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Cauchy problem for capillarity Van der Vaals model

Boris Haspot

Abstract. In this article, we consider the compressible Navier-Stokes equa-
tion with density dependent viscosity coefficients and a term of capillarity
introduced formally by Van der Waals in [8]. This model includes at the
same time the barotropic Navier-Stokes equations with variable viscosity coef-
ficients, shallow-water system and the model introduced by Rohde in [7]. We
first study the well-posedness of the model in critical regularity spaces with
respect to the scaling of the associated equations. In a functional setting as
close as possible to the physical energy spaces, we prove local in time strong
solutions with general initial data.

1. Introduction

This paper is devoted to the Cauchy problem for the compressible Navier-Stokes
equation with viscosity coefficients depending on the density and with a capillary
term coming from the works of Van der Waals in [8]. This capillarity term modelize
the behavior at the interfaces of a mixture liquid-vapor. More precisely Van der
Waals assume that the thickness of the interfaces is null and introduce consequently
a non-local capillarity term. Coquel, Rohde and theirs collaborators in [2], [7] have
reactualized on a modern form the results of Van der Waals. In the sequel we
will work in the infinite Euclidian space RN with N ≥ 2. Let ρ and u denote the
density and the velocity of a compressible viscous fluid. As usual, ρ is a non-negative
function and u is a vector valued function defined on RN . Then, the Navier-Stokes
equation for compressible fluids endowed with internal capillarity studied in [7]
reads:

(SW )





∂tρ + div(ρu) = 0,

∂t(ρu) + div(ρu⊗ u)− div(2µ(ρ)Du)−∇(λ(ρ)divu) +∇P (ρ)
= κρ∇D[ρ],

ρ/t=0 = ρ0, ρu/t=0 = ρ0u0,

with D[ρ] = φ ∗ ρ− ρ and where φ is chosen so that:

φ ∈ L∞(RN ) ∩ C1(RN ) ∩W 1, 1(RN ),
∫

RN

φ(x)dx = 1, φ even, and φ ≥ 0.
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Here Du = 1
2 (∇u +t ∇u) is the strain tensor, P the pressure is a suitably smooth

function of the density ρ and µ, λ are the two Lamé viscosity coefficients. They
depend in our case regularly on the density ρ and satisfy: µ > 0 and 2µ + Nλ ≥ 0.
Several physical models arise as a particular case of system (SW ):

• when κ = 0 (SW ) represents compressible Navier-Stokes model with vari-
able viscosity coefficients. Moreover if µ(ρ) = ρ, λ(ρ) = 0, P (ρ) = ρ2,
N = 2 then (SW ) describes the system of shallow-water.

• when κ 6= 0 and µ, λ are constant, (SW ) reduce to the model studied by
Rohde in [7].

In the present article, we address the question of local-welposedness in critical
functional framework for the scaling of the equations. More precisely we generalize
here the result of Danchin in [5] by considering general viscosity coefficient and by
including this nonlocal Korteweg capillarity term studies in the works of [2], [7] .
Moreover we improve the results of [7] and [5] (Danchin obtain strong solution with

following initial data B
N
2

2,1 × (B
N
2 −1

2,1 )N ) by getting strong solution in finite time in

general Besov space B
N
p

p,1 × (B
N
p −1

p,1 )N built on the space Lp with 1 ≤ p ≤ N . To
finish with, we will give a criterion of blow-up for these solutions where we need that
∇u is in L1(L∞). We can observe that our result is very close in dimension N = 2 of
the energy initial data for the global weak solutions of Bresch and Desjardins in [1]
(where it is assumed that (∇ρ0,

√
ρ0u0) ∈ L2), these solutions include the shallow-

water system. To conclude, our result improves too the case of strong solution for
the shallow-water system, where Wang and Xu in [9] obtain strong solution in finite
time for ρ0 − 1, u0 ∈ H2+s with s > 0.
In the sequel we will work around a constant state ρ̄ > 0 (to simplify we assume
from now that ρ̄ = 1), this motivates the following notation:

Definition 1.1. We will note in the sequel q = ρ−ρ̄
ρ̄ and a = 1

ρ − 1
ρ̄ .

We can now state our main results.

Theorem 1.2. Let p ∈ [1, N ]. Let q0 ∈ B
N
p

p,1 and u0 ∈ B
N
p −1

p,1 . Under the as-
sumptions that µ and µ+2λ are strictly bounded away zero on [ρ̄(1−2‖q0‖L∞), ρ̄(1+
2‖q0‖L∞)], there exists a time T > 0 such that then system (SW ) has a unique so-

lution (q, u) in F
N
p with: F

N
p = C(B

N
p

p,1)×
(
L1

T (B
N
p +1

p,1 ) ∩ CT (B
N
p −1

p,1 )
)
.

Theorem 1.3. Let p ∈ [1, N ]. Assume that (SW ) has a solution (q, u) ∈
C([0, T ], B

N
p

p,1 × (B
N
p −1

p,1 )N ) on the time interval [0, T ) which satisfies the following
conditions:

• the function q is in L∞([0, T ], B
N
p

p,1) and ρ is bounded away from zero.

• we have
∫ T

0
‖∇u‖L∞dt < +∞.

Then (q, u) may be continued beyond T .

In the sequel, all the notations especially concerning the Besov spaces and the
Chemin-Lerner spaces follow these of [3].

2. Proof of theorem 1.2

2.1. Estimates for parabolic system with variable coefficients. To avoid
condition of smallness as in [3] on the initial density data, it is crucial to study very
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precisely the following parabolic system with variable coefficient which is obtained
by linearizing the momentum equation:

(2.1)
{

∂tu + v · ∇u + u · ∇w − b
(
div(2µDu) +∇(λdivu)

)
= f,

u/t=0 = u0.

Above u is the unknown function. We assume that u0 ∈ Bs
p,1 with 1 ≤ p ≤ N and

f ∈ L1(0, T ; Bs
p,1), that v and w are time dependent vector-fields with coefficients in

L1(0, T ;B
N
p +1

p,1 ), that b, µ and 2µ + λ are bounded by below by positive constants
b, µ and 2µ + λ that a = b − 1, µ

′
= µ − µ(1) and λ

′
= λ − λ(1) belongs to

L∞(0, T ;B
N
p

p,1). We generalize now a result of [5] to the case of variable density and
general Besov spaces.

Proposition 2.1. Let ν = bmin(µ, λ + 2µ) and ν̄ = µ + |λ + µ|. Assume that
s ∈ (−N

p , N
p − 1]. Let m ∈ Z be such that bm = 1 + Sma and a1,m = a − Sma

satisfies for c small enough (depending only on N and on s):

(2.2) inf
(t,x)∈[0,T )×RN

bm(t, x) ≥ b

2
and ‖a− Sma‖

L̃∞(0,T ;B
N
p

p,1)
≤ c

ν

ν̄
.

We impose similar condition for µm, λm and µ
′
1,m = µ

′ − Smµ
′
, λ

′
1,m = λ

′ − Smλ
′
.

There exist two constants C and κ such that by setting:

V (t) =
∫ t

0

‖v‖
B

N
p

+1

p,1

dτ, W (t) =
∫ t

0

‖w‖
B

N
p

+1

p,1

dτ

and Zm(t) = 22mν̄2ν−1

∫ t

0

(‖a‖2
B

N
p

p,1

+ ‖µ′‖2
B

N
p

p,1

+ ‖λ′‖2
B

N
p

p,1

)dτ,

we have for all t ∈ [0, T ],

‖u‖L̃∞((0,T )×Bs
p,1)

+ κν‖u‖L̃1((0,T )×Bs+2
p,1 ) ≤ eC(V +W+Zm)(t)(‖u0‖Bs

p,1

+
∫ t

0

e−C(V +W+Zm)(τ)‖f(τ)‖Bs
p,1

dτ).

Proof. Let us first rewrite (2.1) as follows:

(2.3) ∂tu + v · ∇u + u · ∇w− bm(div
(
2µm Du) +∇(λmdivu)

)
= f + Em − u · ∇w,

Note that, because −N
p < s ≤ N

p − 1, the error term Em and u · ∇w may be
estimated by:

(2.4)
‖Em‖Bs

p,1
≤ (‖a1,m‖

B
N
p

p,1

+ ‖µ′1,m‖
B

N
p

p,1

+ ‖λ′1,m‖
B

N
p

p,1

)‖D2u‖Bs
p,1

and ‖u · ∇w‖Bs
p,1
≤ ‖∇w‖

B
N
p

p,1

‖u‖Bs
p,1

.

Now applying ∆q to equation (2.3) yields:

(2.5)
d

dt
uq + v · ∇uq − µdiv(bm∇uq)− (λ + µ)∇(bmdivuq) = fq + Em,q

−∆q(u · ∇w) + Rq + R̃q,
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where we denote by uq = ∆qu and Rq, R̃q are classical commutators. Next multi-
plying both sides by |uq|p−2uq, integrating by parts, using Hölder’s inequalities the
lemma A5 in [3]and the fact that µ ≥ 0 and λ + 2µ ≥ 0, we get:

1
p

d

dt
‖uq‖p

Lp +
νb(p− 1)

p2
22q‖uq‖p

Lp ≤ ‖uq‖p−1
Lp

(‖fq‖Lp + ‖Em,q‖Lp + ‖∆q(u · ∇w)‖Lp

+
1
p
‖uq‖Lp‖divu‖L∞ + ‖Rq‖Lp + ‖R̃q‖Lp

)
,

which leads, after time integration to:

‖uq‖Lp +
νb(p− 1)

p
22q

∫ t

0

‖uq‖Lpdτ ≤ ‖∆qu0‖Lp +
∫ t

0

(‖fq‖Lp + ‖Em,q‖Lp

)
dτ

+
∫ t

0

(‖∆q(u · ∇w)‖Lp +
1
p
‖uq‖Lp‖divu‖L∞ + ‖Rq‖Lp + ‖R̃q‖Lp

)
dτ,

For commutators Rq and R̃q, we have the following estimates:

‖Rq‖Lp ≤ cq2−qs‖v‖
B

N
p

+1

p,1

‖u‖Bs
p,1

,

‖R̃q‖Lp ≤ cq ν̄2−qs(‖Sma‖
B

N
p

+1

p,1

+ ‖Smµ
′‖

B
N
p

+1

p,1

+ ‖Smλ
′‖

B
N
p

+1

p,1

)‖Du‖Bs
p,1

,

where (cq)q∈Z is a positive sequence such that
∑

q∈Z cq = 1, and ν̄ = µ + |λ + µ|.
Note that, using Bernstein inequality, we have: ‖Sma‖

B
N
p

+1

p,1

≤ 2m‖a‖
B

N
p

p,1

. Hence,

using these latter estimates and multiplying by 2qs and summing up on q ∈ Z, we
get for all t ∈ [0, T ]:

‖u‖L∞t (Bs
p,1)

+
νb(p− 1)

p
‖u‖L1

t (Bs+2
p,1 ) ≤ ‖u0‖Bs

p,1
+ ‖f‖L1

t (Bs
p,1)

+ C

∫ t

0

(‖v‖
B

N
p

p,1

+ ‖w‖
B

N
p

+1

p,1

)‖u‖Bs
p,1

dτ + Cν̄

∫ t

0

(‖a1,m‖
B

N
p

p,1

+ ‖µ′1,m‖
B

N
p

p,1

+ ‖λ′1,m‖
B

N
p

p,1

)‖u‖Bs+2
p,1

+ 2m‖a‖
B

N
p

p,1

‖u‖Bs+1
p,1

)
dτ,

for a constant C depending only on N and s. Let X(t) = ‖u‖L∞t (Bs
p,1)

+νb‖u‖L1
t (Bs+2

p,1 ).
Assuming that m has been chosen so large as to satisfy condition (2.2) and by in-
terpolation, we have:

Cν̄‖a‖
B

N
p

p,1

‖u‖Bs+2
p,1

≤ κν +
C2ν̄222m

4κν
‖a‖2

B
N
p

p,1

‖u‖Bs
p,1

,

We conclude by using Grönwall lemma and this leads to the desired inequality. ¤

Remark 2.2. The proof of the continuation criterion (theorem 1.3) relies on a
better estimate which is available when u = v = w. In fact, by arguing as in the
proof of the previous proposition and by using other commutator estimate, one can
prove that under conditions (2.2), there exists constants C and κ such that:

∀t ∈ [0, T ], ‖u‖L∞t (Bs
p,1)

+ κν‖u‖L1
t (Bs+2

p,1 ) ≤ eC(U+Zm)(t)
(‖u0‖Bs

p,1

+
∫ t

0

e−C(U+Zm)(τ)‖f(τ)‖Bs
p,1

dτ
)

with U(t) =
∫ t

0

‖∇u‖L∞dτ.
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Proposition 2.1 fails in the limit case s = −N
p . One can however state the

following result which will be the key to the proof of uniqueness.

Proposition 2.3. Under condition (2.2), there exists two constants C and κ
(with c, C, depending only on N , and κ universal) such that we have:

‖u‖
L∞t (B

−N
p

p,∞ )
+ κν‖u‖

L̃1
t (B

2−N
p

p,∞ )
≤ 2eC(V +W )(t)(‖u0‖

B
−N

p
p,∞

+ ‖f‖
L̃1

t (B
−N

p
p,∞ )

),

whenever t ∈ [0, T ] satisfies:

(2.6) ν̄2t‖a‖2
L̃∞t (B

N
p

p,1)

≤ c2−2mν.

2.2. The proof of existence for theorem 1.2. We smooth out the data as
follows:

qn
0 = Snq0, un

0 = Snu0 and fn = Snf.

Now according [6], one can solve (SW ) with smooth initial data (qn
0 , un

0 , fn) on a
time interval [0, Tn]. Let ε > 0, we get solution checking:

(2.7) qn ∈ C([0, Tn], B
N
p +ε

p,1 ) un ∈ C([0, Tn], B
N
p −1+ε

p,1 ) ∩ L̃1([0, Tn], B
N
p +1+ε

p,1 ).

2.2.1. Uniform Estimates for (qn, un)n∈N. Let Tn be the lifespan of (qn, un),
that is the supremum of all T > 0 such that (SW ) with initial data (qn

0 , un
0 ) has

a solution which satisfies (2.7). Let T be in (0, Tn), we aim at getting uniform
estimates in ET for T small enough. For that, we need to introduce the solution
un

L to the linear system:

∂tu
n
L − µ(1)∆un

L − (λ + µ)(1)∇divun
L = fn, un

L(0) = un
0 .

Now, the vector field ũn = un − un
L satisfies the parabolic system:

∂tũ
n + un

L · ∇ũn + (1 + an)
(
div(2µ(1 + qn)Dũn)−∇(λ(1 + qn)divũn)

)
= Hn,

ũn(0) = 0.

with (where we note Au = (µ(1)∆− (λ + µ)(1)∇div)u):

Hn = anAun
L − un

L · ∇un
L − (1 + an)∇P (1 + qn) + φ ∗ ∇qn −∇qn

which has been studied in proposition 2.1. Define m ∈ Z by:

(2.8) m = inf{p ∈ Z/ 2ν̄
∑

l≥p

2l N
2 ‖∆la0‖L2 ≤ cν̄}

where c is small enough positive constant to be fixed hereafter. Let:

b̄ = 1 + sup
x∈RN

a0(x), A0 = 1 + 2‖a0‖
B

N
p

p,1

, U0 = ‖u0‖
B

N
p

p,1

+ ‖f‖
L1(B

N
p
−1

p,1 )
,

and Ũ0 = 2CU0 + 4Cν̄A0 (where C stands for a large enough constant which
will be determined when applying proposition 2.1). We assume that the following
inequalities are fulfilled for some η > 0 and T > 0:

(H1) ‖an − Sman‖
L̃∞T (B

N
p

p,1)
≤ cνν̄−1, ‖an‖

L̃∞(B
N
p

p,1)
≤ A0, ‖qn‖

L̃∞(B
N
p

p,1)
≤ A0

(H2)
1
2
b ≤ 1 + an(t, x) ≤ 2b̄ for all (t, x) ∈ [0, T ]× RN ,

(H3) ‖un
L‖

L̃1
T (B

N
p

+1

p,1 )
≤ η and ‖ũn‖

L̃∞T (B
N
p
−1

p,1 )
+ ν‖ũn‖

L̃1
T (B

N
p

+1

p,1 )
≤ Ũ0η,
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To be more precisely µn − µ(1) and λn − λ(1) have to check the same assumption
than (H1) it is left to the reader. We know that there exists a small time T̃n

with 0 < T̃n < Tn such that those conditions are verified. Remark that since:
1 + Sman = 1 + an + (Sman − an), assumptions (H1) and (H2) combined with the

embedding B
N
p

p,1 ↪→ L∞ insure that:

(2.9) inf
(t,x)∈[0,T ]×RN

(1 + Sman)(t, x) ≥ 1
4
b.

provided c has been chosen small enough. We are going to prove that under suitable
assumptions on T and η (to be specified below) condition (H1) to (H3) are satisfied
on [0, T ] with strict inequalities. Since all those conditions depend continuously
on the time variable and are strictly satisfied initially, a basic boobstrap argument
insures that (H1) to (H3) are indeed satisfied for T with 0 < T̃n < T and T
independent of n. First we shall assume that η satisfies:

(2.10) C(1 + ν−1Ũ0)η ≤ log 2

so that denoting Ũn(t) =
∫ t

0
‖ũn‖

B
N
p

+1

p,1

dτ and Un
L(t) =

∫ t

0
‖un

L‖
B

N
p

+1

p,1

dτ , we have,

according to (H3):

(2.11) eC(Un
L+Ũn)(T ) < 2 and eC(Un

L+Ũn)(T ) − 1 ≤ C

log 2
(Un

L + Ũn)(T ) ≤ 1.

In order to bound an in L̃∞T (B
N
p

p,1), we use paraproduct and classical result on
transport equation ( see [5]):

(2.12) ‖an‖
L̃∞T (B

N
p

p,1)
< 1 + 2‖a0‖

B
N
p

p,1

= A0.

We proceed similarly to bound ‖qn‖
L̃∞T (B

N
p

p,1)
. Now by applying results on transport

equation which yields for all m ∈ Z, we get:
∑

l≥m

2l N
p ‖∆la

n‖L∞T (Lp) ≤
∑

l≥m

2l N
p ‖∆la0‖Lp + (1 + ‖a0‖

B
N
p

p,1

)
(
eC(Un

L+Ũn)(T ) − 1
)
.

Using (2.10) and (H3), we thus have:

‖an − Sman‖
L∞T (B

N
p

p,1)
≤

∑

l≥m

2l N
p ‖∆la0‖Lp +

C

log 2
(1 + ‖a0‖

B
N
p

p,1

)(1 + ν−1L̃0)η.

Hence (H1) is strictly satisfied provided that η further satisfies:

(2.13)
C

log 2
(1 + ‖a0‖

B
N
p

p,1

)(1 + ν−1L̃0)η <
cν

2ν̄
.

Next, applying classical estimates on heat equation yields:

(2.14) ‖un‖
L̃∞T (B

N
p
−1

p,1 )
≤ U0,

(2.15) κν‖un
L‖

L1
T (B

N
p

+1

p,1 )
≤

∑

l∈Z
2l( N

p −1)(1−e−κν22lT )(‖∆lu0‖Lp +‖∆lf‖L1(R+,Lp)).

Hence taking T such that:

(2.16)
∑

l∈Z
2l( N

p −1)(1− e−κν22lT )(‖∆lu0‖Lp + ‖∆lf‖L1(R+,Lp)) < κην,



CAUCHY PROBLEM FOR CAPILLARITY VAN DER VAALS MODEL 7

insures a strictly inequality for the first estimate of (H4). Now we have to choose:

(2.17) T <
2−2mν

Cν̄2A2
0

.

Since (H1), (2.17) and (2.9) are satisfied, proposition 2.1 may be applied, we get :

‖ũn‖
L̃∞T (B

N
p
−1

p,1 )
+ ν‖ũn‖

L1
T (B

N
p

+1

p,1 )

≤ CeC(Un
L+Ũn)(T )

∫ T

0

(‖anAun
L‖

B
N
p
−1

p,1

+ ‖un
L · ∇un

L‖
B

N
p
−1

p,1

+ ‖∇qn‖
B

N
p
−1

p,1

)
dt.

By taking advantage of the paraproduct, we end up with:

‖ũn‖
L̃∞T (B

N
p
−1

p,1 )
+ ν‖ũn‖

L1
T (B

N
p

+1

p,1 )
≤ CeC(Un

L+Ũn)(T )

× (
C‖un

L‖
L1

T (B
N
p

+1

p,1 )
(ν̄‖an‖

L∞T (B
N
p
−1

p,1 )
+ ‖un

L‖
L∞T (B

N
p
−1

p,1 )
) + CgT‖qn‖

L1
T (B

N
p

p,1)

)
dt.

with C > 0. Now, using assumptions (H1), (H3), and inserting (2.11) we obtain:

‖ũn‖
L̃∞T (B

N
p
−1

p,1 )
+ ‖ũn‖

L1
T (B

N
p

+1

p,1 )
≤ 2C(ν̄A0 + U0)η + 2CgTA0,

hence (H3) is satisfied with a strict inequality provided:

(2.18) CgT < Cν̄η.

In the goal to check whether (H2) is satisfied, we use the fact that:

an − a0 = Sm(an − a0) + (Id− Sm)(an − a0) +
∑

l>n

∆la0,

whence, using B
N
p

p,1 ↪→ L∞ and assuming (with no loss of generality) that n ≥ m,

‖an − a0‖L∞((0,T )×RN ) ≤ C
(‖Sm(an − a0)‖

L∞T (B
N
p

p,1)
+ ‖an − Sman‖

L∞T (B
N
p

p,1)

+ 2
∑

l≥m

2l N
p ‖∆la0‖Lp

)
.

One can, in view of the previous computations, assume that:

C
(‖an − Sman‖

L∞T (B
N
p

p,1)
+ 2

∑

l≥m

2l N
p ‖∆la0‖Lp

) ≤ b

4
.

As for the term ‖Sm(an − a0)‖
L∞T (B

N
2

2,1)
, it may be bounded:

‖Sm(an − a0)‖
L∞T (B

N
p

p,1)
≤ (1 + ‖a0‖

B
N
p

p,1

)(eC(Ũn+Un
L)(T ) − 1) + C22m

√
T‖a0‖

B
N
p

p,1

× ‖un‖
L2

T (B
N
p

p,1)
.

Note that under assumptions (H5), (H6), (2.10) and (2.13), the first term in the
right-hand side may be bounded by b

8 . Hence using interpolation, (2.14) and the
assumptions (2.10) and (2.13), we end up with:

‖Sm(an − a0)‖
L∞T (B

N
2

2,1)
≤ b

8
+ C2m

√
T‖a0‖

B
N
2

2,1

√
η(U0 + Ũ0η)(1 + ν−1Ũ0.
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Assuming in addition that T satisfies:

(2.19) C2m
√

T‖a0‖
B

N
2

2,1

√
η(U0 + Ũ0η)(1 + ν−1Ũ0 <

b

8
,

and using the assumption b ≤ 1 + a0 ≤ b̄ yields (H2) with a strict inequality.
One can now conclude that if T < Tn has been chosen so that conditions (2.16),
(2.18), (2.17) and (2.19) are satisfied (with η verifying (2.10) and (2.13), and m
defined in (2.8) and n ≥ m then (an, qn, un) satisfies (H1) to (H3 and is bounded
independently of n on [0, T ]. We still have to state that Tn may be bounded by
below by the supremum T̄ of all times T such that (2.16), (2.18), (2.17) and (2.19)
are satisfied. This is actually a consequence of the uniform bounds we have just
obtained, and of continuation criterion of theorem 1.2. We finally obtain Tn ≥ T̄ .

2.2.2. Existence of solutions. The existence of a solution stems from compact-
ness properties for the sequence (qn, un)n∈N by using some results of type Ascoli.

Lemma 2.4. The sequence (∂tq̃
n, ∂tũ

n)n∈N is uniformly bounded for some α > 1
in:

L2(0, T ; B
N
p −1

p,1 )× (Lα(0, T ;B
N
p −2

p,1 ))N .

Proof. The notation u.b will stand for uniformly bounded. We start with

show that ∂tq̃
n is u.b in L2(0, T ;B

N
p −1

p,1 ). Since un is u.b in L2
T (B

N
p

p,1) and ∇qn is

u.b in L∞T (B
N
p −1

p,1 ), then un ·∇qn is u.b in L2
T (B

N
p −1

p,1 ). Similar arguments enable us

to conclude for the term (1 + qn)divun which is u.b in L2
T (B

N
p

p,1). Let us now study

∂tũ
n+1. Since un is u.b in L∞(B

N
p −1

p,1 ) and ∇un is u.b in L2(B
N
p −1

p,1 ), so un · ∇un

is u.b in L2(B
N
p −2

p,1 ) thus in L2(B
N
p −2

p,1 ). The other terms follow the same estimates
and are left to the reader. ¤

Now, let us turn to the proof of the existence of a solution by using some Ascoli
results and the properties of compactness showed in the lemma 2.4. According

lemma 2.4, (qn, un)n∈N is u.b in: C
1
2 ([0, T ]; B

N
p −1

p,1 )× (C1− 1
α ([0, T ];B

N
p −2

p,1 ))N , thus

is uniformly equicontinuous in C(([0, T ]; B
N
p −1

p,1 ) × (B
N
p −2

p,1 )N ). On the other hand
we have the following result of compactness, for any φ ∈ C∞0 (RN ), s ∈ R, δ > 0
the application u → φu is compact from Bs

p,1 to Bs−δ
p,1 . Applying Ascoli’s theorem,

we infer that up to an extraction (qn, un)n∈N converges for the distributions to a

limit (q̄, ū) which belongs to: C
1
2 ([0, T ]; B

N
p −1

p,1 ) × (C1− 1
α ([0, T ];B

N
p −2

p,1 ))N . Using
again uniform estimates and proceeding as, we gather that (q, u) solves (SW ) and
belongs to F

N
p .

2.3. Proof of the uniqueness for theorem 1.2. We are interested here
in the most complicated case when p = N , the other cases can be deduced by
embedding. Let (q1, u1), (q2, u2) belong to F

N
p with the same initial data. We set

(δq, δu) = (q2 − q1, u2 − u1). We can then write the system (SW ) as follows:




∂tδq + u2 · ∇δq = −δu · ∇q1 − δqdivu2 − (1 + q1)divδu,

∂tδu + u2 · ∇δu + δu · ∇u1 − (1 + a1)
(
div(2µ(ρ1)Dδu) +∇(λ(ρ1)∇δu)

)

= κ(φ ∗ ∇δq −∇δq)−∇(
P (ρ1)− P (ρ2)

)
+ A(δq, u2),
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with A(δq, u2) a rest term depending essentially of δq. Fix an integer m such that:

(2.20) 1 + inf
(t,x)∈[0,T ]×RN

Sma1 ≥ b

2
and ‖1− Sma1‖L̃∞(B1

N,1)
≤ c

ν

ν̄
,

we have the same properties for µ−µ(1), λ−λ(1) and we define T1 as the supremum
of all positive time such that:

(2.21) t ≤ T and tν̄2‖a1‖2
L̃∞(B1

N,1)
≤ c2−2mν.

Remark that by classical properties on transport equation a1 belongs to C̃T (B1
N,1)

so that the above two assumptions are satisfied if m has been chosen large enough.
For bounding δq in L∞T (B0

N,∞), we apply estimates on transport equation. We get
∀t ∈ [0, T ]:

‖δq(t)‖B0
N,∞

≤ CeCU2(t)

∫ t

0

e−CU2(τ)‖− δu ·∇q1− δqdivu2− (1+ q1)divδu‖B0
N,∞

dτ,

hence using that the product of two functions maps B0
N,∞ × B1

N,1 in B0
N,∞, and

applying Gronwall lemma,

(2.22) ‖δq(t)‖B0
N,∞

≤ CeCU2(t)

∫ t

0

e−CU2(τ)(1 + ‖q1‖B1
N,1

)‖δu‖B1
N,1

dτ.

Next, using proposition 2.3 combined with paraproduct theory, we get for all t ∈
[0, T1]:

(2.23)
‖δu‖L̃1

T (B1
N,∞) ≤ CeC(U1+U2)(t)

∫ t

0

(1 + ‖q1‖B1
N,1

+ ‖q2‖B1
N,1

+ ‖u2‖B1
N,1

)‖δa‖B0
N,∞

dτ.

In order to control the term ‖δu‖B1
N,1

which appears in the right-hand side of (2.22),
we make use of the following logarithmic interpolation inequality whose proof may
be found in [4], page 120:

(2.24) ‖δu‖L1
t (B1

N,∞) ≤ ‖δu‖L̃1
t (B1

N,∞) log
(
e +

‖δu‖L̃1
t (B0

N,∞) + ‖δu‖L̃1
t (B2

N,∞)

‖δu‖L̃1
t (B1

2,∞)

)
.

Because u1 and u2 belong to L̃∞T (B0
N,1) ∩ L1

T (B2
N,1), the numerator in the right-

hand side may be bounded by some constant CT depending only on T and on the
norms of u1 and u2. Therefore inserting (2.22) in (2.23) and taking advantage of
(2.24), we get for all t ∈ [0, T1] with:

‖δu‖L̃1
T (B1

N,∞) ≤ C(1 + ‖a1‖L̃∞T (B1
N,1)

)
∫ t

0

(1 + ‖q1‖B1
N,1

+ ‖q2‖B1
N,1

+ ‖u2‖B1
N,1

)‖δu‖L̃1
τ (B1

N,∞) log
(
e + CT ‖δu‖−1

L̃1
τ (B1

N,∞)

)
dτ.

Since the function t → ‖q1(t)‖B1
N,1

+‖q2(t)‖B1
N,1

+‖u2(t)‖B2
N,1

is integrable on [0, T ],
and: ∫ 1

0

dr

r log(e + CT r−1)
= +∞

Osgood lemma yields ‖δu‖L̃1
T (B1

N,1)
= 0. The definition of m depends only on T

and that (2.20) is satisfied on [0, T ]. Hence, the above arguments may be repeated
until the whole interval [0, T ] is exhausted. This yields uniqueness on [0, T ].
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3. Continuation criterion

In this section, we prove theorem 1.3. So we assume that we are given a solution

(q, u) to (SW ) which belongs to F
N
p

T ′
for all T

′
< T and such that conditions of

theorem 1.3 are satisfied. Fix an integer m such that conditions (2.2) is fullfiled.
Hence, taking advantage of remark 2.2 and using results of composition, we get for
some constant C and all t ∈ [0, T ),
‖u‖

L̃∞t (B
N
p
−1

p,1 )
+ κν‖u‖

L̃1
t (B

N
p

+1

p,1 )

≤ e

C
∫ t
0

(
‖∇u‖L∞+22mν−1ν̄2‖q‖2

B

N
p

p,1

)
dτ(‖u0‖

B
N
p
−1

p,1

+ ‖f‖
L̃1

t (B
N
p
−1

p,1 )
+ C

∫ t

0

‖q‖2
B

N
p

p,1

)dτ
)
.

This yields a bound on ‖u‖
L̃∞t (B

N
p
−1

p,1 )
and on ‖u‖

L̃1
t (B

N
p

+1

p,1 )
depending only on the

data and on m, ν, ν̄, ‖q‖
L̃1

t (B
N
p

p,1)
and ‖∇u‖L1

T (L∞). Of course due to ‖q‖
L∞T (B

N
p

p,1)
,

we also have ‖q‖
L̃∞T (B

N
p

p,1)
. By replacing ‖∆qq0‖Lp and ‖∆qu0‖Lp by ‖∆qq‖L∞T (Lp)

and ‖∆qu‖L∞T (Lp) in the definition (2.8) of m and in the lower bounds (2.16), (2.17)
and (2.19) that we have obtained for the existence time, we obtain an ε > 0 such
that (SW ) with data q(T − ε) and u(T − ε) has a solution on [0, 3ε]. Since the
solution (q, u) is unique on [0, T ), this provides a continuation of (q, u) beyond T .
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