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destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
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Global stability of weak solutions
for a multilayer Saint-Venant model with interactions between the layers

Bernard Di Martino∗†‡ Boris Haspot§ Yohan Penel†‡

December 2, 2016

Abstract

In this paper we investigate the existence of global weak solutions for the multilayer model introduced by Audusse
et al. [3] which is related to incompressible free surface flows. We prove the global stability of weak solutions over the
torus. We observe that this model admits the so called BD-entropy and a gain of integrability on the velocity in the
spirit of the work of Mellet and Vasseur [27]. It allows us to obtain enough compactness estimates in order to show
the stability of global weak solutions.

1 Introduction

The issue of modelling and simulating free-surface flows is extensively addressed in the literature. It is of major interest
for a large amount of engineering applications such as the design of harbours, the protection of coasts, the production of
energy or the prevention of natural hazards. Depending on the wavelengths of hydrodynamic processes at stake, several
models of reduced complexity have been designed.

A renowned simplified model implemented in many industrial codes is the system of viscous Shallow Water (SW)
equations [16,25] which consists of a hyperbolic 1st order partial differential equation (PDE) modelling the conservation
of volume and of a 2nd order PDE for the momentum. The SW equations are dedicated to a specific regime of water flows,
namely when dispersion effects can be neglected and for water heights small compared to the characteristic longitudinal
length of the domain. For such flows, the SW equations turn out to provide reliable numerical results.

From SW equations to the Navier-Stokes (NS) equations, there exists in the literature a hierarchy of models of increasing
complexity including Boussinesq type models [17, 24, 31–33] with higher order derivatives to account for dispersion
effects (necessary for modelling shoaling) or non-hydrostatic models [9, 11] with a larger amount of unknowns (like the
hydrodynamic pressure). This process aims at widening the range of applications of hydrodynamic models.

For the specific regime addressed by the SW equations, another technique consists in splitting the flow into horizontal
layers similar to a discretisation procedure along the vertical axis in order to improve the accuracy of the results. In this
framework, the SW equations correspond to a coarse vertical mesh with a single layer. As a consequence, this multilayer
approach is still relevant for non shallow flows.

First, such models have been introduced with 2 or 3 layers for immiscible multifluid flows [10, 28, 29]. They were then
extended to an arbitrary number of layers without [2, 4] or with [3, 14, 15, 23] mass transfer between layers. A major
consequence is the noticeable increase of the number of unknowns related to the number of layers. In the inviscid case,
open questions like the hyperbolicity of the model still hold (let us mention that recently Aguillon et al. in [1] proved the
well-posedness of the Riemann problem for a two layer model). In the present work, we focus on the viscous case. We
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z = zb(x) = z1/2(x)
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Figure 1: Multilayer approach

are interested in proving the stability of the global weak solutions (in a future work, we will consider the construction of
global approximate solution which will imply the existence of global weak solutions).

In the sequel of this section, the equations are detailed (§ 1.1) and a review of classical techniques to obtain global
existence of weak solutions is presented (§ 1.2). The main result is stated in § 1.3 (Th. 1.1).

1.1 The multilayer Saint-Venant model

We consider in this paper a multilayer description of a geophysical flow with a free surface and a varying topography.
N is the number of layers which might correspond to physical discontinuities but in the present approach layers are
predetermined elements of the discretisation.

Horizontal layers `α are separated by given surfaces z = zα+1/2(t,x) where x ∈ Td, with d ∈ {1, 2, 3}.1 See Figure 1 for
notations. Without loss of generality, we assume that all layers have the same thickness hα = zα+ 1

2
− zα− 1

2
= h/N , so

that we have
zα+ 1

2
(t,x) = zb(x) +

α

N
h(t,x).

The multilayer approach amounts to approximating the velocity field by a layer-wise constant function through a Galerkin
discretisation procedure. More precisely, uα denotes an approximation of the average velocity over the layer `α

uα(t,x) ≈ N

h(t,x)

∫ z
α+1

2
(t,x)

z
α− 1

2
(t,x)

u(t,x, z) dz

where u satisfies the Navier-Stokes equations. Let us introduce the notations

u = (u1, . . . , uN ) ∈ RN , and ū =
1

N

N∑
α=1

uα.

The multilayer Saint-Venant model proposed by Audusse et al. [3] is obtained by integrating the hydrostatic Navier-Stokes
equations over each layer, which reads with α ∈ {1, . . . , N}:

∂th+ div(hū) = 0,

∂t(huα) + div(huα ⊗ uα) +
g

2
∇h2 = −gh∇zb +N

(
uα+ 1

2
Gα+ 1

2
− uα− 1

2
Gα− 1

2

)
+ div

(
4νhD(uα)

)
+ κ(uα+1 − uα)− κ(uα − uα−1),(

h(0, ·), u1(0, ·), . . . , uN (0, ·)
)

= (h0, u1,0, . . . , uN,0),

(1.1)

with u0 = u1 and uN+1 = uN . The model has for initial data (h0, uα,0) with α ∈ {1, . . . , N}. The term zb(x) denotes
the bottom topography assumed sufficiently smooth and stationary. In the sequel we assume that zb ∈W 1,∞(Td).

1The model considered here results from an averaging process over the vertical axis applied to the Navier-Stokes equations. Hence it has
a smaller dimension: d = 1 corresponds to the 2D Navier-Stokes equations and d = 2 to the 3D equations.
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The term D(u) = 1
2 (∇u+∇Tu) corresponds to the stress tensor. Gα+ 1

2
represents the mass flux through the interface

z = zα+ 1
2
from `α+1 to `α. It is defined by

Gα+ 1
2

=
1

N2

α∑
j=1

N∑
i=α+1

div
(
h(uj − ui)

)
. (1.2)

Let us consider standard kinematic boundary conditions at the surface and at the bottom which read

G 1
2

= GN+ 1
2

= 0.

Finally, we define the value of the interface velocity uα+ 1
2
by means of an upwind formula

uα+ 1
2

=

{
uα, if Gα+ 1

2
≤ 0,

uα+1, otherwise.
(1.3)

Let us observe that using the definition (1.3), we have:

Gα+ 1
2
uα+ 1

2
=

1

2
Gα+ 1

2
(uα + uα+1)− 1

2
|Gα+ 1

2
|(uα − uα+1). (1.4)

Remark 1. In [14], the authors consider the following choice:

uα+ 1
2

=
1

2
(uα + uα+1).

From (1.4), we notice that our choice for uα+ 1
2
gives the same value for Gα+ 1

2
uα+ 1

2
as in [14] up to an additional term

− 1
2 |Gα+ 1

2
|(uα − uα+1).

Remark 2. Let us notice that the definition 1.2 implies the following partial mass law

∂th+ div (huα) = N(Gα+ 1
2
−Gα− 1

2
). (1.5)

Remark 3. In [3], the friction term at the leading order is derived from a finite difference method with respect to the
vertical variable: N2ν uα+1−uα

h . Unfortunately we are not able to deal with this term in our proof of stability, mainly
because we have not enough compactness information in order to treat this term. Indeed it would require some control
on 1

h in suitable Lebesgue spaces.

In case of immiscible multilayer fluids, some other modelling approaches of the friction term are proposed. For example
in [36], the friction term is defined by

fric(v1, v2) = −ξB(h1, h2)(v1 − v2), B(h1, h2) =
h1h2

ρ1
ρ2
h1 + ρ2

ρ1
h2

where ρα (resp. vα) is the density (resp. velocity) of each layer and ξ a positive constant [30]. Consequently, if densities
and height are the same, the viscous term is proportional to h. In this paper we use a more conventional friction term
of the form −κ(v2 − v1) where κ is a positive constant.

1.2 Main results of existence of global solutions for the compressible Navier-Stokes equa-
tions

A large amount of papers in the literature has been devoted to the study of existence of global weak solutions for the
compressible Navier-Stokes system. The first result of existence is due to P.-L. Lions in [22] where the mono-layer
counterpart of (1.1) with constant viscosity coefficients is considered for a gamma law P (ρ) = ργ (with P the pressure
and ρ the density which replaces the height h) with γ ≥ 9

5 in dimension 3 and γ ≥ 3
2 in dimension 2. One of the main

ingredient in order to assess the compactness of the global approximate solutions is the so-called theory of renormalised
solutions and the introduction of the effective pressure. In [13], Feireisl et al. extend the latter result to the case γ > d

2
by introducing the notion of defect measures. Let us mention that recently Bresch and Jabin [8] generalised these
results to the case of anisotropic viscous tensors. The case of the compressible Navier-Stokes equations with degenerate
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viscosity coefficients is completely different in terms of analysis. Indeed one of the main issues is due to the fact that
there is no equivalent to the so-called “effective pressure” (or in other words we cannot invert the viscous stress tensor).
Recently several authors obtained significant progress on the existence of global weak solutions with degenerate viscosity
coefficients. Bresch and Desjardins [6] introduced a new entropy (the so-called BD entropy) which gives new estimates
on the gradient of the density provided that the viscosity coefficients µ and λ verify the following algebraic relation

λ(ρ) = 2µ′(ρ)− 2µ(ρ). (1.6)

Let us mention that a particular choice of viscosity coefficients λ(ρ) = 0 and µ(ρ) = µρ satisfying (1.6) leads to the so-
called viscous shallow water system which corresponds to our problem in the mono layer framework. At least heuristically
Bresch and Desjardins observed that the quantity µ′(ρ)√

ρ ∇ρ is conserved in L∞(0, T ;L2(Rd)) norm for any T > 0. This
allows to prove the existence of global weak solutions [6] with either a drag friction or a cold pressure term (a pressure
that is singular at the vacuum). The addition of a friction term allows to get a gain of integrability on the velocity which
provides enough compactness estimates in order to deal with the stability of the term ρu⊗u. Indeed compared with the
constant viscosity case there is no control on the gradient of the velocity ∇u in L2(R+, L2(Rd)) and it is not possible to
apply classical Sobolev embeddings to deal with the term ρu⊗u. This is related to the fact that the viscosity coefficients
are degenerate (see the relation (1.6)). The same remark holds when a cold pressure is added. We refer also to [7, 37]
for more developments on the existence of global weak solutions with a cold pressure or with a drag friction.

The problem of stability of global weak solutions for classical γ law (when 1 < γ < +∞ for d = 2 and 1 < γ < 3 for
d = 3) has been solved by Mellet and Vasseur [27]. To do this they introduced a new energy estimate allowing a gain of
integrability on the velocity. However the problem of existence of global weak solutions remains open. Indeed it remains
to prove the existence of global approximate solutions of the system verifying uniformly energy estimates, BD entropy
and the gain of integrability à la Mellet-Vasseur which is tricky. However recently for the particular case of the shallow
water system, the proof has been completed simultaneously and independently by Vasseur and Yu [34, 35] and Li and
Xin [21] using different methods.

Concerning the existence of global strong solutions with large initial data for degenerate viscosity coefficients, the problem
remains completely open in dimensions greater than 1. We can however mention some results in the case d = 1. For
viscosity coefficients of the form µ(ρ) = ρα with 0 < α < 1

2 , the BD entropy allows to bound the density from below.
It allowed Mellet and Vasseur [26] to prove the existence of global strong solutions for initial density far away from
vacuum. Indeed the BD entropy gives a bound on ∂x(ρα−

1
2 ) in L∞(0, T ;L2(R)) for all T > 0 and a control on ρ−1

in L∞(0, T ;L∞(R)) from Sobolev embeddings. Next it is classical to propagate any regularity on the density and the
velocity in order to prove the uniqueness. This result has been recently extended by the second author in [18] to the case
of general degenerate viscosity coefficients α ≥ 1

2 and in particular the shallow water system (α = 1) which corresponds
to System (1.1) for N = 1. The main idea was to rewrite the system by introducing a suitable effective velocity v and
apply a maximum principle.

Let us also recall some results on multilayer systems. To our knowledge most existence results concern immiscible fluid
flows. In other words it means that there is no mass flux between each layer at the interface, in particular Gα+ 1

2
= 0

for any α. In [12, 28] the authors obtained existence results of weak solutions for the bilayer case with a viscous term
of the form ν∆uα. In [36], it is proven stability of global weak solutions for viscous terms like in (1.1) with surface
tensions and with test functions depending on the density itself. When mass transfer is involved, let us mention the
work from Fernández Nieto et al. [14] who construct numerical solutions of finite element type satisfying the classical
energy inequality.

In our paper, we prove the stability of the global weak solution of System (1.1). The main difficulty comes from the
terms describing the transfer of flux between the layers which are not taken into account in the immiscible case. In
particular it makes the analysis more difficult when we wish to prove the BD entropy and the gain of integrability à
la Mellet-Vasseur which ensures the stability of the convection term. These two estimates are the cornerstone of the
proof of stability of global weak solutions following the argument developed in [27]. However the lack of compactness
for the mass flux terms prevents from recovering the expected limit. This is due to the fact that we can not prove the
convergence almost everywhere of the terms Gn

α+ 1
2

.

In a future work, we will prove the existence of global weak solution. It remains essentially to construct global approximate
solutions verifying uniformly all the entropy inequalities (in order to do this, we follow the method developed in [34,35].
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1.3 Main results

Before stating the result (Th. 1.1), we define the notion of weak solutions which differs depending on the space dimension
d.

Definition 1. Let d = 1. (h, u1, . . . , uN ) is said to be a global weak solution of (1.1) supplemented with initial conditions

h(0, ·) = h0, (huα)(0, ·) = mα,0, (1.7)

such that for any α ∈ {1, . . . , N}:

h0 ∈ L1(T1),
√
h0∂x log h0 ∈ L2(T1), h0 ≥ 0,√

h0|uα,0| ∈ L2(T1), uα,0 ∈ L∞(T1), (1.8)√
h0|uα,0|

√
log(1 + |uα,0|2) ∈ L2(T1),

if the following smoothness assumptions are satisfied for any α ∈ {1, . . . , N}:

• h ∈ L∞
(
0, T ;L1(T1)

)
, ∂x
√
h ∈ L∞

(
0, T ;L2(T1)

)
,
√
huα ∈ L∞

(
0, T ;L2(T1)

)
,

•
√
h∂xuα ∈ L2

(
(0, T )× T1

)
,
√
h|uα|

√
log(1 + |uα|2) ∈ L∞

(
0, T ;L2(T1)

)
,

with h ≥ 0 satisfying in the sense of distributions over [0, T ]× T1 for any α ∈ {1, . . . , N}:{
∂th+ ∂x(huα) = N(Gα+ 1

2
−Gα− 1

2
),

h(0, ·) = h0,

and if the following equality holds for all smooth test functions ϕ(t, x) with compact support such that ϕ(T, ·) = 0, we
have:∫

T1

mα,0ϕ(0, ·) dx+

∫ T

0

∫
T1

[√
h
(√

huα

)
∂tϕ+

√
huα ×

√
huα × ∂xϕ+

g

2
h2∂xϕ

]
dxdt

+

∫ T

0

∫
T1

[
N

(
Gα+ 1

2

2
(uα + uα+1)−

Mα+ 1
2

2
1{h>0}(uα − uα+1)− 1

2
Gα− 1

2
(uα−1 + uα)

+
Mα− 1

2

2
1{h>0}(uα−1 − uα)

)
− gh∂xzb + κ(uα+1 − 2uα + uα−1)

]
ϕ dxdt− 〈4νhD(uα), ∂xϕ〉 = 0, (1.9)

where Mα+ 1
2
is the weak limit in L2((0, T ) × T1) of

Gn
α+1

2

hn . Moreover, we give sense to the diffusion term and the flux
term:

〈4νhD(uα), ∂xϕ〉 = −
∫ T

0

∫
T1

√
h∂xuα

(√
h∂xxϕ+ 2∂xϕ∂x

√
h
)

dxdt (1.10)

and Gα+ 1
2
defined by (1.2).

Definition 2. Let d ∈ {2, 3}. (h, u1, . . . , uN ) is said to be a global weak solution of (1.1) supplemented with initial
conditions

h(0, ·) = h0, (huα)(0, ·) = mα,0, (1.11)

such that for any α ∈ {1, . . . , N}:

h0 ∈ L1(Td),
√
h0∇ log h0 ∈ L2(Td), h0 ≥ 0,√
h0|uα,0| ∈ L2(Td), (1.12)√

h0|uα,0|
√

log(1 + |uα,0|2) ∈ L2(Td),

if the following smoothness assumptions are satisfied for any α ∈ {1, . . . , N}:
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• h ∈ L∞
(
0, T ;L1(Td)

)
, ∇
√
h ∈ L∞

(
0, T ;L2(Td)

)
,
√
huα ∈ L∞

(
0, T ;L2(Td)

)
,

•
√
h∇uα ∈ L2

(
(0, T )× Td

)
,
√
h|uα|

√
log(1 + |uα|2) ∈ L∞

(
0, T ;L2(Td)

)
,

with h ≥ 0 satisfying in the sense of distributions over [0, T ]× Td for any α ∈ {1, . . . , N}:{
∂th+ div(huα) = N(Gα+ 1

2
−Gα− 1

2
),

h(0, ·) = h0,

and if the following equality holds for all smooth test functions ϕ(t,x) with compact support such that ϕ(T, ·) = 0, we
have:∫

Td
mα,0 · ϕ(0, ·) dx +

∫ T

0

∫
Td

[√
h
(√

huα

)
∂tϕ+

√
huα ⊗

√
huα : ∇ϕ+

g

2
h2 divϕ

]
dxdt

+

∫ T

0

∫
Td

[
N

(
Gα+ 1

2

2
(uα + uα+1)−

Mα+ 1
2

2

√
h(uα − uα+1)−

Gα− 1
2

2
(uα−1 + uα) +

Mα− 1
2

2

√
h(uα−1 − uα)

)
− gh∇zb + κ(uα+1 − 2uα + uα−1)

]
·ϕ dxdt− 〈4νhD(uα),∇ϕ〉 = 0, (1.13)

where Mα+ 1
2
is the weak limit in L2((0, T ) × Td) of

Gn
α+1

2

hn . Moreover, we give sense to the diffusion term and the flux
term:

〈4νhD(uα),∇ϕ〉 = −
∑
i,j

∫ T

0

∫
Td

√
huα,i

(√
h∂jjϕi + 2∂jϕi ∂j

√
h
)

dxdt (1.14)

and Gα+ 1
2
defined by (1.2).

(1.15)

Remark 4. In the previous definitions, the sequences (hn)n∈N and (Gn
α+ 1

2

)n∈N are related to the sequence (hn, un)n∈N

of global weak solutions defined in Theorem 1.1.

Let us state now our main result about global weak solutions for the multilayer system (1.1).

Theorem 1.1. Given 1 ≤ d ≤ 3 and (h0,m1,0, . . . ,mN,0) initial data verifying the assumption (1.8) and (1.12). Let us
assume that there exists a sequence of global weak solutions (hn, un1 , . . . , u

n
N )n∈N for System (1.1) such that the energy

inequalities (2.1), (2.5), (2.9) and (2.21) are uniformly verified. In particular the corresponding initial data are chosen
such that:

hn0 > 0, hn0 −−−−−→
n→+∞

h0 in L1(Td), hn0u
n
0,α −−−−−→

n→+∞
h0u0,α (1.16)

and satisfy the following bounds (where C > 0 is independent from n):∫
Td

(
N∑
α=1

hn0
|un0 |2

2
+ (hn0 )2

)
dx < C,

∫
Td

∣∣∣∇√hn0 ∣∣∣2 dx < C, (1.17)

and when d ≥ 2: ∫
Td

N∑
α=1

hn0
1 + |un0 |2

2
log
(
1 + |un0,α|2

)
dx < C (1.18)

or when d = 1:
∀ α ∈ {1, . . . , N}, ‖un0,α‖L∞(T1) < C. (1.19)

In addition we assume that hn is a continuous function on R+ × Td such that for any (t, x) ∈ R+ × Td, we have:

hn(t, x) > 0.

Then up to a subsequence, (hn,
√
hnun1 , . . . ,

√
hnunN ) converges strongly to a global weak solution (h,

√
hu1, . . . ,

√
huN )

of System (1.1) in the sense of Definition 1 or 2. More precisely, hn converges strongly in C((0, T );L
3
2 (Td)),

√
hnunα

converges strongly in L2((0, T );L2(Td)) and the momentum mn
α = hnunα converges strongly in L1((0, T );L1(Td)) for any

T > 0. When d = 1, h is continuous on R+ × T1.
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Remark 5. In the paper of Audusse et al. [3] the authors claim that the modelling is physically relevant in terms of
thermodynamics since they exhibit a classical energy. In our result in order to prove the stability of global weak solutions
we need in addition to show the BD entropy which is another hint of the physical interest of the model.

Remark 6. In a future work, we shall prove the existence of such a sequence (hn, un)n∈N of global regular approximate
solutions verifying uniformly (2.1), (2.5), (2.9) and (2.21).

Remark 7. Let us emphasize that in Theorem 1.1, it seems difficult to deal with the mass transfer flux, essentially
because we are not able to prove that |Gn

α+ 1
2

|(unα+1 − unα) converges in the sense of distributions to |Gα+ 1
2
|(uα+1 − uα).

Indeed it is not clear to prove the convergence almost everywhere of Gn
α+ 1

2

.

In [14], with the choice uα+ 1
2

= 1
2 (uα + uα+1), the additional term |Gn

α+ 1
2

|(unα+1 − unα) does not appear. Then it is easy
to deal with the mass transfer term. For this specific choice for uα+ 1

2
, we are also able to prove the BD entropy but

it seems tricky to obtain a gain of integrability à la Mellet Vasseur. For this reason we have not enough compactness
information to treat the convection term.

We would like to mention that we could obtain global weak solutions for the system proposed in [14] if we consider friction
terms of the form h|uα|1+εuα with ε > 0 in each layer. Indeed in this case the friction terms ensure directly a gain of
integrability on the velocity.

The paper unfolds as follows. In Section 2, we give new estimates for System (1.1) involving the BD entropy and
some gain of integrability on the velocity uα. In Section 3, we show the stability of global weak solutions following the
arguments developed in [27]. We postpone an appendix which details some computations and prove the BD entropy for
the choice uα+ 1

2
= 1

2 (uα + uα+1) used in [14].

2 A priori energy estimates

In this section, we are interested in proving at least heuristically different energy estimates: the classical energy of the
system, the BD entropy (see [5]) which is less obvious and an equivalent of the Mellet-Vasseur estimate from [27].

2.1 Classical energy

Proposition 2.1. Let (h, u1, . . . , uN ) be a classical solution of System (1.1). Then, the following equality holds:

d

dt

∫
Td
E dx +

N∑
α=1

∫
Td

4νh|D(uα)|2 dx

+N

N∑
α=1

∫
Td
κ|uα+1 − uα|2 dx +

N

2

N∑
α=1

∫
Td
|uα+1 − uα|2|Gα+ 1

2
| dx = 0 (2.1)

with

E =
1

2

(
Ngh2 +

N∑
α=1

h|uα|2
)

+Nghzb. (2.2)

Hereafter, A : B =
∑
i,j AijBij denotes the scalar product upon matrices and |A|2 = A : A.

Proof. We follow here the arguments of [3]. The main difficulty concerns the coupling between the different equalities
through the flux terms. Simplifications arise only after summing the equations. Multiplying the momentum equations
(1.1) by uα and summing over α, we obtain:

1.
N∑
α=1

∫
Td

[∂t(huα) + div(huα ⊗ uα)] · uα dx−N
N∑
α=1

∫
Td

(
uα+ 1

2
Gα+ 1

2
− uα− 1

2
Gα− 1

2

)
· uα dx

7



=
1

2

d

dt

N∑
α=1

∫
Td
h|uα|2 dx +

N

2

N∑
α=1

∫
Td
|uα|2(Gα+ 1

2
−Gα− 1

2
) dx

−N
N∑
α=1

∫
Td

(
uα+ 1

2
Gα+ 1

2
− uα− 1

2
Gα− 1

2

)
· uα dx;

2.
1

2

N∑
α=1

∫
Td
huα · ∇h2 dx = N

g

2

d

dt

∫
Td
h2 dx;

3.
N∑
α=1

∫
Td
uα · div (4νhD(uα)) dx = −

∫
Td

4νh

N∑
α=1

|D(uα)|2 dx;

4.
N∑
α=1

∫
Td

[(uα+1 − uα) · uα − (uα − uα−1) · uα] dx = −
N∑
α=1

∫
Td
|uα+1 − uα|2 dx;

5.
N∑
α=1

∫
Td
huα · ∇zb dx = N

d

dt

∫
Td
zbh dx.

Let us observe now that:

N

2

N∑
α=1

∫
Td
Gα+ 1

2

(
|uα|2 − |uα+1|2

)
dx−N

N∑
α=1

∫
Td

(
uα+ 1

2
Gα+ 1

2
− uα− 1

2
Gα− 1

2

)
· uα dx

=
N

2

N∑
α=1

∫
Td
|Gα+ 1

2
| |uα+1 − uα|2 dx. (2.3)

Combining the different previous estimates and (2.3), we obtain the energy estimate (2.1).

2.2 BD entropy

Unfortunately this last energy inequality is not sufficient in order to prove the existence of global weak solutions.
Indeed we need additional compactness information to deal with the pressure term and the convection terms. As in [5],
we would like to prove that a BD entropy estimate is satisfied. Let us introduce as in [18, 19] the effective velocity
vα = uα + 4ν∇ log h. Then system (1.1) can be written

∂th+ div(hū) = 0,

h [∂tvα + (uα · ∇)vα]− 2ν div (h curl vα) + g
2∇h

2 = −gh∇zb

+N
(
Gα+ 1

2
(uα+ 1

2
− uα)−Gα− 1

2
(uα− 1

2
− uα)

)
+ 4νNh∇

(
G
α+1

2
−G

α− 1
2

h

)
+ κ(uα+1 − uα)− κ(uα − uα−1),

(2.4)

with curl vα = (∇vα −∇T vα) the vorticity.

Proposition 2.2 (BD entropy). If we assume that (h, u1, . . . , uN ) is a smooth solution of System (1.1), then

1

2

d

dt

∫
Td
h

N∑
α=1

|vα|2 dx +
Ng

2

d

dt

∫
Td
h2 dx +Ng

d

dt

∫
Td
zbh dx + 2ν

∫
Td
h| curl vα|2 dx

+ 4Nνg

∫
Td
|∇h|2 dx + 4Nνg

∫
Td
∇zb · ∇h dx + κ

N∑
α=1

∫
Td
|vα+1 − vα|2 dx

+
N

2

N∑
α=1

∫
Td
|Gα+ 1

2
| |vα+1 − vα|2 dx +

N−1∑
α=1

∫
Td

1

hN2

N∑
j=α+1

(
div(h(uα − uj))

)2
dx = 0. (2.5)
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Remark 8. From this estimate we deduce two new pieces of information which are essential to obtain convergence results.
Firstly,

√
hvα is bounded in L∞(0, T ;L2(Td)). We deduce that

√
h∇ log h = 2∇

√
h is bounded in L∞(0, T ;L2(Td)). This

is the crucial point ensured by the BD entropy. On the other hand, thanks to (1.2), the last term of this estimate also
gives a bound for Gα+ 1

2
/
√
h in L2(0, T ;L2(Td)) that enables to give sense to the term uα+ 1

2
Gα+ 1

2
.

Remark 9. We mention that we can also obtain energy and BD entropy with the choice for uα+ 1
2
used in [14].

Proof. Multiplying the momentum equations of (2.4) by vα, integrated over Td and summing over α we get:

1.
N∑
α=1

∫
Td
h (∂tvα + (uα · ∇)vα) · vα dx =

1

2

N∑
α=1

∫
Td

[
d

dt
h|vα|2 +NGα+ 1

2
(|vα+1|2 − |vα|2)

]
dx;

2.
N∑
α=1

g

2

∫
Td
vα · ∇h2 dx =

Ng

2

d

dt

∫
Td
h2 dx + 4Nνg

∫
Td
|∇h|2 dx;

3.
N∑
α=1

g

∫
Td
h∇zb · vα dx = Ng

∫
Td
zbh dx + 4gNν

∫
Td
∇zb · ∇hdx;

4.
N∑
α=1

∫
Td
vα · 2ν div(h curl vα)) dx = −

N∑
α=1

∫
Td

2νh| curl vα|2 dx;

5. Since for all α ∈ {1, . . . , N} we have vα − vα−1 = uα − uα−1 we deduce that:

κ

N∑
α=1

∫
Td

(uα+1 − uα) · vα − (uα − uα−1) · vα dx = −κ
N∑
α=1

∫
Td
|vα+1 − vα|2 dx.

Combining the previous estimate we have:

1

2

d

dt

∫
Td
h

N∑
α=1

|vα|2 dx +
Ng

2

d

dt

∫
Td
h2 dx +Ng

d

dt

∫
Td
zbh dx +

∫
Td

2νh| curl vα|2 dx

+ 4Nνg

∫
Td
|∇h|2 dx + 4Nνg

∫
Td
∇zb · ∇h dx + κ

N∑
α=1

∫
Td
|vα+1 − vα|2 dx

+
1

2

N∑
α=1

NGα+ 1
2
(|vα+1|2 − |vα|2) dx−N

N∑
α=1

∫
Td

(
Gα+ 1

2
(uα+ 1

2
− uα)−Gα− 1

2
(uα− 1

2
− uα)

)
· vαdx

− 4νN

N∑
α=1

∫
Td
h∇
(
Gα+ 1

2
−Gα− 1

2

h

)
· vαdx = 0. (2.6)
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Next we have due to G 1
2

= GN+ 1
2

= 0:

1

2

N∑
α=1

Gα+ 1
2
(|vα+1|2 − |vα|2)−

N∑
α=1

(
Gα+ 1

2
(uα+ 1

2
− uα)−Gα− 1

2
(uα− 1

2
− uα)

)
· vα

=
1

2

N∑
α=1

Gα+ 1
2
(|vα+1|2 − |vα|2)−

N∑
α=1

(Gα+ 1
2
(uα+ 1

2
− uα) · vα −

N−1∑
α=0

Gα+ 1
2
(uα+1 − uα+ 1

2
) · vα+1

=

N−1∑
α=1

−Gα+ 1
2

[
uα+ 1

2
· (vα − vα+1) + (uα+1 · vα+1 − uα · vα)− 1

2
(|vα+1|2 − |vα|2)

]

=

N−1∑
α=1

−Gα+ 1
2

[
uα+ 1

2
· (uα − uα+1) + |uα+1|2 − |uα|2 + 4ν(uα+1 − uα) · ∇ log h− 1

2
(|vα+1|2 − |vα|2)

]
;

=

N−1∑
α=1

−Gα+ 1
2

[
uα+ 1

2
· (uα − uα+1) +

1

2
(|uα+1|2 − |uα|2)

]
,

=

N−1∑
α=1

−Gα+ 1
2
(uα − uα+1) ·

(
uα+ 1

2
− 1

2
(uα+1 + uα)

)
,

since

|vα+1|2 − |vα|2 = (uα+1 − uα) · (uα+1 + uα + 8ν∇ log h)

= |uα+1|2 − |uα|2 + 8ν(uα+1 − uα) · ∇ log h.

Then, by the definition 1.3 of uα+ 1
2
we have:

• If Gα+ 1
2
> 0 then uα+ 1

2
= uα+1 and:

N−1∑
α=1

−Gα+ 1
2
(uα − uα+1) ·

(
uα+ 1

2
− 1

2
(uα+1 + uα)

)
=

1

2

N−1∑
α=1

|Gα+ 1
2
|(uα+1 − uα)2;

• If Gα+ 1
2
≤ 0 then uα+ 1

2
= uα and:

N−1∑
α=1

−Gα+ 1
2
(uα − uα+1) ·

(
uα+ 1

2
− 1

2
(uα+1 + uα)

)
=

1

2

N−1∑
α=1

|Gα+ 1
2
|(uα+1 − uα)2.

Finally we have proved that:

1

2

N∑
α=1

Gα+ 1
2
(|vα+1|2 − |vα|2)−

N∑
α=1

(
Gα+ 1

2
(uα+ 1

2
− uα)−Gα− 1

2
(uα− 1

2
− uα)

)
· vα

=

N∑
α=1

|Gα+ 1
2
|

2
|uα+1 − uα|2. (2.7)

From the relation (1.2) and by integration by parts, we have
N∑
α=1

∫
Td
hvα · ∇

(
Gα+ 1

2
−Gα− 1

2

h

)
dx =

N−1∑
α=1

∫
Td
h(vα − vα+1) · ∇

(
Gα+ 1

2

h

)
dx

= −
N−1∑
α=1

∫
Td

Gα+ 1
2

h
div (h(uα − uα+1)) dx

= −
N−1∑
α=1

∫
Td

1

hN2

α∑
j=1

N∑
i=α+1

div(h(uj − ui)) div(h(uα − uα+1)) dx

= −
N−1∑
α=1

∫
Td

1

hN2

N∑
j=α+1

[
div(h(uα − uj))

]2
dx.

(2.8)
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A detailed proof of the latter relation is given in 4.1. Combining (2.6), (2.7) and (2.8) implies the estimate (2.5).

2.3 Mellet-Vasseur logarithmic estimate

In order to deal with the convection term huα ⊗ uα which is only bounded L∞(0, T ;L1(Td)), it is important to get a
gain of integrability on the velocity as in [27]. Let us mention that in [5], in order to overcome this difficulty the authors
need to work with a friction term. We have the following result.

Proposition 2.3 (MV inequality). If we assume that (h, u1, . . . , uN ) is a smooth solution of System (1.1), then

N∑
α=1

(
d

dt

∫
Td

[
h

1 + |uα|2

2
log
(
1 + |uα|2

)]
dx + 3ν

∫
Td
h
[
1 + log

(
1 + |uα|2

)]
|D(uα)|2 dx

)

≤
N∑
α=1

(
C

(∫
Td
h|∇uα|2 dx

)
+ C

(∫
Td
h

6−δ
2−δ dx

) 2−δ
2

×
(∫

Td
h
[
2 + log

(
1 + |uα|2

)] 2
δ dx

) δ
2

+ g

∫
Td
h

1 + |uα|2

2

[
1 + log(1 + |uα|2)

]
|∇zb| dx

)
(2.9)

for any δ ∈ (0, 2) and for some constant C ≥ 0.

Remark 10. Let us mention that it seems difficult to obtain a similar result with the choice for uα+ 1
2
used in [14].

Proof. Let us first rewrite equations (1.1) under the non-conservative form
∂th+ div(hū) = 0, (2.10a)

h [∂tuα + (uα · ∇)uα] +
g

2
∇h2 = −gh∇zb +NGα+ 1

2
(uα+ 1

2
− uα)

+NGα− 1
2
(uα − uα− 1

2
) + div (4νhD(uα)) + κ(uα+1 − uα)− κ(uα − uα−1). (2.10b)

Let us set

Φ(x) =
1 + x2

2
log(1 + x2) and φ(x) = Φ′(x) = x

[
1 + log(1 + x2)

]
. (2.11)

Let us notice that

∂

(
1 + |u|2

2
log
(
1 + |u|2

))
= (u · ∂u)

[
1 + log

(
1 + |u|2

)]
.

We multiply equation (2.10b) by uα
[
1 + log

(
1 + |uα|2

)]
and we integrate over Td. Hence each term becomes

1.
∫

Td
huα · ∂tuα

[
1 + log(1 + |uα|2)

]
dx =

∫
Td

[
∂t
(
hΦ(|uα|)

)
− Φ(|uα|)∂th

]
dx.

2. Using (1.5), we obtain by integration by parts:∫
Td
huα · (uα · ∇)uα

[
1 + log(1 + |uα|2)

]
dx =

∫
Td
huα · ∇Φ(|uα|) dx

=

∫
Td

Φ(|uα|)
[
∂th−N(Gα+1/2 −Gα−1/2)

]
dx.

3. For the pressure term we apply the same approach as in [27]∣∣∣∣∫
Td

[
1 + log(1 + |uα|2)

]
uα · ∇h2dx

∣∣∣∣
≤

∣∣∣∣∣∣
∑
i,j

∫
Td
h2

2uαiuαk
1 + |uα|2

∂iuαkdx

∣∣∣∣∣∣+

∣∣∣∣∫
Td
h2
[
1 + log

(
1 + |uα|2

)]
(div uα)

∣∣∣∣dx
≤ 2

(∫
Td
h|∇uα|2dx

) 1
2
(∫

Td
h3dx

) 1
2

+

∣∣∣∣∫
Td
h2
[
1 + log

(
1 + |uα|2

)]
(div uα)dx

∣∣∣∣ .
11



Since
(div u)2 =

∑
i

∑
j

∂iui∂juj ≤
∑
i

∑
j

1

2

(
(∂iui)

2 + (∂juj)
2
)
≤ d |D(u)|2

where d is the dimension of the space, we have∣∣∣∣∫
Td
h2
[
1 + log

(
1 + |uα|2

)]
(div uα)dx

∣∣∣∣
≤
(∫

Td
h
[
1 + log

(
1 + |uα|2

)]
(div uα)2dx

) 1
2
(∫

Td
h3
[
1 + log

(
1 + |uα|2

)]
dx

) 1
2

≤ ν
∫

Td
h
[
1 + log

(
1 + |uα|2

)]
|D(uα)|2dx + Cν

∫
Td
h3
[
1 + log

(
1 + |uα|2

)]
dx

according to the Young’s inequality with Cν = d
4ν . It follows that for C

′
ν large enough:∣∣∣∣∫

Td

[
1 + log(1 + |uα|2)

]
uα · ∇h2dx

∣∣∣∣
≤ ν

(∫
Td
h|∇uα|2dx

)
+ ν

∫
Td
h
[
1 + log

(
1 + |uα|2

)]
|D(uα)|2dx

+ C ′ν

∫
Td
h3
[
1 + log

(
1 + |uα|2

)]
dx.

Finally, for any δ ∈ (0, 2), the last term is bounded by means of the Hölder’s inequality∫
Td
h3
[
1 + log

(
1 + |uα|2

)]
dx ≤

(∫
Td
h

6−δ
2−δ dx

) 2−δ
2

×
(∫

Td
h
[
1 + log

(
1 + |uα|2

)] 2
δ dx

) δ
2

.

4. Likewise we have∫
Td
huα · ∇zb

[
1 + log(1 + |uα|2)

]
dx ≤

∫
Td
h

1 + |uα|2

2

[
1 + log(1 + |uα|2)

]
|∇zb|dx.

Since zb is assumed bounded in W 1,∞ this term can be treated by the Grönwall’s lemma.

5. For the viscous terms we have∫
Td
uα · div (4νhD(uα))

[
1 + log(1 + |uα|2)

]
dx

= −4ν

∫
Td
h
[
1 + log(1 + |uα|2)

]
|D(uα)|2dx−

∑
i,j

8ν

∫
Td
h
uαiuα · ∂juα

1 + |uα|2
Dij(uα)dx.

and we have for Cα > 0 large enough:∫
Td
uα · div (4νhD(uα))

[
1 + log(1 + |uα|2)

]
dx + 4ν

∫
Td
h
[
1 + log(1 + |uα|2)

]
|D(uα)|2dx

≤ Cα
∫

Td
h|∇uα|2dx.

6. For the friction terms (since by definition u0 = u1 and uN = uN+1) we have:

N∑
α=1

∫
Td

[(uα+1 − uα) · uα − (uα − uα−1) · uα]
[
1 + log(1 + |uα|2)

]
dx

= −
N−1∑
α=1

∫
Td

(uα − uα+1) ·
[
uα
[
1 + log(1 + |uα|2)

]
− uα+1

[
1 + log(1 + |uα+1|2)

]]
dx ≤ 0

since the function φ defined by (2.11) is increasing.
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Combining all the previous estimates, we have:

N∑
α=1

(
d

dt

∫
Td

[
h

1 + |uα|2

2
log
(
1 + |uα|2

)]
dx +

∫
Td

3νh
[
1 + log

(
1 + |uα|2

)]
|D(uα)|2 dx

)

+

N∑
α=1

∫
Td

(
[Gα+ 1

2
(uα+ 1

2
− uα) +Gα− 1

2
(uα − uα− 1

2
)] · uα

[
1 + log(1 + |uα|2)

]
+

1 + |uα|2

2
log
(
1 + |uα|2

)
(Gα+1/2 −Gα−1/2)

)
dx

≤
N∑
α=1

(
C

(∫
Td
h|∇uα|2 dx

)
+ C

(∫
Td
h

6−δ
2−δ dx

) 2−δ
2

×
(∫

Td
h
[
2 + log

(
1 + |uα|2

)] 2
δ dx

) δ
2

+ g

∫
Td
h

1 + |uα|2

2

[
1 + log(1 + |uα|2)

]
|∇zb| dx

)
;

We have now since G 1
2

= GN+ 1
2

= 0:

N∑
α=1

∫
Td

[Gα+ 1
2
(uα+ 1

2
− uα) +Gα− 1

2
(uα − uα− 1

2
)] · uα

[
1 + log(1 + |uα|2)

]
+

1 + |uα|2

2
log
(
1 + |uα|2

)
(Gα+ 1

2
−Gα− 1

2
)dx

=

N∑
α=1

∫
Td
Gα+ 1

2
(uα+ 1

2
− uα) · uα

[
1 + log(1 + |uα|2)

]
dx

+

N∑
α=1

∫
Td
Gα− 1

2
(uα − uα− 1

2
)] · uα

[
1 + log(1 + |uα|2)

]
dx

+

N∑
α=1

∫
Td

1 + |uα|2

2
log
(
1 + |uα|2

)
(Gα+ 1

2
−Gα− 1

2
)dx
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=

N∑
α=1

∫
Td
Gα+ 1

2
(uα+ 1

2
− uα) · uα

[
1 + log(1 + |uα|2)

]
dx

+

N−1∑
α=0

∫
Td
Gα+ 1

2
(uα+1 − uα+ 1

2
)] · uα+1

[
1 + log(1 + |uα+1|2)

]
dx

+

N∑
α=1

∫
Td

1 + |uα|2

2
log
(
1 + |uα|2

)
Gα+ 1

2
dx

−
N−1∑
α=0

∫
Td

1 + |uα+1|2

2
log
(
1 + |uα+1|2

)
Gα+ 1

2
dx

=

N−1∑
α=1

∫
Td
Gα+ 1

2
1{G

α+1
2
≤0}(uα+1 − uα) · uα+1(1 + log(1 + |uα+1|2))

+Gα+ 1
2
1{G

α+1
2
≥0}(uα+1 − uα) · uα

[
1 + log(1 + |uα|2)

]
+Gα+ 1

2

(
1 + |uα|2

2
log
(
1 + |uα|2

)
− 1 + |uα+1|2

2
log(1 + |uα+1|2)

)
dx

=−
N−1∑
α=1

∫
Td
|Gα+ 1

2
|1{G

α+1
2
≤0}(uα+1 − uα) · uα+1(1 + log(1 + |uα+1|2))

+ |Gα+ 1
2
|1{G

α+1
2
≥0}(uα − uα+1) · uα

[
1 + log(1 + |uα|2)

]
+ |Gα+ 1

2
|1{G

α+1
2
≤0}

(
1 + |uα|2

2
log
(
1 + |uα|2

)
− 1 + |uα+1|2

2
log(1 + |uα+1|2)

)
dx

+ |Gα+ 1
2
|1{G

α+1
2
≥0}

(
1 + |uα+1|2

2
log
(
1 + |uα+1|2

)
− 1 + |uα|2

2
log(1 + |uα|2)

)
dx

=−
N−1∑
α=1

∫
Td
|Gα+ 1

2
|
[
1{G

α+1
2
≤0}Ψ(uα, uα+1) + 1{G

α+1
2
≥0}Ψ(uα+1, uα)

]
dx ≤ 0.

Indeed, the function Ψ : (x, y) 7→ y(y−x)
[
1 + log(1 + y2)

]
+Φ(x)−Φ(y) satisfies Ψ(y, y) = 0 and ∂xΨ(x, y) = φ(x)−φ(y).

As the function φ defined by (2.11) is increasing, it shows that Ψ(x, y) ≥ 0. Finally, we obtain the estimate

N∑
α=1

d

dt

∫
Td
hΦ(|uα|)dx + 3ν

∫
Td
h
[
1 + log

(
1 + |uα|2

)]
|D(uα)|2dx

)
≤

N∑
α=1

C ′′ν

(∫
Td
h|∇uα|2dx

)
+ C ′ν

(∫
Td
h

6−δ
2−δ dx

) 2−δ
2

×
(∫

Td
h
[
1 + log

(
1 + |uα|2

)] 2
δ dx

) δ
2

+ g

∫
Td
h

1 + u2α
2

[
1 + log(1 + |uα|2)

]
|∇zb| dx.

Remark 11. Let us notice that Ψ satisfies the following estimate

(y − x)2

2

[
1 + log

(
1 + min(x, y)2

)]
≤ Ψ(x, y) ≤ (y − x)2

2

[
3 + log

(
1 + max(x, y)2

)]
.

Indeed given (2.11) we check that

Ψ(x, y) = (y − x)

∫ 1

0

[
Φ′(y)− Φ′

(
y + s(x− y)

)]
ds = (y − x)2

∫ 1

0

∫ 1

0

sΦ′′
(
y + s(1− t)(x− y)

)
dsdt

with Φ′′(z) = 1 + 2z2

1+z2 + log(1 + z2). We obtain the bound above inserting min(x, y) ≤ y + s(1− t)(x − y) ≤ max(x, y)

for all (t, s) ∈ [0, 1]2 into the integral.
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We observe that the function Ψ(uα, uα+1) mesaures the distance between uα and uα+1 in the Mellet-Vasseur inequal-
ity (2.9). In particular, this provides a better estimate for uα+1−uα in L2

T (L2) according to the classical energy inequality.
Indeed we get here a factor log

(
1 + min(uα, uα+1)2

)
.

2.4 Mellet-Vasseur gain of integrability on the velocity when d = 1

We are interested now in proving a gain of integrability on the velocity uα when d = 1. Our goal is to prove that uα
belongs to L∞([0, T ]× T1).

Proposition 2.4 (MV inequality). If we assume that (h, u1, . . . , uN ) is a smooth solution of System (1.1), then we have
for any p ≥ 0 and any t ∈ [0, T ] with T > 0:

( N∑
α=1

1

p+ 2

∫
T1

h|uα|p+2(t, x)dx
) 1
p+2 ≤ CT

(( N∑
α=1

1

p+ 2

∫
T1

h0|u0,α|p+2dx
) 1
p+2 + T (1 + ‖h‖4L∞T (L∞))

+ ‖h‖L∞T (L∞)T‖∇zb‖L∞T (L∞)

)
.

(2.12)

Proof. For p ≥ 0 we have

1.
∫

T1

h∂tuαuα|uα|pdx =
1

p+ 2

∫
T1

h∂t|uα|p+2dx.

2.
∫

T1

huα∂xuαuα|uα|pdx =
1

p+ 2

∫
T1

|uα|p+2∂thdx− N

p+ 2

∫
T1

|uα|p+2(Gα+1/2 −Gα−1/2)dx.

3.
∫

T1

∂x (4νh∂xuα)uα|uα|pdx = −(p+ 1)

∫
T1

4νh(∂xuα)2|uα|pdx

4. Using Young’s inequality, we have

∫
T1

N∑
α=1

[(uα+1 − uα)− (uα − uα−1)]uα|uα|pdx 6
N−1∑
α=1

∫
T1

1

p+ 2
|uα+1|p+2dx+

∫
T1

p+ 1

p+ 2
|uα|p+2]dx

−
∫

T1

|uα|p+2]dx−
N∑
α=2

∫
T1

1

p+ 2
|uα|p+2dx−

∫
T1

p+ 1

p+ 2
|uα−1|p+2]dx−

∫
T1

|uα|p+2]dx 6 0.

5. All terms including Gα+1/2 including last term of the right hand of the first item give (passing all terme at the left
of the equality),

−N
N∑
α=1

∫
T1

[Gα+ 1
2
(uα+ 1

2
− uα) +Gα− 1

2
(uα − uα− 1

2
)]uα|uα|p+1dx− N

p+ 2

N∑
α=1

∫
T1

|uα|p+2(Gα+ 1
2
−Gα− 1

2
)dx

= −N
N−1∑
α=1

∫
T1

Gα+ 1
2
1{G

α+1
2
>0}(uα+1 − uα)uα|uα|p+1dx

−N
N∑
α=2

∫
T1

Gα− 1
2
1{G

α− 1
2
60}(uα − uα−1)uα|uα|p+1dx−N

N∑
α=1

∫
T1

|uα|p+2(Gα+ 1
2
−Gα− 1

2
)dx

= N
p+ 1

p+ 2

N−1∑
α=1

∫
T1

Gα+ 1
2
1{G

α+1
2
>0}|uα|p+2dx−N p+ 1

p+ 2

N∑
α=2

∫
T1

Gα− 1
2
1{G

α− 1
2
60}|uα|p+2dx

− N

p+ 2

N∑
α=1

∫
T1

|uα|p+2Gα+ 1
2
1{G

α+1
2
60}dx+

N

p+ 2

N∑
α=1

∫
T1

|uα|p+2Gα− 1
2
1{G

α− 1
2
>0}dx
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−N
N−1∑
α=1

∫
T1

Gα+ 1
2
1{G

α+1
2
>0}uα+1uα|uα|p+1dx+N

N∑
α=2

∫
T1

Gα− 1
2
1{G

α− 1
2
60}uα−1uα|uα|p+1dxUsing an usual Young’s

inequality we obtain

N

N−1∑
α=1

∫
T1

Gα+ 1
2
1{G

α+1
2
>0}uα+1uα|uα|p+1dx

6
p+ 1

p+ 2
N

N−1∑
α=1

∫
T1

Gα+ 1
2
1{G

α+1
2
>0}|uα|p+2dx+

N

p+ 2

N−1∑
α=1

∫
T1

Gα+ 1
2
1{G

α+1
2
>0}|uα+1|p+2dx (2.13)

and

−N
N∑
α=2

∫
T1

Gα− 1
2
1{G

α− 1
2
60}uα−1uα|uα|p+1dx

6 −N p+ 1

p+ 2

N−1∑
α=1

∫
T1

Gα+ 1
2
1{G

α+1
2
>0}|uα|p+2dx− N

p+ 2

N−1∑
α=1

∫
T1

Gα+ 1
2
1{G

α+1
2
>0}|uα+1|p+2dx. (2.14)

We deduce

N∑
α=1

1

p+ 2

∫
T1

∂t(h|uα|p+2)dx+ 4(p+ 1)

∫
T1

νh(∂xuα)2|uα|pdx

6
N∑
α=1

−g
2

∫
T1

∂xh
2 · uα|uα|pdx− g

∫
T1

h∂xzbuα|uα|pdx. (2.15)

We are going now to follow some ideas developed in [20] in order to get a gain of integrability on u for any p ≥ 0. By
integration by parts we have since (h, uα) are regular:

−g
2

∫ t

0

∫
T1

∂xh
2uα|uα|pdsdx =

g

2

∫ t

0

∫
T1

∂x(|uα|puα)h2dsdx.

Using Young inequality we get for ε > 0:

|g
2

∫ t

0

∫
T1

h2|uα|p∂xuαdxds| .
(
ε

2

∫ t

0

∫
T1

h|uα|p|∂xuα|2dxds+
g2

8ε

∫ t

0

∫
T1

h3|uα|pdxds

)
. (2.16)

Plugging (2.16) in (2.15) with ε = 1 and since ∂x(|uα|puα) = (p+ 1)|uα|p∂xuα we have using again Young inequality:

N∑
α=1

1

p+ 2

∫
T1

h(t, x)|uα(t, x)|p+2dx+ (p+ 1)
(
4ν − 1

2

) ∫ t

0

∫
T1

h(∂xuα)2|uα|pdxds

6
N∑
α=1

1

p+ 2

∫
T1

h0(x)|u0,α(x)|p+2dx+

N∑
α=1

g2(p+ 1)

8

∫ t

0

∫
T1

h3|uα|pdxds− g
∫ t

0

∫
T1

h∂xzbuα|uα|pdxds

6
N∑
α=1

1

p+ 2

∫
T1

h0(x)|u0,α(x)|p+2dx+

N∑
α=1

g2(p+ 1)

8

1

(p+ 2)ε

∫ t

0

∫
T1

h|uα|p+2dxdsdxds

+

N∑
α=1

(
g2ε(p+ 1)2

8

1

(p+ 2)

∫ t

0

∫
T1

h
2(p+3)
p+2 (s, x)dxds+

p+ 1

(p+ 2)ε′
g

∫ t

0

∫
T1

h|uα|p+2(s, x)dxds

+
ε′g

p+ 2

∫ t

0

∫
T1

h(∂xzb)
p+2(s, x)dxds

)
.

(2.17)
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We deduce that:

N∑
α=1

∫
T1

h(t, x)|uα(t, x)|p+2dx+ (p+ 1)(p+ 2)
(
4ν − 1

2

) ∫ t

0

∫
T1

h(∂xuα)2|uα|pdxds

6
N∑
α=1

∫
T1

h0(x)|u0,α(x)|p+2dx+

N∑
α=1

(p+ 1)(
g2

8

1

ε
+

1

ε′
)

∫ t

0

∫
T1

h|uα|p+2dxdsdxds

+

N∑
α=1

g2ε(p+ 1)2

8

∫ t

0

∫
T1

h
2(p+3)
p+2 (s, x)dxds+ ε′g

∫ t

0

∫
T1

h(∂xzb)
p+2(s, x)dxds.

(2.18)

Using Grönwall lemma, we have for C1 > 0, C2 > 0 and C3 > 0 independent on p and for any t ∈ [0, T ]:

N∑
α=1

‖h
1
p+2uα(t)‖p+2

Lp+2 ≤ C2e
C1T (p+1)

( N∑
α=1

‖h
1
p+2uα(t)‖p+2

Lp+2 + T (p+ 1)2(1 + ‖h‖4L∞T (L∞))

+ C3‖h‖L∞T (L∞)T‖∇zb‖p+2
L∞T (Lp+2)

)
.

(2.19)

Next we have that for any p ≥ 0, there exists C ′1 > 0, C ′2 > 0, C ′3 > 0 independent on p:

( N∑
α=1

‖h
1
p+2uα(t)‖p+2

Lp+2

) 1
p+2 ≤ C ′2eC

′
1T
(( N∑

α=1

‖h
1
p+2uα(t)‖p+2

Lp+2

) 1
p+2 + T (1 + ‖h‖4L∞T (L∞))

+ C ′3‖h‖L∞T (L∞)T‖∇zb‖L∞T (L∞)

)
.

(2.20)

It ends up the proof.

We deduce in particular the following proposition.

Proposition 2.5. Under the same assumption as in Proposition 2.4, let us consider (hn, un)n∈N a regularising sequence
of System (1.1) such that hn verifies for any t > 0:

hn(t, x) ≥ Cn,t > 0 ∀x ∈ T1.

We have then for any α ∈ {1, . . . , N} and for all n ∈ N:

‖unα‖L∞T (L∞(T1)) ≤ CT ∀T > 0. (2.21)

Proof: We observe that ∀ε > 0 sufficiently small, we have for any p ≥ 2 and t ∈ (0, T ):

‖(hn)
1
punα(t)‖Lp ≥

( ∫
{x, |unα(t,x)|≥‖unα(t,·)‖L∞−ε}

hn(t, x)|unα|p(t, x)dx
) 1
p

≥ (‖unα(t, ·)‖L∞ − ε)
( ∫
{x, |unα(t,x)|≥‖unα(t,·)‖L∞−ε}

hn(t, x)dx
) 1
p

≥ (‖unα(t, ·)‖L∞ − ε)C
1
p

n,T

∣∣{x, |unα(t, x)| ≥ ‖unα(t, ·)‖L∞ − ε}
∣∣ 1p

(2.22)

Since we have Cn,T > 0 and
∣∣{x, |unα(t, x)| ≥ ‖unα(t, ·)‖L∞ − ε}

∣∣ > 0, we can pass to the limit when p goes to +∞ in
(2.22). It implies that for any ε > 0, we get using (2.12):

‖unα(t, ·)‖L∞ − ε ≤ CT .

It concludes the proof of the proposition.
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3 Stability of global weak solutions

Let us assume that we have proved the existence of a sequence of global approximate weak solutions (hn, un)n∈Z verifying
uniformly all estimates of section 2. In addition we assume that:

hn(t, x) > 0 almost everywhere on (0,+∞)× Td. (3.1)

In other word there exists C independent on n ∈ N such that for every α and all T > 0 we have:∥∥∥√hnunα∥∥∥
L∞(0,T ;L2(Td))

≤ C, (3.2a)

‖hn‖L∞(0,T ;L2(Td)) ≤ C, (3.2b)∥∥∥√hn∇unα∥∥∥
L2(0,T ;L2(Td))

≤ C, (3.2c)

‖∇hn‖L2(0,T ;L2(Td)) ≤ C, (3.2d)∥∥∥∇√hn∥∥∥
L∞(0,T ;L2(Td))

≤ C. (3.2e)

The initial data satisfy the following conditions:

hn0 is bounded in L2(Td), hn0 ≥ 0 a.e. in Td,

hn0 |unα,0|2 = |mn
α,0|2/hn0 is bounded in L1(Td),

∇
√
hn0 is bounded in L2(Td),∫

Td
hn0

1 + |unα,0|2

2
log(1 + |unα,0|2)dx ≤ C.

(3.3)

The proof of the stability of the sequence (hn, un)n∈N follows the same arguments as in [27]. We adapt them to our
case.

Step 1: Convergence of
√
hn

Lemma 3.1. We have that for any T > 0:
√
hn is bounded unifomly in L∞

(
0, T ;H1(Td)

)
,

∂t
√
hn is bounded uniformly in L2

(
0, T ;H−1(Td)

)
.

As a consequence, up to a subsequence,
(√

hn
)
converges a.e. and strongly in L2

(
0, T ;L2(Td)

)
. We write

√
hn −→

√
h a.e. and L2((0, T )× Td) strong.

Moreover, (hn) converges strongly to h in C
(

[0, T ];L
3
2 (Td)

)
.

Proof.
√
hn is uniformly bounded in L∞((0, T ), H1(Td)) due to (3.2b) and (3.2e). The estimate on ∂t

√
hn can be deduced

from the mass equation since

∂t
√
hn =

1

2

√
hn div ūn − div

(√
hnūn

)
. (3.4)

The first term in the right hand side is bounded in L2(0, T ;L2(Td)) and the second term is bounded in L∞(0, T ;H−1(Td)),
so it implies that ∂t

√
hn is uniformly bounded in L2((0, T ), H−1(Td)). Aubin Lions Lemma gives directly the strong

convergence in L2((0, T )× Td).

To prove the convergence in C([0, T ];L
3
2 (Td)) we first deduce by Sobolev embedding that

√
hn is bounded in L∞(0, T ;L6(Td)).

We deduce that

hnūn =

√
hn

N

N∑
α=1

(√
hnunα

)
is bounded in L∞(0, T ;L

3
2 (Td)).
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The continuity equation thus yields ∂thn bounded in L∞(0, T ;W−1,
3
2 (Td)) and since ∇hn = 2

√
hn∇
√
hn we have hn

bounded in L∞((0, T ),W 1, 32 (Td)). From Aubin Lions theorem we deduce that hn converges to h up a subsequence in
C([0, T ];L

3
2 (Td)).

Step 2: Convergence of the pressure

Lemma 3.2. The pressure (hn)2 is bounded in Lr((0, T ) × Td) for all r ∈ [1, 2[. In particular, (hn)2 converge to h2
strongly in Lr((0, T )× Td) for every T > 0 and 1 ≤ r < 5

3 .

Proof. From inequalities (3.2b) and (3.2d) we deduce that hn ∈ L2(0, T ;H1(Td)). We deduce hn ∈ L2(0, T ;L6(Td)). In
addition hn is bounded in L∞((0, T ), L2(Td)). By interpolation hn is bounded in L

10
3 ((0, T )×Td). We conclude recalling

that (hn)2 converges almost everywhere to h2 and is uniformly bounded in L
5
3 ((0, T ) × Td), it implies then the strong

convergence of (hn)2 to h2 in Lr((0, T )× Td) for 1 ≤ r < 5
3 .

Step 3: Bound for
√
hnunα

Lemma 3.3. hn|unα|2 log(1 + |unα|2) is bounded in L∞(0, T ;L1(Td)).

Proof. We use the inequality given by the Mellet-Vasseur approach and it implies that :

N∑
α=1

d

dt

∫
Td
hn

1 + |unα|2

2
log(1 + |unα|2)dx +

∫
Td

3νhn(1 + log(1 + |unα|2))|D(unα)|2dx

≤ C + C

N∑
α=1

(∫
Td

(hn)
6−δ
2−δ dx

) 2−δ
2

×
(∫

Td
[2 + log(1 + |unα|2)]

2
δ hndx

) δ
2

+ g

N∑
α=1

∫
Td
hn

1 + (unα)2

2
(1 + log(1 + |unα|2))∇zbdx

for any δ ∈ (0, 2). Since hn is uniformly bounded in L
10
3 ((0, T )× Td) we deduce that for δ small enough:

C

(∫
Td

(hn)
6−δ
2−δ dx

) 2−δ
2

×
(∫

Td
[2 + log(1 + |unα|2)]

2
δ hndx

) δ
2

≤ C.

Since zb is bounded in W 1,∞(Td), applying Grönwall’s lemma we deduce that

N∑
α=1

∫
Td
hn

1 + |unα|2

2
log(1 + |unα|2)(t)dx ≤ CT ∀t ∈ (0, T ). (3.5)

Step 4: Convergence of the momentum

Lemma 3.4. Up to a subsequence, the momentum mn
α = unαh

n converges strongly in L2(0, T ;Lp(Td)) to some mα(t,x)
for all p ∈ [1, 2). In particular

hnunα −−−−−→
n→+∞

mα almost everywhere in Td × (0, T )

Proof. We have hnunα =
√
hn
√
hnunα. Since

√
hn is bounded in L∞(0, T, L6(Td)) we deduce that hnunα is bounded

in L∞(0, T ;L
3
2 (Td)). Next, since ∇(hnunα) =

√
hn
√
hn∇unα + 2

√
hnunα∇

√
hn, we obtain that ∇(hnunα) is bounded in
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L2((0, T ), L1(Td)).
In particular, we have

hnunα is bounded in L2(0, T ;W 1,1(Td)).

Let us bound now ∂t(h
nunα) in order to apply the Aubin-Lions lemma. Let us consider the momentum equation (1.1-b,c,d).

We have then the uniform bounded estimates using in particular the fact that hnunα is bounded in L2(0, T ;W 1,1(Td)):

div(hnunα ⊗ unα) = div(
√
h
n
unα ⊗

√
hunα) ∈ L∞(0, T ;W−1,1(Td))

div(hDunα) = div
(
D(hnunα)− 1

2
(unα ⊗∇hn +t (unα ⊗∇hn))

)
∈ L2(0, T ;W−1,1(Td))

∇h2 ∈ L∞(0, T ;W−1,1(Td)).

Now using the remark 8, we have:

unα+ 1
2
Gnα+ 1

2
=
Gn
α+ 1

2√
hn

√
hnunα+ 1

2
∈ L2(0, T ;L1(Td)).

In addition we know that unα−unα+1 is uniformly bounded in L2((0, T )×Td) and hn∇zb is bounded in L∞((0, T ), L2(Td)).
In conclusion ∂t(hnunα) is uniformly bounded in L2(0, T ;W−1,1(Td)) and using the Aubin Lions lemma we deduce that
hnunα converges strongly in L2((0, T ),W s,1(Td)) for −1 ≤ s < 1. By Sobolev embedding we obtain what we wish.

Note that we can define uα(t,x) = mα(t,x)/h(t,x) in E = {(t,x);h(t,x) > 0} but uα(t,x) is not uniquely defined in
the vacuum set Ec. In order to define properly uα on {h = 0}, we have to study the weak limit of the terms unα+1 − unα.

Step 5: Convergence of unα+1 − unα

We know via the energy estimate (2.1) that (unα+1 − unα) is uniformly bounded in L2((0, T ) × Td) then (unα+1 − unα)
converges weakly in L2

T (L2) to m1
α up to a subsequence. Now when d ≥ 1, we have since 1{h=0} ∈ L∞T (L∞)

(unα+1 − unα)1{h=0} −−−−−→
n→+∞

m1
α1{h=0} in D′((0, T )× Td).

Since unα converges almost everywhere to uα on {h > 0}. We have then:

(unα+1 − unα)1{h>0} −−−−−→
n→+∞

(uα+1 − uα)1{h>0} = m1
α1{h>0} in D′((0, T )× Td).

We assume now that u1 = 0 on {h = 0}. It defines all the values of uα on {h = 0} since u1 is defined. Indeed we have
u1 = 0 on {h = 0} and by iteration u2 = m1

1 on {h = 0} and so one. When d = 1, we know that uα is uniformly bounded
in L∞((0, T )× T1) then up to a subsequence since h is continuous:

unα1{h=0} −−−−−→
n→+∞

uα1{h=0} in D′((0, T )× T1).

Step 6: Convergence of
√
hnunα

Lemma 3.5. The quantity
√
hnunα converges strongly in L2((0, T )× Td) to mα/

√
h (defined to be zero when h = 0).

In particular, we have mα(t,x) = 0. a.e. on Ec and there exists a function uα(t,x) such that mα(t,x) = h(t,x)uα(t,x)
and

√
hnunα −→

√
huα strongly in L2((0, T )× Td) (3.6)

Proof. Since mn
α/
√
hn is bounded in L∞(0, T ;L2(Td)), Fatou’s lemma yields for almost every t ∈ (0, T )∫

lim inf
n→+∞

(mn
α)2

hn
(t)dx ≤ lim inf

n→+∞

∫
(mn

α)2

hn
(t)dx <∞
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In particular, we have mα(t,x) = 0 a.e. in {h(t,x) = 0}. So, if we define the limit velocity uα(t,x) by setting
uα(t,x) = mα(t,x)/h(t,x) when h(t,x) 6= 0 and uα(t,x) = 0 when h(t,x) = 0, we have

mα(t,x) = h(t,x)uα(t,x)

and ∫
Td

m2
α

h
dx =

∫
Td
h|uα|2dx <∞

Moreover, Fatou’s lemma yields that for almost every t ∈ (0, T )∫
Td
h|uα|2 log(1 + |uα|2)(t)dx =

∫
{h>0}

h|uα|2 log(1 + |uα|2)(t)dx

=

∫
{h>0}

lim inf
n→+∞

hn|unα|2 log(1 + |unα|2)(t)dx ≤ lim inf
n→+∞

∫
Td
hn|unα|2 log(1 + |unα|2)(t)dx.

Let us point out that since unα =
mnα
hn has a limit on {h > 0} which is uα and in addition mnα

hn is well defined because
hn > 0 almost everywhere. We deduce that h|uα|2 log(1 + |uα|2) is in L∞(0, T ;L1(Td)).
Next, since mn

α and hn converge almost everywhere, it is readily seen that in {h(t,x) 6= 0},
√
hnunα = mn

α/
√
hn converges

almost everywhere to
√
huα = mα/

√
h (we observe thatmn

α/
√
hn has a sense since hn > 0 almost everywhere). Moreover,

we have √
hnunα1{|unα|≤M} −−−−−→n→+∞

√
huα1{|uα|≤M} almost everywhere. (3.7)

As a matter of fact, the convergence holds almost everywhere in {h(t,x) 6= 0}, and in {h(t,x) = 0}, we have√
hnunα1|unα|≤M ≤M

√
hn → 0. To conclude to proof of lemma, for M > 0, there exists C > 0 such that:∫ T

0

∫
Td
|
√
hnunα −

√
huα|2dx ≤C

∫ T

0

∫
Td
|
√
hnunα1|unα|≤M −

√
huα1|uα|≤M |

2dx

+ C

∫ T

0

∫
Td
|
√
hnunα1|unα|≥M |

2dx

+ C

∫ T

0

∫
Td
|
√
huα1|uα|≥M |

2dx

We observe that: ∫ T

0

∫
Td
|
√
hnunα1|unα|≥M |

2dx ≤ 1

log(1 +M2)

∫ T

0

∫
Td
hn|unα|2 log(1 + |unα|2)dx

and ∫ T

0

∫
Td
|
√
huα1|uα|≥M |

2dx ≤ 1

log(1 +M2)

∫
Td
h|uα|2 log(1 + |uα|2)dx
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We have now:∫ T

0

∫
Td
|
√
hnunα1|unα|≤M −

√
huα1|uα|≤M |

2dx

≤ C(

∫ T

0

∫
Td
|
√
hnunα1|unα|≤M,

√
hn≤M −

√
huα1|uα|≤M,

√
h≤M |

2dx

+

∫ T

0

∫
Td
|
√
hnunα1|unα|≤M,

√
hn>M −

√
huα1|uα|≤M,

√
h>M |

2dx)

≤ C(

∫ T

0

∫
Td
|
√
hnunα1|unα|≤M,

√
hn≤M −

√
huα1|uα|≤M,

√
h≤M |

2dx

+

∫ T

0

∫
Td
|(
√
hn −

√
h)unα1|unα|≤M,

√
hn>M |dx +

∫ T

0

∫
Td
|
√
h(unα1|unα|≤M,

√
hn>M − uα1|uα|≤M,

√
h>M )|2dx)

≤ C(

∫ T

0

∫
Td
|
√
hnunα1|unα|≤M,

√
hn≤M −

√
huα1|uα|≤M,

√
h≤M |

2dx

+

∫ T

0

∫
Td
|(
√
hn −

√
h)unα1|unα|≤M,

√
hn>M |dx +

∫ T

0

∫
Td
|
√
h1{
√
h>M}(u

n
α1{|unα|≤M} − uα1{|uα|≤M})|

2dx)

+

∫ T

0

∫
Td

√
h|unα1{|unα|≤M}| |1{|√h>M} − 1{|

√
hn>M}|dx

The first term on the right hand side converges to 0 when M goes to +∞ by dominated convergence. The second term
converges to 0 when n goes to +∞ since

√
hn converges strongly to

√
h in L2((0, T ) × Td). The third and fourth term

converge to 0 when M goes to +∞ when we apply the Tchebytchev lemma. We deduce that:

lim sup
n→+∞

∫
Td
|
√
hnunα −

√
huα|2dx = 0.

Step 7: Convergence of the diffusion terms

Lemma 3.6. We have

div(hn∇unα)→ div(h∇u) in D′((0, T )× Td) (3.8)

div(hn∇Tunα)→ div(h∇Tu) in D′((0, T )× Td). (3.9)

Proof. Let φ(t, x) a test function, then∫ T

0

∫
Td

div(hn∇unα)φdx = −
∫ T

0

∫
Td
hn∇unα : ∇φ dx

=

∫ T

0

∫
Td

(∇hn · ∇φ) · unα dx +

∫ T

0

∫
Td
hnunα ·∆φdx

Thanks to lemma 3.4, hnuα,n converges strongly in L2(0, T ;Lp(Td)) with 1 ≤ p < 2. This is enough to prove the
convergence of the second term. For the first term, we have ∇hn.unα = 2∇

√
hn ·
√
hnunα, we know that

√
hnunα converges

strongly in L2((0, T ) × Td) and ∇
√
hn converges weakly in L2((0, T ) × Td) then ∇hn.unα converges in the sense of

distributions to ∇h · uα.

Step 7: Convergence of Gn
α+ 1

2

un
α+ 1

2

Let us recall that we have:

Gnα+ 1
2

=
1

N2

α∑
j=1

N∑
i=α+1

div
(
hn(unj − uni )

)
.
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Since we know that
√
hnunj converges strongly to

√
huj in L2

t,x and
√
hn converges strongly to

√
h we deduce that Gn

α+ 1
2

converges in the sense of distributions to Gα+ 1
2
with:

Gα+ 1
2

=
1

N2

α∑
j=1

N∑
i=α+1

div
(
h(uj − ui)

)
.

We recall that we have:
Gnα+ 1

2
unα+ 1

2
=

1

2
Gnα+ 1

2
(unα + unα+1)− 1

2
|Gnα+ 1

2
|(unα − unα+1). (3.10)

Let us consider the first term on the right hand side Gn
α+ 1

2

(unα + unα+1). We are going to show that Gn
α+ 1

2

(unα + unα+1)

converges in the sense of the distribution to Gα+ 1
2
(uα + uα+1). Let us take ϕ a C∞ function with compact support in

(0, T )× Td, we have then:∫ T

0

∫
Td
Gnα+ 1

2
unαϕdxdt =

1

N2

α∑
j=1

N∑
i=α+1

∫ T

0

∫
Td

div
(
hn(unj − uni )

)
unαϕdxdt

= − 1

N2

α∑
j=1

N∑
i=α+1

∫ T

0

∫
Td

(√
hn(unj − uni ) ·

√
hn∇unαϕ−

√
hn(unj − uni ) · ∇ϕ

√
hnunα

)
dxdt

Using the fact that
√
hnunα converges strongly to

√
huα in L∞T (L2), that

√
hn∇un converges weakly up to a subsequence

in L2
T (L2) to

√
h∇u (indeed we have this convergence also in the sense of the distribution), we deduce that:∫ T

0

∫
Td
Gnα+ 1

2
unα ϕdxdt

−−−−−→
n→+∞

− 1

N2

α∑
j=1

N∑
i=α+1

∫ T

0

∫
Td

(√
h(uj − ui) ·

√
h∇uαϕ−

√
h(uj − ui) · ∇ϕ

√
huα

)
dxdt

−−−−−→
n→+∞

∫ T

0

∫
Td
Gα+ 1

2
uαϕdxdt.

(3.11)

We proceed similarly for the term Gn
α+ 1

2

unα+1. Let us writte now the second term on the right hand side of (3.10) as
follows:

|Gnα+ 1
2
|(unα − unα+1) = 1{h=0}|Gnα+ 1

2
|(unα − unα+1) + 1{h>0}|Gnα+ 1

2
|(unα − unα+1). (3.12)

We know that |Gn
α+ 1

2

| = |
Gn
α+1

2√
hn

√
hn| is uniformly bounded in L2

T (L
3
2 ). We are going to prove now that 1{h=0}||Gnα+ 1

2

|
converges strongly to 0 in L1

T (L1). We have then:∫ T

0

∫
Td

1{h=0}|Gnα+ 1
2
|dxdt ≤

∫ T

0

∫
Td

α∑
j=1

N∑
i=α+1

1{h=0}|div
(
hn(unj − uni )

)
|dxdt

≤
α∑
j=1

N∑
i=α+1

∫ T

0

∫
Td

(
1{h=0}

√
hn|
√
hn div(unj − uni )|+ 21{h=0}|∇

√
hn|
√
hn|unj − uni |

)
dxdt

(3.13)

Since |
√
hn div(unj − uni )| is uniformly bounded in L2

T (L2) and
√
hn1{h=0} converges strongly to 0 in LpT (L6−ε) for any

p ≥ 2 and ε > 0, we obtain using Hölder inequality that:

α∑
j=1

N∑
i=α+1

∫ T

0

∫
Td

1{h=0}
√
hn|
√
hn div(unj − uni )|dxdt −−−−−→

n→+∞
0.

Let us estimate now the second term on the right hand side of (3.13), we have then:∫ T

0

∫
Td

1{h=0}|∇
√
hn|
√
hn|unj − uni |dxdt ≤

∫ T

0

∫
Td

1{h=0}|∇
√
hn|
√
hn(|unj |+ |uni |)dxdt
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Let us consider simply the term in unj , we have then:∫ T

0

∫
Td

1{h=0}|∇
√
hn|
√
hn|uni |dxdt ≤

∫ T

0

∫
Td

1{h=0}|∇
√
hn|
√
hn|uni |1{|uni |≤M}dxdt

+

∫ T

0

∫
Td

1{h=0}|∇
√
hn|
√
hn|uni |1{|uni |>M}dxdt

≤M
∫ T

0

∫
Td

1{h=0}|∇
√
hn|
√
hndxdt+

1

(log(1 +M2))
1
2

∫ T

0

∫
Td

1{h=0}|∇
√
hn|
√
hn|uni |(log(1 + |uni |2)

1
2 dxdt

The first term on the right hand side goes to 0 when n goes to +∞ since
√
hn1{h=0} converges strongly to 0 in LpT (L6−ε)

and ∇
√
hn is uniformly bounded in L∞T (L2). The second term goes also to 0 when M goes to +∞ and because the

integral is uniformly bounded using the Mellet Vasseur inequality.
It proves that:

|Gnα+ 1
2
|1{h=0} −−−−−→

n→+∞
in L1((0, T )× Td). (3.14)

Let us deal now with the dimension d = 1. We have using (3.14) and the fact that |Gn
α+ 1

2

| is uniformly bounded in
L2((0, T ) × T1) that |Gn

α+ 1
2

|1{h=0} converges strongly in L2−ε((0, T ) × T1) for any ε > 0. Now since we know that
unα − unα+1 (see proposition 2.5) is uniformly bounded in L∞T (L∞), we deduce that:

|Gnα+ 1
2
|1{h=0}(u

n
α − unα+1) −−−−−→

n→+∞
0 in D′((0, T )× T1).

Let us now consider the term |Gn
α+ 1

2

|1{h>0}(u
n
α − unα+1). On the set {h > 0}, we know that unα − unα+1 converges

almost everywhere to uα − uα+1 and that this term is uniformly bounded in L∞T (L∞). We deduce in particular that
1{h>0}(u

n
α − unα+1) converges strongly in Lp((0, T ) × T1) for any p ≥ 2 to 1{h>0}(uα − uα+1). Moreover |Gn

α+ 1
2

| is
uniformly bounded in L2((0, T ) × T1) then up to a subsequence, it converges weakly in L2((0, T ) × T1) to a function
Mα+ 1

2
∈ L2((0, T )× T1). We deduce then that:

|Gnα+ 1
2
|1{h>0}(u

n
α − unα+1) −−−−−→

n→+∞
1{h>0}Mα+ 1

2
(uα − uα+1) in D′((0, T )× T1). (3.15)

In conclusion we have proved that:

Gnα+ 1
2
unα+ 1

2
−−−−−→
n→+∞

1

2
Gα+ 1

2
(uα + uα+1)− 1

2
Mα+ 1

2
1{h>0}(uα − uα+1) in D′((0, T )× T1). (3.16)

Let us consider now the case d ≥ 2, we have seen that:

1

2
Gnα+ 1

2
(unα + unα+1) −−−−−→

n→+∞

1

2
Gα+ 1

2
(uα + uα+1) in D′((0, T )× Td). (3.17)

In addition we know that
|Gn
α+1

2
|

√
hn

is uniformly bounded in L2
T (L2), it implies that up to a subsequence it converges to

Mα+ 1
2
in L2

T (L2). In addition we know that
√
hn(unα − unα+1) converges strongly in L2

T (L2) to Gα+ 1
2
(uα − uα+1). We

have then:
1

2
|Gnα+ 1

2
|(unα + unα+1) −−−−−→

n→+∞

1

2
Mα+ 1

2

√
h(uα + uα+1) in D′((0, T )× Td). (3.18)

Finally we have prove that:

Gnα+ 1
2
unα+ 1

2
−−−−−→
n→+∞

1

2
Gα+ 1

2
(uα + uα+1)− 1

2
Mα+ 1

2

√
h(uα − uα+1) in D′((0, T )× Td). (3.19)
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4 Appendix

4.1 A useful identity for the proof of Proposition 2.2

We aim at proving the identity

∀ n ≥ 2,

n−1∑
i=1

i∑
j=1

n∑
k=i+1

(uj − uk)(ui − ui+1) =

n−1∑
i=1

n∑
k=i+1

(ui − uk)2.

This is equivalent to showing

En :=

n−1∑
i=1

n∑
k=i+1

 i∑
j=1

(uj − uk)(ui − ui+1)− (ui − uk)2

 = 0. (4.1)

Let us first notice that (k ≥ i) due to a telescoping procedure

(ui − uk)2 = (ui − uk)

k−1∑
j=i

(uj − uj+1). (4.2)

Inserting (4.2) into (4.1) and switching series twice, we get

En =

n−1∑
i=1

n∑
k=i+1

 i∑
j=1

(uj − uk)(ui − ui+1)− (ui − uk)

k−1∑
j=i

(uj − uj+1)


=

n∑
k=2

k−1∑
i=1

 i∑
j=1

(uj − uk)(ui − ui+1)− (ui − uk)

k−1∑
j=i

(uj − uj+1)


=

n∑
k=2

k−1∑
i=1

i∑
j=1

(uj − uk)(ui − ui+1)−
k−1∑
i=1

(ui − uk)

k−1∑
j=i

(uj − uj+1)


=

n∑
k=2

k−1∑
j=1

k−1∑
i=j

(uj − uk)(ui − ui+1)−
k−1∑
i=1

k−1∑
j=i

(ui − uk)(uj − uj+1)


︸ ︷︷ ︸

=0

which ends the proof.

4.2 Energy and BD entropy when uα+ 1
2
= 1

2
(uα + uα+1) [14]

We recall that G 1
2

= GN+ 1
2

= 0. With this definition of uα+ 1
2
, the energy due to the term in Gα+ 1

2
computed in section

2 gives

N

2

N∑
α=1

∫
Td
Gα+ 1

2

(
|uα|2 − |uα+1|2

)
dx−N

N∑
α=1

∫
Td

(
uα+ 1

2
Gα+ 1

2
− uα− 1

2
Gα− 1

2

)
· uα dx

=
N

2

N∑
α=1

∫
Td
Gα+ 1

2

(
|uα|2 + |uα+1|2

)
dx− N

2

N∑
α=1

∫
Td

(
(uα+1 + uα)Gα+ 1

2
− (uα−1 − uα)Gα− 1

2

)
· uα dx

=
N

2

N∑
α=1

∫
Td
Gα+ 1

2

(
|uα|2 − |uα+1|2

)
dx− N

2

N∑
α=1

∫
Td
uα+1 · uαGα+ 1

2
+ |uα|2Gα+ 1

2
− uα−1 · uαGα− 1

2
− |uα|2Gα− 1

2
dx

=
N

2

N∑
α=1

∫
Td
Gα+ 1

2

(
|uα|2 − |uα+1|2

)
dx− N

2

N∑
α=1

∫
Td
uα+1 · uαGα+ 1

2
+ |uα|2Gα+ 1

2

+
N

2

N−1∑
α=0

uα · uα+1Gα+ 1
2

+ |uα+1|2Gα+ 1
2

dx = 0 (4.3)
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and the energy is then

d

dt

∫
Td
E dx +

N∑
α=1

∫
Td

4νh|D(uα)|2 dx +N

N∑
α=1

∫
Td
κ(uα+1 − uα)2 dx = 0 (4.4)

with

E =
1

2

(
Ngh2 +

N∑
α=1

hu2α

)
+Ngzbh. (4.5)

For the BD-entropy, we have

1

2

N∑
α=1

Gα+ 1
2
(|vα+1|2 − |vα|2)−

N∑
α=1

(
Gα+ 1

2
(uα+ 1

2
− uα)−Gα− 1

2
(uα− 1

2
− uα)

)
· vα

=
1

2

N∑
α=1

Gα+ 1
2
(|vα+1|2 − |vα|2)−

N∑
α=1

(Gα+ 1
2
(uα+ 1

2
− uα) · vα +

N−1∑
α=0

Gα+ 1
2
(uα+1 − uα+ 1

2
) · vα+1

=

N−1∑
α=1

−Gα+ 1
2

[
uα+ 1

2
· (vα − vα+1) + (uα+1 · vα+1 − uα · vα)− 1

2
(|vα+1|2 − |vα|2)

]

=

N−1∑
α=1

−Gα+ 1
2

[
uα+ 1

2
· (uα − uα+1) + |uα+1|2 − |uα|2 + 4ν(uα+1 − uα) · ∇ log h− 1

2
(|vα+1|2 − |vα|2)

]
;

=

N−1∑
α=1

−Gα+ 1
2

[
uα+ 1

2
· (uα − uα+1) +

1

2
(|uα+1|2 − |uα|2)

]
,

=

N−1∑
α=1

−Gα+ 1
2

[
(uα − uα+1)(uα+ 1

2
− 1

2
uα+1 −

1

2
uα)

]
,

=

N−1∑
α=1

−Gα+ 1
2

[
(uα − uα+1)(uα+ 1

2
− 1

2
(uα+1 + uα)

]
= 0.

Then we obtain

1

2

d

dt

∫
Td
h

N∑
α=1

|vα|2 dx +
Ng

2

d

dt

∫
Td
h2 dx +Ng

d

dt

∫
Td
zbh dx +

∫
Td

2νh| curl vα|2 dx

+ 4Nνg

∫
Td
|∇h|2 dx + 4Nνg

∫
Td
∇zb · ∇h dx + κ

N∑
α=1

∫
Td
|vα+1 − vα|2 dx

+

N−1∑
α=1

∫
Td

1

hN2

N∑
j=α+1

(
div(h(uα − uj))

)2
dx = 0. (4.6)
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