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Abstract

Through the application of layer potential techniques and Gohberg-Sigal theory we derive
an original formula for the Minnaert resonance frequencies of arbitrarily shaped bubbles. We
also provide a mathematical justification for the monopole approximation of scattering of
acoustic waves by bubbles at their Minnaert resonant frequency. Our results are comple-
mented by several numerical examples which serve to validate our formula in two dimensions.
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1 Introduction

The purpose of this work is to understand acoustic wave propagation through a liquid containing
bubbles. Our motivation is the use of bubbles in medical ultrasonic imaging as strong sound
scatterers at particular frequencies known as Minnaert resonances [21]. Many interesting physical
works have been devoted to the acoustic bubble problem [8, 10, 13, 15, 18, 19]. Nevertheless, the
characterization of the Minnaert resonances for arbitrary shaped bubbles has been a longstanding
problem.

In this paper we derive an original formula for the Minnaert resonances of bubbles of arbitrary
shapes using layer potential techniques and Gohberg-Sigal theory [14, 2]. Our formula can be
generalized to multiple bubbles. We provide a mathematical justification for the monopole ap-
proximation and demonstrate the enhancement of the scattering in the far field at the Minnaert
resonance. We show that there is a correspondence between bubbles in water and plasmonic
nanoparticles in that both raise similar fundamental questions [3]. However, the mathematical
formulation of Minnaert resonances is much more involved than the formulation of plasmonic
resonances.

The Minnaert resonance is a low frequency resonance in which the wavelength is much larger
than the size of the bubble [10, 21]. Our results in this paper have important applications. They
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can be used to show that at the Minnaert resonance it is possible to achieve superfocusing of
acoustic waves or imaging of passive sources with a resolution beyond the Rayleigh diffraction
limit [4, 5]. Foldy’s approximation applies and yields to the conclusion that the medium sur-
rounding the source behaves like a high contrast dispersive medium [12]. As the dispersion is
small, it has little effect on the superfocusing and superresolution phenomena. Effective equa-
tions for wave propagation in bubbly liquids have been derived in the low frequency regime
where the frequency is much smaller than the Minnaert resonance frequency [6, 7, 16]. In this
paper, however, we are more concerned with wave propagation in the resonant regime.

The paper is organized as follows. In Section 2 we consider the scattering of acoustic waves in
three dimensions by a single bubble and derive its Minnaert resonances in terms of its capacity,
volume, and material parameters. In Section 3 we derive the point scatterer approximation of
the bubble in the far-field. In Section 4 we perform numerical simulations in two dimensions to
illustrate the main findings of this paper. The paper ends with some concluding remarks. In
Appendix A, we collect some useful asymptotic formulas for layer potentials in two and three
dimensions. Derivations of the two-dimensional Minnaert resonances are given in Appendix B.

2 The Minnaert resonance

We consider the scattering of acoustic waves in a homogeneous media by a bubble embedded
inside. Assume that the bubble occupies a bounded and simply connected domain D with
∂D ∈ C1,s for some 0 < s < 1. We denote by ρb and κb the density and the bulk modulus
of the air inside the bubble, respectively, and by ρ and κ the corresponding parameters for the
background media R3\D. The scattering problem can be modeled by the following equations:

∇ · 1

ρ
∇u+

ω2

κ
u = 0 in R3\D,

∇ · 1

ρb
∇u+

ω2

κb
u = 0 in D,

u+ − u− = 0 on ∂D,

1

ρ

∂u

∂ν

∣∣∣∣
+

− 1

ρb

∂u

∂ν

∣∣∣∣
−

= 0 on ∂D,

us := u− ui satisfies the Sommerfeld radiation condition.

(2.1)

Here, ∂/∂ν denotes the outward normal derivative and |± denote the limits from outside and
inside D.

We introduce some parameters to facilitate our analysis. We let

v =

√
κ

ρ
, vb =

√
κb
ρb
, k =

ω

v
and kb =

ω

vb

be respectively the speed of sound outside and inside the bubble, and the wave-number outside
and inside the bubble. We also introduce two dimensionless contrast parameters

δ =
ρb
ρ

and τ =
kb
k

=
v

vb
=

√
ρbκ

ρκb
.
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By choosing proper physical units, we may assume that the size of the bubble is of order 1
and that the wave speeds outside and inside the bubble are both of order 1. Thus the contrast
between the wave speeds is not significant. We assume, however, that there is a large contrast
in the bulk modulii. In summary, we assume that δ � 1 and τ = O(1).

We use layer potentials to represent the solution to the scattering problem (2.1). Let the
single layer potential SkD : L2(∂D) → H1(∂D), H1

loc(R3) associated with D and wavenumber k
be defined by

∀x ∈ R3, SkD[ψ](x) :=

∫
∂D

Gk(x,y)ψ(y)dσ(y),

where

Gk(x,y) := − eik|x−y|

4π|x− y|

is the Green function of the Helmholtz equation in R3, subject to the Sommerfeld radiation
condition. We also define the boundary integral operator Kk,∗D : L2(∂D)→ L2(∂D) by

∀x ∈ D, Kk,∗D [ψ](x) :=

∫
∂D

∂Gk(x,y)

∂ν(x)
ψ(y)dσ(y).

We then look for a solution u of (2.1) of the form

u =

{
uin + SkD[ψ], on R3 \ D̄,

SkbD [ψb], on D,
(2.2)

for some surface potentials ψ,ψb ∈ L2(∂D). Using the jump relations for the single layer
potentials [2], one can show that (2.1) is equivalent to the boundary integral equation

A(ω, δ)[Ψ] = F, (2.3)

where

A(ω, δ) =

(
SkbD −SkD

−1
2 +Kkb,∗D −δ(12 +Kk,∗D )

)
, Ψ =

(
ψb
ψ

)
, F =

(
uin

δ ∂u
in

∂ν

)
.

Throughout the paper, we denote by H = L2(∂D)×L2(∂D) and by H1 = H1(∂D)×L2(∂D),
and use (·, ·) for the inner product in L2 spaces and ‖ · ‖H for the norm in H. Here, H1(∂D) is
the standard Sobolev space. It is clear that A(ω, δ) is a bounded linear operator from H to H1,
i.e. A(ω, δ) ∈ B(H,H1).

We define the resonances of the bubble in the scattering problem (2.1) as the complex
numbers ω with negative imaginary part such that there exists a nontrivial solution to

A(ω, δ)[Ψ] = 0. (2.4)

These can be viewed as the characteristic values of the operator-valued analytic function ω 7→
A(ω, δ). We are interested in the quasi-static resonances of the bubble, or the resonance fre-
quencies for which the size of the bubble is much smaller than the wavelength 2πk−1. In some
physics literature, this resonance is called the Minnaert resonance [21]. Due to our assumptions
on the bubble being of size order 1, and the wave speed outside of the bubble also being of order
1, this resonance should lie in a small neighborhood of the origin in the complex plane. In what
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follows, we apply the Gohberg-Sigal theory to find this resonance.
We first look at the limiting case when δ = ω = 0. We set for clarity SD := Sk=0

D , K∗D :=

Kk=0,∗
D , and we define

A0 := A(0, 0) =

(
SD −SD

−1
2 +K∗D 0

)
. (2.5)

We denote by 1∂D ∈ H1(∂D) the constant function on ∂D with value 1, and by A∗0 : H1 → H
the adjoint of A0. We recall that Ker

(
K∗D −

1
2

)
= Vect{ψ0}, for some ψ0 ∈ H. We choose the

normalization of ψ0 so that (1∂D, ψ0) =
∫
∂D ψ0 = 1. With this normalization, it holds that

SD[ψ0] = −Cap−1D 1∂D, where CapD is the capacity of the set D.

Lemma 2.1. It holds that Ker(A0) = Vect {Ψ0} and that Ker(A∗0) = Vect{Φ0}, where we set

Ψ0 =

(
ψ0

ψ0

)
and Φ0 =

(
0

1∂D

)
.

The above lemma shows that ω = 0 is a characteristic value for the operator-valued analytic
function A(ω, δ). By the Gohberg-Sigal theory [2, 14], we can conclude the following result
about the existence of the quasi-static resonance.

Lemma 2.2. For any δ sufficiently small, there exists a characteristic value ω0 = ω0(δ) to the
operator-valued analytic function A(ω, δ) such that ω0(0) = 0 and ω0 depends on δ continuously.

By performing the asymptotic analysis of the operator A(ω, δ), we are able to calculate the
first orders of δ 7→ ω0(δ). Our main result in this section is stated in the following theorem.

Theorem 2.1. In the quasi-static regime, there exist two resonances for a single bubble, of the
form (|D| denotes the volume of D).

ω±(δ) = ±

√CapDv
2
b

|D|

 δ
1
2 − i

(
Cap2

Dv
2
b

8πv|D|

)
δ +O(δ

3
2 ).

The resonance ω+ is what is usually called the Minnaert resonance.

Remark 2.1. In the two-dimensional case, we find another expansion. The main differences
between the two-dimensional case and the three-dimensional case are explained in Appendix B.

Remark 2.2. In the case of a collection of N identical bubbles, with separation distance much
larger than their characteristic sizes, the Minnaert resonance for a single bubble will be split into
N resonances. The splitting will be related to the eigenvalues of a N-by-N matrix which encodes
information on the configuration of the N bubbles. This can be proved by a similar argument as
in [4].

Remark 2.3. In the special case when D is the sphere of radius R, we have CapD = 4πR and
|D| = 4π

3 R
3. Consequently, the Minnaert resonance is given by

ω+(δ) =
vb
R

√
3δ − i

3v2b δ

2Rv
.

The leading term ωM =
√

3δvb/R was already derived by Minnaert [21].
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Proof of Theorem 2.1. We find the resonance by solving

A(ω, δ)[Ψδ] = 0. (2.6)

• Asymptotic analysis of A(ω, δ). Let us first study the operator A(ω, δ). Using the results
in Appendix A, we can derive the following result.

Lemma 2.3. In the space B(H,H1), we have

A(ω, δ) := A0 + B(ω, δ) = A0 + ωA1,0 + ω2A2,0 + ω3A3,0 + δA0,1 + δω2A2,1 +O(|ω|4 + |δω3|)

where we define

A1,0 =

(
v−1b SD,1 −v−1SD,1

0 0

)
, A2,0 =

(
v−2b SD,2 −v−2SD,2
v−2b K

∗
D,2 0

)
, A3,0 =

(
v−3b SD,3 −v−3SD,3
v−3b K

∗
D,3 0

)
,

A0,1 =

(
0 0
0 −(12 +K∗D)

)
, A2,1 =

(
0 0
0 −v−2K∗D,2

)
.

We now define a rank-1 operator P0 from H to H1 by P0[Ψ] := (Ψ,Ψ0)Φ0, and denote by
Ã0 = A0 + P0.

Lemma 2.4. We have

(i) The operator Ã0 is a bijective operator in B(H,H1). Moreover, Ã0[Ψ0] = ‖Ψ0‖2Φ0;

(ii) Its adjoint Ã0
∗

is a bijective operator in B(H1,H). Moreover, Ã0
∗
[Φ0] = ‖Φ0‖2Ψ0.

Proof. By construction, and the fact that SD is bijective from L2(∂D) to H1(∂D) [1], we can
show that Ã0 (hence Ã0

∗
) is bijective. The fact that Ã0[Ψ0] = 2‖ψ0‖2Φ0 is direct. Finally, by

noticing that P∗0 [θ] = (θ,Φ0)Ψ0, it follows that Ã0
∗
[Φ0] = P∗0 [Φ0] = ‖1∂D‖2Ψ0.

• Strategy of the proof.
Write Ψδ = Ψ0 + Ψ1 and assume the orthogonality condition (Ψ1,Ψ0) = 0. Since Ã0 =

A0 + P0, Equation (2.6) is equivalent to

(Ã0 − P0 + B)[Ψ0 + Ψ1] = 0.

Observe that the operator Ã0+B is invertible for sufficiently small δ and ω. Applying (Ã0+B)−1

to both sides of the above equation leads to

Ψ1 = (Ã0 + B)−1P0[Ψ0]−Ψ0 = ‖Ψ0‖2 (Ã0 + B)−1[Φ0]−Ψ0. (2.7)

Using the orthogonality condition, we deduce that (2.6) has a solution if and only if

Ã(ω, δ) := ‖Ψ0‖2
((

(Ã0 + B)−1[Φ0],Ψ0

)
− 1
)

= 0. (2.8)

Let us calculate A(ω, δ) := Ã(ω, δ) ‖Φ0‖. Using the Neumann series

(Ã0 + B)−1 =
(

1 + Ã0
−1B

)−1
Ã0
−1

=
(

1− Ã0
−1B + Ã0

−1BÃ0
−1B − ...

)
Ã0
−1
,

5



and the fact that Ã0
−1

[Φ0] = ‖Ψ0‖−2 Ψ0 and Ã0
−1

[Ψ0] = ‖Φ0‖−2 Φ0, we obtain that

A(ω, δ) =− ω (A1,0[Ψ0],Φ0)− ω2 (A2,0[Ψ0],Φ0)− ω3 (A3,0[Ψ0],Φ0)− δ (A0,1[Ψ0],Φ0)

+ ω2
(
A1,0Ã0

−1A1,0[Ψ0],Φ0

)
+ ω3

(
A1,0Ã0

−1A2,0[Ψ0],Φ0

)
+ ω3

(
A2,0Ã0

−1A1,0[Ψ0],Φ0

)
+ ωδ

(
A1,0Ã0

−1A0,1[Ψ0],Φ0

)
+ ωδ

(
A0,1Ã0

−1A1,0[Ψ0],Φ0

)
+ ω3

(
A1,0Ã0

−1A1,0Ã0
−1A1,0[Ψ0],Φ0

)
+O(|ω|4 + |δ| |ω|2 + |δ|2).

It is clear that A∗1,0[Φ0] = 0. Consequently, the expression simplifies into

A(ω, δ) =− ω2 (A2,0[Ψ0],Φ0)− ω3 (A3,0[Ψ0],Φ0) + ω3
(
A2,0Ã0

−1A1,0[Ψ0],Φ0

)
− δ (A0,1[Ψ0],Φ0) + ωδ

(
A0,1Ã0

−1A1,0[Ψ0],Φ0

)
+O(|ω|4 + |δ| |ω|2 + |δ|2).

(2.9)

We now calculate the five remaining terms.

• Calculation of (A2,0[Ψ0],Φ0). Using the first point of Lemma A.1, we get

(A2,0[Ψ0],Φ0) = v−2b
(
K∗D,2[ψ0],1∂D

)
= v−2b (ψ0,KD,2[1∂D])

= −v−2b
∫
∂D

ψ0(x)

∫
D
G0(x− y)dydσ(x) = −v−2b

∫
D
SD[φ0](x)dx =

|D|
v2bCapD

,

where we used the fact that SD[φ0](x) = −Cap−1D for all x ∈ D.

• Calculation of (A3,0[Ψ0],Φ0). Similarly, using the second point of Lemma A.1, we get

(A3,0[Ψ0],Φ0) = v−3b (ψ0,KD,3[1∂D]) = v−3b

(
ψ0,

i|D|
4π

1∂D

)
=

i|D|
4πv3b

.

• Calculation of (A0,1[Ψ0],Φ0). We directly have

(A0,1[Ψ0],Φ0) = −(ψ0,1∂D) = −1.

• Calculation of
(
A0,1Ã0

−1A1,0[Ψ0],Φ0

)
. We have

A1,0[Ψ0] =

(
1

vb
− 1

v

)(
SD,1[ψ0]

0

)
=

(
1

vb
− 1

v

)
−i

4π

(
1∂D

0

)
,

A∗0,1[Φ0] =

(
0

−
(
1
2 +KD

)
[1∂D]

)
= −

(
0

1∂D

)
.

Let us calculate Ã−10

(
1∂D

0

)
. We look for (yb, y) ∈ H so that

(
1∂D

0

)
= (A0 + P0)

(
yb
y

)
=

(
SD[yb − y]

(−1
2 +K∗D)[yb]

)
+ (yb + y, ψ0)

(
0

1∂D

)
.
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By solving the above equations directly, we obtain yb = −CapD
2 ψ0 and y = CapD

2 ψ0, so that

Ã−10

(
1∂D

0

)
=

CapD
2

(
−ψ0

ψ0

)
. (2.10)

It follows that (
A0,1Ã0

−1A1,0[Ψ0],Φ0

)
=

(
1

vb
− 1

v

)
iCapD

8π
.

• Calculation of
(
A2,0Ã0

−1A1,0[Ψ0],Φ0

)
. Using similar calculations, we obtain(

A2,0Ã0
−1A1,0[Ψ0],Φ0

)
=

(
Ã0
−1A1,0[Ψ0],A∗2,0[Φ0]

)
=

1

v2b

(
1

vb
− 1

v

)
iCapD

8π

(
ψ0,KD,2[1∂D]

)
=

1

v2b

(
1

vb
− 1

v

)
i|D|
8π

.

• Conclusion. Considering the above the results, we can derive from (2.9) that

A(ω, δ) =− ω2 |D|
v2bCapD

− ω3 i|D|
8πv2b

(
1

vb
+

1

v

)
+ δ + ωδ

iCapD
8π

(
1

vb
− 1

v

)
+O(|ω|4 + |δ| |ω|2 + |δ|2).

(2.11)

We now solve A(ω, δ) = 0. It is clear that δ = O(ω2), and thus ω0(δ) = O(
√
δ). We write

ω0(δ) = a1δ
1
2 + a2δ +O(δ

3
2 ), and get

− |D|
v2bCapD

(
a1δ

1
2 + a2δ +O(δ

3
2 )
)2
− i|D|

8πv2b

(
1

vb
+

1

v

)(
a1δ

1
2 + a2δ +O(δ

3
2 )
)3

+ δ +
iCapD

8π

(
1

vb
− 1

v

)(
a1δ

3
2 + a2δ

2 +O(δ
5
2 )
)

+O(δ2) = 0.

From the coefficients of the δ and δ
3
2 terms, we obtain

−a21
|D|

v2bCapD
+ 1 = 0 and 2a1a2

−|D|
v2bCapD

− a31
i|D|
8πv2b

(
1

vb
+

1

v

)
+ a1

iCapD
8π

(
1

vb
− 1

v

)
= 0

which yields

a1 = ±

√
v2bCapD
|D|

and a2 = −
iCap2

Dv
2
b

8π|D|v
.

This completes the proof of the theorem.

Remark 2.4. Using the method developed above, we can also obtain the full asymptotic expan-
sion for the resonance with respect to the small parameter δ.
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3 The point scatterer approximation

In this section, we derive the monopole approximation. In order to do so, we change the point
of view. We now assume that the size of the bubble goes to 0, and we would like to replace the
complicated behavior of the bubble by an equivalent simple formula (monopole approximation).
More specifically, we assume that 0 ∈ D and that the bubble is Dε := εD, with contrast δε,
for some ε > 0. We excite the bubble at a fixed frequency uink := u0e

ik·x, and we would like to
understand the behavior of the scattered field as ε → 0. As noted in the previous section, the
interesting regime is when

√
δε ∼ ε. In the sequel, we fix µ ≥ 0, and study the limit as ε→ 0 of

us(x) solution to (2.1) for a bubble ε|D| with contrast δε := µε2.

Theorem 3.1. For all x ∈ R3\{0} and in the regime where the bubble Dε with contrast δ = µε2

is excited by uink := u0e
ik·x, it holds that

us(x) =


ε

(
CapD

1− µM
µ

u0

)
Gk(x) +O(ε2) if µ 6= µM

i
4π

k
u0Gk(x) +O(ε) if µ = µM ,

where we set

µM :=
|D|ω2

CapDv
2
b

=
|D|k2b
CapD

. (3.1)

Remark 3.1. Loosely speaking, if the bubble is small and has a high-contract, then according
to Theorem 3.1, the scattered field behaves like

us ≈ CapD(
1− |D|ω2

CapDv
2
b δ

)
− iCapDk

4π

uink (0)Gk ≈ gs(ω)uink (0)Gk0 ,

where the function gs(ω), called the scattering function of the bubble, is defined by

gs(ω) :=
CapD(

1− ω2

ω2
M

)
− iCapDk

4π

.

Here, ωM :=
√

CapDδ
|D| vb is the Minnaert resonance of the bubble.

Remark 3.2. The imaginary part in the denominator of gs is called the radiative damping term.
Since this term is negative, the poles of ω → gs(ω) have a negative imaginary part. Together with
the Titchmarsh’s theory [22], this implies that gs is the Fourier transform of a causal function,
hence satisfies the Kramers-Krönig relations.

Remark 3.3. If the bubble is a sphere of radius R, one obtains

gs(ω) =
4πR(

1− ω2

ω2
M

)
− iRk

.

This term has the same properties as the usual scattering functions that we may find in [10, 17].
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Proof of Theorem 3.1. By a simple change of scale, the problem is equivalent to understanding
the behavior of SεkD [ψ](x/ε) as ε→ 0, where Ψ = (ψb, ψ) is solution to

A(εω, µε2)Ψ = F with F (x) := u0

(
eiεk·x

µε3ik · νxeik·x

)
.

Step 1. We write Ψ = αΨ0 + Ψ1 with (Ψ1,Ψ0) = 0. Then,

(Ã0 − P0 + B)[αΨ0 + Ψ1] = F

implies that (
1− (Ã0 + B)−1P0

)
[αΨ0 + Ψ1] = (Ã0 + B)−1[F ],

which yields

αΨ0 + Ψ1 − α ‖Ψ0‖2 (Ã0 + B)−1[Φ0] = (Ã0 + B)−1[F ].

As a result, we get
α =

((Ã0 + B)−1[F ],Ψ0)

‖Ψ0‖2
(

1−
(

(Ã0 + B)−1[Φ0],Ψ0

)) = −((Ã0 + B)−1[F ],Ψ0)

Ã(ω, δ)
,

Ψ1 = (Ã0 + B)−1[F ] + α ‖Ψ0‖2 (Ã0 + B)−1[Φ0]− αΨ0.

We have F = u0

(
1∂D

0

)
+O(ε), so that, together with (2.10),

(Ã0+B)−1[F ] = u0(Ã0+B)−1
(
1∂D

0

)
+O(ε) = u0Ã0

−1
(
1∂D

0

)
+O(ε) = u0

CapD
2

(
−ψ0

ψ0

)
+O(ε).

As a result,

Ψ1 = u0
CapD

2

(
−ψ0

ψ0

)
+O(ε).

Step 2. To calculate the scattered field, we use the approximation

SεkD [ψ0](x/ε) =

∫
∂D

Gεk

(∣∣∣x
ε
− y

∣∣∣)ψ0(y)dσ(y) = −ε
∫
∂D

eik|x−εy|

4π|x− εy|
ψ0(y)dσ(y)

= −ε eik|x|

4π|x|

∫
∂D

ψ0(y)dσ(y) +O(ε2) = −ε eik|x|

4π|x|
+O(ε2) = εGk(x) +O(ε2).

Therefore,

us(x/ε) =

(
α+ u0

Cap

2
+O(ε)

)
SεkD [ψ0](|x0|/ε) = ε

(
α+ u0

Cap

2

)
Gk(x)(1 +O(ε)).

9



Step 3. We now calculate the coefficient α. We write

F = F1 + F2 with F1 = u0

(
eik·x

0

)
and F2 =

(
0

µε3ikeik·x

)
.

It is clear that F2 = O(ε3), so that

α = −
(
(Ã0 + B)−1[F ],Ψ0

)
Ã(ω, δ)

= −
(
(Ã0 + B)−1[F1],Ψ0

)
+O(ε3)

Ã(ω, δ)

= −
‖Φ0‖2

(
(Ã0 + B)−1[F1],Ψ0

)
+O(ε3)

A(ω, δ)
.

We have, from the Neumann series,(
(Ã0 + B)−1[F1],Ψ0

)
=
(

(Ã0
−1 − Ã0

−1BÃ0
−1

+ Ã0
−1BÃ0

−1BÃ0
−1

)[F1],Ψ0

)
+O(ε3)

= ‖Φ0‖−2
(

(F1,Φ0)− (Ã0
−1

[F1],B∗Φ0) + (Ã0
−1BÃ0

−1
[F1],B∗[Φ0])

)
+O(ε3)

= ‖Φ0‖−2
(
−(Ã0

−1
[F1],B∗[Φ0]) + (Ã0

−1BÃ0
−1

[F1],B∗[Φ0])
)

+O(ε3),

where we have used the fact that (Ã0
∗
)−1[Ψ0] = ‖Φ0‖−2 Φ0 and that (F1,Φ0) = 0. Recall that

B∗[Φ0] = εωA∗1,0[Φ0] + ε2ω2A∗2,0[Φ0] + ε2µA∗0,1[Φ0] +O(ε3).

Together with

Ã0
−1

[F1] = u0
CapD

2

(
−ψ0

ψ0

)
+O(ε),

and

A∗1,0[Φ0] = 0, A∗2,0[Φ0] =

(
v−2b KD,2[1∂D]

0

)
, A∗0,1[Φ0] = −

(
0

1∂D

)
,

we can conclude that

‖Φ0‖2
(
(Ã0 + B)−1[F1],Ψ0

)
= ε2u0

CapD
2

[
−ω2(ψ0, v

−2
b KD,2[1∂D])− µ(ψ0,1∂D)

]
+O(ε3)

= −ε2u0
CapD

2
(µM + µ) +O(ε3),

where µM was defined in (3.1).

On the other hand, from the expression of A(ω, δ) in (2.11), we have

A(ω, δ) = ε2 (µ− µM ) + ε3
(
ωµ

iCapD
8π

(
1

vb
− 1

v

)
− ω3 i|D|

8πv2b

(
1

vb
+

1

v

))
+O(ε4). (3.2)

If µ 6= µM , the first term is dominant, and we get

α = u0
Cap(µ+ µM )

2(µ− µM )
+O(ε) so that α+ u0

Cap

2
= u0

CapD
1− µM

µ

+O(ε).
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If µ = µM , then the second term in (3.2) is dominant. Actually, this term simplifies into

ωµM
iCapD

8π

(
1

vb
− 1

v

)
− ω3 i|D|

8πv2b

(
1

vb
+

1

v

)
= i

ω3|D|
4πv2bv

= −iµM
ωCapD

4πv
,

so that

α = i
u0
ε

4πv

ω
+O(1) so that α+ u0

Cap

2
= α+O(1) = i

u0
ε

4πv

ω
+O(1).

This concludes the proof of Theorem 3.1.

Remark 3.4. Using similar methods together with the results of Appendix B, we can derive the
monopole approximation in two dimensions.

4 Numerical illustrations

In this section we perform numerical simulations in two dimensions to analyze the resonant
frequencies for two scenarios. We first analyze the single bubble case for which a formula was
derived in Theorem B.1. We then calculate the resonant frequencies for two bubbles and compare
our results with the single bubble case.

4.1 Resonant frequency of a single bubble in two dimensions

To validate the Minnaert resonance formula (B.3) in two dimensions we first determine the
characteristic value ωc of A(ω, δ) in (2.4) numerically. We then calculate the complex root ωf
of (B.3) that has a positive real part. Comparing ωc and ωr over a range of appropriate values
of δ allows us to judge the accuracy of the formula.

In order to perform the analysis in the correct regime, which was described in Section 2, we
take ρ = κ = 1000 and ρb = κb = c, where c is chosen such that the wave speed in both air
and water is of order 1 and δ ∈ {10−i}, i ∈ {1, . . . , 5}. We use 29 points to discretize the unit
circle used in the calculation of the layer potentials that form A. Calculating ωc is equivalent
to determining the smallest ω such that A(ω, δ) has a zero eigenvalue, i.e.

ωc := arg min
ω∈C

{|ω|, 0 ∈ σ(A(ω, δ))} .

We denote by λ(ω) the eigenvalue of A(ω, δ) with the smallest norm. We find the complex roots
of the equation λ(ω) = 0 using Muller’s method [2, 9]. We also use Muller’s method to calculate
ωf solution to (B.3). The resonant frequencies ωc and ωf , along with the relative errors, for
specific values of δ are given in Table 1. In Figure 1 it can be seen that the relative error becomes
very small when δ � 1, confirming the excellent accuracy of the formula. In particular, we note
that when δ = 10−3, which is close to the usual contrast between water and air, the difference
between ωc and ωf is negligible with a relative error of only 0.0652%.

4.2 Resonant frequencies of two bubbles in two dimensions

In this subsection we numerically solve the two bubble case and analyze it with respect to our
results for the Minnaert resonance of a single bubble. In the case of two bubbles we have two

11
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Figure 1: The relative error of the Minnaert resonance ωc obtained by the two dimensional formula (B.3)
becomes negligible when we are in the appropriate high contrast regime.

δ ωc ωf Relative error

10−1 0.261145− 0.150949 i 0.250455− 0.134061 i 5.8203%
10−2 0.075146− 0.023976 i 0.074681− 0.023687 i 0.6727%
10−3 0.021001− 0.004513 i 0.020987− 0.004508 i 0.0652%
10−4 0.005950− 0.000959 i 0.005949− 0.000959 i 0.0062%
10−5 0.001714− 0.000221 i 0.001714− 0.000221 i 0.0030%

Table 1: A comparison between the characteristic value ωc of A(ω, δ) and the root of the two dimensional
resonance formula (B.3) with positive real part ωf , over several values of δ.

resonant frequencies, ωs and ωa, that correspond to the normal modes of the system [11]. These
frequencies are not in general equal to the one bubble resonant frequency ωc. The interaction
between the bubbles gives rise to a shift in the resonance frequencies. The symmetric mode ωs
typically shows a downward frequency shift and occurs when the bubbles oscillate (collapse and
expand) in phase, essentially opposing each other’s motion. The antisymmetric mode ωa shows
an upward frequency shift and occurs when the bubbles oscillate in antiphase, facilitating each
other’s motion.

To account for the interaction between the two bubbles the matrix A in (2.3) is replaced
with

A2(ω, δ) =


SkbD1

−SkD1
0 −SkD1,D2

−1
2 +Kkb,∗D1

−δ(12 +Kk,∗D1
) 0 −Kk,∗D1,D2

0 −SkD2,D1
SkbD2

−SkD2

0 −Kk,∗D2,D1
−1

2 +Kkb,∗D2
−δ(12 +Kk,∗D2

)

 ,
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where the operators SkDi,Dj
and Kkb,∗Di,Dj

are given, for x ∈ ∂Di by

SkDi,Dj
=

∫
∂Dj

Gk(x,y)ψ(y)dσ(y) and Kk,∗Di,Dj
[ψ](x) =

∫
∂Dj

∂Gk(x,y)

∂νx
ψ(y)dσ(y).

The variation in the eigenvalues of A2 with respect to the input frequency, and hence the
shifting of the resonant frequencies, is highly sensitive to the ratio of δ = ρb/ρ to κb/κ, with
it being at a minimum when these quantities are equal. In order to make the results more
clearly visible, while keeping the simulation in the correct regime, let us take ρb = 1.1 and
κb = 0.1. For reference, we note that the resonant frequency for a single bubble in this regime
is ωc = 0.01856427− 0.00387243 i.

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
0

1

2

3

4

5
x 10

−3

Re(ω)

|λ
|

Figure 2: When the bubbles are close together the resonance may be much more pronounced. Here we
have |λ| as the distance varies from d = 0.1 (blue dots) to d = 0.5 (orange dots) and =(ω) = −0.0008i.
We have resonance at the symmetric mode ωs ≈ 0.0041− 0.0008 i when d = 0.1. The resonant frequency
of a single bubble is ωc = 0.01856427− 0.00387243 i.

We now identify three regimes in terms of bubble separation distance d. The first occurs
due to strong interaction when d is less than the radius of the bubbles. In this regime the
resonant frequency shift may be much more pronounced. For example, when d = 0.1 we have
ωs ≈ 0.0041 − 0.0008 i, while ωa ≈ 0.7435 + 0.0032 i. This regime is shown in Figure 2 for
=(ω) = −0.008 i.

When d is greater than the radius of the bubbles, yet not very large, we have a somewhat
stable regime featuring small to moderate resonant frequency shifts. It is natural to expect that
as the distance between the bubbles increases, the eigenvalues of the two bubble system approach
those of the single bubble system. And indeed that is the case as can be seen in Figure 3 where
ω has been restricted to R.
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d = 10 d = 100

ωs 0.01722793− 0.00407516 i 0.01819212− 0.00316674 i
ωa 0.02025476− 0.00349214 i 0.01905723− 0.00470526 i

Table 2: The normal modes of the two bubble system shown in Figure 4. They are quite close to the
resonant frequency of a single bubble in this regime, in contrast to the strong frequency shifts observed
when d� a and d� a.

As with the three dimensional case, however, we require a complex ω with negative imaginary
part in order forA orA2 to become singular. This can be seen in Figure 4 for d = 10 and d = 100.
Table 2 shows that the normal modes are quite close to the single bubble resonant frequency in
this regime.

The final regime occurs when the separation distance becomes very large compared to the
radius of the bubbles. In this situation the sensitivity of the Hankel function in the layer
potentials to negative imaginary numbers becomes apparent, leading to a much wider variation
in the eigenvalues of A2. Similarly to when the bubbles are very close together, we observe
significant resonant frequency shifts in this regime. When d varies from 100 to 1000 we obtain
the spectrum shown in Figure 5. Here we have a symmetric mode ωs ≈ 0.0013 − 0.00577 i and
an antisymmetric mode ωa ≈ 0.0308− 0.00575 i.

5 Concluding remarks

In this paper we have investigated the acoustic wave propagation problem in bubbly media
and for the first time rigorously derived the low frequency resonances. Furthermore, we have
provided a justification for the monopole approximation. The techniques developed in this
paper open a door for a mathematical and numerical framework for investigating acoustic wave
propagation in bubbly media. In forthcoming papers we will investigate the superabsorption
effect that can be achieved using bubble metascreens [18, 20]. We will also mathematically
justify Foldy’s approximation and quantify time-reversal and the superfocusing effect in bubbly
media probed at their Minnaert resonant frequency [17]. Finally, we will develop accurate and
fast numerical schemes for solving acoustic wave propagation problems in the presence of closely
spaced bubbles.

A Some asymptotic expansions

We recall some basic asymptotic expansion for the layer potentials in three and two dimensions
from [2] (see also the appendix in [3]).

A.1 Some asymptotic expansions in three dimensions

We expand the Green’s function Gk with

Gk(x) = − eik|x|

4π|x|
= G0(x) +

∞∑
n=1

knGn(x), with Gn(x) := − in

4πn!
|x|n−1. (A.1)
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(a) The distance between the bubbles is varying from 0.1 to 1.
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(b) The distance between the bubbles is varying from 10 to 100.

Figure 3: |λ| when ω ∈ R for λ ∈ σ(A) (black crosses) and λ ∈ σ(A2) (colored dots) . The distance
increases as the dots change from blue to orange. Although the eigenvalues of A2 approach those of A as
the distance increases, they don’t go to zero when ω is real. Here, σ(A) and A2 are the spectra of A and
σ(A2), respectively.
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(a) The distance between the bubbles is 10.
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(b) The distance between the bubbles is 100.

Figure 4: The eigenvalues of A (black crosses) and A2 (blue and green dots) may go to zero in the
regime where the bubbles are a moderate distance apart, provided ω has some negative imaginary part.
The frequency shift is less pronounced when d = 100 as opposed to d = 10 due to the decrease in the
interaction of the bubbles with each other.

16



1 2 3 4 5 6 7 8 9 10

x 10
−3

0

1

2

3

4

5
x 10

−3

Re(ω)

|λ
|

Figure 5: The sensitivity of the Hankel function in the layer potentials to negative imaginary numbers is
apparent when the distance between the bubbles is very large. This leads to a signification reduction in
the real part of the resonant frequencies. Here d varies from 100 to 1000 and =(ω) = −0.00577 i. We
have a symmetric mode at ωs ≈ 0.0013− 0.00577 i.

In particular, G1(x) = − i
4π . Developping in power of k the equation (∆ + k2)Gk = δ0 leads to

∀n ≥ 1, ∆Gn+2 = −Gn. (A.2)

From (A.1), we decompose the single layer potential as

SkD = SD +

∞∑
n=1

knSD,n with SD,n[ψ] :=

∫
∂D

Gn(x− y)ψ(y)dy, (A.3)

where the convergence holds in B(L2(∂D), H1(∂D)). Similarly, the asymptotic expansion for

the operator Kk,∗D is

Kk,∗D [ψ](x) = K∗D +
∞∑
n=1

knK∗D,n with K∗D,n[ψ] :=

∫
∂D

∂Gn(x− y)

∂νx
ψ(y)dy, (A.4)

where the convergence holds in B(L2(∂D), L2(∂D)). Using (A.2), we deduce the following useful
identities.
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Lemma A.1. It holds:

(i) KD,2[1∂D](x) =

∫
∂D

∂G2(x− y)

∂νy
dσ(y) =

∫
D

∆yG2(x− y)dy = −
∫
D
G0(x− y)dy,

(ii) KD,3[1∂D](x) =

∫
∂D

∂G3(x− y)

∂νy
dσ(y) =

∫
D

∆yG3(x− y)dy = −
∫
D
G1(x− y)dy =

i|D|
4π

.

A.2 Some asymptotic expansions in two dimensions

In two dimensions, the Green’s function for the Laplace and Helmholtz equations are respectively

G0 :=
1

2π
ln(|x|) and ∀k > 0, Gk(x) := − i

4
H

(1)
0 (k|x|)

and H
(1)
0 is the Hankel function of first kind and order 0. We have

Gk(x) = G0(x) + ηk +
∞∑
n=1

(
k2n ln k

)
G(1)
n (x) + k2nG(2)

n (x)

where we defined

G(1)
n (x) := bn|x|2n and G(2)

n (x) := (bn ln |x|+ cn) (|x|)2n ,

with

ηk :=
ln k

2π
+ η1, η1 :=

1

2π

(
γ − ln 2− iπ

2

)
, bn =

(−1)n

2π22n(n!)2
, cn = bn

2πη1 −
n∑
j=1

1

j

 ,

and where γ is the Euler constant. The single-layer potential for the Helmholtz equation is
defined by

SkD[ψ] =

∫
∂D

Gk(· − y)ψ(y)dσ(y) = ŜkD[ψ] +
∞∑
n=1

(
k2n ln k

)
S(1)D,n[ψ] + k2nS(2)D,n[ψ],

where the convergence holds in B(L2(∂D), H1(∂D)), and where we set

ŜkD[ψ] = SD[ψ] + ηk

∫
∂D

ψ dσ and S(1),(2)D,n [ψ] :=

∫
∂D

G(1),(2)
n (· − y)ψ(y)dσ(y). (A.5)

Similarly, the boundary integral operator is Kk,∗D defined, for x ∈ ∂D, by

Kk,∗D [ψ](x) =

∫
∂D

∂Gk(x,y)

∂νx
ψ(y)dσ(y) = K∗D[ψ](x)+

∞∑
n=1

(
k2n ln k

)
K(1),∗
D,n [ψ](x)+k2nK(2),∗

D,n [ψ](x),

where the convergence holds in B(L2(∂D)), and where we set

K(1),(2),∗
D,n [ψ](x) =

∫
∂D

∂G
(1),(2)
n (x− y)

∂νx
ψ(y)dσ(y).
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Lemma A.2. It holds that

K(1)
D,1[1∂D] =

−|D|
2π

1∂D and K(2)
D,1[1∂D](x) = −η1|D|1∂D(x)−

∫
D
G0(x− y)dy.

Proof. First, we have (notice that b1 = −1/(8π))

K(1)
D,1[1∂D](x) =

∫
∂D

G
(1)
1 (x− y)

∂νy
dσ(y) =

∫
D

∆yG
(1)
1 (x− y)dy = b1

∫
D

∆y|y − x|2dy =
−|D|
2π

.

Then, using the equality

∀x ∈ ∂D,
∫
D
|y − x|2∆ ln |y − x|dy = 0,

we get

K(2)
D,1[1∂D](x) =

∫
∂D

∂
[
|y − x|2(b1 ln |x− y|+ c̄1)

]
∂νy

dσ(y) =

∫
D

∆y[|y − x|2(b1 ln |x− y|+ c̄1)]dy

= 4c̄1|D|+ b1

∫
D

4 ln |x− y|]dy + b1

∫
D

4dy = (4b1 + 4c̄1)|D| −
∫
D
G0(x− y)dy.

This completes the proof of the Lemma.

B The Minnaert resonance in two dimensions

In this section, we derive the Minnaert resonance for a single bubble in two dimensions using the
same method we developed for the three-dimensional case. There are two main differences be-
tween the two-dimensional case and the three-dimensional case. First, the single layer potential
SD may not be invertible from L2(∂D) to H1(∂D) in two dimensions, while this property always
holds in three dimensions (see [1, 23] for more detail). Then, there is a logarithmic singularity
in the asymptotic expansion of the single layer potential SkD for small k. These create some
difficulties which we address here.

Recall that

A(ω, δ) =

(
SkbD −SkD

−1
2 +Kkb,∗D −δ(12 +Kk,∗D )

)
,

where the boundary integral operators SkD and Kk,∗D are defined in Section A.2 together with
their asymptotic expansions.

We denote by (recall that the operator ŜkD was defined in (A.5))

A0 :=

(
ŜkbD −ŜkD

−1
2 +K∗D 0

)
. (B.1)

It holds that Ker
(
−1

2 +K∗D
)

= Vect{ψ0}, where ψ0 is a real-valued function, normalized so
that

∫
∂D ψ0dσ = 1. One can show that

SD[ψ0] = −a1∂D (B.2)
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for some a ≥ 0 (see [1, 23]). Actually, we can prove that if SD[ψ] ∈ Vect{1∂D}, then ψ ∈
Vect{ψ0}. If a = 0, then the operator SD is not invertible. We recall that, in two dimensions,
the logarithm capacity of D is the positive number CapD := e−2πa.

Lemma B.1. For all k > 0, the operator ŜkD is invertible in B(L2(∂D), H1(∂D)).

Proof. Let us first show that ŜkD is injective. Assume that there exists ψ ∈ L2(∂D) so that

0 = ŜkD[ψ] = SD[ψ] + ηk(ψ,1∂D)1∂D.

Then, since SD[ψ] ∈ Vect{1∂D}, we deduce that ψ ∈ Vect{ψ0} and we write ψ = αψ0. The
equation becomes

−a+ ηk = 0, or equivalently
ln k

2π
+

1

2π

(
γ − ln 2− iπ

2

)
= a.

Since the left-hand side always have a non null imaginary part, while the right-hand side is always
real, this is not possible. The surjectivity of ŜkD follows from the fact that ŜkD is Fredholm with
index zero. This completes the proof of the lemma.

Lemma B.2. We have Ker(A0) = Vect {Ψ0} and Ker(A∗0) = Vect {Φ0} where

Ψ0 =

(
(ηk − a)ψ0

(ηkb − a)ψ0

)
and Φ0 =

(
0

1∂D

)
.

Proof. We first find the kernel space of A0. Assume that

A0

(
yb
y

)
=

(
ŜkbD [yb]− ŜkD[y]
(−1

2 +K∗D)[yb]

)
= 0 for some yb, y ∈ L2(∂D).

We have

SD[yb − y] + (ηkb(yb,1∂D)− ηk(y,1∂D))1∂D = 0 and

(
−1

2
+K∗D

)
[yb] = 0.

From the second equation, we deduce that yb is a multiple of ψ0. We write yb = αψ0 for some
α ∈ C. The first equation becomes

SD[y] = (ηkbα− ηk(y,1∂D)− aα)1∂D,

and we deduce as before that y ∈ Vect{ψ0}. We write y = βψ0 for some β ∈ C. We obtain that
β(ηk − a) = α(ηkb − a). This completes the proof of the first part of the Lemma. The second
part of the Lemma follows from the fact that the operator ŜkD is injective.

As in the three-dimensional case, we deduce that there exists a map δ 7→ ω0(δ) of Minnaert
resonances. Reasoning as before, we obtain the following theorem.
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Theorem B.1. In the quasi-static regime, there exist Minnaert resonances for a single bubble.
Their leading order terms are given by the roots of

k2b |D|
2π

(
ln(kCapD) + γ − ln 2− iπ

2

)
+ δ = 0.

Remark B.1. In the special case when D is a disk of radius R, we have |D| = πR2 and
CapD = 1. Therefore, the Minnaert resonance in two dimensions is given by

k2b4πR
2

2π

(
ln(k) + γ − ln 2− iπ

2

)
+ δ = 0. (B.3)

Proof of Theorem B.1. As in Theorem 2.1, we can show that the resonances are the roots of

A(ω, δ) :=
(

(Ã0 + B)−1[Φ0],Ψ0

)
− 1 = 0. (B.4)

• Asymptotic analysis of A(ω, δ). We first study the operator A(ω, δ).

Lemma B.3. In the space B(H,H1), we have

A(ω, δ) := A0 + B(ω, δ) = A0 + ω2 lnωA1,1,0 + ω2A1,2,0 + δA0,1 +O(|δω2 lnω|+ |ω4 lnω|),

where

A1,1,0 =

(
v−2b S

(1)
D,1 −v−2S(1)D,1

v−2b K
(1),∗
D,1 0

)
, A0,1 =

(
0 0
0 −

(
1
2 +K∗D

)) .
and

A1,2,0 =

 v−2b

(
− ln vb S

(1)
D,1 + S(2)D,1

)
−v−2

(
− ln v S(1)D,1 + S(2)D,1

)
v−2b

(
− ln vb K

(1)
D,1 +K(2)

D,1

)
0

 ,

We then define a projection P0 by

P0[Ψ] := (Ψ,Ψ0)Φ0,

and denote by
Ã0 = A0 + P0.

With the help of Lemma B.1, we can establish the following results.

Lemma B.4. We have

(i) The operator Ã0 is a bijective operator in B(H,H1). Moreover, Ã0[Ψ0] = ‖Ψ0‖2 Φ0;

(ii) Its adjoint Ã0
∗

is a bijective operator in B(H1,H). Moreover, Ã0
∗
[Φ0] = ‖Φ0‖2 Ψ0.

• Strategy of the proof.
By a direct calculation, we further have

‖Ψ0‖2 ‖Φ0‖2A(ω, δ) =− ω2 lnω (A1,1,0[Ψ0],Φ0)− ω2 (A1,2,0[Ψ0],Φ0)

− δ (A0,1[Ψ0],Φ0) +O(|ω4 lnω|+ |δω2 lnω|).
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It is clear that

(A1,1,0)
∗[Φ0] =

(
v−2b K

(1)
D,1[1∂D]

0

)
=
−|D|
2πv2b

(
1∂D

0

)
, A0,1[Ψ0] = (a− ηkb)

(
0
ψ0

)
,

and that

(A1,2,0)
∗[Φ0] =

(
v−2b

(
− ln vb K

(1)
D,1[1∂D] +K(2)

D,1[1∂D]
)

0

)

=
|D|

2πv2b
(ln vb − 2πη1)

(
1∂D

0

)
− 1

v2b

(∫
DG0(x− y)dy

0

)
,

where we used Lemma A.2. It follows that

(A1,1,0[Ψ0],Φ0) =
(ηk − a)|D|

2πv2b
, (A0,1[Ψ0],Φ0) = (a− ηkb).

Moreover, using the fact that SD[ψ0](x) = −a for all x ∈ D, so that∫
∂D

ψ0(x)

∫
D
G0(x−y)dydσ(x) =

∫
D

dy

∫
∂D

G0(x−y)ψ0(y)dσ(x) =

∫
D
SD[ψ0](y)dy = −a|D|,

we get

(A1,2,0[Ψ0],Φ0) =
(ηk − a)|D|

2πv2b
(ln vb − 2πη1 + 2πa) .

Therefore, since lnω − ln v = ln k, Equation (B.4) leads to

ω2 (ηk − a)|D|
v2b

([
ln kb
2π

+ η1

]
− a
)
− δ(a− ηkb) +O(|ω4 lnω|+ |δω2 lnω|) = 0.

The proof follows by noticing that the term in bra-ket is just ηkb .

References

[1] H. Ammari and H. Kang. Polarization and moment tensors: with applications to inverse
problems and effective medium theory, volume 162. Springer Science & Business Media,
2007.

[2] H. Ammari, H. Kang, and H. Lee. Layer potential techniques in spectral analysis, volume
153. American Mathematical Society Providence, 2009.

[3] H. Ammari, P. Millien, M. Ruiz, and H. Zhang. Mathematical analysis of plasmonic
nanoparticles: the scalar case. arXiv preprint arXiv:1506.00866, 2015.

[4] H. Ammari and H. Zhang. A mathematical theory of super-resolution by using a system of
sub-wavelength Helmholtz resonators. Commun. in Math. Phys., 337(1):379–428, 2015.

22



[5] H. Ammari and H. Zhang. Super-resolution in high-contrast media. Proc. R. Soc. A,
471(2178), 2015.

[6] R.E. Caflisch, M.J. Miksis, G.C. Papanicolaou, and L. Ting. Effective equations for wave
propagation in bubbly liquids. J. Fluid Mech., 153:259–273, 1985.

[7] R.E. Caflisch, M.J. Miksis, G.C. Papanicolaou, and L. Ting. Wave propagation in bubbly
liquids at finite volume fraction. J. Fluid Mech., 160:1–14, 1985.

[8] D.C. Calvo, A.L. Thangawng, and C.N. Layman. Low-frequency resonance of an oblate
spheroidal cavity in a soft elastic medium. J. Acoust. Soc. Am., 132(1):EL1–EL7, 2012.

[9] H. Cheng, W. Crutchfield, M. Doery, and L. Greengard. Fast, accurate integral equation
methods for the analysis of photonic crystal fibers I: Theory. Optics Express, 12(16):3791–
3805, 2004.

[10] M. Devaud, Th. Hocquet, J.-C. Bacri, and V. Leroy. The Minnaert bubble: an acoustic
approach. Eur. J. Phys., 29(6):1263, 2008.

[11] C. Feuillade. Scattering from collective modes of air bubbles in water and the physical
mechanism of superresonances. J. Acoust. Soc. Am., 98(2):1178–1190, 1995.

[12] L.L. Foldy. The multiple scattering of waves. I. General theory of isotropic scattering by
randomly distributed scatterers. Phys. Rev., 67:107–119, 1945.

[13] V. Galstyan, O.S. Pak, and H.A. Stone. A note on the breathing mode of an elastic sphere
in Newtonian and complex fluids. Phys. Fluids, 27(3):032001, 2015.

[14] I.C. Gohberg and E.I. Sigal. An operator generalization of the logarithmic residue theorem
and the theorem of Rouché. Sb. Math., 13(4):603–625, 1971.

[15] P.A. Hwang and W.J. Teague. Low-frequency resonant scattering of bubble clouds. J.
Atmos. Oceanic Technol., 17(6):847–853, 2000.

[16] S.G. Kargl. Effective medium approach to linear acoustics in bubbly liquids. J. Acoust.
Soc. Am., 111(1):168–173, 2002.

[17] M. Lanoy, R. Pierrat, F. Lemoult, M. Fink, V. Leroy, and A. Tourin. Subwavelength
focusing in bubbly media using broadband time reversal. Phys. Rev. B, 91(22):224202,
2015.

[18] V. Leroy, A. Bretagne, M. Fink, H. Willaime, P. Tabeling, and A. Tourin. Design and
characterization of bubble phononic crystals. Appl. Phys. Lett., 95(17):171904, 2009.

[19] V. Leroy, M. Devaud, and J.-C. Bacri. The air bubble: Experiments on an unusual harmonic
oscillator. Am. J. Phys., 70(10):1012–1019, 2002.

[20] V. Leroy, A. Strybulevych, M.G. Scanlon, and J.H. Page. Transmission of ultrasound
through a single layer of bubbles. Eur. Phys. J. E, 29(1):123–130, 2009.

[21] M. Minnaert. XVI. On musical air-bubbles and the sounds of running water. The London,
Edinburgh, Dublin Philos. Mag. and J. of Sci., 16(104):235–248, 1933.

23



[22] E.C. Titchmarsh. Introduction to the Theory of Fourier Integrals (second edition). Oxford,
Clarendon Press, 1948.

[23] G. Verchota. Layer potentials and regularity for the Dirichlet problem for Laplace’s equation
in Lipschitz domains. J. Funct. Anal., 59(3):572–611, 1984.

24


