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INTRODUCTION

The present manuscript contains the notes for a one-week course (15h) given at University Paris-
Dauphine, entitled «A review in functional analysis tool for PDEs».

The presentation of the notes, the results, and most of the remarks are taken from the following
books:

• Analysis by E. Lieb and M. Loss (in English) [LL01];

• Analyse Fonctionelle by H. Brezis (in French) [Bre99];

• Éléments d’analyse fonctionnelle by F. Hirsh and G. Lacombe (in French, with many exerci-
ces) [HL09].

Some other references are

• Théorie des Distributions by L. Schwartz (in French, for the chapter on distributions) [Sch66];

• Partial Differential Equations by L.C. Evans (in English, very complete, hence quite long) [Eva10];

• Elliptic partial differential equations of second order by D. Gilbarg and N.S. Trudinger (in En-
glish, when you cannot find the results in the other books) [GT15].

Most of the proofs of the theorems are simplified, and there will be links to the corresponding
theorems in these books.



CONTENTS

1 The Lebesgue Lp spaces 6
1.1 Notation and first facts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.1.1 Basics in measure theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.1.2 Integrable functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.1.3 The «powerful» theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2 The Lp spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2.2 The useful inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2.3 Convolution in Lebesgue spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.2.4 Convolution as a smoothing operator . . . . . . . . . . . . . . . . . . . . . . . . 14

1.3 Lp spaces as Banach spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.3.1 Basics in Banach spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.3.2 Completion of Lp spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.3.3 Separability of Lp spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.3.4 Duality in Lp spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.4 Topologies of Lp spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.4.1 Basics in topologies in Banach spaces . . . . . . . . . . . . . . . . . . . . . . . 19
1.4.2 Weak convergence which are not strong in Lp . . . . . . . . . . . . . . . . . . . 20
1.4.3 Banach-Alaoglu theorem in Lp . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.5 Lower-semi continuity and convexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.6 Additional exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2 Distributions 23
2.1 Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.1.1 Definition and examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.1.2 Operations on distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2 Example: the Poisson’s equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2.1 Integration by parts on domains . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2.2 Green’s functions and the Poisson’s equation . . . . . . . . . . . . . . . . . . . 27

2.3 Sobolev spaces Wm,p(Ω) and Hm(Ω) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.3.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.3.2 Completion of Sobolev spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.4 Sobolev spaces Wm,p
0 (Ω) and Hm

0 (Ω) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.4.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.4.2 Poincaré’s inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31



CONTENTS 5

3 Hilbert spaces, and Lax-Milgram theorem 33
3.1 Hilbert spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2 Lax-Milgram theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2.1 Application: Riesz’ theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2.2 An operator interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3 Some examples of applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.3.1 The Laplace equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.3.2 The Dirichlet equation in a bounded domain . . . . . . . . . . . . . . . . . . . 37
3.3.3 Neumann problem on bounded domain . . . . . . . . . . . . . . . . . . . . . . 38
3.3.4 A less trivial example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4 Complements on Sobolev spaces 40
4.1 Basics in operator theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.2 Sobolev embeddings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2.1 Sobolev embeddings on the whole space . . . . . . . . . . . . . . . . . . . . . . 40
4.2.2 Morrey’s embedding in the whole space . . . . . . . . . . . . . . . . . . . . . . 42

4.3 Extension operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.3.1 Extension operator on half-space . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.3.2 Extension operators on domains with smooth boundary . . . . . . . . . . . . . 45
4.3.3 Compact embedding in bounded domains . . . . . . . . . . . . . . . . . . . . . 46

4.4 Trace operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.4.1 Trace operators on the half-space . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.4.2 Trace operators on bounded domains . . . . . . . . . . . . . . . . . . . . . . . . 49

5 Optimisation 50
5.1 Euler-Lagrange equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.1.1 Application, defocusing NLS in a bounded domain . . . . . . . . . . . . . . . . 51
5.1.2 Application, focusing NLS in a bounded domain . . . . . . . . . . . . . . . . . 53

5.2 Spectral decomposition of compact symmetric operators . . . . . . . . . . . . . . . . . 55
5.2.1 Basic notions in operator theory . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.2.2 Decomposition of compact symmetric operators . . . . . . . . . . . . . . . . . . 55
5.2.3 Application: the spectrum of Dirichlet Laplacien in bounded domains . . . . . 57

6 Fourier transform 59
6.1 Fourier transform in L1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.2 Fourier transform in L2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
6.3 Fourier transform for distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.3.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.3.2 First examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.3.3 Characterisation of the Sobolev space Hs(Rd) using Fourier transform . . . . . 64
6.3.4 Application: the heat kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65



CHAPTER 1
THE LEBESGUE LP SPACES

In this Chapter, we define the Lebesgue Lp spaces. We focus on the special case where the measure
is the Lebesgue one on Rd.

1.1 Notation and first facts
First, we recall basic facts about measure theory and integration. We refer to [LL01, Chapter 1] for
the reader who is not familiar with this theory.

1.1.1 Basics in measure theory

The open ball of Rd of center x ∈ Rd and radius r > 0 is denoted by

B(x, r) =
{
y ∈ Rd, ‖x− y‖Rd < r

}
.

The Borel sigma-algebra of Rd is the one generated by the family of all open balls of Rd. There is
a natural measure on this sigma-algebra, called the Lebesgue measure, denoted Lebd(A), Ld(A),
|A| or dx(A), which is the one for which

Lebd (B(x, r)) := |B(x, r)| :=
|Sd−1|
d

rd, with |Sd−1| := 2πd/2

Γ(d/2)
,

where Γ is the usual Euler’s Gamma function. Recall that Γ(x + 1) = xΓ(x) for all x > 0, and that
Γ(1/2) =

√
π while Γ(1) = 1. This gives the usual well-known formulae

Leb1(B(x, r)) = 2r, Leb2(B(x, r)) = πr2, Leb3(B(x, r)) =
4

3
πr3, etc.

By construction, the Lebesgue measure is translation invariant: Lebd(A) = Lebd(A+y) for all y ∈ Rd.
We say that a property P : Rd → {True,False} holds almost everywhere (and write a.e.) if

P−1{False} is (contained in a Borel set) of measure 0.

Example 1.1 (Countable sets have 0 measure). For all x ∈ Rd, we have Lebd({x}) = 0. By countable
additivity, we deduce that if C ∈ Rd is countable, then C is Borel-measurable, and Lebd(C) = 0.
For instance, since Q is countable, the assertion «x is irrational» holds almost everywhere.

In the sequel, Ω always denotes an non empty open set of Rd.
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We say that a function f : Ω→ R is (Borel or Lebesgue)-measurable if, for all λ ∈ R, the set

{f > λ} := {x ∈ Ω, f(x) > λ}

is Borel-measurable.
Exercice 1.2

Prove that if f is measurable, then for all λ ∈ R, the set {f < λ} is measurable.
Hint: prove that {f ≤ λ+ 1/n} is measurable, and that {f < λ} =

⋃
n≥1{f ≤ λ+ 1/n}.

1.1.2 Integrable functions

We now focus on Integrable functions.

Definition 1.3 (Lebesgue integration). A positive measurable function f : Ω → R+ is (Lebesgue)-
integrable if the function Ff (λ) := Lebd ({f > λ}) is Riemann integrable. In this case, its integral
is ˆ

Ω
f(x)dx :=

ˆ ∞

0
Ff (λ)dλ. (1.1)

Remark 1.4. The function Ff : R+ → R+ is positive and decreasing, so the Riemann sums always
converge (why?). Being integrable only means that the limit is not +∞, that is

´
Ω f =

´∞
0 Ff <∞.

Formally, this formula is easy to understand from Fubini’s theorem (see Theorem 1.12 below).
Indeed, if 1(x > 0) denotes the Heaviside function, we have

ˆ ∞

0
Ff (λ)dλ =

ˆ ∞

0

(ˆ
Ω
1(f(x) > λ)dx

)
dλ =

ˆ
Ω

(ˆ ∞

0
1(f(x) > λ)dλ

)
dx =

ˆ
Ω
f(x)dx.

If f : Ω→ R is not positive valued, we introduce

f+ := max{f, 0} and f− := max{−f, 0}.

These two functions are positive valued, and we have f = f+− f− and |f | = f++ f−. In this case, we
say that f is integrable if f+ and f− are both integrable, and we define the integral of f by

ˆ
Ω
f(x)dx :=

ˆ
Ω
f+(x)dx−

ˆ
Ω
f−(x)dx.

Exercice 1.5
Prove that a measurable function f is integrable iff |f | is integrable.

We admit the following result.

Lemma 1.6. If f is Riemann integrable, then it is Lebesgue integrable, and the two integrals coincide.

Remark 1.7. There is a slight change of notation between the Riemann and Lebesgue integral in the
one-dimensional case d = 1. We can write

ˆ
[a,b]

f(x)dx (Lebesgue notation) or
ˆ b

a
f(x)dx (Riemann notation).

When f is positive, the first integral is always positive, while the second one is positive if a < b, and
negative if b < a.

It is unclear from Definition 1.3 that the integral is linear:
´
(f + g) =

´
f +

´
g. It is however the

case (although non trivial, see [LL01, Exercice 9 p.37]). So we can use Lebesgue integration as usual.
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1.1.3 The «powerful» theorems

There are three powerful theorems that describe how limits of functions behave with the integral.
They are proved for instance in [LL01, Thm 1.6, 1.7 and 1.8].

Theorem 1.8: Monotone Convergence Theorem

If (fj) is a sequence of measurable functions, increasing in the sense fj(x) ≤ fj+1(x) a.e., then
f(x) := lim fj(x) is measurable, and

ˆ
Ω
f(x)dx = lim

j→∞

ˆ
Ω
fj(x)dx.

In other words, increasing sequence implies
´
lim = lim

´
. The last value can be infinite, in which

case f is not integrable.

Remark 1.9 (Lebesgue is «better» than Riemann). Note the first result, stating that f = lim fj(x)
is measurable. This is strong statement, which fails in Riemann theory. Recall that the Riemann
integral is defined on the set C0

pw of piece-wise continuous functions. However, this set is not closed
when taking increasing limits. For instance, label the rationnal numbers by Q = {q1, q2, · · · } (it is
countable), and set fN (x) = 1(x ∈ {q1, · · · , qN}). Then fN is piece-wise continuous (the points where
fN is discontinuous are isolated). We have fN+1 ≥ fN and limN→∞ fN = 1Q, which is not piece-wise
continuous.

Proof. Replacing fj by fj − f1, we may assume that fj ≥ 0 is positive valued.
We set Fj := Ffj = Lebd({fj > λ}). Since fj+1(x) ≥ fj(x), we have Fj+1(λ) > Fj(λ). So (Fj) is an
increasing family of decreasing functions, which converges point-wise to Ff (λ). We leave the rest of
the proof to the reader. It is a classical exercise in the theory of Riemann integration.

Theorem 1.10: Fatou’s theorem

Let (fj) be a sequence of positive measurable functions. Then f := lim infj→∞ fj is positive,
measurable, and

0 ≤
ˆ
Ω
f(x)dx ≤ lim inf

j→∞

ˆ
Ω
fj(x)dx.

In other words, positivity implies
´
lim inf ≤ lim inf

´
. A mnemotechnic trick is that the sum of

minima is always lower than the minimum of the sum.

Proof. Define gk(x) := infj≥k fj(x). The sequence gk is measurable, increasing, with limk→∞ gk =
lim infj→∞ fj = f . By the Monotone Convergence Theorem 1.8, we haveˆ

Ω
f(x)dx = lim

k→∞

ˆ
Ω
gk(x)dx.

Now, we see that gk ≤ fj for all k ≤ j, so
´
gk ≤ infj≥k

´
fj , and the result follows.

Finally, we have the master Theorem.
Theorem 1.11: Dominated Convergence Theorem

Let (fj) be a sequence of measurable functions which converges point-wise to f a.e. Assume
there is an integrable function G so that |fj |(x) ≤ G(x) (domination). Then |f | ≤ G(x) and

ˆ
Ω
f(x)dx = lim

j→∞

ˆ
Ω
fj(x)dx.

In other words, domination implies lim
´
=
´
lim.
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Proof. We only do the proof for positive functions fj . By Fatou’s theorem 1.10, we have

lim inf

ˆ
fj ≥

ˆ
f.

On the other hand, since G−fj is also a family of positive functions, we have, by Fatou’s lemma again

lim inf

ˆ
G− fj ≥

ˆ
G− f, so lim sup

ˆ
fj ≤

ˆ
f.

This proves lim sup
´
fj ≤

´
f ≤ lim inf

´
fj , and the result follows.

To understand why domination is important, the reader should keep in mind the following three
counterexamples.

• The mass goes to infinity. Let ψ ∈ C∞
0 (Rd,R+) and e ∈ Rd \ {0}. Then fj(x) := ψ(x− je)

converges point-wise to f = 0. However,
´
fj =

´
ψ > 0, while

´
f = 0.

• The mass spreads over. Consider now fj(x) = j−dψ(x/j). Again, fj converges point-wise to
f = 0 (the convergence is even uniform). However,

´
fj =

´
ψ > 0, while

´
f = 0.

• The mass concentrates. Take fj(x) = jdψ(jx). Then fj converge point-wise to f for all
x 6= 0, so a.e. However,

´
fj =

´
ψ > 0, while

´
f = 0.

The following theorem is of different nature, but we include it here, as it is also powerful. We skip
the proof, which can be found in [LL01, Thm 1.12].

Theorem 1.12: Fubini’s theorem

If f : Rd × Rs → R+ is measurable, then
ˆ
Rd+s

f(x, y)dd+s((x, y)) =

ˆ
Rs

(ˆ
Rd

f(x, y)ddx

)
dsy =

ˆ
Rd

(ˆ
Rs

f(x, y)dsy

)
ddx.

1.2 The Lp spaces
We now introduce the Lebesgue Lp(Ω) space. We focus on the case 1 ≤ p ≤ ∞. The case p = ∞ is
always a bit special.

1.2.1 Definitions

For 1 ≤ p <∞, we define

Lp(Ω) := {f measurable from Ω to C, ‖f‖Lp <∞} , where ‖f‖Lp :=

(ˆ
Ω
|f |p(x)dx

)1/p

,

and for p =∞, we set

L∞(Ω) := {f measurable from Ω to C, bounded a.e.}, ‖f‖L∞ := inf{λ ≥ 0, Lebd({|f | > λ}) = 0}.

We have

• ‖f‖Lp = 0 iff f = 0 almost-everywhere;

• ‖λf‖Lp = |λ| · ‖f‖Lp ;
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• ‖f + g‖Lp ≤ ‖f‖Lp + ‖g‖Lp (Minkowski inequality, see Theorem 1.18 below).

This proves that the map ‖ · ‖ is a semi-norm, in the sense that ‖f‖Lp = 0 does not imply f = 0,
but only that f = 0 almost everywhere. To cure this problem, we introduce the equivalent relation
f ∼ g iff f = g almost everywhere, and define Lp(E) := Lp(E)/ ∼. In practice, this means that
elements of Lp(E) are not functions, but classes of functions. However, we usually say a function f in
Lp(E), with the convention that f is only defined almost everywhere. For instance, we say f ∈ Lp(E)
is continuous to state that there is a continuous representation of f .

As an example, consider the following result which we admit (see classical textbooks, such as
Rudin 1987 for a proof. It uses Hardy-Littlewood maximal function theory). We set

ffl
Ω f := 1

|Ω
´
Ω f

the average of f on the Ω domain.
Theorem 1.13: Lebesgue differentiation theorem

For all f ∈ L1(Rd), we have

f(x) = lim
ε→0

 
B(x,ε)

f(y)dy almost everywhere in x ∈ Rd.

In dimension d = 1, the result implies that F (x) :=
´ x
−∞ f(y)dy is differentiable with F ′ = f ,

almost everywhere in x ∈ R. Note that the left-hand side depends on the representation of f , while
the right-hand side is independent of the representation. In some sense, the left-hand side selects one
representation in the class of f .

1.2.2 The useful inequalities

After the powerful theorems come the powerful inequalities.
Theorem 1.14: Jensen’s inequality

Let J : R→ R be a convex function, f : Ω→ R be measurable, and µ : Ω→ R+ be measurable
with

´
Ω µ = 1, then ˆ

Ω
J(f)µ ≥ J

(ˆ
Ω
fµ

)
.

The theorem is also valid if µ is a measure. Taking f(x) = x and µ =
∑n

i=1 λiδxi (sum of Dirac
masses) with

∑
λi = 1, we obtain

n∑
i=1

λiJ (xi) ≥ J

(
n∑

i=1

λixi

)
,

which is a well-known property of convex functions. Jensen’s inequality is somehow a n =∞ version
of this inequality.

Proof. Assume J differentiable for simplicity. Since J is convex, we have for all a, b ∈ R,

J(a) ≥ J(b) + J ′(b)(a− b).

Taking b =
´
Ω fµ, and a = f(x) gives

J(f(x)) ≥ J
(ˆ

Ω
fµ

)
+ J ′

(ˆ
Ω
fµ

)
×
[
f(x)−

(ˆ
Ω
fµ

)]
.

We multiply this inequality by µ(x) (which is positive) and integrate. The term in bracket vanishes
since

´
Ω µ = 1, and the result follows.
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Theorem 1.15: Hölder’s inequality

Let 1 ≤ p, q ≤ ∞ be such that

1

p
+

1

q
= 1, or, equivalently, q =

p

p− 1
.

Let f ∈ Lp(Ω) and q ∈ Lq(Ω). Then fg ∈ L1(Ω), and

‖fg‖L1(Ω) ≤ ‖f‖Lp(Ω)‖g‖Lq(Ω).

In the case p = q = 2, we recover the Cauchy-Schwarz inequality
´
fg ≤ ‖f‖L2‖g‖L2 . In the

sequel, we denote by
p′ :=

p

p− 1
(the dual exponent of p). (1.2)

Proof. Without loss of generality, we may assume that f and g are positive. We introduce G :=
g/‖g‖Lq , which satisfies ‖G‖Lq = 1. We then set µ(x) = Gq(x), F (x) := f(x)/Gq/p(x) and J(t) := tp,
which is convex. We apply Jensen’s inequality to (J, F, µ), which gives

ˆ
Ω

(
f

Gq/p

)p

Gq ≥
(ˆ

Ω

f

Gq/p
Gq

)p

.

with (we use that q(1− 1
p) = 1 in the last equality)

ˆ
Ω

(
f

Gq/p

)p

Gq =

ˆ
Ω
fp, and

(ˆ
Ω

(
f

Gq/p

)
Gq

)p

=

(ˆ
Ω
fG

q(1− 1
p
)
)p

=

(ˆ
Ω
fG

)p

.

So (ˆ
Ω
f

g

‖g‖Lq

)p

=

(ˆ
Ω
fG

)p

≤
ˆ
Ω
fp, hence ‖fg‖p

L1 =

(ˆ
Ω
fg

)p

≤ ‖f‖pLp‖g‖pLq .

The following form of the Hölder’s inequality is often used.
Theorem 1.16: Holder’s inequality in the general case

Let 1 ≤ p, q, r ≤ ∞ be such that
1

p
+

1

q
=

1

r
.

Let f ∈ Lp(Ω) and g ∈ Lq(Ω). Then fg ∈ Lr(Ω), and

‖fg‖Lr(Ω) ≤ ‖f‖Lp(Ω)‖g‖Lq(Ω).

Proof. We use Hölder’s inequality with F = |f |r ∈ Lp/r(E) and G = |g|r ∈ Lq/r(E). We have
1/(p/r) + 1/(q/r) = 1, so FG ∈ L1, and

‖fg‖rLr =

ˆ
Ω
|f |r|g|r = ‖FG‖L1 ≤ ‖F‖Lp/r‖G‖Lq/r =

(ˆ
Ω
|f |p

)r/p(ˆ
Ω
|g|q
)r/q

= (‖f‖Lp · ‖g‖Lq)r .
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Another useful corollary is the following:
Theorem 1.17: Interpolation

If 1 ≤ p1 ≤ p2 ≤ ∞, and f ∈ Lp1(Ω) ∩ Lp2(Ω), then for all p ∈ [p1, p2], we have f ∈ Lp(Ω) with

‖f‖Lp ≤ ‖f‖αLp1‖f‖1−α
Lp2 , where 0 ≤ α ≤ 1 is chosen so that 1

p
=

α

p1
+

1− α
p2

.

Proof. Write f = fαf (1−α), with fα ∈ Lp1/α and f (1−α) ∈ Lp2/(1−α), and apply the previous result.

Finally, we prove Minkowski’s inequality.
Theorem 1.18: Minkowski’s inequality

For all f, g ∈ Lp(Ω) with 1 ≤ p ≤ ∞, we have

‖f + g‖Lp ≤ ‖f‖Lp + ‖g‖Lp .

In particular, the map f 7→ ‖f‖Lp is convex.

Proof. First, we have the easy bound |f + g|p ≤ (2max{f, g})p ≤ |2f |p + |2g|p, so f + g is indeed in
Lp(Ω). Then, we have

ˆ
Ω
|f + g|p =

ˆ
Ω
|f + g| · |f + g|p−1 ≤

ˆ
Ω
|f | · |f + g|p−1 +

ˆ
Ω
|g| · |f + g|p−1.

We use Hölder’s inequality with f ∈ Lp and |f + g|p−1 ∈ Lq with q = p
p−1 , and get

ˆ
Ω
|f | · |f + g|p−1 ≤

(ˆ
Ω
|f |p

)1/p(ˆ
Ω
|f + g|p

) p−1
p

.

This gives ‖f + g‖pLp ≤ (‖f‖Lp + ‖g‖Lp) ‖f + g‖p−1
Lp , which is also ‖f + g‖Lp ≤ ‖f‖Lp + ‖g‖Lp .

1.2.3 Convolution in Lebesgue spaces

In this section, we take Ω = Rd (convolution is only defined on the full space). Let f, g be two
complex-valued functions. We define the convolution f ∗ g by

(f ∗ g)(x) :=
ˆ
Rd

f(y)g(x− y)dy.

The reader can check that f ∗ g = g ∗ f , and that (f ∗ g) ∗ h = f ∗ (g ∗ h): the convolution is commu-
tative and associative.

Convolution from Lp × Lq → Lr

Thanks to Hölder’s inequality 1.15, we see that for fixed x ∈ Rd, the integrand defining the convolution
is integrable whenever f ∈ Lp(Rd) and g ∈ Lq(Rd) with 1/p+ 1/q = 1, and we have

∀x ∈ Rd, |(f ∗ g)(x)| ≤
ˆ
Rd

|f(y)g(x− y)|dy ≤ ‖f‖Lp‖g(x− ·)‖Lq = ‖f‖Lp‖g‖Lq .
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So the function f ∗ g is bounded, that is f ∗ g ∈ L∞(Rd), with

‖f ∗ g‖L∞ ≤ ‖f‖Lp‖g‖Lq , (Case 1
p + 1

q = 1).

On the other hand, if f ∈ L1(Rd) and g ∈ L1(Rd), we have by Fubini theorem that f ∗ g ∈ L1(Rd)
with

‖f ∗ g‖L1 = ‖f‖L1‖g‖L1 .

The generalisation of these two (in)-equalities is called Young’s inequality (see [LL01, Theorem 4.2]).
Theorem 1.19: Young’s inequality, first form

Let 1 ≤ p, q, s ≤ ∞ be such that
1

p
+

1

q
= 1 +

1

s
.

If f ∈ Lp(Rd) and g ∈ Lq(Rd), then f ∗ g ∈ Ls(Rd), and

‖f ∗ g‖Ls ≤ ‖f‖Lp‖g‖Lq .

One other way to state this theorem is as follows.
Theorem 1.20: Young’s inequality, second form

Let 1 ≤ p, q, r ≤ ∞ with
1

p
+

1

q
+

1

r
= 2.

Let f ∈ Lp(Rd), g ∈ Lq(Rd) and h ∈ Lr(Rd). Then the function (f ∗ g)h is in L1(Rd), and∣∣∣∣∣
¨

(Rd)2
f(x)g(y − x)h(y)dxdy

∣∣∣∣∣ ≤ ‖(f ∗ g)h‖L1 ≤ ‖f‖Lp‖g‖Lq‖h‖Lr .

The fact that these two inequalities are equivalent comes from the duality result presented in
Theorem 1.27 below. In this second version, the variable r plays the role of the dual variable s′ =
s/(s− 1) of the first version). We prove the second version following [LL01, Theorem 4.2].

Proof. Without loss of generality, we may assume that f, g, h are positive. Let p′, q′, r′ be the dual
powers of p, q, r, see Eqn. (1.2), and set

α(x, y) := f(x)p/r
′
g(y − x)q/r′

β(x, y) := g(y − x)q/p′h(y)r/p′

γ(x, y) := h(y)r/q
′
f(x)p/q

′
.

We have
1

r′
+

1

p′
+

1

q′
=

(
1− 1

r

)
+

(
1− 1

p

)
+

(
1− 1

q

)
= 3− 2 = 1,

so we can use Hölder’s inequality (on (Rd)2) and get
ˆ
(Rd)2

α(x, y)β(x, y)γ(x, y)dxdy ≤ ‖α‖Lr′ ((Rd)2)‖β‖Lp′ ((Rd)2)‖γ‖Lq′ ((Rd)2).

The integrand in the left is also (we focus on the f terms for the computation)

α(x, y)β(x, y)γ(x, y) = f(x)
p
r′+

p
q′ · · · = f(x)

p(1− 1
p′ ) · · · = f(x)g(y − x)h(y).
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On the other hand, we have, by Fubini’s theorem, that

‖α‖r′
Lr′ ((Rd)2)

=

¨
(Rd)2

f(x)pg(y − x)qdxdy = ‖f‖pLp‖g‖qLq ,

so indeed α ∈ Lr′((Rd)2). Writing similar inequalities for β and γ gives the result.

1.2.4 Convolution as a smoothing operator

We now prove that, in general, f ∗ g is more regular than f .

Smoothing sequences

Let j ∈ C∞
0 (Rd) be such that j is radial decreasing, with j(x) = 0 for all |x| > 1, and

´
Rd j = 1. The

fact that such functions exist is classical. For ε > 0, we set

jε(x) :=
1

εd
j
(x
ε

)
.

Since j is compactly supported in B(0, 1), the function jε is compactly supported in B(0, ε). The
scaling is chosen so that

´
Rd jε =

´
Rd j = 1. The family (jε) is called a smoothing sequence, a

mollifier, or an approximation of the Dirac (see Example 2.6 below).

Approximation by smooth functions

In the sequel, we say that a function f is smooth if f ∈ C∞(Rd). For a multi-index α = (α1, · · · , αd) ∈
Nd, we set

Dαf :=

(
∂

∂x1

)α1

· · ·
(

∂

∂xd

)αd

f.

Recall that if f is smooth, the order of the derivatives is irrelevant, thanks to Schwartz’ Lemma. The
following Theorem shows that convolution smooths functions (see [LL01, Theorem 2.16]).

Theorem 1.21: Convolution smooths functions

Let 1 ≤ p ≤ ∞, and let (jε) be a smoothing sequence. For all f ∈ Lp(Rd), we set fε := f ∗ jε.
Then

• fε is smooth, and Dα(f ∗ jε) = f ∗ (Dαjε);

• fε ∈ Lp(Rd) with ‖fε‖Lp ≤ ‖f‖Lp ;

• if in addition p <∞, then ‖f − fε‖Lp → 0 as ε→ 0+.

Before we give the proof, we emphasise that the last result is false if p = ∞. Indeed, take
f a bounded discontinuous function, and assume that ‖f − fε‖∞ → 0. Then, f would the limit of
the continuous functions fε for the uniform convergence. This would imply that f is continuous (the
uniform limit of continuous functions is continuous), a contradiction.

Proof. The inequality ‖fε‖Lp ≤ ‖f‖Lp is Young’s inequality, together with the fact that ‖jε‖L1 = 1.
Let us prove the first point. We focus on the case p = 1. Let ei be the i-th canonical vector of Rd.

We have

1

t
(fε(x+ tei)− fε(x)) =

ˆ
Rd

f(y)

[
1

t
(jε(x− y + tei)− jε(x− y))

]
dy.
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Since jε is smooth, the term in bracket converges pointwise to (∂ijε) (x − y) as t → 0. In addition,
using the mean value theorem, there is c in the segment [x− y, x− y + tei] so that∣∣∣∣f(y) [1t (jε(x+ te1 − y)− jε(x− y))

]∣∣∣∣ = |f(y)(∂ijε)(c)| ≤ ‖(∂ijε)‖L∞ |f(y)|,

which is integrable in y, and independent of t. So, by the Dominated Convergence Theorem 1.11, we
can take the limit t→ 0, and we obtain

∂i (f ∗ jε) = f ∗ (∂ijε) .

The result follows by induction.
For the last point, we focus again on the case p = 1. Consider first the case where f(x) = 1(x ∈ A),

where A is a half-open rectangular set, of the form

A = (a1, b1]× · · · × (ad, bd].

Since jε is compactly supported in B(0, ε) with
´
j = 1, the function fε := f ∗ jε satisfies

1(x ∈ A−
ε ) ≤ fε(x) ≤ 1(x ∈ A+

ε ), with A±
ε := (a1 ∓ ε, b1 ± ε]× · · · × (ad ∓ ε, bd ± ε].

In particular, we have

‖fε − f‖L1 ≤ max{‖1(x ∈ A+
ε )− 1(x ∈ A)‖, ‖1(x ∈ A)− 1(x ∈ A−

ε )‖} ≈ Cε −−−→
ε→0

0.

So the result holds for f(x) = 1(x ∈ A). By linearity, it also holds for any finite linear combination of
such functions (such combinations are called really simple functions). It is a result in measure theory
that such combinations are dense in L1 (see [LL01, Theorem 1.18]). So, by density, the result holds
for all f ∈ L1.

A direct corollary is the following density result, valid for p <∞ (see [LL01, Lemma 2.19]).
Theorem 1.22: Smooth functions are dense in Lp

For all 1 ≤ p <∞, and all Ω ⊂ Rd, the sets C∞(Ω) and C∞
0 (Ω) are dense in Lp(Ω).

Again, the result is false in L∞, see the paragraph after Theorem 1.21.

Proof. We notice that if f ∈ Lp(Ω), then the function

f̃(x) :=

{
f(x) if x ∈ Ω,

0 else,

is in Lp(Rd). This function is called the extension of f . Let η > 0. By the previous result, (f̃ε)
is a family of smooth functions which converge to f̃ in Lp(Rd). Restricting to Ω shows that there
is ε > 0 so that fη := f̃ε satisfies ‖fη−f‖Lp(Ω) < η. This already proves that C∞(Ω) is dense in Lp(Ω).

We now prove that we can choose compactly supported functions. The Urysohn’s Lemma (see [LL01,
Lemma 2.19]) states that there is a sequence of positive compactly supported functions (χj) ∈ C∞

0 (Ω)
so that, for all x ∈ Ω, we have χj+1(x) ≥ χj(x) and limj→∞ χj(x) = 1 (so limj→∞ χj = 1Ω for the
pointwise convergence). We set fj(x) := χj(x)fη(x), which is smooth and compactly supported. The
sequence |fη − fj |p converges point-wise to 0 and is dominated by |fη|p. The Dominated Convergence
Theorem 1.11 shows that ‖fη− fj‖Lp → 0 as j →∞. So, for j large enough, we have ‖fη− fj‖Lp < η.
This proves that fj ∈ C∞

0 (Ω) satisfies

‖f − fj‖Lp ≤ ‖f − fη‖Lp + ‖fη − fj‖Lp ≤ 2η.
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1.3 Lp spaces as Banach spaces
We now focus on the completion properties of Lp(Ω) spaces. We first recall some basic notions of
Banach spaces. We then focus on the special case of Lp(Ω) spaces.

1.3.1 Basics in Banach spaces

A normed vectorial space (E, ‖ · ‖E) is a Banach space if it is complete, that is if all Cauchy
sequences have limits. This is equivalent to∑

n∈N
‖xn‖E <∞ =⇒

∑
n∈N

xn converges in E.

A linear form L : E → C is continuous (or bounded) if there is C ∈ R+ so that

∀x ∈ E, |L(x)| ≤ C‖x‖E .

The set of all continuous forms is called the dual of E, and is denoted by E∗. It is a Banach space
when equipped with the norm

‖L‖op := ‖L‖E∗ := sup {|L(x)|, x ∈ E, ‖x‖E ≤ 1} = sup

{
|L(x)|
‖x‖E

, x ∈ E \ {0}
}
.

We sometimes write
〈L, x〉E′,E := L(x).

The definition of the operator norm implies the following inequality:

∀x ∈ E, ∀L ∈ E∗, |L(x)| = |〈L, x〉E′,E | ≤ ‖L‖op‖x‖E . (1.3)

We recall the following Theorem, which we use all over these notes (especially the second part of it).
The proof can be found in [Bre99, Theorem 1.1]

Theorem 1.23: Hahn-Banach, analytic form

Let F ⊂ E be a vectorial space in E, and let L : F → C be a linear functional on F such that

‖L‖op,F := sup{|L(x)|, x ∈ F, ‖x‖E = 1} <∞.

Then there is an extension L̃ ∈ E∗ so that ‖L̃‖op = ‖L‖op,F and L̃ = L on F .
If F is dense, then this extension is unique.

As a corollary, we record the following (see [Bre99, Corollaire 1.4]).
Theorem 1.24: The norm is a supremum in the dual space

For all x ∈ E, we have

‖x‖E = sup {|L(x)|, L ∈ E∗, ‖L‖op ≤ 1} = max {|L(x)|, L ∈ E∗, ‖L‖op ≤ 1}

In particular, we do have access to the norm ‖x‖ by only considering evaluation with operators L
in the dual space.

Proof. The inequality (1.3) already implies that |L(x)| ≤ ‖L‖op‖x‖, so

sup {|L(x)|, L ∈ E∗, ‖L‖op ≤ 1} ≤ ‖x‖E .

To conclude, we construct L0 ∈ E∗ with ‖L0‖op = 1 and L0(x) = ‖x‖E . To do so, we consider
the subspace F = Rx, and the linear operator L : F → R with L(tx) = t‖x‖E . We compute that
‖L‖op,F = 1. We extend L to the whole space E with Hahn-Banach theorem, and obtain the linear
operator L0 : E → R with ‖L0‖op = 1, and L0(x) = ‖x‖E .
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The bidual of E is the dual of the dual, that is E∗∗ := (E∗)∗. We always have E ⊂ E∗∗ with the
identification E 3 x 7→Mx ∈ E∗∗, where

Mx : E∗ → C, Mx : L 7→ L(x).

If E = E∗∗, we say that E is reflexive.
We say that E is separable if there is a countable dense set in E. This means that there is

a countable family (xn)n∈N in E such that, for all x ∈ E and all ε > 0, there is n ∈ N so that
‖x− xn‖E < ε.

1.3.2 Completion of Lp spaces

We now focus on Lp(Ω) spaces. We start with the following (see [LL01, Theorem 2.7]).
Theorem 1.25: Lp is complete

Let 1 ≤ p ≤ ∞, and let (fj) be a Cauchy sequence in Lp(Ω). Then there is f ∈ Lp(Ω) and a
subsequence φ : N→ N so that

• ‖fφ(j) − f‖Lp → 0;

• fφ(j)(x)→ f(x) almost everywhere.

In particular, the space Lp(Ω) is a Banach space (it is complete).

Proof. We prove the result for p < ∞ only. Let (fj) be a Cauchy sequence in Lp(Ω). Up to a
subsequence, we may assume ‖fj+1 − fj‖Lp ≤ 1/2j (why?). We introduce

F`(x) := |f1(x)|+
`−1∑
j=1

|fj+1(x)− fj(x)|.

By Minkowski’s inequality, F` is in Lp(Ω), and

‖F`‖Lp ≤ ‖f1‖Lp +

`−1∑
j=1

‖fj+1 − fj‖Lp ≤ ‖f1‖Lp +

`−1∑
j=1

1

2j
≤ ‖f1‖Lp + 1.

The sequence (F`) is positive and increasing. By the Monotone Convergence Theorem 1.8, the function
F (x) := lim`→∞ F`(x) is in Lp(Ω), and ‖F‖Lp ≤ ‖f1‖Lp + 1.
Next, we notice that (the sum telescopes)

f`(x) = f1(x) +

`−1∑
k=1

(fj+1(x)− fj(x)) .

For a.e. x ∈ Ω, the sum on the right converges absolutely in C (adding absolute values, we recover
F`(x), which converges to F (x)). By completion of C, the sum has a limit as ` → ∞. We set
f(x) := lim`→∞ f`(x). By definition, the sequence (f`) converges pointwise to f . In addition, we
have the domination |f`(x)| ≤ F`(x) ≤ F (x), which is in Lp(Ω). So, by the Dominated Convergence
Theorem 1.11, we have ‖f‖Lp = lim`→∞ ‖f`‖Lp <∞. In particular, f ∈ Lp(Ω). Finally, the sequence
|f − f`|p converges pointwise to 0, and we have the domination

|f − f`|p ≤ (|f |+ |f`|)p ≤ 2p (|f |p + |f`|p) ≤ 2p (|f |p + |F |p) ,

which is integrable. Using again the Dominated Convergence Theorem shows that ‖f − f`‖Lp → 0, as
wanted.
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1.3.3 Separability of Lp spaces

Theorem 1.26: Separability of Lp

For all 1 ≤ p <∞, the space Lp(Ω) is separable. The space L∞(Ω) is not separable.

Proof. Consider first 1 ≤ p < ∞, and consider the set A of really simple functions of the form
f =

∑N
j=1 fj1(x ∈ Aj), with fj ∈ (Q + iQ) and Aj some rectangles with rational boundaries. The

set A is countable, and dense in Lp(Ω) for all 1 ≤ p < ∞ (see [LL01, Theorem 1.18]). So Lp(Ω) is
separable.

In the case p = ∞, let us prove that L∞(R) is not countable. We consider the following set of
functions. For a subset Q ⊂ Z, we define

fQ(x) =

{
1 if bxc ∈ Q
0 else

.

Then (fQ)Q⊂Z is an uncountable family, and Q 6= Q′ implies ‖fQ − fQ′‖∞ = 1. So L∞(R) cannot
be separable (why?). We can prove similarly that L∞((−1, 1)) is not separable by considering the
functions gQ(x) := fQ(x/(1− x2)).

1.3.4 Duality in Lp spaces

We state the main result, which we will prove later in Section ?? in the case p = 2. We refer to [LL01,
Theorem 2.14] for the proof in the general case. Recall that the dual exponent of p is p′ = p/(p− 1)
(see Eqn. (1.2)).

Theorem 1.27: The dual of Lp(Ω)

For all 1 < p <∞, the dual space of Lp(Ω) is (Lp(Ω))∗ = Lp′(Ω).
(Case p = 1). The dual space of L1(Ω) is

(
L1(Ω)

)∗
= L∞(Ω).

(Case p =∞). We have the strict inclusion L1(Ω) ( (L∞(Ω))∗.

For 1 < p <∞, the space Lp(Ω) is reflexive, while L1(Ω) and L∞(Ω) are not reflexive.

The dual for L∞(Ω) is a subset of measures. We do not elaborate on this point.

We postpone the proof until Section ?? (in the case p = 2 only), and just remark that the inclusion
Lp′(Ω) ⊂ (Lp(Ω))∗ comes from Hölder’s inequality. Indeed, for all g ∈ Lp′(Ω), one can consider the
linear form Lg : Lp(Ω)→ C defined by Lg(f) :=

´
Ω gf . Thanks to Hölder’s inequality, we have

|Lg(f)| ≤
ˆ
Ω
|gf | ≤ ‖g‖Lp′‖f‖Lp .

This proves that Lg ∈ (Lp(Ω))∗, with ‖Lg‖op ≤ ‖g‖Lp′ . Actually, the result below proves that we have
equality ‖Lg‖op ≤ ‖g‖Lp′ , which allows to identify g and Lg.

Theorem 1.28

For all 1 ≤ p ≤ ∞, and all f ∈ Lp(Ω), we have

‖f‖Lp = sup

{ˆ
Ω
fg, g ∈ Lp′(Ω), ‖g‖Lp′ = 1

}
.
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Proof. This is a consequence of Theorem 1.24 when p 6= ∞. However, we can construct explicitly
an element g0 for the optimum, in the case 1 < p < ∞. Consider g0 := 1

‖f‖p−1
Lp
|f |p−2f , so that

|g0| = 1

‖f‖p−1
Lp
|f |p−1. Since f ∈ Lp(Ω) and since p′ = p/(p− 1), we have g0 ∈ Lp′(Ω) with

‖g0‖p
′

Lp′ =

ˆ
Ω
|g0|p

′
=

ˆ
Ω
|g0|

p
p−1 =

1

‖f‖pLp

ˆ
Ω
|f |p = 1.

On the other hand, we have ˆ
Ω
g0f =

1

‖f‖p−1
Lp

ˆ
Ω
|f |p = ‖f‖Lp ,

and the result follows.

1.4 Topologies of Lp spaces
We now focus on the different topologies of Lp spaces.

1.4.1 Basics in topologies in Banach spaces

Let E be a Banach space. We can consider several topologies on E. The more natural one is the
strong topology, defined by the following notion of convergence:

xn −−−→
n→∞

x, iff ‖xn − x‖E → 0. (strong convergence).

We can also define the weak topology of E. This one is defined by the following notion:

xn ↪
weak−−−→
n→∞

x, iff ∀L ∈ E∗, 〈L, xn − x〉E∗,E → 0. (weak convergence).

Finally, we sometime use the weak-∗ topology. This only applies if E = F ∗ is already the dual space
of another Banach space F . Then

xn ↪
weak-*−−−−→
n→∞

x, iff ∀f ∈ F, 〈xn − x, f〉F ∗,F → 0. (weak-* convergence if E = F ∗).

The weak-* topology will be used in the space E = L∞(Ω), which is the dual of F = L1(Ω): a sequence
(fj) in L∞(Ω) converges weakly-* to f∗ ∈ L∞(Ω) if, for all g ∈ L1(Ω), we have

´
Ω gfj →

´
Ω gf∗.

Theorem 1.29

If xn → x strongly in E, then xn → x weakly-(*).
If E is reflexive, then weak-* convergence is equivalent to weak convergence.
If xn → x for any of these topologies, then (xn) is bounded in E.
If xn → x strongly in E, and Ln → L weakly-(*) in E∗, then Ln(xn)→ L(x) in C.

Proof. For the first point, we write that

|L(xn − x)| ≤ ‖L‖E∗‖xn − x‖E −−−→
n→∞

0.

For the second point, we admit that since E = F ∗ is reflexive, then so if F . This gives F = F ∗∗ = E∗,
and the result follows. The third point is a non trivial result which we also admit (see [Bre99,
Proposition III.12]). Finally for the last point, (Ln) converges to L, so it is bounded in E∗. This gives

|Ln(xn)− L(x)| ≤ |Ln(xn − x)|+ |(Ln − L)(x)| ≤
(
max
n
‖Ln‖E∗

)
‖xn − x‖E + |(Ln − L)(x)| .

Let n→∞, and the result follows.
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1.4.2 Weak convergence which are not strong in Lp

Let 1 ≤ p < ∞, and consider the special case E = Lp(R). There are several ways for a subsequence
(fn) to weakly converge to f , and to not strongly converge to f .

• The mass goes to infinity;

• The mass vanishes;

• Oscillations.

We already saw the first two ones (see the counter examples after Theorem 1.11). For oscillations,
consider f0 ∈ C∞

0 (R) and set
fn(x) := einxf0(x),

which is in Lp(R). For all ψ ∈ C∞
0 (R) ⊂ Lp′ , we have

〈fn, ψ〉Lp,Lp′ =

ˆ
fnψ =

ˆ
R
einxψ(x)f0(x)dx.

We recognise the Fourier transform of the smooth function f0ψ. By the Riemann-Lebesgue theorem,
this integral goes to 0 as n→∞. This proves that, for all ψ ∈ C∞

0 (R), we have
´
ψfn → 0 as n→∞.

By density of C∞
0 (R) in Lp′(R), we deduce that fn → 0 weakly in Lp(R). However, we always have

‖fn‖Lp = ‖f0‖Lp , so the convergence is not strong.

1.4.3 Banach-Alaoglu theorem in Lp

The importance of the weak (or weak-*) topology comes from the following Theorem (see [LL01,
Theorem 2.18]). We state it in the case of the Lp spaces, but it can be generalised to any reflexive
separable Banach space E (with the same proof).

Theorem 1.30: Banach-Alaoglu theorem (in Lp(Ω))

Let 1 < p <∞. If (fn) is a bounded sequence in Lp(Ω), then there is a subsequence φ(n) and
an element f ∈ Lp(Ω) so that (fφ(n)) weakly converges to f .
Case p = ∞. If (fn) is a bounded sequence in L∞(Ω), then there is a subsequence φ(n) and
an element f ∈ L∞(Ω) so that (fφ(n)) weakly-* converges to f .

In other words, bounded sequences have weak-limits up to subsequences. We also say that the
unit ball of Lp is (relatively) compact for the weak topology.
The theorem fails if one replaces the weak convergence with the strong one. For instance, let (fj) is
a sequence which converges weakly to some f , but which does not converge strongly (see the previous
counterexamples), then (fj) is bounded by Theorem 1.29, but does not converge strongly.

This theorem also fails for p = 1. Indeed, consider for instance a smoothing sequence (jε) as in
Section 1.2.4. The sequence point-wise converges to 0 a.e., so the weak-limit, if exists, can only be 0
(why?). However, taking the constant function 1 ∈ L∞(R) = (L1(R))∗, we have

〈jε, 1〉L1,L∞ =

ˆ
R
jε = ‖jε‖L1 = 1,

and the sequence does not go to 0 as ε→ 0.

Proof. We set K := supn∈N ‖fn‖Lp . The dual space of Lp(Ω) is Lp′(Ω) with 1 < p′ < ∞, and Lp′(Ω)
is separable. Let (gj) be a dense countable family in Lp′(Ω). We apply a Cantor diagonal argument
to the family (gj).
• The sequence g1(fn) :=

´
Ω g1fn satisfies |g1(fn)| ≤ ‖fn‖p‖g1‖p′ ≤ K‖g1‖p′ , hence is bounded in C,

so there is a subsequence φ1 so that g1(fφ1(n)) converges to some C1 ∈ C. In addition, |C1| ≤ K‖g1‖Lp′ .
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• The sequence g2(fφ1(n)) :=
´
Ω g2fφ1(n) is bounded in C, so there is a subsequence φ2 so that

g2(fφ1(φ2(n))) converges to some C2 ∈ C. In addition, |C2| ≤ K‖g2‖Lp′ .
We go on, and construct a family of subsequences φj so that gj

(
fφ1◦φ2◦···◦φj(n)

)
converges to some

Cj ∈ C as n→∞ with |Cj | ≤ K‖gj‖Lp′ . Finally, we set

φ(n) := φ1(φ2 · · · (φn(n))).

By construction, for all j ∈ N, the sequence
´
gjfφ(n) converges to Cj ∈ C as n → ∞. We now

introduce the functional L : Lp′(Ω)→ C by

∀g ∈ Lp′(Ω), L(g) := lim
n→∞

ˆ
Ω
gfφ(n).

This functional is linear, and, on the dense set (gj), we have

|L(gj)| = |Cj | ≤ K‖gj‖Lp′ .

By density, we deduce that L is a continuous linear form on Lp′(Ω), with ‖L‖op ≤ K. In other words,
L ∈ (Lp′(Ω))∗ = Lp(Ω). So, by Theorem 1.27, there is f ∈ Lp(Ω) so that L(g) =

´
Ω fg. This proves

that
∀g ∈ (Lp(Ω))∗ , lim

n→∞

ˆ
Ω
gfφ(n) =

ˆ
Ω
gf,

hence fφ(n) weakly converges to f in Lp(Ω).

The proof in the case p = ∞ is similar. This time, we use that L1(Ω) is separable and that
L∞(Ω) = L1(Ω)∗.

1.5 Lower-semi continuity and convexity
Let E be a Banach space. We say that a map J : E → R is lower-semi-continuous (l.s.c.) if

xn −→ x implies J(x) ≤ lim inf
n→∞

J(xn).

The convergence xn → x can be interpreted with several topologies: a function J can be strongly
l.s.c., or weakly l.s.c. (or even weakly-* lsc). If a map J is weakly l.s.c., then it is strongly l.s.c. .

Theorem 1.31: Lower semi-continuity for convex functions

Let E be a Banach space. If J : E → R is convex, then J is strongly l.s.c. iff J is weakly l.s.c. .
In particular, the map ‖ · ‖E is weakly l.s.c.: If xn → x weakly in E, then ‖x‖E ≤ lim inf ‖xn‖E .

Proof. We admit that if J is convex and strongly l.s.c., then, there is a continuous linear operator Lx

(called support plane) so that

∀y ∈ E, J(y) ≥ J(x) + Lx(y − x).

(Think of Lx as the differential DJ(x)). In particular, if (xn) weakly converges to x, we have

J(xn) ≥ J(x) + Lx(xn − x), hence lim inf
n→∞

J(xn) ≥ lim inf
n→∞

(J(x) + Lx(xn − x)) = J(x).

The norm map ‖ · ‖ is convex (this comes from the triangle inequality), and, by definition, it is
strongly continuous, hence strongly l.s.c. So ‖ · ‖E is weakly l.s.c.
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In the case E = Lp(Ω), we have a stronger result (see [LL01, Theorem 2.11]).
Theorem 1.32

In the case 1 < p <∞, if fn → f weakly in Lp(Ω), then ‖f‖Lp ≤ lim inf ‖fn‖Lp .
In addition, if ‖f‖Lp = lim ‖fn‖Lp , then the convergence is strong.

Proof. The first point is the previous Theorem in the case E = Lp(Ω). We prove the second point
only in the case p = 2. If ‖fn‖L2 → ‖f‖L2 , then we have

‖f − fn‖2L2 = ‖f‖2L2 + ‖fn‖2L2 − 2Re

ˆ
Ω
ffn −−−→

n→∞
‖f‖2L2 + ‖f‖2L2 − 2Re

ˆ
Ω
ff = 0.

1.6 Additional exercices
Exercice 1.33

Let 1 ≤ p <∞, and let f ∈ Lp(Rd). Prove that for all ε > 0, there is R > 0 so that
ˆ
B(0,R)c

|f(x)|pdx < ε.

Exercice 1.34
Let 1 ≤ p <∞, and let f ∈ Lp(Rd). Prove that for all ε > 0, there is h∗ > 0 so that

∀h ∈ B(0, h∗),
ˆ
Rd

|f(x− h)− f(x)|p dx < ε.

Exercice 1.35
Let f ∈ C∞

0 (Ω). For 1 ≤ p <∞, we denote by α := 1/p ∈ (0, 1). Prove that the following map in convex
on (0, 1]:

α 7→ log
(
‖f‖

L
1
α

)
.

Exercice 1.36
Let (fj) be a sequence in Lp(Ω) which converges pointwise a.e. to f , and which converges weakly to g
in Lp(Ω). Prove that f = g.



CHAPTER 2
DISTRIBUTIONS

In this chapter, we introduce the set of distributions D′(Ω) and the Sobolev spaces Wm,p(Ω). Some
references are [LL01, Chapter 6], and the original book by Schwartz [Sch66]. In the references [Bre99;
Eva10], only the Sobolev spaces Wm,p(Ω) are defined (not all distributions).

A distribution is a weak notion of "functions", which we can differentiate any number of times.
This allows to prove that some equations have solutions "in the distributional sense". These solutions
may not be functions (although they will be in most cases).

2.1 Distributions

2.1.1 Definition and examples

We denote by D(Ω) := C∞
0 (Ω) the set of smooth functions with compact support in Ω ⊂ Rd, with the

following notion of convergence/topology: A sequence (φn) ∈ D(Ω) converges to φ ∈ D(Ω) if:

• there is a fixed compact set K ⊂ Ω so that the support of φn − φ is contained in K for all n.

• for all α ∈ Nd, we have,
sup
x∈K
|Dαφn(x)−Dαφ(x)| −−−→

n→∞
0.

Theorem 2.1

If φ ∈ D(Ω), then φ ∗ jε converges to φ in D(Ω) as ε→ 0.

Proof. Let φ ∈ D(Ω) with support Kφ ⊂ Ω, and let δ := dist(K, ∂Ω) > 0. For all 0 < ε < δ, the
smooth functions φ ∗ jε all have support in Kφ + B(0, δ) =: K ⊂ Ω. For x ∈ K, we have, using that´
jε = 1 and the change of variable z = y/ε,

|φ ∗ jε(x)− φ(x)| =
∣∣∣∣ˆ

Rd

jε(y) [φ(x− y)− φ(x)] dy
∣∣∣∣ ≤ ˆ

Rd

jε(y) |φ(x− y)− φ(x)|dy

=

ˆ
Rd

j(z) |φ(x+ εz)− φ(x)| dz ≤ ε‖∇φ‖∞
ˆ
Rd

j(z)zdz,

which goes to 0 as ε→ 0. This proves the uniform convergence supx∈K ‖φ ∗ jε − φ‖∞ → 0. Similarly,
Dα (φ ∗ jε) = (Dαφ) ∗ jε converges uniformly to Dαφ on K. Hence φ ∗ jε → φ in D(Rd).
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Definition 2.2 (Distribution). A distribution T is a linear map from D(Ω)→ C, which is contin-
uous in the following sense: for all φ ∈ D(Ω) and all sequences (φn) that converges to φ in D(Ω), we
have

T (φn) −→ T (φ).

The set of distributions is denoted by D′(Ω). We also write

〈T, φ〉D′,D := T (φ).

Example 2.3 (Dirac mass). The map δ0 : φ 7→ φ(0) is a distribution, called the Dirac mass.

Locally integrable functions

For 1 ≤ p ≤ ∞, we set

Lp
loc(Ω) := {f measurable on Ω such that, for all compact K ⊂ Ω, f ∈ Lp(K)} . (2.1)

The sets Lp
loc(Ω) are not normed spaces. Of course, Lp(Ω) ⊂ Lp

loc(Ω). In addition, by Hölder’s
inequality, and since K is a bounded set, we always have

‖f‖L1(K) ≤
ˆ
K
|f | =

ˆ
K
1|f | ≤

(ˆ
K
1p

′
)1/p′ (ˆ

K
|f |p

) 1
p

= |K|1/p′‖f‖Lp(K).

This proves that
Lp(Ω) ⊂ Lp

loc(Ω) ⊂ L
1
loc(Ω),

so the space L1
loc(Ω) contains all the Lp(Ω) spaces: if a result is true for all f ∈ L1

loc(Ω), it is also true
for f ∈ Lp

loc(Ω) and for f ∈ Lp(Ω).
Exercice 2.4

Prove that if 1 ≤ p ≤ q ≤ ∞, then Lq
loc ⊂ L

p
loc.

The following theorem shows that one can distinguish L1
loc functions (hence all Lp functions) among

distributions.
Theorem 2.5: L1

loc functions are determined by distributions

If f ∈ L1
loc(Ω), then Tf : φ 7→

´
Ω fφ is a distribution.

If f, g ∈ L1
loc(Ω), then Tf = Tg in D′(Ω) iff f = g a.e.

Proof. For the first part, we write that

|Tf (φn)− Tf (φ)| =
∣∣∣∣ˆ

K
f [φn − φ]

∣∣∣∣ ≤ ‖f‖L1(K) sup
K
|φn − φ| → 0.

We now prove the second part. Consider the inner neighbourhood of Ω,

Ωδ := {x ∈ Ω, ∀y ∈ B(0, δ), x+ y ∈ Ω}.

Let (jε) be a smoothing sequence. We fix x ∈ Ωδ, and for 0 < ε < δ, we set φ(y) := jε(x− y) ∈ D(Ω).
Then

Tf (φ) =

ˆ
Ω
f(y)φ(y)dy =

ˆ
Ω
f(y)jε(x− y)dy =

ˆ
Rd

f(y)jε(x− y)dy = f ∗ jε(x).

So, if Tf = Tg, we have f ∗ jε = g ∗ jε on Ωδ. Taking ε → 0 gives f = g a.e. in Ωδ by Theorem 1.21.
Finally, taking δ → 0 gives f = g a.e. on Ω.
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Convergence of distributions

We say that a sequence (Tn) of distributions converges to T in the distributional sense, or in
D′(Ω), if, for all φ ∈ D(Ω), we have Tn(φ)→ T (φ).

Example 2.6. If (jε) is a smoothing sequence, then jε → δ0 in D′(Ω). Indeed, if φ ∈ D(Ω), then, for
x ∈ Ωδ and 0 < ε < δ, we have, as in Theorem 2.1.

|Tjε(φ)− δ0(φ)| =
∣∣∣∣ˆ

Rd

jε(x) (φ(x)− φ(0)) dx
∣∣∣∣ ≤ ˆ

Rd

j(z) |φ(εz)− φ(0)|dz ≤ ε‖∇φ‖∞
ˆ
Rd

j(z)zdz,

which goes to 0 as ε→ 0. This holds for all φ ∈ D(Ω), so Tjε → δ0, or equivalently, jε → δ0 in D′(Ω).

2.1.2 Operations on distributions

Mimicking what happens for smooth functions, we can define many operations for distributions.

Derivatives

If f ∈ C1(Ω) and φ ∈ C∞
0 (Ω), we have the integration by part formula (there are no boundary terms

since φ is compactly supported) ˆ
Ω
(∂xif)φ = −

ˆ
Ω
f (∂xiφ) .

We extend this property and define the derivative of a distribution as follows.

Definition 2.7 (Derivative of a distribution). If T ∈ D′(Ω), the Dα derivative of T is the distribution
noted DαT and defined by

〈DαT, φ〉D′,D := (−1)|α| 〈T,Dαφ〉D′,D .

Remark 2.8. Since φ is smooth, we may use Schwarz’ Lemma on φ, and deduce that1 ∂2xyT = ∂2yxT .

Theorem 2.9

If (Tm) converges to T in D′(Ω), then for all α ∈ Nd, (DαTm) converges to DαT in D′(Ω).

In other words, all derivatives to Tm converge to the associate derivative of T .

Proof. For all φ ∈ D(Ω), we have Dαφ ∈ D(Ω), so

〈DαTm, φ〉D′,D = (−1)|α| 〈Tm, Dαφ〉D′,D −−−−→m→∞
(−1)|α| 〈T,Dαφ〉D′,D = 〈DαT, φ〉 .

Multiplication by a smooth function

Let g be a C∞(Ω) function (not necessarily compactly supported). If φ ∈ D(Ω), then gφ ∈ D(Ω) as
well, so we can define the distribution gT = Tg by

〈gT, φ〉D′,D = 〈Tg, φ〉D′,D := 〈T, gφ〉D′,D.

Again, one can check that gT is indeed a distribution.
Exercice 2.10

Prove that ∂xi(gT ) = (∂xig)T + g(∂xiT ) in D′(Ω).

1To quote a teacher of mine: "students like distributions, since they are infinitely differentiable, and the order of
derivatives does not matter".
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Convolution

We focus here on the case Ω = Rd, although one can generalise to any Ω ⊂ Rd by first checking the
support of functions (the convolution of two compactly supported function is compactly supported).

For all f, g, φ, we have, by the change of variable (x, z) = (x, y − x), that
ˆ
Rd

(f ∗ g)φ :=

¨
(Rd)2

f(x)g(y − x)φ(y)dydx =

¨
(Rd)2

f(x)φ(z)g(z − x)dxdz =
ˆ
Rd

f(g̃ ∗ φ),

where we set g̃(x) := g(−x) (the reflection). In addition, if φ ∈ D(Rd) and g is an L1(Rd) function with
compact support, then g̃ ∗ φ ∈ D(Rd) (see Theorem 1.21). This suggests to define, for all g ∈ L1(Rd)
with compact support, the distribution g ∗ T = T ∗ g by

〈T ∗ g, φ〉D′,D = 〈g ∗ T, φ〉D′,D := 〈T, φ ∗ g̃〉D′,D .

Again, one can check that g ∗ T is indeed a distribution.
Exercice 2.11

Prove that ∂xi
(g ∗ T ) = (∂xi

g) ∗ T = g ∗ (∂xi
T ) in D′(Rd).

Theorem 2.12: Convolution smooths distributions

Let (jε) be a smoothing sequence. Then the distribution Tε := T ∗ jε converges to T in D′(Rd).
In addition, Tε can be identified with a C∞(Rd) function, and DαTε = T ∗ (Dαjε).

Proof. For φ ∈ D(Rd) with support K, we have, using that j̃ε = jε,

Tε(φ)− T (φ) = 〈T, φ ∗ jε − φ〉D′,D.

We proved in Theorem 2.1 that φ ∗ jε → φ in D. So, by definition of a distribution, we have
Tε(φ)→ T (φ). Since this holds for all φ ∈ D, we deduce that Tε → T in D′.

We now prove that Tε can be seen as a smooth function. Assume first that T is a smooth function.
Then

tε(x) := T ∗ jε(x) =
ˆ
Ω
T (y)jε(x− y)dy = 〈T, jε(x− ·)〉D′,D.

and, similarly,
Dαtε(x) = 〈T, (Dαjε)(x− ·)〉D′,D.

The reader can check that these manipulations are still valid when T is any distribution, in the sense
that indeed T ∗ jε = tε in D′(Rd). In addition, tε is infinitely differentiable.

Exercice 2.13
Prove that (DαT ) ∗ jε = T ∗ (Dαjε) = Dα(T ∗ jε).

A similar result holds in Ω ⊂ Rd by using techniques similar to the proof of Theorem 2.5. We
deduce the following.

Theorem 2.14: Density of smooth functions

The set C∞(Ω) is dense in D′(Ω): for all T ∈ D′(Ω), there is a sequence (Tn) ∈ C∞(Ω) so that
Tn → T in D′(Ω).

As an example of how to use the last theorem, we state the following.
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Theorem 2.15: Constant distributions

Let Ω be connected, and T ∈ D′(Ω) be such that ∇T = 0. Then T is a constant: there is C ∈ C
so that T (φ) = C

´
φ.

Proof. We introduce Tε := T ∗ jε, and we have

∇Tε = ∇(T ∗ jε) = jε ∗ (∇T ) = 0.

Since Tε is a smooth function with null derivatives, we have Tε = cst(ε). Letting ε → 0 proves the
result.

2.2 Example: the Poisson’s equation

2.2.1 Integration by parts on domains

We recall here the so-called divergence formula. The notion of domain with boundary of class C1

will be detailed later in Section 4.3.2. We start with the divergence theorem.
Theorem 2.16: Divergence theorem

Let Ω be an open set of Rd with boundary ∂Ω of class C1. For all F of class C1(Ω,Rd), we have
ˆ
Ω
div(F ) =

ˆ
∂Ω
F · ν dω,

where ν is the outward normal of Ω, and where dω is the surface measure on ∂Ω.

We admit the result, since its proof needs the definitions of surface measure, of smooth domains,
and so on. In the sequel however, we use the theorem mainly in the case where Ω is a ball Ω = B(0, x),
in which case all these notions are easily understood.

One important application of this formula is the second Green’s identity.
Theorem 2.17: Second Green’s identity

Let Ω be an open set of Rd with boundary ∂Ω of class C1. For all A,B ∈ C2(Ω,R), we have
ˆ
Ω
(∆A)B −A(∆B) =

ˆ
∂Ω

(B∇A−A∇B) · ν dω.

Proof. Take F = (∇A)B −A(∇B) and apply the Divergence Theorem 2.16.

2.2.2 Green’s functions and the Poisson’s equation

We define the following Green’s functions. Recall that d ∈ N is the dimension.

G0(x) := −1
2 |x|, if d = 1,

G0(x) := − 1
2π ln(|x|), if d = 2,

G0(x) :=
1
4π

1
|x| , if d = 3,

G0(x) :=
1

(d− 2)|Sd−1|
1

|x|d−2
, if d > 3

(Actually, the last formula is also valid for d = 1 and d = 3).
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Theorem 2.18: Distributional Laplacian of Green’s functions

We have −∆G0 = δ0 in D′(Rd), where δ0 is the Dirac mass at 0.

Proof. We only do the proof in the case d = 3 for clarity. The function G0 is smooth away from x = 0,
and satisfies

∀x 6= 0, ∇G0(x) = −
1

4π

x

|x|3
, ∆G0(x) = 0. (2.2)

It remains to check what happens at x = 0. First, G0 is locally integrable since, for all a > 0, we have,
using radial coordinates,

ˆ
B(0,a)

|G0| =
1

4π

ˆ
B(0,a)

1

|x|
dx =

1

4π
|S2|

ˆ a

0

1

r
r2dr =

a2

2
.

Take φ ∈ D(Ω) with support contained in B(0, R). We divide the ball B(0, R) into two sets, namely a
small ball D(0, a), and the annulus {x ∈ Rd, a ≤ |x| ≤ R}. The last equality shows that the integral´
G0(−∆φ) on B(0, a) goes to 0 as a→ 0. We now evaluate the integral on the annulus. On this set,

G0 is smooth with ∆G0 = 0. The second Green’s identity with A = φ and B = G0 givesˆ
a≤|x|≤R

(−∆φ)G0 = −
ˆ
|x|=a

[(∇φ)G0 − φ(∇G0)] · ν dω.

Let us prove that the first part goes to 0 as a→ 0. We have (note that |aS2| = 4πa2)∣∣∣∣∣
ˆ
|x|=a

(∇φ)G0 · ν dω

∣∣∣∣∣ ≤
(
max
Rd
‖∇φ‖

) ˆ
aS2
|G0|dω =

(
max
Rd
‖∇φ‖

)
|aS2|
4πa

=

(
max
Rd
‖∇φ‖

)
a −−−→

a→0
0.

We now focus on the term φ(∇G0). Using the explicit formula for ∇G0 and that ν(x) = − x
|x| , we get

ˆ
|x|=a

φ(∇G0) · νdω =
1

4πa2

ˆ
aS2

φ(ω)dω −−−→
a→0

φ(0),

where we used that φ is continuous in the last line, and where we recognised the average of φ on the
sphere aS2. Hence, we proved that

〈−∆G0, φ〉D′,D = φ(0) = 〈δ0, φ〉D′,D.

Since this holds for all φ ∈ D(Rd), we get −∆G0 = δ0 in the distributional sense, as wanted.

We can now prove the general case.
Theorem 2.19: The Poisson equation in the whole space

Let f ∈ L1
loc(Rd) be such that |f | ∗G0 is well-defined a.e.. Then u := f ∗G0 is in L1

loc(Rd), and
satisfies

−∆u = f, in L1
loc(Rd).

Formally, this follows from the computation

−∆(f ∗G0) = f ∗ (−∆G0) = f ∗ δ0 = f.

However, this line does not make sense if f is not smooth. We refer to [LL01, Theorem 6.21] for the
full proof.

As we can see, the weakening of the notion of functions provides a simple answer for the existence
of u solution to −∆u = f on the whole space Rd. In the sequel, we will prove that, if f is regular,
then so is u. For now, let us just mention the following.
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Lemma 2.20. Assume d ≥ 3. Let q ≥ d
2 , and assume that

f ∈ Lq−ε(Rd) ∩ Lq+ε(Rd) for some ε > 0.

Then u = f ∗G0 is in Lr(Rd), where r ≥ 1 is defined by

1

q
− 2

d
=:

1

r
.

This lemma is a prototype! It can be generalised in many different ways.

Proof. Write
G0(x) = G0(x)1(x < R) +G0(x)1(x ≥ R).

Since G0(x) ≈ |x|d−2, the first part is in Lp(Rd) for all p < p0 := d
d−2 , while the second part is in

Lp(Rd) for all p > p0. The result then follows from Young’s inequality 1.19, and using that

1

q
+
d− 2

d
= 1 +

1

r
.

2.3 Sobolev spaces Wm,p(Ω) and Hm(Ω)

2.3.1 Definition

We proved that Lp(Ω) ⊂ Lp
loc(Ω) ⊂ L

1
loc(Ω) ⊂ D′(Ω). In particular, we can consider the distributional

derivatives of Lp functions. For m ∈ N and 1 ≤ p ≤ ∞, we define the Sobolev spaces

Wm,p(Ω) :=
{
f ∈ Lp(Ω), ∀α ∈ Nd, |α| ≤ m, Dαf ∈ Lp(Ω)

}
,

and the corresponding norm

‖f‖Wm,p(Ω) :=

 ∑
|α|≤m

‖Dαf‖pLp(Ω)

1/p

.

For instance, we have

‖f‖W 1,2(Ω) =
(
‖f‖2L2 + ‖∂x1f‖2L2 + · · ·+ ‖∂xd

f‖2L2

)1/2
=
(
‖f‖2L2 + ‖∇f‖2(L2)d

)1/2
.

Note that W 0,p(Ω) = Lp(Ω). When p = 2, we set

Hm(Ω) :=Wm,2(Ω).

The Hm spaces will play a special role, since they will be Hilbert spaces when equipped with the
natural inner product

〈f, g〉Hm(Ω) :=

ˆ
Ω
fg +

∑
|α|≤m

ˆ
Ω
Dαf Dαg.
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2.3.2 Completion of Sobolev spaces

As one can expect, Sobolev spaces are complete (see [Bre99, Proposition VIII.1]).
Theorem 2.21: The Sobolev spaces Wm,p(Ω) are complete.

For all m ∈ N and all 1 ≤ p ≤ ∞, the set Wm,p(Ω) is a Banach space. It is separable if p <∞,
and reflexive if 1 < p <∞.
In particular, Hm(Ω) is a (separable) Hilbert space.

Proof. Let (fj) be a Cauchy sequence in Wm,p(Ω). Then (fj) is a Cauchy sequence in Lp(Ω), and,
for all |α| ≤ m, (Dαfj) is a Cauchy sequence in Lp(Ω). The space Lp(Ω) being complete, there are
f ∈ Lp(Ω) and fα ∈ Lp(Ω), so that

fj
Lp

−→ f, Dαfj
Lp

−→ fα.

It remains to prove that fα = Dαf . Since we have convergence in Lp, we also have convergence
in the distributional sense, that is fj → f in D′(Ω). In particular, by Theorem 2.9, we must have
Dαfj → Dαf in D′(Ω). By uniqueness of the limit in D′(Ω), we indeed have fα = Dαf . This proves
that Wm,p(Ω) is complete.

The map f ∈ Wm,p(Ω) 7→ (Dαf)|α|≤m ∈ (Lp(Ω))N with N := ]{α ∈ Nd, |α| ≤ m} is an isometry.
So Wm,p(Ω) can be identified with a closed vectorial space of (Lp(Ω))N . In particular, Wm,p(Ω) is
separable for p <∞, and it is reflexive for 1 < p <∞.

The reader might ask what is the dual space of W 1,p(Ω). We refer to [LL01, Theorem 6.24] and
to the discussion in [Bre99, p.174] for this difficult (and not so interesting) question.

We also record the following (see [Eva10, Section 5.3.2]).
Theorem 2.22: Meyers-Serrin

Assume Ω is bounded. For all m ∈ N and all 1 ≤ p <∞, the set C∞(Ω)∩Wm,p(Ω) is dense in
Wm,p(Ω).

We warn that the functions in C∞(Ω) are not necessarily smooth up to the boundary, and may
explode at the boundary. Later in Theorem 4.10, we enunciate a much stronger result.

2.4 Sobolev spaces Wm,p
0 (Ω) and Hm

0 (Ω)

2.4.1 Definition

We now study whether C∞(Ω) and/or C∞
0 (Ω) = D(Ω) is dense in Wm,p(Ω). Surprisingly, these two

sets are usually not dense in Ω. In what follows, we define

Wm,p
0 (Ω) := C∞

0 (Ω) the closure of C∞
0 (Ω) for the norm of Wm,p(Ω).

Similarly, we set Hm
0 (Ω) := Wm,2

0 (Ω). Since Wm,p
0 (Ω) is a closed linear space of the Banach space

Wm,p(Ω), it is a Banach space for the same norm.
Loosely speaking H1

0 (Ω) is the set of functions of H1(Ω) that vanish at the boundary ∂Ω. However,
since the measure of ∂Ω is usually null, this only has an affective meaning.

Theorem 2.23: Wm,p
0 (Rd) =Wm,p(Rd)

In the case Ω = Rd, we have equality Wm,p
0 (Rd) =Wm,p(Rd) for 1 ≤ p <∞.

In particular, C∞(Rd) ∩Wm,p(Rd) and C∞
0 (Rd) are dense in Wm,p(Rd) for 1 ≤ p <∞.
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Proof. Let us first prove that C∞(Rd) is dense in Wm,p(Rd). Let f ∈ Wm,p(Rd), and set fε := f ∗ jε
for a smoothing sequence jε. By Theorem 2.14, the functions fε are smooth. For all |α| ≤ m, the
function Dαf is in Lp(Rd), and we have Dα(fε) = (Dαf) ∗ jε. By Theorem 1.21, we deduce that

∀|α| ≤ m, ‖(Dαf) ∗ jε −Dαf‖Lp −−−→
ε→0

0.

This already proves that C∞(Rd) ∩Wm,p(Rd) is dense in Wm,p(Rd).

For the second part, we take f ∈ C∞(Rd)∩Wm,p(Rd), and set fn := χ(x/n)f , where χ is a smooth
cut-off function satisfying χ(x) = 1 for |x| ≤ 1. Then, fn ∈ C∞

0 (Rd). By the Dominated Convergence
Theorem 1.11, we have ‖fn − f‖Lp → 0. Moreover, we have

‖∇fn −∇f‖Lp =

∥∥∥∥ 1n(∇χ)(xn) f + (∇f) [χ(x/n)− 1]

∥∥∥∥
Lp

≤ 1

n
‖∇χ‖∞‖f‖Lp + ‖(∇f)[χ(x/n)− 1]‖Lp ,

and the last term goes to 0 with the Dominated Convergence Theorem again. So ‖∇fn −∇f‖Lp → 0
as well. We go on with all derivatives, which proves that ‖Dαfn −Dα‖Lp → 0 for all |α| ≤ m. This
shows that fn → f in Wm,p(Rd).

For 1 < p < ∞, the dual space of Wm,p
0 (Ω) is noted W−m,p′(Ω), with 1

p + 1
p′ = 1, as in (1.2). By

density of D(Ω) in Wm,p
0 (Ω), f ∈W−m,p′(Ω) ⊂ D′(Ω) iff there is a constant C > 0 so that

∀φ ∈ D(Ω),
∣∣∣∣ˆ

Ω
fφ

∣∣∣∣ := |〈f, φ〉D′,D| ≤ C‖φ‖Wm,p .

2.4.2 Poincaré’s inequalities

In the case where Ω is bounded, there are several important inequalities related to W 1,p
0 (Ω).

Theorem 2.24: Poincaré’s inequality

Let Ω be a bounded open set in Rd and let 1 ≤ p < ∞. There is a constant C = C(Ω, p) so
that, for all u ∈W 1,p

0 (Ω), we have

‖u‖Lp(Ω) ≤ C‖∇u‖Lp(Ω).

Proof. We denote by L the diameter of Ω. By density of C∞
0 (Ω) in W 1,p

0 (Ω), it is enough to prove the
result for u ∈ C∞

0 (Ω). Let x ∈ Ω, and consider a point a ∈ ∂Ω, so that a1 = x1 (same first coordinate).
On the segment [a, x], we have the point-wise bound

|u(x)| = |u(x)− u(a)| ≤
ˆ x

a
|∂x1u|(s, x2, · · · , xN )ds ≤

ˆ a+L

a
|∇u|(s, x2, · · · , xN )ds

≤
(ˆ a+L

a
1p

′
ds

)1/p′ (ˆ a+L

a
|∇u|p(s, x2, · · ·xN )ds

)1/p

= L1/p′
(ˆ a+L

a
|∇u|p(s, x2, · · ·xN )ds

)1/p

where we used Hölder’s inequality in the last line. We take the p power and integrate. This gives,
using Fubini, and the fact that the dx1 integration can be performed on a segment of size L.

ˆ
Ω
|u|p ≤ Lp/p′

ˆ
Ω

(ˆ a+L

a
|∇u|p(s, x2, · · ·xN )ds

)
dx1dx2 · · · dxN

≤ L1+p/p′
ˆ
|∇u|p(s, x2, · · ·xN )dsdx2 · · · dxN = L1+p/p′

ˆ
Ω
|∇u|p.
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Remark 2.25. Poincaré’s inequality is also valid if Ω is bounded only in 1-direction.

Corollary 2.26. If Ω is bounded, then the constant function f(x) = C with C 6= 0 is not in W 1,p
0 (Ω):

we cannot approximate constant functions by C∞
0 (Ω) functions, for the W 1,p(Ω) norm.

A consequence of Poincaré’s inequality is that the map u 7→ ‖∇u‖Lp is a norm on W 1,p
0 (Ω), which

is equivalent to the usual W 1,p(Ω) norm. Indeed, we have

‖∇u‖Lp ≤
(
‖u‖pLp + ‖∇u‖pLp

)1/p
= ‖u‖W 1,p ≤

(
C‖∇u‖pLp + ‖∇u‖pLp

)1/p
= (C + 1)1/p‖∇u‖Lp .

If u /∈ Wm,p
0 (Ω), we have a similar result, that we state for completeness. The proof uses the

Rellich’s Theorem 4.14 (see below).
Theorem 2.27: Poincaré-Wirtinger’s inequality

Let Ω be a bounded connected open set of Rd, with boundary ∂Ω of class C1, and let 1 ≤ p <
∞. There is a constant C = C(Ω, p) so that, for all u ∈W 1,p(Ω), we have∥∥∥∥u−  

Ω
u

∥∥∥∥
Lp(Ω)

≤ C‖∇u‖Lp(Ω),

where we set
 
Ω
u :=

1

|Ω|

ˆ
Ω
u the average of u.

Proof. Assume otherwise, and let un ∈W 1,p(Ω) be such that∥∥∥∥un −  
Ω
un

∥∥∥∥
Lp

≥ n‖∇un‖Lp .

We set wn :=
un−

ffl
un

‖un−
ffl
un‖Lp

, so that
ffl
wn = 0 and

1 = ‖wn‖Lp ≥ n‖∇wn‖Lp .

The sequence (wn) is bounded in W 1,p(Ω). By the Banach-Alaoglu theorem applied in the reflexive
separable Banach space Wm,p(Ω), it converges weakly to some w∗ ∈W 1,p(Ω) up to a subsequence.

In particular, ∇wn converges weakly to ∇w∗ in Lp, and since the Lp norm is weakly lsc (see
Theorem 1.32), we have ‖∇w∗‖ ≤ lim inf ‖∇wn‖ = 0, so ∇w∗ = 0. By Theorem 2.15 and the fact that
Ω is connected, we deduce that w∗ is constant. In addition, also by weak-convergence, we have

0 =

ˆ
Ω
wn = 〈wn, 1〉Lp,Lp′ −−−→

n→∞
〈w∗, 1〉Lp,Lp′ =

ˆ
Ω
w∗.

This proves that w∗ = 0.
However, by the Rellich’s Theorem 4.14 (that we prove below), the sequence (wn) also strongly

converges to w∗ in Lp(Ω), so we also have ‖w∗‖Lp = lim ‖wn‖Lp = 1, a contradiction.



CHAPTER 3
HILBERT SPACES, AND LAX-MILGRAM THEOREM

In this chapter, we recall the basic theory of (separable) Hilbert spaces. We prove the Lax-Milgram
theorem, and provide some examples of applications.

3.1 Hilbert spaces
A Hilbert space is a Banach space with an inner (or sesquilinear) product. Our convention is that the
inner product is linear on the right, and antilinear on the left. The natural Hilbert space we will be
working with is the L2(Ω) space, with the inner product

〈f, g〉L2(Ω) :=

ˆ
Ω
fg.

Let (H, 〈·, ·〉H) be a Hilbert space. We recall the Cauchy-Schwarz inequality |〈f, g〉| ≤ ‖f‖ · ‖g‖,
and the parallelogram equality

‖f + g‖2 + ‖f − g‖2 = 2
(
‖f‖2 + ‖g‖2

)
.

A countable orthonormal basis of H is an orthonormal family of vectors (e1, e2, · · · ) such that,
for any x ∈ H there are complex coefficients (xi)i∈N so that

x =

∞∑
i=1

xiei, in the sense that
∥∥∥∥∥x−

N∑
i=1

xiei

∥∥∥∥∥
H

−−−−→
N→∞

0.

Taking the inner product with ei gives xi = 〈x, ei〉H. Similarly, taking the inner product of x with
itself shows the Parseval identity ‖x‖2 =

∑
|xi|2. So

x =

∞∑
i=1

〈x, ei〉ei. and ‖x‖2H =

∞∑
i=1

|〈x, ei〉|2.

Theorem 3.1. If H is a separable Hilbert space, then H admits a countable basis.

Proof. Let (xn) be a dense set in H, and consider Fk := Ran{x1, · · · , xk}, of dimension at most k.
First erase all k so that dimFk = dimFk−1 to obtain a new sequence Fk so that dimFk = k. Then
perform a Gram-Schmidt algorithm on the sequence Fk.

In practice, all interesting Hilbert spaces are separable, and we only focus on the theory for
separable Hilbert space. In what follows H is a separable Hilbert space.



3.2. Lax-Milgram theorem 34

3.2 Lax-Milgram theorem
Let a : H×H → C be a bilinear (or sesquilinear) map. We say that a is continuous if there is β > 0
so that

∀u, v ∈ H, |a(u, v)| ≤ β‖u‖H‖v‖H.

We say that a is coercive if there is α > 0 so that

∀u ∈ H, a(u, u) ≥ α‖u‖2H.

Finally, we say that a is symmetric (or hermitian) if

∀u, v ∈ H, a(u, v) = a(v, u).

Coercivity is only meaningful when a(u, u) is real-valued for all u ∈ H. When a is symmetric, then
a(u, u) is always real-valued, so these two notions work well together.

Theorem 3.2: Lax-Milgram

Let a : H×H → C be a bilinear form which is continuous and coercive, and let L : H → C be
a continuous linear map. Then there is unique u ∈ H so that

∀f ∈ H, a(u, f) = L(f).

In addition, if H is a real Hilbert space and a is symmetric, then u is the unique minimiser of
J : H → R defined by

J(v) :=
1

2
a(v, v)− L(v).

Note that the J map is real-valued only in real Hilbert space. In complex Hilbert space, we have
J(λv) = |λ|2

2 a(v, v)− λL(v), which is complex valued in general, due to the second term.

Before we give the proof, let us re-state this theorem in the case H = Cn (finite dimension case).
In this case, a(·, ·) and L(·) are of the form

a(u, v) := 〈Au, v〉Cn , and L(f) = 〈b, f〉Cn

for some A ∈ Mn(C) and b ∈ Cn. In this case, a(·, ·) is always continuous (why?), and coercivity
implies that A is injective. The equation a(u, f) = L(f) is then equivalent to Au = b. Since A is
injective, it is invertible, and we find u = A−1b.

In the real case, if a is symmetric, then A is a symmetric matrix. Coercivity then implies A > 0.
In particular, the map J : Rn → R defined by

J(f) :=
1

2
〈Af, f〉Rd − 〈b, f〉Rd

is strictly convex and coercive, hence admits a unique minimiser u∗. Solving ∇J(u) = 0 proves that
u∗ = A−1b.

The Lax-Milgram Theorem is somehow a generalisation for the invertibility of an operator.

Proof. Let (en)n∈N be a basis of H, and consider the finite vectorial space

En := Vect{e1, · · · , en}.

We consider the approximate problem with the restriction a : En ×En → R and L : En → R. By the
previous argument in finite dimension, there is unique un ∈ En so that

∀f ∈ En, a(un, f) = L(f).
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In addition, we have the a priori estimate

α‖un‖2H ≤ a(un, un) = L(un) ≤ ‖L‖op‖un‖H, so ‖un‖H ≤ α−1‖L‖op.

The sequence (un) is bounded in the (separable) Hilbert space H. By the Banach-Alaoglu Theo-
rem 1.30, there is a subsequence φ(n), and an element u ∈ H so that uφ(n) → u weakly in H. The
weak-convergence already proves that

∀f ∈ H, a(u, f) = L(f).

Let us prove uniqueness. If u1, u2 solves the equation, then

α‖u1 − u2‖2H ≤ a(u1 − u2, u1 − u2) = a(u1, u1 − u2)− a(u2, u1 − u2)
= L(u1 − u2)− L(u1 − u2) = 0.

So there is a unique solution. In particular, the whole sequence (un) converges (weakly) to u.

Assume now that H is a real Hilbert space, and that a is symmetric. The function J(f) :=
1
2a(f, f) − L(f) is (strongly) continuous by definition. It is strictly convex and coercive, so has a
unique minimum u∗ ∈ H. Since J is differentiable, we must have DuJ(u

∗) = 0, which gives

∀f ∈ H, a(u∗, f) = L(f).

This proves that u∗ = u.
Actually, if a is symmetric, then the convergence of (un) to u is strong. Indeed, we have

α‖u− un‖2H ≤ a(u− un, u− un) = a(u, u− 2un) + a(un, un)

= L(u− 2un) + L(un) = L(u− un) −→ 0.

3.2.1 Application: Riesz’ theorem

As a special case of Lax-Milgram theorem, we record the infamous Riesz’ theorem. First, for v ∈ H,
we set Lv : f 7→ 〈v, f〉H. We have |Lv(f)| ≤ ‖v‖H‖f‖H by Cauchy-Schwarz, so Lv ∈ H∗. In addition,
taking f = v shows that ‖Lv‖H∗ = ‖v‖H. This proves that H ⊂ H∗. The next result shows that we
have equality.

Theorem 3.3: Riesz’ theorem

For all L ∈ H∗, there is a unique v ∈ H so that L = Lv. In particular, H ≈ H∗.

In particular, we have (L2(Ω))∗ = L2(Ω) (this is the case p = 2 in Theorem 1.27).

Proof. Consider a(u, v) = 〈u, v〉H the scalar product of H. We have ‖u‖2 = a(u, u), so a is coercive,
and Cauchy-Schwarz inequality gives |a(u, v)| ≤ ‖u‖H‖v‖H, so a is continuous. Lax-Milgram theorem
applies, so there is v ∈ H so that a(u, v) = L(v), which is Riesz’ theorem.

Example 3.4. We take H = (H1(R), ‖ · ‖H1), with the inner product

〈f, g〉H :=

ˆ
R
fg + f ′g′.

We will see later in Theorem 4.5 that the linear map δ0 : f 7→ f(0) is continuous on H1(R). By the
Riesz’ theorem, there is f0 ∈ H so that 〈f, f0〉H = f(0). A computation reveals that

f0(x) :=
1

2
e−|x|.
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Indeed, we have
〈f0, f〉H1 =

1

2

ˆ
R
f(x)e−|x|dx+

1

2

ˆ
R
f ′(x)(−sgnx)e−|x|dx.

With an integration by part, the can compute the last integral in R+ with

−1

2

ˆ
R+

f ′(x)e−xdx = −1

2

ˆ
R+

f(x)e−xdx− 1

2

[
f(x)e−x

]∞
0

= −1

2

ˆ
R+

f(x)e−xdx+
1

2
f(0).

and the result follows.

3.2.2 An operator interpretation

Going back to Lax Milgram theorem, we note the following. By the Riesz theorem, there is f ∈ H so
that L(v) = 〈f, v〉H. Also, for all u ∈ H, the map v 7→ a(u, v) is continuous linear, so by the Riesz’
theorem again, there if an element denoted Au ∈ H so that a(u, v) = 〈Au, v〉H. The map A : H → H
is linear. The Lax-Milgram theorem finds a solution to the equation

Au = f.

It states that if the operator A is continuous and coercive, then it is invertible (or bijective).

3.3 Some examples of applications

3.3.1 The Laplace equation

Let f ∈ L2(Rd,C). We would like to solve the equation

−∆u+ u = f, on Rd.

Assume first that we find a strong solution, that is a solution u ∈ C2(Rd,C). Then multiplying the
equation by φ ∈ D(Rd) and integrating by parts would give

ˆ
Rd

∇u · ∇φ+

ˆ
Rd

uφ =

ˆ
Rd

fφ.

This suggests to recast the problem in the following Lax-Milgram form. Take H = H1(Rd) with its
natural inner product, and consider

a(u, v) :=

ˆ
Rd

uv +

ˆ
Rd

∇u · ∇v.

(We recognise the usual inner product of H1(Rd)). This map is bilinear, continuous and coercive. In
addition, it is symmetric. Now, consider the linear form L : H → R defined by

L(v) :=

ˆ
Rd

fv.

Since f ∈ L2(Rd), we have by Cauchy-Schwarz

|L(v)| ≤ ‖f‖L2‖v‖L2 ≤ ‖f‖L2‖v‖H1 .

So L is continuous. We can apply the Lax-Milgram theorem, and deduce that there is a unique
u ∈ H1(Rd) so that

∀v ∈ H1(Rd),

ˆ
Rd

uv +

ˆ
Rd

∇u · ∇v =

ˆ
Rd

fv.

It is the unique solution in H1(Rd). Taking v ∈ D(Rd) ⊂ H1(Rd) proves that u is a weak solution:
a solution in the distributional sense.
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Remark 3.5 (There is no uniqueness in D′(Rd)). The solution in not unique in D′(Rd). For instance,
in dimension d = 1, the kernel of the operator u 7→ −u′′ + u is not empty, since

−u′′ + u = 0 iff u(x) = αex + βe−x for some α, β ∈ C.

All these functions are L1
loc, so are distributions, hence solve −u′′ + u = 0 in D′(R). However, they

all explode exponentially fast to +∞ or −∞, except the solution with α = β = 0. The Lax-Milgram
solution somehow selects the only integrable solution.

We have −∆u = f − u in D′(Rd). In addition, we have u ∈ H1(Rd) ⊂ L2(Rd), so f − u ∈ L2(Rd).
So the equation −∆u+ u = f actually holds in L2(Rd) (this is much better than D′(Rd)).

One can wonder whether u ∈ H2(Rd). We already know that u ∈ L2(Rd) and ∆u ∈ L2(Rd). The
fact that all crossed derivatives are also in L2(Rd) comes from the following Theorem.

Theorem 3.6

If u ∈ L2(Rd) is such that ∆u ∈ L2(Rd), then u ∈ H2(Rd). In addition, for all 1 ≤ i, j ≤ d, we
have

d∑
i=1

‖∂iu‖2L2 ≤ ‖u‖L2‖∆u‖L2 , and
d∑

i,j=1

‖∂2iju‖2L2 = ‖∆u‖2L2 .

In particular, the norm ‖u‖ := ‖u‖L2 + ‖∆u‖L2 is equivalent to the usual H2(Rd) norm.

Proof. The standard proof uses the Fourier transform (see below). Let us give an alternative proof.
Consider first u ∈ C∞

0 (Rd). In this case, one can use Schwarz’ Lemma and integrate by part. For
instance, we have

d∑
i=1

‖∂iu‖2L2 =

d∑
i=1

ˆ
Rd

(∂iu)(∂iu) =

ˆ
Rd

u

(
−

d∑
i=1

∂2iiu

)
C.S.
≤ ‖u‖L2‖∆u‖L2

Similarly,

d∑
i,j=1

‖∂2iju‖2L2 =

d∑
i,j=1

ˆ
Rd

(
∂2iju

) (
∂2iju

)
=

ˆ
Rd

(
d∑

i=1

∂2iiu

) d∑
j=1

∂2jju

 = ‖∆u‖2L2 .

So the result holds for u ∈ C∞
0 (Rd). Using convolution with smoothing sequences and cut-off functions,

one can prove that C∞
0 (Rd) is dense in {u ∈ L2, ∆u ∈ L2} for the norm ‖u‖ := ‖u‖L2 + ‖∆u‖L2 . The

result then follows by density.

3.3.2 The Dirichlet equation in a bounded domain

Let Ω ⊂ Rd be a bounded, and let f ∈ L2(Ω). We would like to solve the equation{
−∆u = f in Ω,

u = 0 on ∂Ω.

The second condition, called Dirichlet boundary conditions, is a shortcut notation! Indeed, u is
a distribution, so u(x) has no meaning a priori. The correct meaning is

(u = 0 on ∂Ω) means u ∈ H1
0 (Ω).
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Without the second condition, there is trivially an infinity of solutions, since if u is solution, then so
is u+ cst.

As before, we recast the problem in a Lax-Milgram form. We set H = H1
0 (Ω), with the H1(Ω)

inner product. We set
a(u, v) =

ˆ
Ω
∇u · ∇v.

This is clearly a bounded bilinear form in H1
0 (Ω). Thanks to the Poincaré’s inequality (see Theo-

rem 2.24 and the remark afterwards), it is also coercive, since

‖u‖2H1 = ‖u‖2L2 + ‖∇u‖2L2 ≤ (C2 + 1)‖∇u‖2L2 = (C2 + 1)a(u, u).

We set L(v) :=
´
Ω fv. Using again Cauchy-Schwarz and Poincaré inequality, we have

|L(v)| ≤
ˆ
Ω
|fv| ≤ ‖f‖L2‖v‖L2 ≤ ‖f‖L2C‖v‖H1

0
,

so L is indeed continuous. Applying Lax-Milgram proves that there is unique solution u ∈ H1
0 (Ω) to

the equation −∆u = f in D′(Ω).

Since f ∈ L2(Ω), we have −∆u ∈ L2(Ω), and ‖∆u‖L2 = ‖f‖L2 . Unfortunately, this is not enough
to conclude that u ∈ H2(Ω), as the following example shows.

Example 3.7. Consider Ω = (0, 1)3 in d = 3, and the function u(x) := 1
4π

1
|x| (this is the 3d Green’s

function defined in Section 2.2.2). We have u ∈ L2(Ω), and ∆u = 0 in Ω (this is because 0 /∈ Ω).
However, we have (see (2.2))

|∇u|(x) = 1

4π

1

|x|2
,

which is not square integrable at the origin. So this function satisfies u,∆u ∈ L2(Ω) but ∇u /∈ L2(Ω).

In the previous example, the function u is not in H1
0 (Ω). It turns out that we can indeed gain

smoothness if Ω has a boundary which is regular enough. We record the following result (whose proof
is quite complex).

Theorem 3.8: Elliptic regularity in smooth domain

Assume Ω has boundary ∂Ω of class C2. Then any u ∈ H1
0 (Ω) with −∆u ∈ L2(Ω) is in H2(Ω).

In addition, there is C = C(Ω) independent of u so that ‖u‖H2(Ω) ≤ C‖∆u‖L2 .

This proves that if Ω is regular enough, then the solution of −∆u = f satisfies u ∈ H1
0 (Ω)∩H2(Ω)

with ‖u‖H2 ≤ C‖f‖L2 .

3.3.3 Neumann problem on bounded domain

We want to solve the Neumann problem{
−∆u+ u = f in Ω

∂νu = 0 on ∂Ω,

where ∂νu = ∇u·ν is the normal derivative on ∂Ω (we assume that this one is well-defined). Assume
first that u is a strong solution, in C2(Ω). By the divergence Theorem 2.16, we have, for ψ ∈ C∞(Ω)
that ˆ

Ω
(−∆u)ψ =

ˆ
Ω
∇u · ∇ψ −

ˆ
∂Ω

(∂νu)ψ =

ˆ
Ω
∇u · ∇ψ.
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This suggests to consider this time H = H1(Ω) and a(u, v) = 〈u, v〉H1 . Again, applying Lax-Milgram
we deduce that there is a unique solution u ∈ H1(Ω) so that

∀v ∈ H1(Ω),

ˆ
Ω
uv +

ˆ
Ω
∇u · ∇v =

ˆ
Ω
fv. (3.1)

Taking v ∈ D(Ω) shows that u−∆u = f in the distributional sense. In particular, since u ∈ H1(Ω) ⊂
L2(Ω), we have −∆u = f − u ∈ L2(Ω). Again, we cannot directly conclude that u is smoother than
H1(Ω).
Remark 3.9. One could also have considered the Hilbert space H̃ = H1

0 (Ω). Since the H1(Ω) and
H1

0 (Ω) norm are equivalent on H1
0 (Ω), one concludes that there is a unique ũ ∈ H1

0 (Ω) so that (compare
with (3.1))

∀v ∈ H1
0 (Ω),

ˆ
Ω
ũv +

ˆ
Ω
∇ũ · ∇v =

ˆ
Ω
fv.

Note that u and ũ are different. Taking v = φ ∈ D(Ω) shows that both u and ũ solve the equation
−∆u + u = f in D′(Ω), so there is no uniqueness in D′(Ω). The solution ũ ∈ H1

0 (Ω) corresponds
to the Dirichlet boundary condition for this problem. In some sense, «boundary conditions select a
particular solution».

3.3.4 A less trivial example

We come back to the Poisson equation (we focus on the case d = 3 for simplicity), and study it from
a Lax-Milgram point of view. This time, we want to solve

−∆u = f in R3, where f ∈ L6/5(R3).

Testing against φ ∈ D′(Ω) gives the Lax-Milgram formˆ
R3

∇u · ∇φ =

ˆ
R3

fφ.

So we are looking for an Hilbert space H in which the bilinear (symmetric) form a is both continuous
and coercive. In order to do so, we introduce homogeneous Sobolev norm

‖u‖
Ḣ1 := ‖∇u‖L2 .

This is a norm on C∞
0 (R3) (if ∇u = 0, then u is a constant, but since it is compactly supported, this

constant can only be 0). We denote the closure of C∞
0 (R3) for this norm by

Ḣ1(R3) := C∞
0 (R3)

‖·‖Ḣ1
. (3.2)

By construction, this is a Banach space. It is an Hilbert space with the inner product 〈u, v〉 :=´
R3 ∇u · ∇v. We will prove below, using Sobolev embedding, that u ∈ Ḣ1(R3) implies u ∈ L6(R3)

with ‖u‖L6 ≤ CS‖∇u‖L2 , so

Ḣ1(R3) =
{
u ∈ L6(R3), ∇u ∈ L2(R3)

}
.

We can now take H = Ḣ1(R3). In this Hilbert space, the bilinear form a is clearly continuous and
coercive. In addition, since f ∈ L6/5(R3) =

(
L6(R3)

)∗, we have

∀v ∈ Ḣ1(R3),

∣∣∣∣ˆ
R3

fv

∣∣∣∣ ≤ ‖f‖L6/5‖v‖L6 ≤ CS‖f‖L6/5‖v‖Ḣ1 ,

and the linear map v 7→
´
fv is bounded. We can apply the Lax-Milgram theorem, and deduce that

there is a unique u ∈ Ḣ1(R3) so that

∀v ∈ Ḣ1(R3),

ˆ
R3

∇u · ∇v =

ˆ
R3

fv.

Taking v ∈ D(Ω) shows that u is a distributional solution of −∆u = f .



CHAPTER 4
COMPLEMENTS ON SOBOLEV SPACES

In this section, we discuss embeddings of the form Wm,p(Ω) ↪−→ Lq(Ω). As we will see, the theory is
not so difficult if Ω = Rd is the whole space, and there might be difficulties if Ω 6= Rd, because of its
boundary.

4.1 Basics in operator theory
We recall here some basic notions for operator theory.

A bounded operator from F to E is a linear map A : F → E so that there is C ∈ R with

∀x ∈ F, ‖Ax‖E ≤ C‖x‖F .

The smallest C satisfying this property is the operator norm of A, so

‖A‖op = sup {‖Ax‖E , x ∈ F, ‖x‖F = 1} .

A bounded operator A : F → E is compact if

A (BF (0, 1)) is (relatively) compact in E.

If A is compact and if (xn) converges weakly to x∗ in E, then Axn converges strongly to Ax∗ in F .

We say that F is embedded in E if F ⊂ E and if the injection map i : F → E defined by i(x) = x
is bounded. This means that there is C ≥ 0 so that, for all x ∈ F , we have ‖x‖E ≤ C‖x‖F . We say
that F is compactly embedded in E if the injection map is compact. In this case, if xn → x weakly
in F , then xn → x strongly in E.

4.2 Sobolev embeddings
In this section, we focus on the so-called Sobolev embeddings. This set of inequalities states that if
u ∈Wm,p(Rd), then u ∈ Lq(Rd) as well, for some q > p. In other words, regularity implies integrability.

4.2.1 Sobolev embeddings on the whole space

We begin with the case Ω = Rd, see [Bre99, Theorem IX.9].



4.2. Sobolev embeddings 41

Theorem 4.1: Gagliardo, Nirenberg, Sobolev’s inequality

For all 1 ≤ p < d
m , there is a constant C = C(m, p, d) so that, for all u ∈ C∞

0 (Rd), we have

‖u‖Lq ≤ C
∑

|α|=m

‖Dαu‖Lp , where 1

q
=

1

p
− m

d
.

This theorem (and the next ones) provides an inequality for u ∈ C∞
0 (Rd). However, by density,

one can extend the result in a larger Banach space. One way to do this is to use the homogeneous
Sobolev spaces, as in (3.2)). We introduce, for u ∈ C∞

0 (Rd), the homogeneous norm

‖u‖Ẇm,p :=
∑

|α|=m

‖Dαu‖Lp .

(note the dot, and the fact that we only consider |α| = m). If ‖u‖ = 0, then Dαu = 0 for all |α| = m,
so u is a polynomial, but since u is compactly supported, u is the null function. This proves that
‖ · ‖Ẇm,p is indeed a norm on C∞

0 . We then complete to obtain a Banach space, by setting

Ẇm,p(Rd) := C∞
0 (Rd)

‖·‖Ẇm,p
.

We restate the previous theorem as follows.
Theorem 4.2: Gagliardo, Nirenberg, Sobolev’s inequality, version 2

For all 1 ≤ p < d
m , we have Ẇm,p(Rd) ↪−→ Lq(Rd) with 1

q = 1
p −

m
d . More specifically, there is a

constant C = C(m, p, d) so that, for all u ∈ Ẇm,p(Rd), we have u ∈ Lq(Rd) with

‖u‖Lq ≤ C‖u‖Ẇm,p , where 1

q
=

1

p
− m

d
.

It is easy to see that Wm,p(Rd) ↪−→ Ẇm,p(Rd) (why?). We deduce that Wm,p(Rd) ↪−→ Lq(Rd) with
continuous embedding. In the case m = 1, the corresponding exponent q is written p∗, so

W 1,p(Rd) ↪−→ Lp∗(Rd) with 1

p∗
=

1

p
− 1

d
, that is p∗ :=

dp

d− p
.

Before we prove this theorem, let us note that the exponent q is natural. Indeed, consider the scaling
uλ(x) = u(λx). We compute

‖uλ‖Lq =

(ˆ
Rd

|u(λx)|q d(λx)
λd

)1/q

= λ
− d

q ‖u‖Lq .

On the other hand, we have, for |α| = m,

‖Dαuλ‖Lp =

(ˆ
Rd

|λm(Dαu)(λx)|p d(λx)
λd

)1/p

= λ
m− d

p ‖Dαu‖Lp .

Since the Sobolev inequality must be valid for all values of λ > 0, the homogeneity in λ must be
similar, so −d

q = m− d
p , which is also 1

q = 1
p −

m
d .

Proof. By induction, it is enough to prove the result for m = 1 only. We prove the result in the case
d = 2, and refer to [Bre99, Theorem IX.9] for a proof in all dimensions.
We start with p = 1. Since u ∈ C∞

0 (Rd) is compactly supported, we have

|u(x1, x2)| ≤
ˆ x1

−∞
|∂x1u(s, x2)|ds ≤

ˆ ∞

−∞
|∂x1u(s, x2)|ds =: v1(x2).
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Similarly, we have with similar notation that |u(x1, x2)| ≤ v2(x1). So

‖u‖2L2(R2) =

ˆ
R2

|u(x1, x2)|2dx1dx2 ≤
ˆ
R2

|v1(x2)| · |v2(x1)|dx1dx2

= ‖v1‖L1(R)‖v2‖L1(R) = ‖∂x1u‖L1(R2)‖∂x2u‖L1(R2) ≤ ‖∇u‖2L1(R2).

This proves the result in the case p = 1 and d = 2. For the case 1 ≤ p < 2, we apply the result to the
function ut := |u|t−1u. This function satisfies ∇ut = t|u|t−1∇u. This gives

‖u‖tL2t = ‖ut‖L2 ≤ ‖∇ut‖L1 = t‖|u|t−1∇u‖L1 ≤ t‖|u|t−1‖Lp′‖∇u‖Lp = t‖u‖t−1

L(t−1)p′‖∇u‖Lp ,

We choose t so that 2t = (t− 1)p′ = (t− 1) p
p−1 , that is t = p

2−p , and we get, as wanted

‖u‖
L

2p
2−p
≤ p

2− p
‖∇u‖Lp .

Since u ∈Wm,p ⊂ Lp and u ∈ Lq, we obtain with Theorem 1.17 that u ∈ Lr(Rd) for all r ∈ [p, q].

Remark 4.3 (Bounded domains). The same result applies trivially in C∞
0 (Ω) for any domain Ω ⊂ Rd.

One can define similarly the homogeneous space Ẇm,p(Ω). Actually, Poincaré’s inequality shows that
Ẇm,p(Ω) =Wm,p

0 (Ω) (with equivalent norms). So in this case, we have instead Ẇm,p(Ω) ↪−→Wm,p(Ω)
(this inclusion is opposite than in the case Ω = Rd). Note that the function f = 1Ω is in Wm,p(Ω),
but not in Ẇm,p(Ω), so Ẇm,p(Ω) is a strict closed subspace of Wm,p(Ω).

4.2.2 Morrey’s embedding in the whole space

The Sobolev inequality proves non trivial embeddings for p < d
m . On the other side p > d

m , we have
different embeddings, see [Bre99, Theorem IX.12, and Corollary IX.13].

For k ∈ N and 0 < θ ≤ 1, we define Ck,θ-Hölder continuous norm of a smooth function
u ∈ C∞

0 (Ω) by

‖u‖Ck,θ :=
∑
|α|=k

sup
x,y∈Ω
x 6=y

|Dαu(x)−Dαu(y)|
|x− y|θ

.

This means that Dαu ∈ C0,θ for all |α| = k (so we only need to focus on the k = 0 case). If ‖u‖Ck,θ = 0,
then Dαu is constant for all |α| = k, so u is a polynomial. But since u is compactly supported, u = 0.
This proves that ‖·‖Ck,θ is a norm on C∞

0 (Ω). We complete the space and get the space of Ck,θ-Hölder
continuous functions

∀k ∈ N, ∀0 < θ ≤ 1, Ck,θ(Ω) := C∞
0 (Ω)

‖·‖
Ck,θ

.

For instance, C0,1 is the set of Lipschitz functions. It is not difficult to see that if u ∈ C0,θ, then
u is continuous. If θ = 0, we set Ck,0(Ω) := Ck

0 (Ω) the usual set of k-continuously differentiable
functions vanishing at the boundary. If u ∈ C0,θ, then we have

∀x, y ∈ Ω, |u(x)− u(y)| ≤ ‖u‖C0,θ |x− y|θ.

Exercice 4.4
Prove that if u satisfies |u(x)− u(y)| ≤ C|x− y|θ for some θ > 1, then u is constant.
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Theorem 4.5: Morrey’s embedding in the whole space

If m ≥ 1 and p > d
m , then Wm,p(Rd) ↪−→ L∞(Rd). In addition, set

k :=

⌊
m− d

p

⌋
, and θ := m− d

p
− k ∈ [0, 1).

If θ 6= 0, then there is a constant C = C(m, p, d) so that,

∀u ∈ C∞
0 (Rd), ‖u‖Ck,θ ≤ C

∑
|α|=m

‖Dαu‖Lp .

In particular, we have Wm,p(Rd) ↪−→ Ẇm,p(Rd) ↪−→ Ck,θ(Rd).

The most important case is the case m = 1. Then we always have k = 0 and 0 < θ < 1. We
deduce that u is C0,θ, that is

∀x, y ∈ Rd, |u(x)− u(y)| ≤ C|x− y|θ‖∇u‖Lp

In particular, u is continuous (in the sense "there exists a continuous representation of u").

Proof. The full proof of Theorem 4.5 is quite complex, so we admit it. The case d = 1 however is
simple to prove. By induction, we only need to consider the case m = 1. We write that

|u(x)− u(y)| ≤
ˆ
[x,y]
|u′(s)|ds ≤

(ˆ
[x,y]
|u′|p(s)ds

)1/p(ˆ
[x,y]

1p
′
ds

)1/p′

≤ ‖u′‖Lp |x− y|1/p′ .

This proves the result with θ = 1
p′ = 1− 1

p , as wanted.

The reader may ask what happens at the critical point p = d
m . The answer is unfortunately not

so easy. If u ∈Wm, d
m (Rd), then

• u always belong to all Lr(Rd) space, for all p ≤ r <∞ ;

• sometimes, u also belongs to C0(Rd) ∩ L∞(Rd).

The last case happens for instance in the case m = 1 and d = 1 [Bre99, Theorem VIII.7].
Theorem 4.6: Critical case in dimension 1.

For all 1 ≤ p ≤ ∞, we have W 1,p(R) ↪−→ L∞(R) ∩ C0(R).

Proof. The proof for p > 1 comes from Morrey’s embedding. Let us prove the result for p = 1. We
have, for u ∈ C∞

0 (R),
|u(x)| ≤

ˆ
(−∞,x]

|u′(s)|ds ≤ ‖u′‖L1 .

So ‖u‖∞ ≤ ‖u′‖L1 . This proves the result for all u ∈ C∞
0 (R), hence for all u ∈W 1,1(R) by density.

Let us prove that u ∈W 1,1(R) is also continuous. Let (un) a sequence of C∞
0 (R) functions so that

‖un − u‖W 1,p → 0. Then we also have ‖un − u‖L∞ → 0. So u is the limit of the continuous functions
un for the uniform convergence, hence u is continuous.
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4.3 Extension operators
We now focus on the case of bounded set Ω ⊂ Rd. We would like to have Sobolev and Morrey
embeddings in Wm,p(Ω). As we will see, this is possible if Ω has a boundary ∂Ω which is regular
enough. In this case, we will gain compactness.

Let Ω ⊂ Rd. An extension of u ∈ Wm,p(Ω) is a function ũ ∈ Wm,p(Rd) so that ũ(x) = u(x) a.e.
in Ω. An extension operator is a bounded linear operator E :Wm,p(Ω)→Wm,p(Rd) so that Eu is
an extension of u for all u ∈Wm,p(Ω). Here, bounded means that there is C > 0 so that

∀u ∈Wm,p(Ω), ‖Eu‖Wm,p(Rd) ≤ C‖u‖Wm,p(Ω).

For instance, in the case Lp(Ω) corresponding to m = 0, we can define

ũ(x) :=

{
u(x) if x ∈ Ω

0 else
which satisfies ‖ũ‖Lp(Rd) = ‖u‖Lp(Ω).

So the map E : u 7→ ũ is an extension operator of Lp(Ω), with norm ‖E‖op = 1. However, the function
ũ has discontinuities at the boundary ∂Ω, hence it is not smooth, and such construction will not work
for general Wm,p(Ω).

4.3.1 Extension operator on half-space

We start with the case of the half-space Ω = Rd
+ := Rd−1×R+, with boundary ∂Ω = Rd

0 := Rd−1×{0}.
First, we prove the following (see [Eva10, Chapter 5.3.3]).

Theorem 4.7: Density of smooth functions, up to the boundary

In the case Ω = Rd
+, C∞(Ω) ∩Wm,p(Ω) is dense in Wm,p(Ω) for all m ∈ N and all 1 ≤ p <∞.

Comparing this result with the Meyer-Serrin Theorem 2.22, we now consider functions which are
smooth up to the boundary ∂Ω, in the sense that each Dαu has a continuous extension on ∂Ω.

Proof. We introduce the translation operator

τh(u)(x1, · · · , xd−1, xd) := u(x1, · · · , xd−1, xd + h),

and we set uε := τε(u) ∗ jε = τε(u ∗ jε), so that, for x ∈ Rd
+, and since jε is compactly supported in

B(0, ε),
uε(x) :=

ˆ
y∈B(0,ε)

jε(y)u(x1 − y1, · · ·xd−1 − yd−1, xd − yd + ε)dx.

We have translated u downwards so that the convolution is well-defined everywhere in Rd
+. By the

properties of convolutions, we have uε ∈ C∞(Ω). In addition, we have

‖Dαuε −Dαu‖Lp ≤ ‖Dαuε −Dα(τεu)‖Lp + ‖Dα(τεu)−Dαu‖Lp

≤ ‖ (Dατεu) ∗ jε −Dατεu‖Lp + ‖τε(Dαu)−Dαu‖Lp .

The first term is goes to zero by the properties of smoothing sequences, and the second goes to zero
since translations are continuous in Lp.

Remark 4.8. The same proof shows that C∞(Ω) is dense in Wm,p(Ω), if Ω is bounded with ∂Ω of
class C1. This time, one needs to locally translate u along the normal direction.

Theorem 4.9: Extension on half space

For all m ∈ N and all 1 ≤ p <∞, there is an extension operator E :Wm,p(Rd
+)→Wm,p(Rd).
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Proof. We only do the proof in the case d = 1 and m = 1 to highlight the main ideas. We refer
to [Eva10, Chapter 5.4] for the general case.
For u ∈W 1,p(R+), we define the first order reflection

ū(x) =

{
u(x) if x > 0,

−3u(−x) + 4u(−x
2 ) else.

By density, it is enough to prove the result for u ∈ C1([0,∞)). We claim that ū is of class C1 as well.
First, we check that ū(0−) = −3u(0) + 4u(0) = u(0) = ū(0+), so ū is continuous at x = 0. Next, we
have

∀x < 0, ū′(x) = 3u′(−x)− 2u′(−x
2 ), so ū′(0−) = u′(0) = ū(0+),

so ū′ is also continuous at x = 0. This proves as wanted that ū is indeed C1. In addition,

‖ū‖p
W 1,p(R) =

ˆ
R
|ū|p + |ū′|p

=

ˆ
R+

|u|p + |u′|p +
ˆ
R−
| − 3u(−x) + 4u(−x

2 )|
p + |3u′(−x)− 2u′(−x

2 )|
p

= C‖u‖p
W 1,p(R+)

,

for some large constant C > 0, independent of u. This proves that the map E : u 7→ ū is a bounded
extension operator.

The reader can check that the same construction works on Rd, by setting

ū(x) =

{
u(x) if x > 0,

−3u(x1, · · · , xd−1,−xd) + 4u(x1, · · · , xd−1,−xd
2 ) else.

The proof for higher derivatives m ≥ 1 necessitates higher order reflections.

4.3.2 Extension operators on domains with smooth boundary

We say that a domain Ω ∈ Rd has a boundary ∂Ω of class Ck if, for all x ∈ ∂Ω, there is ε > 0,
δ > 0, and a Ck diffeomorphism

Ψ : B(x, ε)→ B(0, δ),
so that Ψ(x) = 0 and Ψ(B(x, ε) ∩Ω) = Ψ(B(0, δ) ∩Rd

+). In particular, this implies that Ψ(∂Ω) = Rd
0.

If Ω is a bounded domain of class C1, then its boundary ∂Ω is closed and bounded, hence compact.
First, we state the following (compare with Theorem 2.22).

Theorem 4.10

Assume Ω is bounded with boundary ∂Ω of class C1. For all m ∈ N and all 1 ≤ p <∞, the set
C∞(Ω) ∩Wm,p(Ω) is dense in Wm,p(Ω).

We refer to [Eva10, Section 5.3.3] for the full proof. It relies on the fact that the outward normal
derivative is well defined whenever ∂Ω is of class C1.

Apart from the previous result, we usually transport results which are valid for Ω = Rd
+ to the

case Ω with ∂Ω of class Ck using the diffeomorphisms Ψ. In this case, we construct functions which
cannot be smoother than Ck.

Theorem 4.11: Extension operators on smooth domains

If Ω is bounded with ∂Ω of class Ck, then for all m ≤ k and all 1 ≤ p ≤ ∞, there is an extension
operator E :Wm,p(Ω)→Wm,p(Rd).

We require the boundary to be at least as regular as the functions inside: m ≤ k.
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Proof. For all x ∈ ∂Ω, construct εx > 0 and a Ck diffeomorphism Ψx as above. The collection
of open sets

⋃
x∈∂Ω B(x, εx) covers the compact boundary ∂Ω, so there is a finite collection of points

{x1, · · · , xN} ∈ (∂Ω)N so that
⋃N

i=1 B(xi, εi) covers ∂Ω. We set εi = εxi , Ψi := Ψxi and Ui := B(xi, εi).
We also consider U0 ⊂ Ω an open set so that K := U0 ⊂ Ω as well, and so that Ω = U0∪U1∪· · ·∪UN .

Next we consider a partition of unity subordinated to (U0, U1, · · ·UN ), that is a family of smooth
functions θ0, θ1, · · · , θN so that

• For all x ∈ Ω, we have
∑N

i=0 θi(x) = 1;

• The function θi is compactly supported with support (strictly) included in Ui.

For u ∈Wm,p(Ω) we write u =
∑N

i=0 ui with ui := θiu. This gives

‖u‖Wm,p(Ω) =

∥∥∥∥∥
N∑
i=0

ui

∥∥∥∥∥
Wm,p

≤
N∑
i=0

‖ui‖Wm,p(Ω), and ‖ui‖Wm,p(Ω) ≤ C‖u‖Wm,p(Ω),

and since the functions θi are smooth and compactly supported, there is C > 0 so that ‖Dαθi‖∞ < C
for all |α| < m. In particular, there is C ′ > 0 independent of u so that

‖ui‖Wm,p(Ω) = ‖θiu‖Wm,p(Ω) ≤ C ′‖u‖Wm,p(Ω).

The function u0 is compactly supported in Ω, so it has a trivial extension ũ0 to Wm,p(Rd).

For 1 ≤ i ≤ N , the function ui is compactly supported in Ui = B(xi, εi). We define on
Vi := B(0, δi) ∩ Rd

+ the function vi(x) := ui(Ψ
−1
i (x)). Since Ψ−1 ∈ Ck with k ≤ m, we have

vi ∈ Wm,p(Rd
+). By Theorem 4.9, we can extend vi on Wm,p(Rd

+) by a function v̄i. In addition,
by construction, v̄i is compactly supported in B(0, δi). We finally set, for all x ∈ Ui, ūi(x) := v̄i(Ψ(x)).
Again, since Ψ ∈ Ck, we can check that ūi is compactly supported in Ui, and that ui ∈Wm,p(Rd).

Finally, we set ū :=
∑N

i=0 ūi ∈ Wm,p(Rd). For all x ∈ Ω, we have ūi(x) = ui(x), so indeed ū(x) =
u(x). Finally, by construction, the map u 7→ ū is linear, and bounded from Wm,p(Ω)→Wm,p(Rd).

Exercice 4.12
Let U1, · · ·UN be a collection of disjoint sets covering Rd, in the sense

⋃N
i=1 Ui = Rd. Define

θεi (x) :=

ˆ
Ui

jε(x− y)dy = (1Ui
∗ jε) (x).

Prove that θεi is smooth, that
∑N

i=1 θ
ε
i = 1 on Rd, and that θεi is compactly supported in an ε-

neighborhood of Ui.

4.3.3 Compact embedding in bounded domains

Let Ω be a bounded domain. If Ω has a smooth enough boundary ∂Ω, we may use an extension
operator to have similar theorems than Sobolev and Morrey. We only state a simple version of these
theorems [Bre99, Corollaire IX.14].

Theorem 4.13: Embedding theorems in bounded domains

Let Ω is a bounded domain with boundary ∂Ω of class Ck. Then, for all m ≤ k and all
1 ≤ p ≤ ∞, the conclusions of Theorems 4.2 and 4.5 hold for all u ∈Wm,p(Ω).
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We emphasise that the boundary must be at least as smooth as the functions inside.

Now, since Ω is bounded, we actually gain compactness.
Theorem 4.14: Rellich Kontrachov Theorem

Let Ω is a bounded domain with boundary ∂Ω of class Ck, and let m ≤ k.
• If 1 ≤ p < d

m , then for all r ∈ [p, q), where 1
q = 1

p −
m
d , the embedding Wm,p(Ω) → Lr(Ω) is

compact.
• If p ≥ d

m , then for all r ∈ [p,∞), the embedding Wm,p(Ω)→ Lr(Ω) is compact.
• If p > d

m , the embedding Wm,p(Ω)→ C0(Ω) is compact.

Again, we skip the proof (see [Bre99, p. IX.16]). This one is not so difficult, but uses tools (Ascoli
theorem) that goes beyond the scope of this course.

This theorem combines nicely with the Banach-Alaoglu Lemma: weak-limits in Wm,p(Ω) becomes
strong limits in Lr(Ω). We will see some applications in the next Chapter.

L1L∞ Lp

Wm,p

Lq

d

Ck,θ

C0

1

q
=

1

p
− m

d
.

m

1
p

Figure 4.1: Sobolev’s and Morrey’s embbedings in a single graph. The Lebesgue spaces Lp are at
m = 0, the Hölder’s space Ck,θ are at 1

p = 0, and the Sobolev’s spaces Wm,p are in the (m, 1p) quarter
space. The point (0, 0) represent either Lp for all p ≥ 1, or L∞, or C0, depending on the dimension.
If u ∈Wm,p, then u belongs to all Sobolev/Hölder’s spaces in the red area (including the critical blue
line). If Ω is bounded with smooth boundary, the embeddings are compact in the red area (excluding
the critical blue line).

Example 4.15. The main application is the embedding of H1(Ω). We have the following table

d = 1 d = 2 d = 3 d = 4
C0,1/2 Lr,∀r ≥ 2 , L6 L4

Table 4.1: Embedding of H1 in low dimensions.
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4.4 Trace operators
In this section, we study what are the properties of u restricted to the boundary ∂Ω. The next
Theorem can be found in [Eva10, Chapter 5.5].

4.4.1 Trace operators on the half-space

We begin with the half-space Ω := Rd
+. In this case, the boundary ∂Ω = Rd

0 = Rd−1 × {0} can be
identified with Rd−1. In particular, it has a well-defined (d− 1)-dimensional Lebesgue measure.

Theorem 4.16: Traces in half-space

For all 1 ≤ p <∞ and all u ∈W 1,p(Rd
+), the function u|∂Ω : Rd−1 → C belongs to Lp(Rd−1).

So the intersection of a W 1,p(Rd) function with a plane is an Lp(Rd−1) function.

Proof. Using an extension operator, we can consider u ∈W 1,p(Rd) and study its intersection with the
plane {xd = 0}. Assume first that u ∈ C∞

0 (Rd) is smooth, compactly supported, and positive valued.
For all x ∈ Rd−1 = ∂Ω, we have

|u|∂Ω|p (x) = |u|p(x, 0) ≤
ˆ
[0,∞)

|∂xd
(|u|p)| (x, s)ds = p

ˆ
[0,∞)

|u|p−1|∂xd
u|(x, s)ds.

Using the inequality |a|p−1|b| ≤ |a|p + |b|p (consider the case |a| ≤ |b| and |b| ≤ |a|), this gives the
point-wise estimate

|u|∂Ω|p (x) ≤ p
ˆ
[0,∞)

(|u|p + |∇u|p)(x, s)ds.

Integrating in x ∈ ∂Ω proves that ‖u‖Lp(∂Ω) ≤ p‖u‖W 1,p(Rd). By density of C∞
0 (Rd) in W 1,p(Rd), the

result holds on the whole space W 1,p(Rd).

The corresponding map T : W 1,p(Rd
+) → Lp(Rd

0) is called the trace operator. The following
Lemma identifies the kernel of T (see [Eva10, Chapter 5.5] for the proof).

Theorem 4.17

Let u ∈W 1,p(Rd
+), we have Tu = 0 iff u ∈W 1,p

0 (Rd
+).

We can wonder whether the map T is surjective. Unfortunately, it is not the case, and character-
ising precisely the image is a difficult task. In the case p = 2, the image of T is denoted by H1/2(∂Ω).
Indeed, this space can be interpretated as a Sobolev space (with fractional exponent) on ∂Ω ≈ Rd−1.

As the notation suggests, we indeed have L2(Rd−1) ⊂ H1/2(Rd−1) ⊂ H1(Rd), with continuous
embeddings. We do not comment more on this space, and just recap the discussion with the following
Theorem.

Theorem 4.18

The trace operator T : H1(Rd
+)→ H1/2(Rd−1) is surjective: for any γ ∈ H1/2(Rd−1), there is

u ∈ H1(Rd
+) so that Tu = γ.

In addition, if v ∈ H1(Rd
+) is another function such that Tv = γ, then v − u ∈ H1

0 (Rd
+).
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4.4.2 Trace operators on bounded domains

Similar results holds in the case where Ω is a bounded domain of Rd with boundary ∂Ω of class C1.
In this case, the Lebesgue space Lp(∂Ω) is defined in terms of the surface measure ds:

‖f‖Lp(∂Ω) :=

ˆ
∂Ω
|f |pds.

We do not elaborate more on this point, and just enunciate the main result.
Theorem 4.19

Let 1 ≤ p <∞, and let Ω be a bounded domain of Rd with boundary ∂Ω of class C1. Then the
trace operator T :W 1,p(Ω)→ Lp(∂Ω) is bounded. In addition,

• for all u ∈W 1,p(Ω), we have Tu = 0 iff u ∈W 1,p
0 (Ω);

• (Case p = 2) T is surjective from H1(Ω) to H1/2(∂Ω).

This justifies a posteriori the notation "u = 0 on ∂Ω" for u ∈W 1,p
0 (Ω).

As in the previous section, the proof uses localisation and flattening of the boundary to recover
the half-space case, see [Eva10, Chapter 5.5].



CHAPTER 5
OPTIMISATION

We this chapter, we introduce the Euler-Lagrange equations. We use it to prove the spectral decom-
position of compact operators, and we provide some examples.

5.1 Euler-Lagrange equations
We recall the Implicit Function Theorem. In the sequel, X, Y and Z are Banach spaces.

Theorem 5.1: Implicit Function Theorem

Let F : X ×Y → Z be a function of class Ck with k ≥ 1, and let (x0, y0) ∈ X ×Y be such that
F (x0, y0) = 0. Assume that DyF (x0, y0) is invertible (as a linear operator from Y to Z). Then,

• there is a neighbourhood Ux of x0 in X, and a neighbourhood Uy of y0 in Y ,

• there is a (unique) map Ψ : Ux → Uy, which is of class Ck,

so that
∀x, y ∈ Ux × Uy, F (x, y) = 0 iff y = Ψ(x).

In particular, we have F (x,Ψ(x)) = 0 for all x ∈ Ux, and

DxΨ(x0) = − [DyF (x0, y0)]
−1DxF (x0, y0).

This theorem states that, under the mild condition DyF invertible, a solution to F (x0, y0) = 0
belongs to a unique branch of solutions. We do not prove this Theorem, as it is classical.

Our main application of this theorem concerns the properties of optimisers for problems under
constraints. We are interested in problems of the form

inf {F (x), x ∈ X, G(x) = 0} ,

where F : X → R (always real-valued, otherwise optimisation is not possible), and G : X → Y is a
set of constraints. For our purpose, we usually need one constraint, so we assume G : X → R. Recall
that an optimisation problem is well-posed if the infimum is a minimum: an optimiser exists.
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Theorem 5.2: Euler-Lagrange equations

Let F and G be functions of class C1 from X to R. Assume that x∗ ∈ X is an optimiser of the
minimisation problem

inf {F (x), x ∈ X, G(x) = 0} ,

Assume in addition that DxG(x∗) 6= 0. Then there is λ ∈ R so that

DxF (x∗) = λDxG(x∗) (Euler-Lagrange equations).

The number λ ∈ R is called the Lagrange multiplier.

Proof. Since DxG(x∗) 6= 0, there is e1 ∈ X so that DxG(x∗) · e1 = 1. We set E1 := Vect{e1}, and
consider a complement V of E1 in E, that is E = V ⊕ E1. We write x = (x, x1) =: (x, y) in this
decomposition. Note that y is a real number, we write ∂y for Dy to emphasise this point. We have
∂yG(x∗, y∗) = DxG(x∗) · e1 = 1 by construction, so we can apply the Implicit Function Theorem to
G. We deduce that there is C1 map Ψ : V → E1 so that, locally around x∗, we have

G(x, y) = 0 iff y = Ψ(x).

In addition, since ∂yG = 1, we have

Ψ′(x∗) = −DxG(x∗), so that DxG(x∗) =

(
−Ψ′(x∗)

1

)
We found a parametrisation of the constraint G(x) = 0 around x∗. In particular, x∗ is the minimum
of the function x 7→ F (x,Ψ(x)). We deduce that

DxF (x∗) + ∂yF (x∗)Ψ
′(x∗) = 0, so that DxF (x∗) =

(
DxF (x∗)
∂yF (x∗)

)
= ∂yF (x∗)

(
−Ψ′(x∗)

1

)
,

and the result follows. Actually, we proved that λ = ∂yF (x∗).

5.1.1 Application, defocusing NLS in a bounded domain

As an application, we would like to find a non trivial solution (λ, u) to the following non-linear
Schrödinger (NLS) problem. Let Ω ⊂ Rd be a bounded domain with boundary ∂Ω of class C1. We
consider the problem {

−∆u+ u3 = λu in Ω,

u = 0 on ∂Ω.

As usual, the second line means u ∈ H1
0 (Ω). We introduce the functional F : H1

0 (Ω)→ R defined by

F (u) :=
1

2

ˆ
Ω
|∇u|2 + 1

4

ˆ
Ω
|u|4.

Note that if F (u) < ∞, then we have u ∈ L4(Ω) as well, so we may restrict ourself to the Banach
space

H1
0 (Ω) ∩ L4(Ω), with norm ‖u‖ = ‖∇u‖L2 + ‖u‖L4 .

We consider the minimisation problem

J := inf
{
F (u), u ∈ H1

0 (Ω) ∩ L4(Ω), ‖u‖L2 = 1
}
.

The functional F is positive, hence bounded from below. Let (un) ∈ H1
0 (Ω) ∩ L4(Ω) be a minimising

sequence for this problem, that is ‖un‖L2 = 1 and F (un)→ J .
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Existence of a minimum. The sequence F (un) converges, hence is bounded. So the sequence
(un) is bounded in H1

0 (Ω) and in L4(Ω). According to the Banach–Alaoglu theorem, there is u1 ∈
H1

0 (Ω) and u2 ∈ L4(Ω) so that

un → u1 weakly in H1
0 (Ω), and un → u2 weakly in L4(Ω).

In particular, un → u1 and un → u2 in the distributional sense D′(Ω), so, by uniqueness of the limit,
u1 = u2 =: u∗. (We could also have used the Banach–Alaoglu theorem directly in the Banach space
H1

0 (Ω) ∩ L4(Ω) and obtain that un → u∗ weakly in H1
0 (Ω) ∩ L4(Ω)).

Let us prove that ‖u∗‖L2 = 1. By Rellich’s theorem 4.14, and since Ω is bounded with C1 bound-
ary, the embedding H1

0 (Ω) → L2(Ω) is compact, so (un) converges strongly to u∗ in L2(Ω). We
deduce that ‖u∗‖L2 = limn→∞ ‖un‖L2 = 1.

We now prove that F (u∗) = J . The function F is convex, and strongly continuous from H1
0 (Ω) ∩

L4(Ω)→ R. So, by Theorem 1.31, it is weakly lower semi continuous. In particular,

F (u∗) ≤ lim inf
n→∞

F (un) = J.

So u∗ is a minimiser of the problem.

Euler-Lagrange equations. We now derive the Euler-Lagrange equations. First, we note that

F (u∗ + h) = F (u∗) +

ˆ
Ω
∇u∗ · ∇h+

ˆ
Ω
u3∗h+O

(
‖h‖2H1

0
+ ‖h‖2L4

)
.

We deduce that F : H1
0 (Ω)∩L4(Ω)→ R is differentiable, and that its derivative DuF (u∗) is the linear

map from H1
0 (Ω) ∩ L4(Ω) to R defined by

DuF (u∗) : h 7→
ˆ
Ω
∇u∗ · ∇h+

ˆ
Ω
u3∗h.

Similarly, the map N(u) :=
´
Rd u

2 is differentiable on H1
0 (Rd)∩L4(Rd), and DuN(u∗) : h 7→ 2

´
Rd uh.

The Euler-Lagrange equations shows that there is λ ∈ R so that

∀h ∈ H1
0 (Ω) ∩ L4(Ω),

ˆ
Ω
∇u∗ · ∇h+

ˆ
Ω
u3∗h = λ

ˆ
Ω
u∗h.

We first take h = u, and see that
ˆ
Ω
|∇u∗|2 +

ˆ
Ω
|u∗|4 = λ

ˆ
Ω
|u∗|2.

This proves that λ > 0.
On the other hand, taking h ∈ D(Ω) shows that −∆u∗+u3∗ = λu∗ in D′(Ω). Since ‖u∗‖L2 = 1, we

have u∗ 6= 0. We conclude that u∗ is a non trivial solution to the NLS equation.

Property of the solution. We have found a non trivial solution of the NLS problem by min-
imising a functional F . There might be other solutions, but we will not explore this direction here.
The solution that we constructed has many good properties. Let us prove for instance that it is
positive. We use the following result (see [LL01, Theorem 6.17]).

Theorem 5.3

If u ∈W 1,p(Ω), then |u| ∈W 1,p(Ω), and
∣∣∇|u|∣∣ ≤ |∇u| a.e.
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Proof. We have the inequality∣∣∣2|u|∇|u|∣∣∣ = ∣∣∣∇|u|2∣∣∣ = 2
∣∣∣Re (u∇u) ∣∣∣ ≤ 2|u| · |∇u|.

On the set {x ∈ Ω, u(x) 6= 0}, we can divide by 2|u|, which gives the result. To handle the set {u = 0},
we refer to [LL01, Theorem 6.17].

Using Theorem 5.3 in our case, we find that F (|u|) ≤ F (u). So, since u∗ is a minimiser, so is
|u∗|. In particular, |u∗| is a positive non trivial solution of the NLS equation. (Actually, by strict
convexity of F , we must have u∗ = ±|u∗|).

5.1.2 Application, focusing NLS in a bounded domain

This time, we want to solve {
−∆u− u3 = λu in Ω,

u = 0 on ∂Ω.

Compared to the previous section, there is a minus sign in front of the non-linear term u3. This makes
the analysis much harder.

As before, we introduce the functional G : H1
0 (Ω)→ R defined by

G(u) :=
1

2

ˆ
Ω
|∇u|2 − 1

4

ˆ
Ω
|u|4,

and the minimisation problem

K := inf
{
G(u), u ∈ H1

0 (Ω), ‖u‖L2 = 1
}
.

Due the minus sign, it is no longer obvious that G is bounded from below. Actually, it is unclear that
u ∈ L4(Ω) at this point. According to Sobolev’s embedding, we have H1

0 (Ω) ≈ H1(Ω) = W 1,2(Ω) ↪→

Lp∗(Ω) with p∗ = 2d

d− 2
. So u ∈ H1

0 (Ω) implies u ∈ L4(Ω) only if d ≤ 4. In addition, it is unclear that
the L4 norm of u is controlled by its H1

0 norm.

The functional G is not bounded from below in dimension d ≥ 3.
Without loss of generality, we assume 0 ∈ Ω. Consider the family

ψε(x) :=
1

εd/2
ψ
(x
ε

)
,

with ψ a smooth compactly supported function with ‖ψ‖L2 = 1. For ε > 0 small enough, the support
of ψε is contained in Ω, so ψε ∈ H1

0 (Ω). We have
ˆ
Ω
|∇ψε|2 =

ˆ
Ω

1

ε2
1

εd
ψ2
(x
ε

)
d
(x
ε

)
εd =

1

ε2

ˆ
Ω
|∇ψ|2.

and, for p ≥ 1, ˆ
Ω
|ψε|p =

ˆ
Ω

1

ε
dp
2

ψp
(x
ε

)
d
(x
ε

)
εd =

1

εd(
p
2
−1)

ˆ
Ω
|ψ|p.

Note that for p = 2, we recover that ‖ψε‖L2 = ‖ψ‖L2 = 1, so ψε is a valid test function for the
minimization problem. We obtain, with p = 4,

G(ψε) =
1

ε2

(
1

2

ˆ
Ω
|∇ψ|2

)
− 1

εd

(
1

4

ˆ
Ω
|ψ|4

)
.
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In the limit ε → 0, it diverges to −∞ in the case d ≥ 3. In the case d = 2, it also diverges to −∞ if
G(ψ) < 0 (note that this depends on the choice of the constants in the functional G. Whether there
is ψ ∈ H1

0 (B(0, 1)) with G(ψ) < 0 is linked to the best constants in Sobolev’s embedding inequalities).

This scaling argument shows that we have a decent chance to find an optimizer for G only in
dimension d = 1. So we restrict to this case in what follows.

The functional G is bounded from below in dimension d = 1.
In dimension d = 1, Sobolev’s embedding states that there a constant S > 0 so that

∀u ∈ H1
0 (Ω), u ∈ L∞(Ω), with ‖u‖L∞ ≤ S‖∇u‖L2 .

Recall also that we focus on u ∈ H1
0 (Ω) with ‖u‖L2 = 1. According to Theorem 1.17, we deduce that

for such u, we have u ∈ Lp(Ω) for all 2 ≤ p ≤ ∞. In particular, u ∈ L4(Ω), and since 1
4 = α

2 + 1−α
∞ for

α = 1/2, we have

∀u ∈ H1
0 (Ω) with ‖u‖L2 = 1, ‖u‖L4 ≤ ‖u‖1/2

L2 ‖u‖
1/2
L∞ ≤ S1/2‖u‖1/2

L2 ‖∇u‖
1/2
L2 .

In particular, for all u ∈ H1
0 (Ω) with ‖u‖L2 = 1, we have

G(u) ≥ 1

2
‖∇u‖2L2 −

S2

4
‖∇u‖2L2 ≥

(
1

2
− S2

4

)
‖∇u‖2.

Unfortunately, this is not enough to conclude! The constant might be negative (this depends on the
choice of the constants in the function G). Going back to our Sobolev embeddings (see Figure 4.1),
we see that the embedding H1(R) ↪→ L∞(R) is not sharp in dimension 1. According to this figure, we
also have H1/2(R) ↪→ L∞(R), but since we did not introduce the Sobolev space H1/2(R), we will use
the following inequality.

Theorem 5.4: Gagliardo–Niremberg inequality in dimension d = 1

Let Ω ⊂ R be open. For all u ∈ H1
0 (Ω), we have u ∈ L∞(Ω), and

‖u‖∞ ≤
√
2‖u′‖1/22 ‖u‖

1/2
2 .

Proof. For u a smooth compactly supported function, we have

|u(x)|2 = 2

∣∣∣∣ˆ x

−∞
u′(s)u(s)ds

∣∣∣∣ = 2

ˆ ∞

−∞
|u′(s)| · |u(s)|ds ≤ 2‖u′‖2‖u‖2,

where we used Cauchy-Schwarz in the last inequality. We conclude by density.

With this inequality, we get the better inequality

G(u) ≥ 1

2
‖u′‖2L2 −

1

2
‖u′‖L2 ≥ inf

X>0

(
1

2
X2 − 1

2
X

)
> −∞. (5.1)

This time, we can conclude that G is bounded from below.

Existence of a minimiser. We consider a minimising sequence (un) for G, that is un ∈ H1
0 (Ω)

with ‖un‖L2 = 1, and limG(un) = inf G = K. The sequence G(un) is bounded. Using again the
inequality (5.1), we see that ‖∇un‖L2 is also a bounded sequence, i.e. (un) is bounded in H1

0 (Ω).
By the Banach-Alaoglu theorem, there is u∗ ∈ H1

0 (Ω) so that un → u∗ weakly in H1
0 (Ω). As before,

using the convexity of u 7→ ‖∇u‖2, this implies that

‖∇u∗‖2L2 ≤ lim inf
n→∞

‖∇un‖2L2 .
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Unfortunately, the term −1
4‖u‖L4 is not convex (it is concave), so we cannot handle this term as in

the previous section. However, thanks to Rellich’s Theorem 4.14, the embedding H1
0 (Ω) ↪→ Lp(Ω) is

compact for all 2 ≤ p < 6. In particular,

‖u∗‖L4 = lim
n→∞

‖un‖L4 , and ‖u∗‖L2 = lim
n→∞

‖un‖L2 = 1.

This proves that G(u∗) ≤ lim inf G(un) = K, and since ‖u∗‖L2 = 1, u∗ is a minimiser.

Euler-Lagrange equation. Now we can repeat the arguments of the previous section, and see
that there is λ ∈ R so that u∗ ∈ H1

0 (Ω) is a distributional solution of

−∆u− u3 = λu ∈ Ω.

5.2 Spectral decomposition of compact symmetric operators
In this section, we prove the spectral decomposition of symmetric compact operators. We refer
to [Bre99, Chapitre VI] for a full presentation, and extension in the non-symmetric case.

5.2.1 Basic notions in operator theory

Let H be a (separable) Hilbert space. Recall that A : H → H is a bounded operator if A is linear,
and if there is C ≥ 0 so that ‖Ax‖H ≤ C‖x‖H for all x ∈ H, and that A is compact if AB is relatively
compact in H, where B = {x ∈ H, ‖x‖ = 1} is the unit ball of H.

The adjoint of A : H → H is the application A∗ : H → H so that

∀x, y ∈ H, 〈x,Ay〉H = 〈A∗x, y〉H.

The operator A is symmetric if A = A∗.

We will be interested in the operator λ−A := λIH −A for λ ∈ C. The resolvent set of A is the
set ρ(A) ⊂ C defined by

ρ(A) := {λ ∈ C, λ−A if bijective from H to H} .

If λ ∈ ρ(A), then (λ−A)−1 is a bounded operator (this result, known as the Banach-Steinhaus theorem
is non trivial, see [Bre99, Corollaire II.6]).

The spectrum of A is the complement of ρ(A), that is σ(A) := C \ ρ(A). The set ρ(A) is open in
C, and the set σ(A) is closed in C.

A number λ ∈ C is an eigenvalue of A if ker{λ−A} 6= {0}. In this case any u ∈ ker{λ−A} is a
corresponding eigenvector. The multiplicity of λ is dimker{λ−A} ∈ N ∪ {∞}.

5.2.2 Decomposition of compact symmetric operators

Let A be a symmetric compact operator on H. For all x ∈ H, we have

〈x,Ax〉 = 〈Ax, x〉 = 〈x,Ax〉,

so 〈x,Ax〉 is always a real number. We set

m := inf{〈x,Ax〉H, ‖x‖H = 1}, and M := sup{〈x,Ax〉H, ‖x‖H = 1}.
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Theorem 5.5

If λ 6= 0 is a non-null eigenvalue of A, it is of finite multiplicity.
The numbers m and M are eigenvalues of A.

Proof. Let us prove that for all λ 6= 0, Eλ := ker{λ−A} is finite dimensional. For all x ∈ Eλ, we have
λx = Ax, so the unit ball of Eλ satisfies BEλ

⊂ λ−1A(BE), hence is relatively compact. By the Riesz’
lemma (see [Bre99, Theorem VI.5]), Eλ is finite dimensional.

Let us prove that m is an eigenvalue (the proof for M is similar). The problem defining m is
an optimisation problem under constraint. Let (xn) be a minimising sequence for this problem, so
‖xn‖ = 1 and 〈xn, Axn〉 → m. Since (xn) is bounded in the reflexive Banach space H, we can apply
the Banach-Alaogly theorem. There is a subsequence, still noted n and an element x∗ ∈ H so that
(xn) weakly converges to x∗ in H. In addition, since A is compact, we have Axn → Ax∗ strongly. In
particular, by Theorem 1.29, we have m = limn→∞〈xn, Axn〉 = 〈x∗, Ax∗〉, so x∗ 6= 0.

The bilinear form a(x, y) := 〈x, (A−m)y〉 is symmetric and positive. By Cauchy-Schwarz, we have
|a(x, y)|2 ≤ a(x, x)a(y, y), which gives

|〈x, (A−m)y〉|2 ≤ 〈x, (A−m)x〉〈y, (A−m)y〉.

Taking the supremum over all y with ‖y‖ = 1 proves that

‖(A−m)x‖2 ≤ (M −m)〈x, (A−m)x〉.

In particular, we have ‖(A−m)xn‖ → 0. Since Axn converges strongly to Ax∗, we deduce that mxn
also converges strongly to mx∗. At the limit, we have Ax∗ = mx∗, which proves that x∗ is a non-null
eigenvector for the eigenvalue m.

This allows to prove the following important theorem.
Theorem 5.6: Spectral decomposition of symmetric compact operators

Let H be a separable Hilbert space, and let A be a symmetric compact operator on H. Then
there is a (countable) basis (e1, e2, · · · ) of H where all elements are eigenvectors of A. We can
order the basis so that

Aen = λnen, |λ1| ≥ |λ2| ≥ · · · ≥ 0.

Finally, 0 is the only accumulation point of (λn)n∈N.

In the sequel, we often use the Dirac notations. An element x ∈ H is denoted |x〉 (ket) if x is seen
as an element of H, and 〈x| (bra), if it is seen as an element of the dual H∗ = H. This allows to write

A =
∑
n∈N

λn|en〉〈en|, in the sense Ax =
∑
n∈N

(λn〈en, x〉H) en.

We may have λn = λn+1: we repeat the eigenvalues as many times as their multiplicities.

Proof. We do not prove fully this Theorem, and refer to [Bre99, Theorem VI.11] for a complete
proof. Let λ0 := 0, let (λn) be the set of non-null eigenvalues of A (counting multiplicities), and let
En := ker{λn −A}. First, we notice that if x ∈ En and y ∈ Em are normalised vectors, then, since A
is symmetric,

(λn − λm)〈x, y〉 = 〈λnx, y〉 − 〈x, λmy〉 = 〈Ax, y〉 − 〈x,Ay〉 = 0,

so λn 6= λm implies 〈x, y〉 = 0. In other words, the spaces En are orthogonal.
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Let F := E0⊕E1⊕E2⊕· · · . We have AF ⊂ F , so AF⊥ ⊂ F⊥ (why?). The operator AF⊥ : F⊥ →
F⊥, that is the operator A restricted to F⊥, is a compact symmetric operator. Since AF⊥ cannot
have eigenvalues (since otherwise, they would have been considered in F ), we deduce by Theorem 5.5
that F⊥ = 0. In other words, F is dense in H. It remains to choose a basis in all (finite dimensional)
spaces En, and the result follows.

5.2.3 Application: the spectrum of Dirichlet Laplacien in bounded domains

In this section, we study the operator −∆ as an operator on H := L2(Ω). Unfortunately, this operator
is not compact, so we cannot directly apply the result of the previous section. One idea is to consider
the operator (−∆)−1. However, to define such operator, one needs to precise the boundary conditions.

Here, we study the Dirichlet Laplacian −∆0 that we define now. Recall that, in Section 3.3.2,
we proved that, if Ω is a domain with boundary of class at least C2, then

∀f ∈ L2(Ω), there is a unique u ∈ H2(Ω) ∩H1
0 (Ω) so that −∆u = f.

In addition, we have ‖u‖H2 ≤ ‖f‖L2 . Let Ã0 : f 7→ u be the corresponding bounded linear map, from
L2(Ω) to H2(Ω) ∩H1

0 (Ω). It is invertible, and the Dirichlet Laplacian is, by definition, the inverse

−∆0 := Ã0
−1
, from H2(Ω) ∩H1

0 (Ω) to L2(Ω).

The operator Ã0 has different starting and ending spaces. We rather study the operator A0 = IÃ0,
where I is the trivial injection map H2(Ω) ∩H1

0 (Ω) → L2(Ω). In this case, we say that the operator
(−∆0) from L2(Ω) to L2(Ω) has dense domain H2(Ω) ∩H1

0 (Ω).
If Ω has a boundary ∂Ω of class C1, then, by Rellich’s embedding, the embedding I is compact.

In particular, A0 : L
2(Ω)→ L2(Ω) is compact. Applying Theorem 5.6 gives the following.

Theorem 5.7: Spectrum of the Dirichlet Laplacian

Let Ω be a bounded domain in Rd with boundary ∂Ω of class C1. Then, there is a basis
(e1, e2, · · · ) of L2(Ω) so that

∀n ∈ N∗, en ∈ H2(Ω) ∩H1
0 (Ω), and −∆0en = λnen.

In addition, we have 0 < λ1 ≤ λ2 ≤ · · · , and the sequence (λn) goes to infinity.

Proof. For the first part, we apply the spectral decomposition to A0, and deduce that there is a basis
(e1, e2, · · · ) of L2(Ω) so that

A0 =

∞∑
n=1

µn|en〉〈en|.

Since A0 is injective, 0 is not an eigenvalue of A0, so A0 is indeed invertible. In addition, we have
A0en = λnen, so en ∈ ImA0 = Im IÃ0 ⊂ Im I, that is en ∈ H2(Ω) ∩H1

0 (Ω).
We then set λn := 1/µn, and deduce that

(−∆0) =
∞∑
n=1

λn|en〉〈en|.

It remains to prove that λn ≥ 0. Since en ∈ H2(Ω) ∩H1
0 (Ω), we can integrate by part, and get

λn = 〈en, (−∆0)en〉L2 =

ˆ
Ω
|∇en|2 ≥ 0.

This concludes the proof.
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One can perform the same analysis for the Neumann Laplacian (−∆N ). Note however that the
constant function 1Ω is in H2(Ω) ∩H1(Ω), and (−∆N )1Ω = 0, so 0 is now an eigenvalue of (−∆N ),
and (−∆N ) is not invertible. One needs to study the operator A−1

N := (1−∆N ) to apply the theory.



CHAPTER 6
FOURIER TRANSFORM

In this section, we review basic facts on the Fourier transform.

6.1 Fourier transform in L1.
For f ∈ L1(Rd), we define its Fourier transform, denoted f̂ or F(f), by

∀ω ∈ Rd, f̂(ω) :=
1

(2π)d/2

ˆ
Rd

f(x)e−iω·xdx. (6.1)

The normalisation convention depends on the textbooks. Here, we adopt the usual convention in
quantum physics. It is chosen so that F is a unitary on L2(Rd), as we will prove below.

Since f ∈ L1(Rd), we have

|f̂(ω)| =
∣∣∣∣ 1

(2π)d/2

ˆ
Rd

f(x)e−iωxdx

∣∣∣∣ ≤ 1

(2π)d/2

ˆ
Rd

|f | = 1

(2π)d/2
‖f‖L1 ,

so f̂ is bounded, that is f̂ ∈ L∞(Rd), with ‖f̂‖L∞ ≤ (2π)−d/2‖f‖L1 . The map F : L1(R) → L∞ is
linear, and we have the usual formulae.

• Conjugation: f̂(ω) = f̂(−ω).

• Translations: If g(x) := f(x− x0) for some x0 ∈ Rd, then ĝ(ω) = e−iωx0 f̂(ω).

• Dilation: If g(x) := f(λx) for some λ > 0, then ĝ(ω) = 1
λ f̂
(
ω
λ

)
.

• Convolution: If f, g ∈ L1(Rd), then f ∗ g ∈ L1(Rd) by Young’s inequality, and we have, by
Fubini’s theorem

(̂f ∗ g) = (2π)d/2f̂ ĝ.

The factor (2π)d/2 is a bit annoying, but can be recovered easily. We say that a convolution
becomes a multiplication in Fourier space.

Also, the Fourier transform can trade derivative and multiplication by x. We state it as a Theorem (it
can be proved using a simple integration by part). We write xα = xα1

1 · · ·x
αd
d .
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Theorem 6.1: Fourier transform, regularity and decay at infinity

Let f ∈ L1(Rd) be such that |x|n|f |(x) ∈ L1(Rd) for some n ∈ N. Then f̂ is of class Cn, and,
for all α with |α| ≤ n,

Dα(f̂)(ω) = (−i)|α|(̂xαf)(ω).

Conversely, if f is of class Cn with |Dαf | ∈ L1(Rd) for some |α| ≤ n, then

(̂Dαf)(ω) = (iω)αf̂(ω).

In particular, if a function f is compactly supported, its Fourier transform is C∞, and if f is C∞,
its Fourier transform decays faster than any polynomial at infinity (in particular f̂ is integrable). Note
that

(̂−∆f)(ω) = |ω|2f̂(ω).

To sum up, the Fourier transforms trades the following:

translation ←→ multiplication by a phase
convolution ←→ multiplication

regularity ←→ decay at infinity.

As an example, we can compute the Fourier transform of a Gaussian function. We set

ga(x) :=
(a
π

)d/4
e−

ax2

2 .

The normalisation is chosen so that
´
Rd g

2
a = 1 (integral of the Gaussian1).

Theorem 6.2: Fourier transform of the Gaussian

For all a > 0, we have ĝa(ω) = g 1
a
(ω).

In other words, the Fourier transform of the Gaussian is again a Gaussian.

Proof. Since ga is smooth and decays fast at infinity, so is its Fourier transform. The function ga
satisfies the equation

∂xiga(x) = −axiga(x).

Taking the Fourier transform of this equation shows that

ωiĝa(ω) = −a∂ωi ĝa(ω), which is also ∂ωi ĝa(ω) = −
1

a
ωiĝa(ω).

So ĝa solves an equation similar to ga, but with 1
a instead of a. We deduce that ĝa is of the form

ĝa = λg 1
a

for some λ ∈ R. At ω = 0, we have, using the integral of the Gaussian,

ĝa(0) =
1

(2π)d/2

ˆ
Rd

ga =
(a
π

)d/4
, and g 1

a
(0) =

(a
π

)d/4
,

so λ = 1, which concludes the proof.
1Recall that ˆ

Rd

e−ax2

dx =
(π
a

)d/2

.
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Theorem 6.3: Riemann-Lebesgue Theorem

If f ∈ L1(Rd), then f̂ is continuous, and goes to 0 at infinity. In addition, we have

‖f̂‖L∞ ≤ 1

(2π)d/2
‖f‖L1 .

Proof. Let ωn → ω. We introduce

gn(x) := f(x)e−iωn·x and g(x) := f(x)e−iω·x.

The functions gn converge pointwise to g. In addition, we have the domination |gn| ≤ |f | which is
integrable. So, by the dominated convergence theorem, we have

´
gn →

´
g, which is also f̂(ωn) →

f̂(ω). So f̂ is continuous.
We already proved the last inequality. It remains to prove that f̂ goes to 0 at infinity. Assume first
that f is C∞

0 (Rd). Using Theorem 6.1, we have, for ω 6= 0,∣∣∣f̂(ω)∣∣∣ = 1

|ω|2
∣∣∣(̂−∆f)(ω)∣∣∣ ≤ 1

|ω|2
∥∥∥(̂−∆f)∥∥∥

L∞
≤ 1

|ω|2
1

(2π)d/2
‖(−∆f)‖L1 .

So f̂(ω) goes to 0 as ω → ∞, uniformly in |ω|. Consider now f ∈ L1(Rd), and let ε > 0. By density
of C∞

0 (Rd) in L1(Rd), there is g ∈ C∞
0 (Rd) so that ‖f − g‖L1 < ε. For this g, there is R > 0 so that,

for all |ω| > R, we have |ĝ|(ω) < ε. This gives

∀|ω| > R,
∣∣∣f̂(ω)∣∣∣ ≤ ∣∣∣(f̂ − ĝ)(ω)∣∣∣+ |ĝ(ω)| ≤ ‖f̂ − ĝ‖L∞ + ε ≤

(
1

(2π)d/2
+ 1

)
ε,

and the result follows.

Theorem 6.4: Inverse Fourier transform

Let f ∈ L1(Rd) be such that f̂ ∈ L1(Rd) as well. Then f and f̂ are continuous, and

∀x ∈ Rd, f(x) = F∗(f̂) :=
1

(2π)d/2

ˆ
R
f̂(ω)eiωxdω.

Proof. The usual proof uses convolution with a Gaussian function (see [LL01, Theorem 5.5]). We take
here another route to emphasise the link with Fourier series. We give a proof in dimension d = 1,
and for f ∈ C∞

0 (R). Let L > 0 be so that the support of f is included in [−L,L]. Consider f̃ the
2L-periodic function which equals f on (−L,L), that is

f̃(x) =
∑
k∈Z

f(x− 2kL).

The function f̃ is smooth and 2L-periodic, so we can consider its Fourier series. Its n-th Fourier
coefficient is

cn(f̃) =
1√
2L

ˆ L

−L
f̃(x)e−i 2π

2L
xdx =

1√
2L

ˆ
R
f(x)e−i π

L
nxdx =

√
π√
L
f̂
(
n
π

L

)
.

Since f̃ is continuous, Dirichlet’s theorem shows that f̃ is point-wise equal to the Fourier series, that
is ∑

k∈Z
f(x− 2kL) = f̃(x) =

1√
2L

∑
n∈Z

cn(f̃)e
i π
L
nx =

1√
2π

[
π

L

∑
n∈Z

f̂
(
n
π

L

)
ei

π
L
nx

]
. (6.2)
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Recall that f̂ is continuous by Riemann-Lebesgue, and that we assume it to be integrable. We let
L→∞, and recognise a Riemann sum, with steps π

L . At the limit, we obtain as wanted

f(x) =
1√
2π

ˆ
R
f̂(ω)eiωxdω.

Theorem 6.5: Parseval identity

If f ∈ L1(Rd) ∩ L2(Rd), then f̂ ∈ L2(Rd), and we have

‖f̂‖L2 = ‖f‖L2 .

Proof. Again, the usual proof is via Gaussian convolution (see [LL01, Theorem 5.3]). Let us continue
the previous proof, and write the Parseval equality (for Fourier series) for the periodic function f̃
considered previously. Using that the support of f(x− 2kL) are all disjoints, we obtain

ˆ
R
|f |2(x)dx =

ˆ L

−L

∣∣∣f̃(x)∣∣∣2 dx =
∑
n∈Z
|cn(f̃)|2 =

π

L

∑
n∈Z

∣∣∣f̂ (nπ
L

)∣∣∣2 .
Again, we recognise a Riemann sum, with step π

L . We let L → ∞, and we obtain the continuous
Parseval formula ˆ

R
|f |2(x)dx =

ˆ
R
|f̂ |2(ω)dω. (6.3)

6.2 Fourier transform in L2

If f ∈ L1(Rd) ∩ L2(Rd), then the Parseval formula shows that f̃ ∈ L2(Rd), and that

F : L1(Rd) ∩ L2(Rd)→ L2(Rd), satisfies ‖F(f)‖L2 = ‖f‖L2 .

So F is bounded as a map from L1(Rd)∩L2(Rd) to L2(Rd). Since L1(Rd)∩L2(Rd) is dense in L2(Rd),
we can extend F by density on the whole space L2(Rd).

Theorem 6.6: Fourier transform in L2(Rd)

The map F : L2(Rd)→ L2(Rd) is unitary: for all f ∈ L2(Rd), we have ‖F(f)‖L2 = ‖f‖L2 .
For all f, g ∈ L2(Rd), we have

ˆ
Rd

f(x)g(x)dx =

ˆ
Rd

f̂(ω)ĝ(ω)dω, that is 〈f, g〉L2 = 〈F(f),F(g)〉L2 .

Proof. We already proved the first part. Let us prove the second. First, by Hölder’s inequality (or
Cauchy-Schwarz), the functions fg and f̂ ĝ are indeed in L1(Rd). In addition, we have the polarisation
formula

Re(fg) =
1

2
(|f + g|2 − |f |2 − |g|2).

Integrating and using that F is unitary shows that the real part are equal. Multiplying f by i shows
that the imaginary part are equal as well.

The integral formula (6.1) is no longer valid for functions f ∈ L2(Rd) \ L1(Rd), but it is common
practice to still write it, to emphasise what normalization we are working with.
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6.3 Fourier transform for distributions

6.3.1 Definition

We introduce the Schwartz space

S(Rd) :=
{
f ∈ C∞(Rd), ∀n ∈ N, |x|nf ∈ L1(Rd)

}
.

A function f is in S(Rd) if it is smooth, and decays faster than any polynomial. Note that D(Rd) (
S(Rd). Since F trades regularity and decay at infinity, it maps S(Rd) to itself.

One can repeat all the arguments for distribution, and introduce the «dual» space S ′(Rd) (loosely
speaking, we replace D(Rd) by S(Rd) in the chapter on distributions).

If f, g ∈ S(Rd) are smooth functions, we have, by Parseval identity

〈F(T ), φ〉L2,L2 := 〈T,F∗(φ)〉L2,L2 .

This suggests to define the Fourier transform for distributions in S ′(Rd) by

∀T ∈ S ′(Rd), 〈F(T ), φ〉S′,S := 〈T,F∗(φ)〉S′,S .

We do not comment more on this point. Since D(Rd) ⊂ S(Rd), we have S ′(Rd) ⊂ D′(Rd):
we cannot take the Fourier transform of all distributions in D′(Rd). However, since we also have
L1
loc(Rd) ⊂ S ′(Rd), so we can still take the Fourier transform the distributional sense of many functions.

6.3.2 First examples

Let us give some examples.
Theorem 6.7: Fourier transform of the Dirac mass

For all x ∈ Rd, the Dirac mass δx belongs to S ′(Rd). In addition, we have δ̂x(ω) = (2π)−d/2eiωx,
in the sense

∀φ ∈ S(Rd), φ(x) =
1

(2π)d/2

ˆ
Rd

φ(ω)e−iωxdω.

In particular, δ̂0 = (2π)−d/2 is the constant function.

Proof. This is just the inverse Fourier transform formula in S(Rd).

This allows to compute the Fourier transform of the Laplace Green’s functions. Recall that the
Green’s functions have been introduced in Section 2.2.2, and that they solve −∆G0 = δ0 in the
distributional sense.

Theorem 6.8: Fourier transform of the Green’s functions

Let G0 be the Green’s function on Rd defined in Section 2.2.2. Then G0 ∈ S ′(Rd), and

Ĝ0(ω) =
1

(2π)d/2
1

|ω|2
.

Proof. The equation −∆G0 = δ0 reads, in Fourier, |ω|2Ĝ0(ω) = (2π)−d/2, and the result follows.

We can also compute the Fourier transform of the Dirac Comb. Introduce, for T > 0,

CombT (x) :=
∑
k∈Zd

δ(x− kT ),
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which is a periodic version of the Dirac mass.
Theorem 6.9: Poisson summation formula

The Dirac comb CombT belongs to S ′(Rd). In addition, we have

ĈombT =

(√
2π

T

)d

Comb 2π
T
,

in the sense

∀φ ∈ S(Rd),
∑
n∈Zd

φ̂ (nT ) =

(√
2π

T

)d ∑
k∈Zd

φ

(
k
2π

T

)
.

Proof. We prove the result in dimension 1 (the proof is similar in higher dimensions). Applying the
Fourier series identity (6.2) at x = 0 and L = π/T gives

〈Comb2π/T, φ〉 =
∑
k∈Z

φ

(
k
2π

T

)
= φ̃(0) =

T√
2π

∑
n∈Z

φ̂ (nT ) =
T√
2π
〈CombT , φ̂〉 =

T√
2π
〈ĈombT , φ〉.

In the last equality, we used the definition of the Fourier transform for distribution, and that CombT
is symmetric. Identifying gives the result.

6.3.3 Characterisation of the Sobolev space Hs(Rd) using Fourier transform

Recall that
Hk(Rd) :=W k,2(Rd) =

{
f ∈ L2(Rd), ∀|α| ≤ k, Dαf ∈ L2(Rd)

}
.

Using that D̂αf(ω) = (iω)αf̂(ω) and that Dαf ∈ L2(Rd) iff D̂αf ∈ L2(Rd), we see that

Hk(Rd) =
{
f ∈ L2(Rd), ∀|α| ≤ k, ωαf̂ ∈ L2(Rd)

}
.

In addition, the Hk norm can be written in Fourier with

‖f‖2Hk =
∑
|α|≤k

‖Dαf‖2L2 =
∑
|α|≤k

‖ωαf̂‖2L2 =

ˆ
Rd

∑
|α|≤k

|ωα|2
 |f̂ |2(ω)dω.

The reader can check that there are constants 0 < c < C <∞ so that, for all ω ∈ Rd,

c
(
1 + |ω|2k

)
≤
∑
|α|≤k

|ωα|2 ≤ C
(
1 + |ω|2k

)
.

This shows that the norm
‖f‖2

H̃k
:=

ˆ
Rd

(1 + |ω|2k)|f̂ |2(ω)dω.

is equivalent to «usual» Hk norm. This new norm is somehow simpler to use, as it only involves the
L2 norm of f and of (−∆)kf . This gives an alternative proof of Theorem 3.6. Let us state a more
general theorem (we emphasise that this theorem is only valid in the full space Rd).

Theorem 6.10

If f ∈ L2(Rd) is such that (−∆f) ∈ Hk(Rd) for some k ≥ 0, then f ∈ Hk+2(Rd).

TODO: introduce Hs(Rd) for all s ∈ R, and prove the trace theorem in half space.
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6.3.4 Application: the heat kernel

We define the heat kernel on Rd

Gt(x) :=
1

(4πt)d/2
e−

|x|2
4t .

A computation reveals that, for all t > 0, we have

∆Gt = ∂tGt
(
= Gt(x)×

[
−d
t
+
|x|2

4t2

])
.

In addition, we have
lim
t→0+

Gt = δ0, in S ′(Rd).

One way to see this goes as follows. We take the Fourier transform of Gt. Since it is Gaussian, we
have

Ĝt(ω) =
1

(4πt)d/2
(2t)d/2e−|ω|2t −−→

t→0

1

(2π)d/2
= δ̂0.

While this is not a proof (pointwise convergence is not S ′(Rd) convergence), it strongly indicates that
the result is correct, and indeed it is.

For f ∈ L2(Rd), we set

F (t, x) :=
(
et∆f

)
(x) := Gt ∗ f(x) =

ˆ
Rd

Gt(x− y)f(y)dy.

As for the Green’s function, we can check that F is solution to the heat equation{
∆xF (t, x) = ∂tF (t, x)

F (t = 0, x) = f(x).

For all t > 0, the function Gt is smooth (in S(Rd)). We deduce that F (t, ·) is C∞(Rd) for all t > 0
(convolution by a smooth function). The heat kernel smooths functions at all (strictly) positive time.
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