Boris Haspot

Ceremade UMR CNRS 7534

Université Paris-Dauphine

Place du Maréchal De Lattre De Tassigny

75775 PARIS CEDEX 16

France

haspot@ceremade.dauphine.fr 




Domaines de recherche: Équations aux dérivées partielles issues de la mécanique des fluides. Analyse harmonique. 




Voici mon CV. 

Ma thèse est intitulée "Étude d'équations liées à la mécanique des fluides compressibles capillaires". 

Vous trouverez ici ma page concernant mon enseignement. 

Je l'ai préparée sous la direction de Raphaël Danchin et l'ai soutenue le 29 novembre 2007 à l'université Paris Est Créteil. 

J'ai soutenu mon Habilitation à diriger des recherches le 27 Novembre 2015 Hdr.  

Je suis maître de conférence à l'université Paris Dauphine depuis septembre 2011.



Enseignement



Publications et Prépublications


- Existence of strong solutions for nonisothermal Korteweg system (pdf), Annales Mathématiques Blaise Pascal,16, 431-481 (2009). 


- Cauchy problem for capillarity Van der Waals model (pdf), Hyperbolic problems: theory, numerics and applications, 625-634, Proc. Sympos. Appl. Math., 67, Part 2, Amer. Math. Soc., Providence, RI, 2009. 


- Cauchy problem for viscous shallow water equations with a term of capillarity (pdf), Mathematical Models and Methods in Applied Sciences, 20 (7) (2010), 1049-1087.


- Existence of global weak solution for compressible fluid models with a capillary tensor for discontinuous interfaces (pdf), Differential Integral Equations, 23 (2010), no. 9-10, 899-934.


- Existence of weak solution for compressible fluid models of Korteweg type (pdf), Journal of Mathematical Fluid Mechanics,  13, Issue 2 (2011), 223-249 .


- Well-posedness in critical spaces for the system of compressible Navier–Stokes in larger spaces (pdf), Journal of Differential Equations,  251, No. 8. (October 2011), pp. 2262-2295.


-  Existence of global strong solutions in critical spaces for barotropic viscous fluids (pdf), Arch. Rational. Mech. Anal,  202, Issue 2 (2011), 427-460.


- Convergence of compressible capillary fluid models: from the non-local to the local Korteweg system (pdf)   Indiana University Mathematics Journal, 6,  (2011) 2021-2060. Avec Frédéric Charve.


- Existence of strong solutions in a larger space for the shallow-water system  (pdf), Advances in Differential Equations, 17 Numbers 11-12 (2012), 1085-1114. Avec Frédéric Charve.


- Well-posedness for density-dependent incompressible fluids with non-Lipschitz velocity  (pdf), Annales de l'Institut Fourier, 62 (5) (2012) p. 1717-1763. 


- Existence of global strong solution and vanishing capillarity-viscosity limit in one dimension for the Korteweg system  (pdf), SIAM J. Math. Anal., 45 (2) (2013), 469–494. Avec Frédéric Charve.


- On a Lagrangian method for the convergence of a non-local to a local Korteweg capillary fluid model (pdf),  Journal of functional Analysis, 265 (2013) 1264–1323. Avec Frédéric Charve.


- Existence of global strong solution for the compressible Navier-Stokes system and the Korteweg system in two-dimension  (pdf),  Methods and Applications of Analysis, Vol. 20, No. 2, pp. 141–164, June 2013.


- Porous media equations, fast diffusions equations and the existence of global weak solution for the quasi-solutions of compressible Navier-Stokes equations (pdf),  Hyperbolic Problems: Theory, 

Numerics, Applications-Methods and Applications of Analysis, Vol. 20, No. 2, pp. 141–164, June 2013.


- From the highly compressible Navier-Stokes equations to fast diffusion and porous media equations, existence of global weak solution for the quasi-solutions  (pdf),   Journal of Mathematical Fluid Mechanics, 18(2) (2016), 243-291.


- From the highly compressible Navier-Stokes equations to the Porous Media equation, rate of convergence  (pdf), Discrete and Continuous Dynamical Systems Series A (36), (2016) 3107-3123. Avec Ewelina Zatorska.


- Existence of global strong solution for Korteweg system with large infinite energy initial data (pdf),  Journal of Mathematical Analysis and Applications. 438 (2016), no. 1, 395–443.


- Global strong solution for the Korteweg system with quantum pressure in dimension $N \geq 2$  (pdf), to appear in Mathematische Annalen.


- Weak-Strong uniqueness for compressible Navier-Stokes system with degenerate viscosity coefficient and vacuum in one dimension  (pdf),  to appear in Communications in Mathematical Sciences.


- Global existence of strong solution for shallow water system with large initial data on the irrotational part  (pdf),  to appear in Journal of Differential Equations.


- Global well-posedness of the Euler-Korteweg system for small irrotational data  (pdf),  to appear in Communications in Mathematical Physics. Avec Corentin Audiard.


- New entropy for Korteweg's system, existence of global weak solution and new blow-up criterion (pdf),  submitted.


- Regularity of weak solutions of the compressible barotropic Navier-Stokes equations  (pdf),  submitted.


- Remarks on global controllability for the shallow-water system  with two control forces  (pdf), Avec Abdelmalek Drici, submitted.


- From Gross-Pitaevskii equation to Euler Korteweg system, existence of global strong solutions with small irrotational initial data  (pdf),  Avec Corentin Audiard, submitted.


- New formulation of the compressible Navier-Stokes equations and parabolicity of the density (pdf),  submitted.


- Existence of global strong solution for the compressible Navier-Stokes equations with degenerate viscosity coefficients in 1D  (pdf),  submitted.


- Global stability of weak solutions for a multilayer Saint-Venant model with interactions between the layers  (pdf),  Avec Bernard Di Martino et Yohan Penel, submitted.



Notes aux comptes-rendus 



- Global existence of strong solution for the Saint-Venant system with large initial data on the irrotational part,  C. R. Math. Acad. Sci. Paris,  Vol 350 - N° 5-6 - mars 2012 229-332.


- Existence of global strong solutions for the barotropic Navier Stokes system system with large initial data on the rotational part of the velocity, C. R. Math. Acad. Sci. Paris., 350 (2012), pp. 487-492 .