation.

Theorem 3.3 (No spin free energy, [G8] Theorem 2.9).
Short range case. Assume d ≥ 2, and that W ∈ L1(Rd) + L∞(Rd) is radial decreasing, and satisfies

0 < W (k) ≤ κ1
|k|d−s1

+ κ2
|k|d−s2

, for some κ1, κ2 ≥ 0, 1 < s1 ≤ s2 < 2.

Then there is C ≥ 0 and ρC ≥ 0 so that, for all (ρ, T ) in the region

Ω :=
{

(ρ, T ) ∈ R+ × R+, T ≥ Cρs1/d, or ρ ≥ ρC

}
,

The problem defining FHF
no−spin(ρ, T ) has a unique minimizer.

Long range case. Assume d ≥ 2 and that W (k) = κ|k|1−d with κ > 0. Then there is C ≥ 0 and α > 0
such that similar result holds on the region

Ω :=
{

(ρ, T ) ∈ R+ × R+, T ≥ Cρ1/de−αρ1/d
}
.

Proof. Let us highlight some ideas of the proof. We focus on the Euler–Lagrange equations (3.5),
which we recall are equations on the two variables (g, µ), and take the form

g(k) =
[
1 + e

1
T

( |k|2
2 −g∗W (k)−µ)

]−1
,

1
(2π)d

ˆ
Rd

g = ρ.
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The Fermi level µ is chosen to ensure the normalization condition (2π)−d
´
g = ρ.

Step 1. Let us first fix T > 0. For our analysis, it is interesting to fix µ and to relax the
normalization condition, so we study the first equation with a fixed µ ∈ R. It is of the form g = Gµ,T (g),
with Gµ,T an increasing function, in the sense that

0 ≤ g1 ≤ g2 ≤ 1 =⇒ 0 < Gµ,T (g1) ≤ Gµ,T (g2) < 1.

Consider the sequence g0 = 0, g1 = Gµ,T (g0) > 0, and gn+1 = Gµ,T (gn). This sequence is increasing
(since g1 > g0), and is bounded above by 1, hence converges pointwise to some gmin. In addition, gmin
is a fixed point of Gµ,T .

Similarly, consider the sequence g̃0 = 1, g̃1 = Gµ,T (g̃0) < 1, and g̃n+1 = Gµ,T (g̃n) (this is slightly
incorrect, since Gµ,T (1) may be ill-defined. We refer to [G8] for the correct way to initialize g̃0).
The sequence is decreasing and is bounded from below by gmin, hence converges pointwise to some
gmax ≥ gmin, and gmax is a fixed point of Gµ,T . Any other fixed point g of Gµ,T must satisfy the
point-wise inequality 0 ≤ g ≤ 1, hence, by iterating the map Gµ,T ,

gmin ≤ g ≤ gmax.

The functional Gµ,T has a unique fixed point iff gmin = gmax.

Note that the construction of gmin and gmax can be easily implemented numerically. In addition,
for µ1 < µ2, we have Gµ1,T (·) < Gµ2,T (·), hence the maps µ 7→ gmin(µ) and µ 7→ gmax(µ) are point-
wise increasing. With obvious notation, we deduce that ρmin(µ) ≤ ρmax(µ) and that the maps µ 7→
ρmin/max(µ) are strictly increasing. If µ is so that ρmin(µ) = ρmax(µ), then Gµ,T has a unique fixed
point.

Step 2. At this point, we do not know anything about the smoothness of the maps µ 7→ ρmin/max(µ),
and indeed, we observe numerically that these maps can be discontinuous. However, we claim that
there is a region with µ small enough or µ large enough in which these two maps are analytic. More
specifically, we prove the following.

Lemma 3.4. If g is a fixed point of Gµ,T whose density ρ is such that (ρ, T ) belongs to the region Ω
of Theorem 3.3, then the implicit function theorem applies, and g belongs to a local analytic branch
(µ, T ) 7→ gµ,T of fixed points for the L∞(Rd) topology.

Proof. We consider g 7→ g − Gµ,T (g) as a map from L∞(Rd) to itself. The linearization of this map
around the fixed point g can be written as

Kg = 1 −Ag, with Ag : v 7→ 1
T
W ∗ [g(1 − g)v] .

Since 0 ≤ g ≤ 1 pointwise and since W is positive, the kernel of the operator Ag is positive. In
particular, since f ≤ |f | ≤ ‖f‖∞1, we have |A(f)| ≤ A(|f |) ≤ ‖f‖∞A(1), hence

‖Ag‖L∞→L∞ = ‖A(1)‖∞ = 1
T

‖W ∗ [g(1 − g)] ‖∞.

We claim that under the condition (ρ, T ) ∈ Ω, we have ‖Ag‖L∞→L∞ < 1, hence Kg is invertible, and
the implicit function theorem implies. This would prove our Lemma.

For instance, in the case W ≤ κ
|k|d−s , we have, using 0 ≤ g ≤ 1 and (2π)−d

´
g = ρ, that

‖Ag‖L∞→L∞ ≤ 1
T

‖W ∗ g‖∞ ≤ κ

T

∥∥∥|k|s−d ∗ g
∥∥∥

∞

≤ κ

T
sup

{∥∥∥|k|s−d ∗ g
∥∥∥

∞
, 0 ≤ g ≤ 1, 1

(2π)d

ˆ
Rd

g = ρ

}
.
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By rearrangement, the last supremum is obtained for g radial decreasing, and the bathtub principle
shows that it is maximized for g(k) = 1 (|k| < kF ) with kF = cρ1/d. This gives

‖Ag‖L∞→L∞ ≤ κ

T
cρs/d

which is strictly smaller than 1 if T > cκρs/d. This is one of the condition in the definition of Ω. We
refer to [G8] for the proof in the remaining of Ω.

Step 3. We denote by

Ωµ
min/max :=

{
(µ, T ) ∈ R × R+, so that (ρmin/max(T, µ), T ) ∈ Ω

}
.

The previous lemma shows that the maps (µ, T ) 7→ ρmin/max(µ, T ) are analytic on Ωµ
min/max. In

addition, since µ 7→ ρmin/max(µ) is strictly increasing, this map is invertible with analytic inverse.
Since Ω is connected, we deduce that Ωµ

min/max are also connected sets.
Next, we can prove that there is (µ, T ) ∈ Ωµ

min/max for which Gµ,T is a contraction, hence has a
unique fixed point. So the two analytic branches of functions ρmin and ρmax must coincide on the whole
set Ω. In particular, Ωµ

min = Ωµ
max =: Ωµ, and for all (µ, T ) ∈ Ωµ, the function Gµ,T has a unique fixed

point. By monotonicity and analyticity of the map µ 7→ ρ(µ), the map (µ, T ) 7→ (ρmin/max(T, µ), T )
is a bijection from Ωµ to Ω.

Step 4. Finally, let us fix (ρ, T ) ∈ Ω. Let µ be the Fermi level so that (µ, T ) ∈ Ωµ with ρ =
ρmin(T, µ) = ρmax(T, µ), and let g be the unique fixed point of Gµ,T . We claim that g is the unique
minimizer of FHF

no−spin(ρ, T ).

Let g′ by any minimizer of FHF
no−spin(ρ, T ). Then this minimizer is solution to the Euler–Lagrange

equations (3.5) for some Fermi level µ′. In particular, g′ is a fixed point of Gµ′,T . Assume first that
µ < µ′. Since µ 7→ Gµ,T (·) is increasing, we have g′ ≥ gmin(µ′) > gmin(µ) = g, hence ρ′ > ρ, a
contradiction. The case µ > µ′ is similar. This proves that µ = µ′, but since Gµ,T has a unique fixed
point, we must have g′ = g.

Finally, we conclude with the case where the spin is included.

Theorem 3.5 ([G8] Theorem 2.10). With the same assumptions on the potential W as in Theorem 3.3,
there is C ≥ 0 and α > 0 so that, with

Ω̃ :=


{

(ρ, T ) ∈ R+ × R+, T ≥ Cρs/d e−αρ(2−s)/d
}

(short range case 1 < s < 2){
(ρ, T ) ∈ R+ × R+, T ≥ Cρ1/d e−αρ1/(2d)

}
(long range case s = 1),

.

the spin-polarized minimization problem F̃HF has a unique minimizer, which is paramagnetic, and
given by G = gρ/2,T I2, where gρ/2,T is the (unique) minimizer of the no–spin problem with density ρ/2.

Proof. Let us give the main idea of the proof in the sub-region

Ω̃1 :=
{
T ≥ Cρs/d

}
⊂ Ω̃.

(the proof in the other region will be explained in the next section). Recall that the map µ 7→
ρ is increasing, hence so is the map ρ 7→ µ. In particular, since the Fermi level µ is also µ =
∂ρF̃

HF
no−spin(ρ, T ), the map ρ 7→ F̃HF

no−spin(ρ, T ) is convex in all segments [ρ1, ρ2] where [ρ1, ρ2]×{T} ∈ Ω.
In particular it is convex in Ω̃1. This gives

1
2 F̃HF

no−spin(tρ) + 1
2 F̃HF

no−spin((1 − t)ρ) ≥ F̃HF
no−spin

(1
2 tρ+ 1

2(1 − t)ρ
)

= F̃HF
no−spin(ρ/2).

So the minimum in (3.4) is attained for t = 1
2 , that is for the paramagnetic state.
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Figure 3.1: Numerical computation of the phase diagram in the translation–invariant model, for
Coulomb interaction (s = 1) in dimension d = 3. We plot the level lines of the polarisation t (t = 1/2
is paramagnetic, and t ≈ 0 is ferromagnetic).

In particular, in the short range case, there is T large enough so that the Hartree–Fock translation–
invariant gas is always paramagnetic, for any density ρ ≥ 0. The smallest T having this property is
sometimes called the Curie temperature. We display a numerical simulation of the phase diagram
in the physical case d = 3 and s = 1 in Figure 3.1. At low density, the gas is paramagnetic. As
the density increases, it becomes slowly ferromagnetic (smooth phase transition), and then suddenly
paramagnetic again (sharp phase transition).

3.3 The Hartree–Fock gas versus the free Fermi gas
In this section, we present the results of [G9]. This is joint work with Christian Hainzl and Mathieu
Lewin.

We now go back to the Hartree–Fock gas, without assuming translation invariance. Our goal is to
compare FHF with its translation–invariant counterpart F̃HF. Of course, we always have FHF ≤ F̃HF,
and we would like to quantify the error

∣∣∣F̃HF − FHF
∣∣∣.

At zero temperature, and for the three-dimensional Coulomb case (d = 3 and s = 1), it is known
since the works of Overhauser [Ove60; Ove62; Ove68] that we always have the strict inequality
FHF(ρ, T = 0) < F̃HF(ρ, T = 0) for all ρ ≥ 0. Overhauser indeed proved that one can always
perturb the free paramagnetic Fermi gas γFG := 1(|k| ≤ kF )I2 in order to lower the Hartree–Fock
energy per unit volume. In other words, the free Fermi gas is unstable under the formation of spin
and charge density waves. In [Del+15], the authors exhibit a perturbation which lowers the energy
by an explicit quantity, namely

FHF(ρ, T = 0) − F̃HF(ρ, T = 0) ≤ −Cρ2/3e−αρ1/6 (< 0), (3.6)

for some explicit (undisplayed) constants C > 0 and α > 0. In addition, detailed numerical simulations
performed in [ZC08; Bag+13; Bag+14] suggest that the Hartree–Fock gas is always crystallized.
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Figure 3.2: (Left) Expected form of the true jellium phase diagram. (Right) Expected form of the
Hartree-Fock gas phase diagram, according to our work. At T = 0, the system is believed to be
crystallized at all densities. This “Overhauser phase” shrinks exponentially fast to the horizontal axis
at large densities. The corresponding (free) energy gain is also exponentially small.

In our work [G9], we proved a lower bound for this quantity, which has a form similar to (3.6). We
only focused on the case s = 1 and d = 3, but, as we noticed in [G8], the result can be generalized.
We state the first part only in the high density case.

Theorem 3.6 ( [G9] for s = 1 and [G8] Theorem 2.9 for 1 < s < 2). Under the same hypotheses on
W as in Theorem 3.3,

• At T = 0, for all ρ∗ > 0, there are explicit constants C ≥ 0 and α > 0 so that

FHF(ρ, T = 0) − F̃HF(ρ, T = 0) ≥
{

−Ce−αρ(2−s)/d (short range case 1 < s < 2)
−Ce−αρ1/(2d) (long range case s = 1).

• There is Tc = Tc(ρ) so that, for all T > Tc, the optimizer of FHF(ρ, T ) is invariant by translations
(hence FHF(ρ, T ) = F̃HF(ρ, T ) in this region). For all ρ∗ > 0, there is C ≥ 0 and α > 0 so that,
for all ρ > ρ∗ the lowest critical temperature having this property satisfies

Tc(ρ) ≤
{

−Ce−αρ(2−s)/d (short range case 1 < s < 2)
−Ce−αρ1/(2d) (long range case s = 1).

We display in Figure 3.2 what is expected for the phase diagrams of the jellium and for the Hartree–
Fock gas respectively. At T = 0, it is believed, based on numerical simulations, that the true jellium
is fluid at high density. We emphasize however that it could be crystallized, and that the gain of
energy due to crystallization could be exponentially small (as in the HF gas). If this is the case, this
phenomenon would be quite difficult to capture numerically.

3.3.1 A lower bound involving a degenerate operator

Let us explain the key ingredient for the proof of the first point of Theorem 3.6. Our goal is to prove
that, at T = 0 the gain of energy due to the Overhauser instability is exponentially small in the
density.

The proof given in [G9] is short and compact, and only focuses on the case d = 3 and s = 1. In this
section, we give some extra details of the proof. We consider a general situation where the interaction
w is positive and such that its Fourier transform W = (2π)d/2ŵ is positive radial decreasing (this
is the case for the Riesz interaction w(x) = |x|−s). We denote by wL the corresponding L–periodic
potential, defined as in (3.2), and by WL := (2π)d/2ŵL.
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Recall that the Hartree–Fock energy in a supercell of size L was defined in (3.1). We introduce
the supercell free Fermi gas

γL
FG = GFG(−i∇L), with ∀k ∈ 2π

L Zd, GFG(k) := 1(|k| ≤ kF )I2,

and the linearized operator

HL
FG := εL(−i∇L) with ∀k ∈ 2π

L Zd, εL(k) := 1
2 |k|2 − (GFG ∗L WL) (k).

Since the Hartree term in FHF
L is always positive, we can drop this term for a lower bound, and get

FHF
L (γ, T = 0) ≥ QL(γ) := 1

2Ld

[
TrL (−∆Lγ) −

¨
(LTd)2

trC2 |γ(x,y)|2wL(x − y)dxdy
]
.

Actually, since the Hartree term vanishes for the free Fermi gas, we also have

FHF
L (γL

FG, T = 0) = QL(γL
FG).

Let γL be the minimizer of the QL functional, with 0 ≤ γL ≤ 1 and TrL(γL) = TrL(γL
FG). Recall that

wL ≥ 0 is positive. In particular, γ 7→ QL(γ) is concave, and γL is a projector. A computation shows
that

QL(γL) −QL(γL
FG) =

= 1
Ld

{
Tr
(
HL

FG(γL − γL
FG)

)
− 1

2

¨
(LTd)2

trC2 |γL(x,y) − γL
FG(x − y)|2wL(x − y)dxdy

}
.

For the first term, we use the fact that γL and γL
FG are projectors, hence

(1 − γL
FG)(γL − γL

FG)(1 − γL
FG) − γL

FG(γL − γL
FG)γL

FG = γL − γLγL
FG − γL

FGγ
L + γL

FG = (γL − γL
FG)2.

Together with the fact that γL
FG is of the form γL

FG = 1
(
HL

FG ≤ µL
)

with µL := εL(kF ) (see (3.5)),
and TrL(γL) = TrL(γL

FG), we obtain

TrL

(
HL

FG(γL − γL
FG)

)
= TrL

(
(HL

FG − µL)(γL − γL
FG)

)
= TrL

[
|HL

FG − µL|
(
γL − γL

FG

)2
]
.

We deduce the key equality

QL(γL) −QL(γL
FG)

= 1
Ld

{
Tr
[
|HL

FG − µL|(γL − γL
FG)2

]
− 1

2

¨
(LTd)2

trC2 |γL(x,y) − γL
FG(x − y)|2wL(x − y)dxdy

}
.

The left-hand side is now quadratic in the difference ΨL(x,y) := γL(x,y) − γL
FG(x − y). We can

simplify the first term as follows. Let us introduce the Fourier coefficients

∀k,k′ ∈ 2π
L

Zd, Ψ̂L(k,k′) := 1
Ld

¨
(LTd)×(LTd)

ΨL(x,y)e−i(k·x+k′·y),

so that k (resp. k′) is the dual variable of x (resp. y). In this Fourier basis, the operator HL
FG has

kernel HL
FG(k,k′) = εL(k)δk=k′ . We deduce that the first term can be expressed in the Fourier basis

as
TrL

[
|HL

FG − µL|
(
ΨL
)2
]

=
∑

k,k′∈ 2π
L Zd

∣∣∣εL(k) − µL
∣∣∣ trC2

∣∣∣Ψ̂L(k,k′)
∣∣∣2 . (3.7)
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Performing the sum in k′ first, and using Parseval, we obtain

TrL

[
|HL

FG − µL|
(
ΨL
)2
]

=
ˆ

LTd

dy
〈
ΨL

y ,
∣∣∣εL(−i∇L,x) − µL

∣∣∣ΨL
y

〉
where we set ΨL

y(x) := ΨL(x,y). We deduce that

QL(γL) −QL(γL
FG) = 1

Ld

ˆ
LTd

dy
〈

ΨL
y ,
∣∣∣εL(−i∇L,x) − µL

∣∣∣− 1
2wL(x − y),ΨL

y

〉
L2(LTd)

≥ 1
Ld
λ1

(∣∣∣εL(−i∇L) − µL
∣∣∣− 1

2wL(x)
) ˆ

LTd

‖ΨL
y‖2

L2(LTd)dy,

where λ1(A) denotes the lowest eigenvalue of an operator A. We will prove below that λ1 ≤ 0. To
evaluate the last integral, we use the fact that (a+b)2 ≤ 2a2 +2b2 and that γL and γL

FG are projectors,
to obtainˆ

LTd

‖ΨL
y‖2

L2(LTd)dy =
¨

(LTd)2

(
γL(x,y) − γL

FG(x − y)
)2

dxdy ≤ 2Tr
(
(γL)2

)
+2Tr

(
(γL

FG)2
)

= 4ρLd.

This gives the bound

QL(γL) −QL(γL
FG) ≥ 4ρλ1

(
|εL(−i∇L) − µ| − 1

2wL(x)
)
.

Finally, since both functions k 7→ 1
2 |k|2 and k 7→ −GFG ∗L WL(k) are radial increasing, we have

|εL(k) − µ| = |εL(k) − εL(kF )| = 1
2
∣∣|k|2 − k2

F

∣∣+ ∣∣GFG ∗WL(k) −GFG ∗L WL(kF )
∣∣ ≥ 1

2
∣∣|k|2 − k2

F

∣∣.
In particular, we have the operator inequality

|εL(−i∇L) − µ| ≥ 1
2 | − ∆L − k2

F |.

Letting L → ∞ gives the final inequality

FHF(ρ, T = 0) − F̃HF(ρ, T = 0) ≥ 2ρλ1
(
|∆ + k2

F | − w(x)
)
. (3.8)

It remains to study the first eigenvalue of the operator on the left-hand side. Note that this one has
a degenerate kinetic part, which vanishes on the sphere |k| = kF .

3.3.2 Study of the degenerate operator

Recall that we assumed w ≥ 0. In order to study the first eigenvalue of this operator, we use the
Birman-Schwinger principle. We have (we write −E for the eigenvalue, so that in what follows, E is
a positive quantity)

−E ∈ σ
(
|∆ + k2

F | − w(x)
)

iff 1 ∈ σ (KE) , with KE :=
√
w

1
|∆ + k2

F | + E

√
w.

We prove below that KE is a compact positive operator. In addition, E 7→ KE is operator decreasing.
Hence the lowest eigenvalue −E1 is the unique energy for which ‖KE1‖op = 1. Let us find an upper
bound for ‖KE‖op.

In order to use the surface singularity on the sphere |k| = kF , we follow the approach in [LSW02;
HS10]. We write that

KE = 1
(2π)d

ˆ ∞

0

rd−1dr
|r2 − k2

F | + E
Ar, hence ‖KE‖op ≤ 1

(2π)d

ˆ ∞

0

rd−1dr
|r2 − k2

F | + E
‖Ar‖op,
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where Ar is the operator acting on L2(Rd) with kernel

Ar(x,y) :=
√
w(x)

(ˆ
Sd−1

eirω·(x−y)dω
)√

w(y).

The operator is of the form Ar = B∗
rBr where Br is the operator from L2(Rd) to L2(Sd−1) with kernel

Br(ω,y) := e−irω·y√
w(y).

This gives ‖Ar‖op = ‖B∗
rBr‖op = ‖BrB

∗
r ‖op =: ‖Cr‖op, where Cr is the operator from L2(Sd−1) to

L2(Sd−1), with kernel

Cr(ω, ω′) =
ˆ
Rd

e−ir(ω−ω′)·yw(y)dy = (2π)d/2ŵ(r(ω − ω′)).

Since ŵ ≥ 0, the operator Cr has a positive kernel. In addition, if f := 1 denotes the constant function
on the sphere, we have

Crf = (2π)d/2
ˆ
Sd−1

ŵ(r(ω − ω′))dω′ =
[
(2π)d/2

ˆ
Sd−1

ŵ(r(ω − e1))dω
]
f. (3.9)

Since f > 0, the Krein-Rutman theorem implies that the term in bracket is the highest eigenvalue
and the operator norm of Cr. It is an eigenvalue of multiplicity 1 whose corresponding (positive)
eigenvector is the constant function f = 1. Altogether, we obtain the bound

‖KE‖op ≤ 1
(2π)d/2

ˆ ∞

0

rd−1

|r2 − k2
F | + E

[ˆ
Sd−1

ŵ(r(ω − e1))dω
]

dr.

Short range case 1 < s < 2. We now compute the last integral in the case of Riesz potentials
w(x) = |x|−s, so that ŵ(k) = cd,s|k|s−d. We obtain directly

ˆ
Sd−1

ŵ(r(ω − e1))dω = rs−d

ˆ
Sd−1

ŵ(ω − e1)dω = cd,sr
s−d

ˆ
Sd−1

1
|ω − e1|d−s

dω.

The last integral has a singularity |ω − e1|d−s on the hypersurface of dimension d − 1, but since we
assumed s > 1, it is integrable. So our upper bound is indeed finite. This gives, in the high density
limit kF � 1,

‖KE‖op ≤ C

ˆ ∞

0

rs−1dr
|r2 − k2

F | + E
= Cks−2

F

ˆ ∞

0

rs−1dr
|r2 − 1| + (E/k2

F )
≤ C ′ks−2

F

∣∣∣∣∣ln
(
k2

F

E

)∣∣∣∣∣ .
For the last bound, we used that the integral is finite, and has a singularity at r = 1 when E/kF → 0.
At E = E1, we have ‖KE1‖op = 1. Let E2 > 0 be the energy for which the right–hand side equals 1,
so E2 = kF exp(−αk2−s

F ) and ‖KE2‖op ≤ 1. Since E 7→ ‖KE‖op is decreasing, and since ‖KE1‖op = 1,
we deduce that E1 < E2, that is

E1 ≤ kF exp
(
−αk2−s

F

)
= Cρ1/d exp

(
−α̃ρ

2−s
d

)
.

Inserting this inequality in (3.8) proves our Theorem 3.6 in the sort range case. Note that for large ρ,
the polynomial prefactor can be absorbed in the exponential part.

Long range case s = 1. In the case s = 1, the term in bracket in (3.9) is no longer a convergent
integral. In particular the operators Cr, hence Ar, are no longer bounded. In order to handle this
difficulty, we consider a parameter a > 0 (that we optimize at the end), and the function

wa(x) := e−a|x|

|x|
.
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Lemma 3.7.

• We have the inequalities
wa(x) ≤ 1

|x|
≤ wa(x) + a

• The Fourier transform of wa is

ŵa(k) = κ(d)
(|k|2 + a2)

d−1
2
, with κ(d) := |Sd−1|

(2π)d/2 Γ(d− 1). (3.10)

Proof. The first part comes from the inequality 1 − t ≤ e−t ≤ 1 valid for all t > 0. To prove
the second part, we compute the inverse Fourier transform of the left-hand side of (3.10). We set
f(k) := (|k|2 + a2)− d−1

2 . Using that

1
λp

= 1
Γ(p)

ˆ ∞

0
e−λttp−1dt,

we obtain
f(k) := 1

(|k|2 + a2)
d−1

2
= 1

Γ(d−1
2 )

ˆ ∞

0
e−|k|2te−a2tt

d−1
2 −1dt.

Using Fubini and the fact that the Fourier transform of the Gaussian is a Gaussian1, we obtain that
the Fourier transform of this function is

f̂(x) = 1
Γ(d−1

2 )

ˆ ∞

0

1
(2t)d/2 e− |x|2

4t e−a2tt
d−1

2 −1dt = 1
√

2dΓ(d−1
2 )

ˆ ∞

0
e− |x|2

4t e−a2tt
−3
2 dt.

The last integral no longer depends on the dimension d. But for d = 3, we recover the usual Yukawa
potential. This proves that f̂(x) is wa(x), up to a multiplicative constant. We write ŵa(k) = κ(d)f(k).
To find the value of κ(d), we evaluate at k = 0. We find

κ(d) = ŵa(0)
f(0) = ad−1ŵa(0) = ad−1

(2π)d/2

ˆ
Rd

e−a|x|

|x|
dx = |Sd−1|

(2π)d/2

ˆ ∞

0
rd−2e−rdr = |Sd−1|

(2π)d/2 Γ(d− 1).

For d = 3, we recover the usual Yukawa prefactor κ(3) =
√

2/
√
π.

We deduce the operator inequality

|∆ + k2
F | − wa(x) − a ≤ |∆ + k2

F | − 1
|x|

≤ |∆ + k2
F | − wa(x).

In particular, the lowest eigenvalue −E of |∆ + k2
F | − 1

|x| satisfies

−Ea − a ≤ −E ≤ −Ea, or equivalently Ea ≤ E ≤ Ea + a,

where −Ea is the lowest eigenvalue of |∆ + k2
F | −wa(x). This one can be estimated as before. If Ka,E

is the corresponding Birman-Schwinger operator, we have

‖Ka,E‖op ≤ 1
(2π)d/2

ˆ ∞

0

rd−1

|r2 − k2
F | + E

[ˆ
Sd−1

dω
(r2|ω − e1|2 + a2)

d−1
2

]
dr.

We focus on the high density regime kF � 1. For the term in bracket, we have, in the limit a → 0
(we will choose a ≈ e−

√
kF below, which goes to 0 as kF → ∞),

ˆ
Sd−1

dω
(r2|ω − e1|2 + a2)

d−1
2

= 1
rd−1

ˆ
Sd−1

dω
(|ω − e1|2 + (a/r)2)

d−1
2

.
1

rd−1

∣∣∣∣log
(
r

a

)∣∣∣∣ .
1We have Fd(Ga) = G1/a where Ga(x) := ad/4e− a

2 |x|2
is the d–dimensional Gaussian.
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This gives, in the regime where E � k−2
F and a � k−1

F

‖Ka,E‖op .
ˆ ∞

0

1
|r2 − k2

F | + E

∣∣∣∣log
(
r

a

)∣∣∣∣ dr = 1
kF

ˆ ∞

0

1
|u2 − 1| + (E/k2

F )

∣∣∣∣log
(
kFu

a

)∣∣∣∣ du
.

C

kF

∣∣∣∣∣log
(
k2

F

E

)∣∣∣∣∣ ·
∣∣∣∣log

(
kF

a

)∣∣∣∣ ≈ C

kF
|log (E)| · |log (a)| .

Making the specific choice a = e−
√

kF gives, for this a, ‖Ka,E‖op ≤ C√
kF

| log(E)|. Reasoning as before,
we obtain that there is C ≥ 0 and α > 0 so that

Ea ≤ Ce−α
√

kF , hence Ce−α
√

kF ≤ E ≤ Ce−α
√

kF + e−
√

kF ,

and the result follows.

3.4 Phase diagram in the Peierls model for polyacetylene
In this section, we describe the results in [G10]. This is joint work with Éric Séré and Adéchola
Kouandé.

In the last section of this chapter, we would like to describe some results on the SSH/Peierls model
for polyacetylene [Pei96; Frö54]. Although this model does not describe the Fermi gas, it has features
which are similar to the Hartree–Fock gas. It is a model with two parameters µ and T , where µ is
related to the rigidity of the chain, and T is the temperature. Although the model is 1–periodic, the
minimizer is always 2–periodic at T = 0 (Peierls dimerization, see Figure 3.3), but becomes 1–periodic
as we increase the temperature.

Figure 3.3: The polyacetylene is a periodic chain of carbon atom, but the covalent bonds arrange
themselves in a 2–periodic fashion.

We consider a linear periodic even chain of L = 2N atoms (or rather a C −H motif for polyacety-
lene), and denote by di the distance between the i-th and (i + 1)-th atom, with the convention that
indices are taken modulo L. We add electrons to this system, encoded by a one-body density matrix
0 ≤ γ ≤ 1, and each electron feels a tight–binding Hamiltonian Ht acting on `2(CL), where

Ht :=



0 t1 0 0 · · · tL
t1 0 t2 · · · 0 0
0 t2 0 t3 · · · 0
...

...
... . . . ...

...
0 0 · · · tL−2 0 tL−1
tL 0 · · · 0 tL−1 0


. (3.11)

It is a nearest neighbour model in which the hopping parameters ti depend on the distances between
the atoms. For an atomic configuration t = (t1, · · · , tL) and electronic configuration γ, the Peierls
energy is

EL(t, γ) := 1
2g

L∑
i=1

(di − d])2 + 2Tr (Htγ) + 2T Tr (S(γ)) .
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The first term is the distortion energy of the atoms. We model the atom/atom interaction as an
effective spring with strength g and distance at rest d]. The second term is the electronic energy. The
2 factor stands for the spin of the electrons. The last term is the entropy of the electrons (we neglect
the entropy of the atoms). Here, T > 0 is the temperature, and S(x) = x log(x) + (1 − x) log(1 − x)
is the already introduced fermionic entropy.

In the simple and original SSH/Peierls model, it is assumed that the hopping amplitudes ti are
linear functions of the distances di, of the form ti − t] = −α(di − d]), where t] is the hopping energy
at rest. The minus sign in front of α > 0 states that electrons needs more energy to jump to an atom
which is further. After the normalization E → E

t] , ti → ti

t] , we end up with an energy of the form

EL
µ,T (t, γ) = 1

2µ
L∑

i=1
(ti − 1)2 + 2Tr (Htγ) + 2T Tr (S(γ)) .

There are only two parameters in the model, namely the temperature T ≥ 0, and the parameter
µ := t]gα

−2, which we interpret as a normalized rigidity of the chain. Our goal is to compute

EL(µ, T ) := inf
{

EL
µ,T (t, γ), t ∈ RL

+, γ ∈ S
(
`2(CL)

)
, 0 ≤ γ ≤ 1

}
,

Upon rescaling, we may assume b = 1. We are left with two parameters in the model, namely
µ > 0 and T > 0. Our goal is to compute

EL(µ, T ) := inf
{

EL
µ,T (t, γ), t ∈ RL

+, γ ∈ S
(
`2(CL)

)
, 0 ≤ γ ≤ 1

}
,

and to describe the corresponding minimizers. One can perform the minimization in γ first. We get

min
0≤γ≤1

2 {Tr(Hγ) + T Tr(S(γ))} = −Tr
(
hT (H2)

)
, with hT (x) :=

2T ln
(
2 cosh

(√
x

2T

))
if T > 0;

√
x if T = 0.

We skip the proof of this equality, and note that the minimizer is given by the Fermi–Dirac expression
γ∗ = (1 + eH/T )−1. This gives the reduced energy, depending solely on t ∈ RL

+, and defined by

FL(t) := 1
2µ

L∑
i=1

(ti − 1)2 − Tr
(
hT (H2

t )
)
.

It is a classical result by Kennedy and Lieb [KL04] that, in the case where L = 2N is even, the
minimizers of FL are 2–periodic, of the form

ti = W + (−1)iδ or ti = W − (−1)iδ, with W > 0, δ ≥ 0.

The quantity W > 0 is the average distance between 2 atoms, in the presence of the electrons (one
can show that W < 1: the atoms are attracted by the presence of the electrons), and δ ≥ 0 is the
distorsion. Actually, Kennedy and Lieb only considered the case T = 0, although their proof applies
similarly to the case of positive temperature T ≥ 0, as it only relies on the concavity of the hT function.

When δ = 0, the solution is 1-periodic, and when δ > 0, it is 2-periodic. In the latter case, we
say that the system is dimerized (Peierls distorsion). The Kennedy–Lieb result allows to reduce the
problem as a minimization over 2 variables only, namely (W, δ). The corresponding energy is found
to be

FL(W, δ) = L
µ

2
[
(W − 1)2 + δ2

]
−

L∑
k=1

hT

(
4W 2 cos2

(2kπ
L

)
+ 4δ2 sin2

(2kπ
L

))
.
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Dividing by L and taking the limit L = 2N → ∞ gives the thermodynamic energy per unit atom,
defined by (we use the notation

ffl
Ω for |Ω|−1 ´

Ω)

gµ,T (W, δ) := µ

2
[
(W − 1)2 + δ2

]
−
 2π

0
hT

(
4W 2 cos2(s) + 4δ2 sin2(s)

)
ds.

We define the minimum energy for all dimerized configurations, and the one for all 1–periodic config-
urations, respectively by

E(2)(µ, T ) := inf {gµ,T (W, δ), W ≥ 0, δ ≥ 0} , and E(1)(µ, T ) := inf {gµ,T (W, 0), W ≥ 0} .

We have E(2)(µ, T ) ≤ E(1)(µ, T ), with equality if the optimal dimerized configuration is, actually,
1–periodic.

Theorem 3.8 ([G10] Theorems 1.4 and A.1).

• At T = 0, for all µ∗ > 0, there is C ≥ 0 so that

∀µ ≥ µ∗, E(1)(µ, 0) − Ce− π
2 µ ≤ E(2)(µ, 0) < E(1)(µ, 0). (3.12)

• There is Tc = Tc(µ) so that, for all T < Tc, the optimal configurations are dimerized, while for
T ≥ Tc, the optimal configuration is 1–periodic. In addition, we have, as µ → ∞,

Tc(µ) ∼ Ce− π
4 µ+o(1), with C ≈ 1.6686.

Comparing this result with Theorem 3.6, we see that the Peierls model exhibits features similar to
the Hartree–Fock model for the electrons gas. At T = 0, the minimizer never shares the periodicity
of the model, but the gain of energy due the breaking of this symmetry is exponentially small (in ρ or
µ). In addition, when increasing the temperature by an exponentially small amount, the minimizer
becomes periodic.

Proof. We only give some ideas of the proof. Let us drop the T parameter, and call h a general
concave function. We denote by W0 = W0(µ) the optimizer for the E(1) problem. This one solves the
Euler–Lagrange equation

µ(W0 − 1) −
 2π

0
h′(4W 2

0 cos2(s))
[
8W0 cos2(s)

]
ds = 0. (3.13)

Now, for (W, δ) any other trial state, we write W = W0 + ε, and get

g(W0 + ε, δ) − g(W0, 0) = µ

2
[
ε2 + δ2

]
+ µ(W0 − 1)ε

−
 2π

0

[
h
(
4(W0 + ε)2 cos2(s) + 4δ2 sin2(s)

)
− h(4W 2

0 cos2(s))
]

ds.

Since h is concave, we have h(a) − h(b) ≤ h′(b)(a − b). With b = 4W 2
0 cos2(s) and a = 4(W0 +

ε)2 cos2(s) + 4δ2 sin2(s), and noting that the term linear in ε cancels due the previous Euler–Lagrange
equations, we get

g(W0 + ε, δ) − g(W0, 0) ≥ µ

2
[
ε2 + δ2

]
− 4

 2π

0
h′(4W 2

0 cos2(s))
[
ε2 cos2(s) + δ2 sin2(s)

]
ds

= ε2
(
µ

2 − 4
 2π

0
h′(4W 2

0 cos2(s)) cos2(s)ds
)

+ δ2
(
µ

2 − 4
 2π

0
h′(4W 2

0 cos2(s)) sin2(s)ds
)
.
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Under the condition

µ ≥ max
{

8
 2π

0
h′(4W 2

0 cos2(s)) cos2(s)ds ; 8
 2π

0
h′(4W 2

0 cos2(s)) sin2(s)ds
}
, (3.14)

the right-hand side is always positive, which proves that the minimum of g is attained for ε = 0 and
δ = 0. In the case T > 0, both integrals appearing in (3.14) converge. This already proves that for
all T > 0 and all µ larger than some µ(T ), the minimizer is 1-periodic. Detailed computations using
Euler–Lagrange equations, and that we do not detail here, allow to estimate the critical temperature
Tc = Tc(µ).

In the case T = 0 and h(x) =
√
x, the derivative h′(x) = 1

2
√

x
has a singularity at x = 0, and

the function h′(4W 2
0 cos2) sin2 appearing in (3.14) is no longer integrable, due to the singularities at

s = π/2 and s = 3π/2, so the previous lower bound is meaningless. In this case however, one can
perform exact computations. First, we compute W0 in (3.13). We find that

 2π

0
h′(4W 2

0 cos2(s))
[
8W0 cos2(s)

]
ds =

 2π

0
2| cos(s)|ds = 4

π
,

hence W0(µ) = 1 + 4
πµ . On the other hand, we have, with E denoting the complete elliptic integral of

the second kind,
 2π

0

[√
4(W0 + ε)2 cos2(s) + 4δ2 sin2(s) −

√
4W 2

0 cos2(s)
]

ds = 4(W0 + ε)
π

E

(
1 − δ2

(W0 + ε)2

)
− 4W0

π
.

This gives the exact energy difference

g(W0 + ε, δ) − g(W0, 0) = µ

2
[
ε2 + δ2

]
− 4
π

(W0 + ε)
[
E

(
1 − δ2

(W0 + ε)2

)
− 1

]

It remains to compute the minimum of the right-hand side, as a function of ε and δ. We denote by
ε∗ = ε∗(µ) and δ∗ = δ∗(µ) the minimiser. First, using the bound E(1 − a) − 1 ≤

√
a, we get

0 ≥ g(W0 + ε∗, δ∗) − g(W0, 0) ≥ µ

2
[
ε2

∗ + δ2
∗

]
− 4
π
δ∗.

We deduce that |ε∗| ≤ 4
πµ and δ∗ <

8
πµ . In particular, W0 + ε∗ ≥ 1. Together with the fact that the

map x 7→ x
[
E(1 − δx−2) − 1

]
is decreasing, we obtain the lower bound

g(W0 + ε∗, δ∗) − g(W0, 0) ≥ µ

2
[
ε2

∗ + δ2
]

− 4
π

[
E
(
1 − δ2

∗

)
− 1

]
≥ µ

2 δ
2
∗ − 4

π

[
E
(
1 − δ2

∗

)
− 1

]
.

Using that µ 7→ δ∗(µ) goes to 0 as µ → ∞ and that E(1 − δ2) − 1 ∼ δ2| log(δ)|/2 as δ → 0, the
left-hand side is equivalent to

δ2
∗

(
µ

2 − 2
π

| log(δ∗)|
)
.

The minimum of this last expression is obtained for δ = e− π
4 µ+ 1

2 , giving the lower bound (3.12).

3.5 Perspectives
Concerning the Peierls model, together with Éric Séré and Adéchola Kouandé, we are studying kink
modes, which are general solutions to the Euler–Lagrange equations. We prove that they are expo-
nentially close to dimerized solution on the right and on the left (not necessarily the same dimerized
configuration), and that they exist an infinity of such modes, up to translations.
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The phase diagram for polyacetylene can be studied in other contexts. It was proved in [FL11]
that graphene could have lattice distortions, but that these distortions must have a periodic structure.
We would like to apply the method developed in [G10] to graphene, and prove that (a) at T = 0, the
optimal configuration is not the 1–periodic one (usually considered in the literature), and (b) that it
becomes 1–periodic when increasing the temperature. We started to look at this problem with Éric
Séré and Thaddeus Roussigné.



CHAPTER 4
LIEB-THIRRING (AND RELATED) INEQUALITIES

4.1 Introduction
Lieb-Thirring inequalities play an important role in the study of large fermionic quantum systems.
They were introduced by Lieb and Thirring in [LT75; LT76] to provide a short proof of the stability
of matter. They read as follows. Let κ (usually γ in the literature, but γ is our one-body reduced
density matrix...) be so that

κ


≥ 1

2 for d = 1,
> 0 for d = 2,
≥ 0 for d ≥ 3.

(4.1)

Then, there exists an optimal (smallest) constant Lκ,d so that for all positive valued potential V ∈
Lκ+ d

2 (Rd,R+), we have
∞∑

j=1
|λj (−∆ − V )|κ ≤ Lκ,d

ˆ
Rd

V κ+ d
2 , (4.2)

where λj(−∆ −V ) denotes the j-th lowest negative eigenvalue of (−∆ −V ) if exists, and 0 if −∆ −V
has less that j strictly negative eigenvalues. The importance of this inequality comes from the fact that
the right-hand side is extensive in the following sense. Assume that V is the sum of two potentials
VL and VR, with VL located on the far left, and VR located on the far right. Then, we can expect that
the spectrum of −∆ − VL − VR is close to

σ (−∆ − VL − VR) ≈ σ (−∆ − VL)
⋃
σ (−∆ − VR) .

The Lieb-Thirring inequality is one way to quantify this intuitive picture, in the form of an inequality.

In the original articles [LT75; LT76], this inequality was proved in the non-critical case κ >
max{0, 1 − d

2}. The equality case κ = 1
2 in d = 1 was proved by Weidl [Wei96], and the case κ = 0

for d ≥ 3 was proved independently by Cwikel, Lieb and Rozenblum in [Cwi77; Lie76; Roz72], and is
known as the CLR inequality. In this case, the left-hand side simply counts the number of negative
eigenvalues.

In this chapter, we study the optimal (smallest) constants Lκ,d for the original Lieb-Thirring
inequality, and for another one that we called the fermionic non-linear Schrödinger inequality. In
what follows, we restrict our attention to positive potentials V , and write our Schrödinger operator
with a minus sign: HV := −∆ − V . Recall that if V is not positive, we can write V = V+ − V−,
and we have the operator inequality −∆ − V ≥ −∆ − V+, hence |λj(−∆ − V )| ≤ |λj(−∆ − V+)|. In
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particular, (4.2) implies that

∞∑
j=1

|λj (−∆ − V )|κ ≤
∞∑

j=1
|λj (−∆ − V+)|κ ≤ Lκ,d

ˆ
Rd

V
κ+ d

2
+ .

4.2 Lieb-Thirring inequality
In this section, we describe results in [G12; G13; G14], obtained in collaboration with Mathieu Lewin
and Rupert Frank.

4.2.1 The finite rank Lieb-Thirring inequality

Several conjectures concern the value of the optimal (smallest) constants Lκ,d. We will review what
is currently known and conjectured in Section 4.2.3, and refer to the recent book [FLW22] for more
details. In [G12; G14], we asked whether this optimal value could be attained for a potential V
generating only a finite number of negative eigenvalues. For a given N ∈ N, we study the optimal
(smallest) constant L(N)

κ,d in the finite rank Lieb–Thirring inequality

V ∈ Lκ+ d
2 (Rd,R+),

N∑
j=1

|λj (−∆ − V )|κ ≤ L
(N)
κ,d

ˆ
Rd

V κ+ d
2 . (4.3)

In the case N = 1, this is sometimes called the Keller problem [Kel61]. It is not difficult to see that

L
(1)
κ,d ≤ L

(2)
κ,d ≤ · · · and that Lκ,d = lim

N→∞
L

(N)
κ,d = sup

N∈N
L

(N)
κ,d . (4.4)

Our main result in [G12; G14] is the following. We state it for the non-critical case κ > max{0, 1 − d
2}

(that is when the inequality is strict in (4.1)).

Theorem 4.1 ([G12] Theorem 1, and [G14] Theorem 1). For all κ > max{0, 1 − d
2} and all N ∈ N,

there is an optimal potential V ∈ Lκ+ d
2 (Rd,R+) for (4.3). In addition, under the extra condition

κ > max{0, 2 − d
2}, we have

L
(2N)
κ,d > L

(N)
κ,d . (4.5)

In particular, the optimal Lieb-Thirring constant Lκ,d satisfies Lκ,d > L
(N)
κ,d for all N ∈ N.

In the case κ > max{0, 2 − d
2}, this implies that if the problem defining Lκ,d has an optimizer

V ∈ Lκ+ d
2 (Rd,R+) (this is still an open problem, and we conjecture that there is none, see Section 4.2.3

below), then this potential must generate an infinity of negative eigenvalues.

Proof. We only give few elements of the proof, as it is quite lengthy. First, we can prove the existence of
minimizers for the L(N)

κ,d problem using the classical «bubble decomposition» or «profile decomposition»
in nonlinear analysis. Using the Euler-Lagrange equation for an minimizer VN shows that it is of the
form

VN = C

 N∑
j=1

|λj |κ−1|uj |2
 1

κ+ d
2 −1

,

where (λj , uj)1≤j≤N are the first eigenpairs of the operator −∆ − VN , that is

(−∆ − VN )uj = λjuj , λ1 < λ2 ≤ · · · ≤ λj ≤ 0.
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For simplicity, let us assume that λN < 0. Otherwise, the potential VN only generates M < N strictly
negative eigenvalues, and is also an optimizer for L(M)

κ,d . Since VN goes to 0 at infinity, we obtain the
decay at infinity

uj(x) ∼ C

 e−
√

|λj ||x|

1 + |x|d−1

 , hence VN (x) ∼ C

e−
√

|λN ||x|

1 + |x|d−1


2

κ+ d
2 −1

. (4.6)

The main idea to prove the inequality (4.5) is to construct a trial potential VR for the L
(2N)
κ,d

problem by putting two copies of VN far apart, separated by a distance R > 0. More specifically, we
set

VR(x) =
(
V

1
p−1

N (x − R
2 ) + V

1
p−1

N (x + R
2 )
)p−1

, with p :=
κ+ d

2
κ+ d

2 − 1
. (4.7)

The quantity ρ := V
1

p−1 = V κ+ d
2 −1 = C ′∑N

j=1 |λj |κ−1|uj |2 can be interpreted as an electronic density.
Note that p is dual exponent of κ + d

2 > 0 (the density ρ is the dual variable of the potential V ).
Equation (4.7) states that the trial potential VR is constructed by adding the densities instead of the
potentials. Detailed computations, that we will not display here, then show that

L
(2N)
κ,d ≥

∑2N
j=1 |λj (−∆ − VR)|κ

´
Rd V

κ+ d
2

R

≥ L
(N)
κ,d

(
1 + 1

2

(
κ+ d

2 − 1
)
AR

)
+O(A2

R + e2
R), (4.8)

where

AR :=
ˆ
Rd

(
V

1
p−1

N (· − R
2 ) + V

1
p−1

N (· + R
2 )
)p−1

− VN (· − R
2 ) − VN (· + R

2 ).

and
eR ≤ C

(
R

3−d
2 +R3−d

)
exp

(
−2
√

|λN |R
)
.

The error term eR comes from the orthonormalization procedure that we use to evaluate |λj(−∆−VR)|.
To obtain a lower bound for AR, we evaluate the integrand around x = 0 using the explicit decay of
VN in (4.6) and find that

AR ≥ C

R2p(d−1) exp
(

−p
√

|λN |R
)
.

Inequality (4.8) is interesting only in the case where e2
R = o(AR). In view of the exponents appearing

in the exponentials, this happens when p < 2. Since p is the dual exponent of κ + d
2 , this is also

κ > 2 − d
2 , which is our condition in the Theorem. In this case, we gain a positive exponentially small

amount as R → ∞ in (4.8), which implies L(2N)
κ,d > L

(N)
κ,d .

Interestingly, we do not know whether the strict inequality L
(N+1)
κ,d > L

(N)
κ,d holds. We only know

that it is the case for infinitely many N , see below.

4.2.2 The periodic Lieb-Thirring inequality

Theorem 4.1 shows that one can always improve the Lieb-Thirring constant by adding eigenvalues
(or particles). Actually, numerical simulations done in other contexts (see Figs. 4.4 and 4.5 below)
suggest that sequences of optimizers (VN )N∈N converge, up to translation and rotation, to a periodic
configuration Vper. This limit potential is not a trial state for the original Lieb-Thirring inequality,
since it does not belong to any Lκ+ d

2 (Rd) space.

In [G13], we introduce a periodic version of the Lieb–Thirring inequality.
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Lemma 4.2 ([G13] Theorem 1.1). Let R be any lattice in Rd. For any κ > max{0, 1 − d
2} and any

positive potential V ∈ L
κ+ d

2
loc (Rd) which is R-periodic potential, we have

Tr (−∆ − V )κ
− ≤ Lκ,d

 
V κ+ d

2 ,

with the same optimal Lieb-Thirring constant as in (4.2). Here Tr denotes the trace per unit volume,
and

ffl
the integral per unit volume, respectively defined by

Tr (−∆ − V )κ
− := lim

n→∞
1

|Ωn|
Tr (−∆ − V 1Ωn)κ

− and
 
f := 1

|Ωn|

ˆ
Rd

f1Ωn ,

with Ωn := nΩ and Ω := Rd/R.

We refer to [G13] for the proof. An important trial state for this inequality is the constant potential
V = µ > 0. This potential is R–periodic for any lattice R. This gives the lower bound

Lκ,d ≥
Tr (−∆ − µ)κ

−ffl
µκ+ d

2
= 1
µκ+ d

2

1
(2π)d

ˆ
Rd

(
k2 − µ

)κ

−
dk

= 1
(2π)d

ˆ
Rd

(
k2 − 1

)κ

−
dk = Γ(κ+ 1)

2dπd/2Γ(κ+ d
2 + 1)

=: Lsc
κ,d. (4.9)

The constant Lsc
κ,d is known as the semi-classical Lieb–Thirring constant. In a regime where Lκ,d =

Lsc
κ,d, we say that (one of) the optimal scenario is the semi-classical one. Note that the operator

−∆ − µ describes a fluid phase, invariant by translation. The operator γ := 1(−∆ < µ) is the free
Fermi-gas at null temperature described in Section 3.2.2.

4.2.3 What is known and conjectured about Lieb–Thirring «best scenarii»

Let us review what is known and conjectured about the «best» potential V in the Lieb-Thirring
inequality, depending on the parameter κ and the dimension d.

• (Lower bound) From (4.4) and (4.9), we obtain the inequality

Lκ,d ≥ max
{
L

(1)
κ,d, L

sc
κ,d

}
. (4.10)

A famous conjecture by Lieb and Thirring in the original article [LT76] states that there is always
equality in (4.10). This conjecture is now known to be incorrect in some cases, and correct in
other cases, as we explain below.

• (monotonicity) The maps

∀N ∈ N, κ 7→
L

(N)
κ,d

Lsc
κ,d

and κ 7→ Lκ,d

Lsc
κ,d

are non–increasing.

This was proved in [AL78] for the ratio Lκ,d/L
sc
κ,d, but the proof works similarly for all N ∈ N.

In [G12], we proved that when N = 1, the map κ 7→ L
(1)
κ,d/L

sc
κ,d is strictly decreasing. By (4.10),

the map κ 7→ Lκ,d/L
sc
κ,d is lower bounded by 1, so it stays equal to 1 whenever it touches 1.

At this point, it is interesting to introduce the crossing points

∀N ∈ N, κN∩sc(d) := inf
{
κ > max{0, 1 − d

2}, L
(N)
κ,d ≤ Lsc

κ,d

}
.
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d 1 2 3 4 5 6 7 d ≥ 8
κ1∩sc(d) = 3

2 1.1654 0.8627 0.5973 0.3740 0.1970 0.0683 0 (no crossing)

Figure 4.1: Numerical computation of κ1∩sc(d).

It corresponds to the minimum value of κ where the semi-classical scenario becomes better than the
N -particle one. Since L(N+1)

κ,d ≥ L
(N)
κ,d , we have κ(N+1)∩sc ≥ κN∩sc.The constants L(1)

κ,d and Lsc
κ,d can be

evaluated numerically with high precision, so we can compute the values κ1∩sc (see Table 4.1). The
fact that κ1∩sc(1) = 3/2 will be shown later.

We also introduce the semi-classical crossing point

κsc(d) = lim
N→∞

κN∩sc(d) = sup
N
κN∩sc(d) = inf

{
κ > max{0, 1 − d

2}, Lκ,d = Lsc
κ,d

}
.

For κ ≥ κsc(d), we have Lκ,d = Lsc
κ,d, and (one of) the best scenario is the semi-classical one.

• (κ = 3
2 in dimension d = 1). We have, for all N ∈ N,

κ1∩sc(1) = κN∩sc(1) = κsc(1) = 3
2 , and, in particular L

(1)
3
2 ,1 = L

(N)
3
2 ,1 = Lsc

3
2 ,1 = L 3

2 ,1.

As already noticed in [LT76], this particular case is linked to the integrable Korteweg-de-Vries
(KdV) equation. Actually, any N -solitons for KdV is a minimizer for L(N)

κ,d . In [G13, Theorem
2.1], we also proved that, for all k > 0, the periodic Lamé potentials Vk are all optimizers for
the periodic Lieb-Thirring equation, where

Vk(x) := 1 + k2 − 2k2sn (x|k)2 , with minimal period 2K(k) > 0.

Here sn (·|k) is a Jacobi elliptic function and K(k) is the complete elliptic integral of the first
kind. Actually, Vk(·) → 2 cosh−2(·) (the 1-soliton) as k → ∞, and Vk(·) → µ := 1 as k → 0, so
the family k 7→ Vk somehow interpolates between the N = 1 case and the semi-classical case.

• (κ ≥ 3
2). For all κ ≥ 3

2 , and in all dimension d ≥ 1, we have the semi-classical regime

∀d ≥ 1, ∀κ ≥ 3
2 , Lκ,d = Lsc

κ,d, or equivalently κsc(d) ≤ 3
2 .

The equality L 3
2 ,d = Lsc

3
2 ,d

for all d was proved in [LW00] (see also [BL99]). The case κ > 3
2 comes

from the monotonicity of the ratio Lκ,d/L
sc
κ,d.

• (κ = 1/2 in dimension d = 1). We have

L1/2,1 = L
(1)
1/2,1,

and the corresponding minimization problems have no minimizer. In some sense, the minimizer
is the Dirac distribution V = δ0, see [HLT98].

• (κ < 1 is not semi-classical). For all d ≥ 1 and all κ < 1, we have

Lκ,d > Lsc
κ,d, or equivalently κsc(d) ≥ 1.

This was proved in [HR90] by studying the next order in ~ in the semi-classical limit. Equiva-
lently, one can study the stability of the constant function V = µ in the periodic Lieb-Thirring
inequality.
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• (κ(2N)∩sc > κN∩sc) Our Theorem 4.1 can be recast as follows.

If κN∩sc > max{0, 2 − d
2}, then κ(2N)∩sc(d) > κN∩sc(d). Hence ∀N ∈ N, κsc(d) > κN∩sc(d).

This is particularly interesting in dimension d = 2, since κ1∩sc ≈ 1.1654 > 1 = max{0, 2 − d=2
2 }.

This implies that κsc(2) > κN∩sc(2) for all N ∈ N. We display in Figure 4.3 a periodic potential
V which «beats» both the L(1)

κ,d and the Lsc
κ,d scenarios, for some κ1∩sc(2) < κ < κsc(2).

In view of all these considerations, we made the following conjecture in [G13].

Conjecture 4.3. For all κ satisfying (4.1), we have

• either there is N ∈ N so that Lκ,d = L
(N)
κ,d . In particular, any optimizer VN ∈ Lκ+ d

2 (Rd) for
L

(N)
κ,d is an optimizer for Lκ,d, and the operator −∆ − VN has less than N negative eigenvalues.

• or we have Lκ,d > L
(N)
κ,d for all N , in which case the periodic Lieb-Thirring inequality has a

periodic optimizer V∗.

By definition of κsc(d), we know that for κ > κsc(d), the constant functions are optimizers of the
periodic Lieb-Thirring inequality (liquid phase). On the other hand, if κ < κsc(d), then the liquid
phase is not optimal. But for κ > max{0, 2 − d

2}, we also proved that the N -particle scenario is never
optimal. So our conjecture would imply the following other one.

Conjecture 4.4. For all max{0, 2 − d
2} < κ < κsc(d), the periodic Lieb-Thirring inequality has a

periodic optimal optimizer which is not a constant potential (crystallized phase).

We sum up what is known in dimensions d ∈ {1, 2, 3} in Figure 4.2. The conjecture that Lκ,1 = L
(1)
κ,1

for 1
2 < κ < 3/2 in dimension d = 1 comes from numerical simulations in [Lev14], and the conjecture

that κsc(d = 3) = 1 is the original Lieb-Thirring conjecture.

d = 1 κ ≥ 1/2

0 1/2 1
One-bound state

3/2
semi-classicalnot semi-classical

Conjecture: one-bound state

d = 2 κ > 0
κsc(2) ∈ (1.1654, 3/2]

semi-classicalnot semi-classical not sc, not N
Conjecture: «crystallisation»

d = 3 κ ≥ 0
κsc(3) ∈ [1, 3/2]

semi-classical

Conjecture: κsc(3) = 1

not sc, not N
Conjecture: «crystallisation»not semi-classical

Figure 4.2: What is known and conjectured about Lieb-Thirring best scenarii for d ∈ {1, 2, 3}.

We conclude this section by exhibiting a two–dimensional periodic potential V∗ for κ = 1.165400,
which beats both the semi-classical and the 1-particle scenario. Our numerical simulations performed
in [G13] suggest that κsc(2) ≈ 1.165417. Recall that κ1∩sc(2) = 1.165378. The fact that these two
values are extremely close is probably a manifestation of the exponential gain of energy that we found
in the proof of Theorem 4.1.

It turns out that the corresponding operator −∆ −V∗ describes an insulator (there is a gap at the
Fermi level εF = 0). This allowed us to compute the quantity Tr(−∆ − V∗) with high precision (see
Section 1.5.1), which was necessary to capture the exponentially small attraction.
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Figure 4.3: Numerical simulation of the best optimal potential (among the ones having the triangular
symmetry) for the periodic Lieb-Thirring inequality, for κ = 1.165400 > κ1∩sc(2).

4.3 Fermionic non-linear Schrödinger

4.3.1 Fermionic minimization problems

In this section, we describe the results obtained in [G11]. This is joint work with Mathieu Lewin and
Faizan Nazar.

Let us now present another inequality, namely the fermionic non-linear Schrödinger (NLS) equa-
tion, which exhibits similar features. We explain the connection between the two problems in the
next section. For 0 ≤ γ = γ∗ a positive compact self-adjoint operator on L2(Rd), we denote by
ργ(x) := γ(x, x) its density, and by

Tr(−∆γ) :=
d∑

j=1
Tr(PjγPj) with Pj := −i∂j .

its kinetic energy. For an exponent
1 < p < 1 + 2

d
, (4.11)

we define the NLS minimization problem

JNLS
p,d (N) := inf

{
Tr(−∆γ) − 1

p

ˆ
Rd

ρp
γ , γ ∈ S

(
L2(Rd)

)
, 0 ≤ γ ≤ 1, Tr(γ) = N

}
.

The denomination fermionic comes from the Pauli constraint 0 ≤ γ ≤ 1. The condition (4.11) together
with the Lieb-Thirring inequality implies that JNLS(N) is always bounded from below. Note that the
problem is concave in γ, hence, if a minimizer exists, it must be a projector of rank N (and in particular
Rank(γ) = Tr(γ) = N).

It is unclear that the problem JNLS(N) is always well-posed (i.e. admits minimizers). It will be
the case if the following strong binding condition holds (see [Lew11])

∀1 ≤ k ≤ N − 1, JNLS
p,d (N) < JNLS

p,d (N − k) + JNLS
p,d (k).
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Note that the weak binding inequality

∀1 ≤ k ≤ N − 1, JNLS
p,d (N) ≤ JNLS

p,d (N − k) + JNLS
p,d (k). (4.12)

always hold, as can be seen by putting trial states for (N −k) and k–particle far from each other. The
main result of [G11] is the following.

Theorem 4.5 ([G11] Theorem 4). For all p satisfying (4.11), the problem JNLS
p,d (N = 1) is well-posed.

Under the extra condition 1 < p < 2, we have

∀N ∈ N, JNLS
p,d (2N) < 2JNLS

p,d (N). (4.13)

In particular, for 1 < p < 2, there is an infinite sequence of integers 1 = N1 < N2 < N3 < · · · so that
the problem JNLS

p,d (Nk) is well-posed.

If γ is such an optimizer, it is a projector, and the corresponding Euler–Lagrange equations take
the form

γ = 1 (−∆ − V < εF ) + γ̃, with V := ρp−1
γ , (4.14)

for some Fermi level εF ≤ 0, and 0 ≤ γ̃ ≤ 1(−∆ − V = εF ). Equation (4.14) can be rewritten as
follows: there is an orthonormal family (u1, · · · , uN ) in L2(Rd) so that γ =

∑N
j=1 |uj〉〈uj |, and which

solves the fermionic non–linear Schrödinger equation

∀1 ≤ j ≤ N,
(
−∆ − ρp−1

)
uj = µjuj , with ρ =

N∑
j=1

|uj |2,

where µ1 < µ2 ≤ · · · ≤ µN ≤ εF are the N lowest eigenvalues of −∆ − ρp−1.

Proof of Theorem 4.5. The first part of the proof follows the lines of Theorem 4.1. Actually, we found
this result first, and this is how we realized that one should add the densities instead of the potentials
in (4.7).

For the second part of the proof, we use a pigeon–hole argument. Let N ⊂ N be the subset of
integers N so that JNLS

p,d (N) has a minimizer. Assume N is finite, and let M be the sum of all elements
in N . Consider the minimization problem for M + 1 particles. Since M + 1 /∈ N , the strong binding
inequality must fail for some 1 ≤ k ≤ M − 1. However, the weak-binding inequality always holds.
Iterating this reasoning, we deduce that we must have a splitting of the form

JNLS
p,d (M + 1) =

∑
k

JNLS
p,d (Nk), with M + 1 =

∑
k

Nk and Nk ∈ N .

In other words, any minimization sequence for J NLS
p,d (M + 1) splits into stable ones. Our hypothesis

for M shows that at least two bubbles must have the same number of particles, say N1 = N2 ∈ N .
Inequality (4.13) implies JNLS

p,d (N1 + N2) < JNLS
p,d (N1) + JNLS

p,d (N2), and the weak binding inequality
gives the contradiction

JNLS
p,d (M + 1) =

∑
k

JNLS
p,d (Nk) > JNLS

p,d (N1 +N2) +
∑
k≥3

JNLS
p,d (Nk) ≥ JNLS

p,d (M + 1).

So N is infinite.

We display in Figures 4.4 and 4.5 numerical computations for the density of the minimizer of JNLS
p,d

in the one– and two–dimensional case. In both these figures, we observe a crystallization phenomenon,
where well-localized bubbles are bound by an exponentially small attraction. It is tempting to interpret
these bubbles as the location of the fermionic quantum particles.
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Figure 4.4: Optimal density for JNLS
p,d in the case d = 1, p = 1.3 and N = 3, 4, 5.

Figure 4.5: Optimal density for JNLS
p,d in the case d = 2, p = 1.5 and for N from 1 to 7.
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4.3.2 Dual formulation of Lieb-Thirring and NLS inequalities

Finally, we relate the Lieb-Thirring problem and NLS problem with their dual formulations.

Dual Lieb-Thirring

When κ ≥ 1, the Lieb-Thirring inequality has the following dual formulation. Recall that, for a
compact operator A, we denote by ‖A‖Sq := Tr(|A|q)1/q the Schatten norm of A. The dual version of
the Lieb-Thirring inequalities takes the following form (see [G12]).

Lemma 4.6. Let κ ≥ 1 and let

p :=
κ+ d

2
κ+ d

2 − 1
, and q := κ

κ− 1

be the dual exponents of κ + d
2 and κ respectively. Then there is an optimal (largest) constant K(N)

p,d

so that, for all γ of rank N , we have

K
(N)
p,d ‖ργ‖

2p
d(p−1)
Lp(Rd) ≤ ‖γ‖

p(2−d)+d
d(p−1)

Sq
Tr(−∆γ). (4.15)

In addition, the constants K(N)
p,d and L(N)

κ,d satisfy the relation

K
(N)
p,d

(
L

(N)
κ,d

) 2
d =

(
κ

κ+ d
2

) 2κ
d ( d

2κ+ d

)
. (4.16)

When N = 1, an operator γ of rank 1 is of the form γ = |u〉〈u| for some (un-normalized) function
u. In this case, ργ = |u|2. We find that K(1)

p,d is the optimal constant in the inequality

∀u ∈ H1(Rd), K
(1)
p,d‖u‖

4p
d(p−1)
L2p ≤ ‖u‖

2p(2−d)+2d
d(p−1)

L2

ˆ
Rd

|∇u|2.

We recognize the Gagliardo–Niremberg inequalities, so K
(1)
p,d is, actually, the Gagliardo–Niremberg

constant K(1)
p,d = KGN

p,d . The condition κ ≥ 1 translates into 1 ≤ p ≤ 1 + 2
d .

On the other hand, taking the critical value κ = 1, which implies p = 1 + 2
d and q = ∞, we recover

the usual kinetic Lieb–Thirring inequality

K
(N)
d+2

d
,d

(ˆ
Rd

ρ
1+ 2

d
γ

)
≤ Tr(−∆γ),

valid for all one-body density operator γ of rank N , and satisfying 0 ≤ γ ≤ 1.

Going back to our Theorem 4.1, which states that L(2N)
κ,d > L

(N)
κ,d whenever κ > max{0, 2 − d

2} and
κ ≥ 1, together with (4.16), we obtain that for all 1 ≤ p ≤ 1 + d

2 satisfying the extra condition p < 2,
we have

K
(2N)
p,d > K

(N)
p,d .

Dual NLS

Similarly, we have a dual formulation of the NLS problem.
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Lemma 4.7. Let 1 < p < 1 + 2
d . Then there is an optimal (largest) constant K̃(N)

p,d , so that, for all γ
with Tr(γ) = N , we have

K̃
(N)
p,d ‖ρ‖

2p
2(p−1)
Lp(Rd) ≤ N

p(2−d)+d
d(p−1)

1
q ‖γ‖

p(2−d)+d
d(p−1) Tr(−∆γ), (4.17)

In addition, the constants K̃(N)
p,d and JNLS

p,d (N) satisfy the relation

K̃
(N)
p,d =

[(
JNLS

p,d (N)
N

)(
1 + 2

d
− p

)]− d+2−pd
d(p−1) 1

p− 1

(
d

2p

) 2
d(p−1)

.

In particular, Theorem 4.5 implies that if p satisfies 1 < p ≤ 1 + 2
d and the extra condition p < 2,

then
K̃

(2N)
p,d < K̃

(N)
p,d .

This leaves open the case d = 1, and p ∈ [2, 3]. The relation between the two constants K(N)
p,d and

K̃
(N)
p,d are given by the following Lemma.

Lemma 4.8. We have
K

(N)
p,d ≤ K̃

(N)
p,d ≤ K̃

(1)
p,d = K

(1)
p,d .

In addition, for d = 1 and p = 2, we have

K
(N)
2,1 = K̃

(N)
2,1 = K̃

(1)
2,1 = K

(1)
2,1 .

Proof. The first part, we use the simple bound ‖γ‖Sq ≤ N
1
q ‖γ‖, valid for all positive γ of rank less

than N . This bound shows that (4.15) implies (4.17) with the constant K(N)
p,d . But since K̃(N)

p,d is the
largest constant for which (4.17) holds, we deduce that K(N)

p,d ≤ K̃
(N)
p,d . The fact that N 7→ K̃

(N)
p,d is

decreasing is standard. Finally, for N = 1, we have the equality ‖γ‖Sq = ‖γ‖ for all positive γ of rank
1. So the dual Lieb–Thirring and dual NLS problems are equivalent at N = 1.

The second part comes from the equality L(N)
3/2,1 = L

(1)
3/2,1, which implies K(N)

2,1 = K
(1)
2,1 .

4.4 Perspectives
The exponential attraction between bubbles is a phenomenon that we expect to find in other fermionic
models. Together with Salma Lahbabi and Simona Rota Nodari, we would like to see whether it
can be applied to mean–field models for nucleons. It might explain the non–spherical shapes of nuclei
that we find experimentally.

In the recent work [G24], together with Jean Dolbeault, Fabio Pizzichillo and Hanne Van
Den Bosch, we derived Keller and Lieb–Thirring inequalities for (massive) Dirac operators, of the
form /Dm − V , with positive potentials V ∈ Lp(Rd,R+). Here, /Dm :=

∑
j(−i∂j)αj + mβ is the usual

free Dirac operator with mass m > 0, acting on L2(Rd,CN ). We would like to extend this work to the
case /Dm − V β.
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Résumé

Ce mémoire d'HDR comporte quatre

parties :

• Nous faisons le lien entre l'exis-

tence des fonctions de Wannier

en matière condensée, et l'ex-

istence d'homotopies pour une

famille de projecteurs.

• Nous étudions l'apparition

de mode de bords lorsqu'un

matériau est coupé (systèmes

semi-périodiques), et donnons

un cadre général pour l'étude

du spectre des opérateurs

correspondants.

• Nous calculons quelques pro-

priétés du diagramme de phase

du gaz de fermions, dans l'ap-

proximation de Hartree-Fock.

• Nous étudions les inégalités

de Lieb-Thirring de rang fini,

et montrons un phénomène

de cristallisation pour ses min-

imiseurs.

Mots Clés

Analyse non linéaire, théorie spec-

trale, inégalités fonctionnelles,

physique mathématiques, matière

condensée, systèmes fermioniques

Abstract

This Habilitation consists in four

parts:

• We link the existence of Wan-

nier functions in condensed

matter with the existence of ho-

motopies for a family of projec-

tors.

• We consider the emergence of

edge modes when one cuts

a material (half-periodic sys-

tems), and we give a general

framework to study the spec-

trum of such operators.

• We describe some properties

of the phase diagram of the

fermionic gas, in the Hartree-

Fock approximation.

• We study finite rank Lieb-

Thirring inequalities, and

exhibit a cristallisation phe-

nomenon for its minimisers.

Keywords

Analyse non linéaire, théorie spec-

trale, inégalités fonctionnelles,

physique mathématiques, matière

condensée, systèmes fermioniques
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