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On a Lagrangian method for the convergence from a

non-local to a local Korteweg capillary fluid model

Frédéric Charve∗, Boris Haspot †

Abstract

In the present article we are interested in further investigations for the barotropic
compressible Navier-Stokes system endowed with a non-local capillarity we studied in
[7]. Thanks to an accurate study of the associated linear system using a Lagrangian
change of coordinates, we provide more precise energy estimates in terms of hybrid
Besov spaces naturally depending on a threshold frequency ( which is determined in
function of the physical parameter) distinguishing the low and the high regimes. It
allows us in particular to prove the convergence of the solutions from the non-local
to the local Korteweg system. Another mathematical interest of this article is the
study of the effect of the Lagrangian change on the non-local capillary term.

1 Introduction

1.1 Presentation of the system

The local and non-local Korteweg systems aim to study the dynamics of a liquid-vapour
mixture in the diffuse interface approach (DI), where the phase changes are seen through
the variations of the density. These systems are based upon the compressible Navier-
Stokes system with a Van der Waals state law for ideal fluids, and endowed with a
capillary tensor modelling the behaviour at the interfaces between the phases. This
capillary term was introduced in the DI approach in order to obtain physically relevant
solutions by penalizing the high variations of the density.

We refer to [7] for a physical presentation of the diffuse interface model, and of the
local and non-local Korteweg systems. Let us recall that the local model of the capillary
term was introduced by Korteweg and the non-local model was introduced by Van der
Waals and renewed by F. Coquel, D. Diehl, C. Merkle and C. Rohde (for an in-depth
presentation of the capillary models, we refer to [33] and [10]).

Let ρ and u denote the density and the velocity of a compressible viscous fluid. As
usual, ρ is a non-negative function and u is a vector-valued function defined on Rd. In
the sequel we will denote by A the following diffusion operator

Au = µ∆u+ (λ+ µ)∇div u, with µ > 0 and ν = λ+ 2µ > 0.
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The Navier-Stokes equations for compressible fluids endowed with internal capillarity
read: {

∂tρ+ div (ρu) = 0,

∂t(ρu) + div (ρu⊗ u)−Au+∇(P (ρ)) = κρ∇D[ρ].

Let us mention that the capillary coefficient κ may depend on ρ but in this article only
the constant case is considered. In the local Korteweg system (NSK), the capillary term
D[ρ] is given by (see [16]):

D[ρ] = ∆ρ,

and, in the non-local Korteweg system (NSRW ) (introduced in its modern form by C.
Rohde in [32] and also [10], see Van der Waals [36] for the original works), if φ is an
interaction potential which satisfies the following conditions

(|.| + |.|2)φ(.) ∈ L1(Rd),

∫

Rd

φ(x)dx = 1, φ even, and φ ≥ 0,

D[ρ] is a non-local term:
D[ρ] = φ ∗ ρ− ρ.

If we compute the Fourier transform of the capillary terms, we obtain (φ̂(ξ)− 1)ρ̂(ξ)
in the non-local model, and −|ξ|2ρ̂(ξ) in the local model.

We are interested in the closedness of the solutions of these models when φ̂(ξ) is
formally ”close” to 1 − |ξ|2. In [7], we approximated the local Korteweg model (NSK)
with a non-local model such as system (NSRW ) where we chosed a specific function φε
in the capillarity tensor. In this paper we will once more consider the following non-local
system:

(NSRWε)

{
∂tρε + div (ρεuε) = 0,

∂t(ρεuε) + div (ρεu⊗ uε)−Auε +∇(P (ρε)) = ρε
κ

ε2
∇(φε ∗ ρε − ρε),

where

φε =
1

εd
φ(
x

ε
) with φ(x) =

1

(2π)d
e−

|x|2

4

For a fixed ξ the Fourier transform of φε is φ̂ε(ξ) = e−ε
2|ξ|2 , and when ε is small,

φ̂ε(ξ)− 1

ε2
is close to −|ξ|2.

We will consider a density which is close to an equilibrium state ρ and we will intro-
duce the change of function ρ = ρ(1 + q). For simplicity we take ρ = 1. The previous
systems become:

(K)

{
∂tq + u.∇q + (1 + q)div u = 0,

∂tu+ u.∇u−Au+ P ′(1).∇q − κ∇∆q = K(q).∇q − I(q)Au,

and
(RWε){

∂tqε + uε.∇qε + (1 + qε)div uε = 0,

∂tuε + uε.∇uε −Auε + P ′(1).∇qε −
κ

ε2
∇(φε ∗ qε − qε) = K(qε).∇qε − I(qε)Auε,

2



where K and I are real-valued functions defined on R given by:

K(q) =

(
P ′(1)− P ′(1 + q)

1 + q

)
and I(q) =

q

q + 1
.

1.2 Existence results

Let us now recall some results concerning the local and non-local Korteweg systems.
As for the compressible Navier-Stokes system (we refer to [3], [11], [17], [6]) both of
these systems have been studied in the context of the existence of global strong solutions
with small initial data in critical spaces for the scaling of the equations. For example,
concerning the strong solutions, we refer to [14], [22] (and [19] in the non isothermal case)
for a study of (NSK) system, and to [18] for (NSRW ). In [23], we show the existence
of global strong solution with large initial data on the rotational part when we add a
friction term.
Let us mention that the well-posedness of the compressible Euler Korteweg system (when
µ = λ = 0) has been studied in the case of variable capillary coefficient by Benzoni,
Danchin and Descombes in [4].

The solutions of the compressible Navier Stokes or non-local Korteweg systems have
the same behaviour. Namely the density regularity is separated by a frequency threshold:
in low frequencies, the solution is subject to a heat-type smoothing, and in the high
frequencies, there is only a damping effect due to the term of pressure (modulo that
the pressure is at least locally increasing with respect to the density). The solution
of the local Korteweg system is more regular: for all frequencies, we have a parabolic
regularization on the density (see [14, 22]). We refer to the appendix for the definitions
of the Besov spaces introduced in the following results.

Theorem 1 ([14]) Assume that P ′(1) > 0, min(µ, ν) > 0 where ν
def
= 2µ + λ, that the

initial density fluctuation q0 belongs to Ḃ
d
2
−1

2,1 ∩ Ḃ
d
2
2,1, and that the initial velocity u0 is in

(Ḃ
d
2
−1

2,1 )d. Then there exist constants ηK > 0 and C > 0 depending on κ, µ, ν, P ′(1) and
d such that if:

‖q0‖
Ḃ

d
2−1

2,1 ∩Ḃ
d
2
2,1

+ ‖u0‖
Ḃ

d
2−1

2,1

≤ ηK

then system (K) has a unique global solution (ρ, u) such that the density fluctuation and
the velocity satisfy:




q ∈ C(R+, Ḃ

d
2
−1

2,1 ∩ Ḃ
d
2
2,1) ∩ L1(R+, Ḃ

d
2
+1

2,1 ∩ Ḃ
d
2
+2

2,1 ),

u ∈ C(R+, Ḃ
d
2
−1

2,1 )d ∩ L1(R+, Ḃ
d
2
+1

2,1 )d.

Moreover the norm of (q, u) in this space is estimated by the initial norm C(‖q0‖
Ḃ

d
2−1

2,1 ∩Ḃ
d
2
2,1

+

‖u0‖
Ḃ

d
2−1

2,1

).

Remark 1 Further in this article R. Danchin and B. Desjardins provide a Fourier study
of the linearized system and observe different behaviours whether the quantity ν2 − 4κ
is positive, negative of zero. In all cases they obtain parabolic regularization.
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Remark 2 In [21], the second author obtains some generalizations of [14] in as much as
with a specific choice on the capillarity and the viscosity κ(ρ) = 1

ρ , µ(ρ) = ρ, we obtain

the existence of global strong solution with u0 ∈ B
d
2
−1

2,∞ and ln(1 + q0) ∈ B
d
2
2,∞ ∩ B

d
2
−1

2,∞
(let us point out that in this case we can work with discontinuous initial density). We
also refer to [23] for the existence of global strong solution with large initial data on the
irrotational part when we added a friction term. In the sequel as we shall deal with a
Lagrangian change of coordinate which requires a Lipschitz control on the velocity, we
need to work in the framework of the functional space introduced in [14]. The second
reason is that the existence of global strong solution for the system (NSRW ) with initial

data in B
d
2
2,∞ ∩B

d
2
−1

2,∞ remains open and is probably false in general.

As for the compressible Navier-Stokes system, in the (NSRW ) model the density fluc-
tuation has two distinct behaviours in some low and high frequencies, separated by a
frequency threshold. This naturally leads to the definition of the hybrid Besov spaces,
involving two different regularities for low and high frequencies, introduced in [7] and
defined for lε = [12 log2(

γ
C0ε2

)− 1] (γ is a constant and C0 =
8
3) and s, t ∈ R by :

‖q‖Ḃs,t
ε

def
=
∑

l≤lε
2ls‖∆̇lq‖L2 +

∑

l>lε

1

ε2
2lt‖∆̇lq‖L2 . (1.1)

Definition 1 ([7]) The space Esε is the set of functions (q, u) in

(
Cb(R+, Ḃ

s−1
2,1 ∩ Ḃs

2,1) ∩ L1(R+, Ḃ
s+1,s
ε ∩ Ḃs+2,s

ε )
)
×
(
Cb(R+, Ḃ

s−1
2,1 ) ∩ L1(R+, Ḃ

s+1
2,1 )

)d

endowed with the norm

‖(q, u)‖Es
ε

def
= ‖u‖L∞Ḃs−1

2,1
+ ‖q‖L∞Ḃs−1

2,1
+ ‖q‖L∞Ḃs

2,1

+ ‖u‖L1Ḃs+1
2,1

+ ‖q‖
L1Ḃs+1,s

ε
+ ‖q‖

L1Ḃs+2,s
ε

. (1.2)

We first state the global well-posedness for system (RWε) with uniform estimates with
respect to ε (see [7]):

Theorem 2 ([7]) Let ε > 0 and assume that min(µ, ν = 2µ + λ) > 0. There exist
two positive constants ηR and C only depending on d, κ, µ, λ and P ′(1) such that if

q0 ∈ Ḃ
d
2
−1

2,1 ∩ Ḃ
d
2
2,1, u0 ∈ Ḃ

d
2
−1

2,1 and

‖q0‖
Ḃ

d
2−1

2,1 ∩Ḃ
d
2
2,1

+ ‖u0‖
Ḃ

d
2−1

2,1

≤ ηR

then system (RWε) has a unique global solution (ρε, uε) with (qε, uε) ∈ E
d
2
ε such that:

‖(qε, uε)‖
E

d
2
ε

≤ C(‖q0‖
Ḃ

d
2−1

2,1 ∩Ḃ
d
2
2,1

+ ‖u0‖
Ḃ

d
2−1

2,1

).
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Remark 3 Note that in the low frequency regime (l ≤ lε ∼ −1
2 log ε), the parabolic

regularization for qε is the same as for the Korteweg system, indeed the low frequencies

of qε are in L1
t (Ḃ

d
2
+1

2,1 ∩ Ḃ
d
2
+2

2,1 ).

The main result in [7] is the following: when the initial data are small enough (so that
we have global solutions for (K) and (RWε)) the solution of (RWε) goes to the solution
of (K) when ε goes to zero.

Theorem 3 ([7]) Assume that min(µ, 2µ+λ) > 0, P ′(1) > 0 and that q0 ∈ Ḃ
d
2
−1

2,1 ∩ Ḃ
d
2
2,1,

u0 ∈ Ḃ
d
2
−1

2,1 . There exists 0 < η ≤ min(ηK , ηR) such that if

‖q0‖
Ḃ

d
2−1

2,1 ∩Ḃ
d
2
2,1

+ ‖u0‖
Ḃ

d
2−1

2,1

≤ η,

then systems (K) and (RWε) both have global solutions and ‖(qε − q, uε − u)‖
E

d
2
ε

tends

to zero as ε goes to zero. Moreover, with the same notations as before, there exists a
constant C = C(η, κ, P ′(1)) > 0 such that for all α ∈]0, 1[ (if d = 2) or α ∈]0, 1] (if
d ≥ 3), and for all t ∈ R+,

‖(qε − q, uε − u)‖
E

d
2−α
ε

≤ Cεα,

This results relies on the following estimates:

Proposition 1 ([7], Proposition 1) Let ε > 0, s ∈ R, I = [0, T [ or [0,+∞[ and v ∈
L1(I, Ḃ

d
2
+1

2,1 ) ∩ L2(I, Ḃ
d
2
2,1). Assume that (q, u) is a solution of System (LRε) (see below)

defined on I. There exists a constant C > 0 depending on d, s, µ, ν, p, κ such that for
all t ∈ I,

‖u‖
L̃∞
t Ḃs−1

2,1
+ ‖q‖

L̃∞
t Ḃs−1

2,1
+ ‖q‖

L̃∞
t Ḃs

2,1
+ ‖u‖

L̃1
t Ḃ

s+1
2,1

+ ‖q‖
L̃1
t Ḃ

s+1,s
ε

+ ‖q‖
L̃1
t Ḃ

s+2,s
ε

≤ Ce

C
∫ t

0
(‖∇v(τ)‖

Ḃ

d
2
2,1

+‖v(τ)‖2
Ḃ

d
2
2,1

)dτ(
‖u0‖Ḃs−1

2,1
+ ‖q0‖Ḃs−1

2,1
+ ‖q0‖Ḃs

2,1

+ ‖F‖L̃1
t Ḃ

s−1
2,1

+ ‖F‖L̃1
t Ḃ

s
2,1

+ ‖G‖L̃1
t Ḃ

s−1
2,1

)
. (1.3)

Remark 4 Let us point out that the main difficulty consists in obtaining the previous
accurate estimates in Besov space depending on the parameter ε for the linear system
(LRε). Indeed it is quite tricky to deal with the convection terms (let us point out that
it is absolutely necessary to integrate the convection term v ·∇q in (LRε) in order not to
loose regularity on the density in the remainder term F , indeed (RWε) does not provide
any regularizing effects on the density in high frequencies), in [7] we use energy methods
and symmetrizers.

The goal of this paper is to propose a more robust method which allows us to precisely
keep track of the dependance with respect to the physical coefficients: viscosity and
capillarity.
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1.3 Statement of the results

Classically, as in the study of compressible Navier-Stokes systems-type in critical spaces
(see [11, 6, 17]), for proving the theorems 2 and 3 (see [7] section 2) the key point consists
in obtaining a priori estimates on the following advected linear system (ε > 0 is fixed
and for more simplicity we write (q, u) instead of (qε, uε)):

(LRε)

{
∂tq + v.∇q + div u = F,

∂tu+ v.∇u−Au+ p∇q − κ

ε2
∇(φε ∗ q − q) = G.

With
Au = µ∆u+ (λ+ µ)∇div u.

As mentioned before, in the present article we are interested in obtaining, from a
different point of view, these energy estimates by using a Lagrangian change of coordinate.
Our method provides a more precise dependency of the various constants with respect
to p = P ′(1) and the well-known ratio ν2/4κ (that also appears in the local system, and
in any evanescent viscosity-capillarity limit. In the 1D case, we refer to [8] for the study

of this limit (when ν2

4κ = O(1)). This result is proven via the introduction of an effective
velocity).

Remark 5 In Proposition 7 we provide two equivalent (and more accurate) expressions
for the hybrid norm ‖.‖Ḃs,s+2

ε
and we will only use them:

‖f‖
Ḃs+2,s

ε
∼ ‖φε ∗ f − f

ε2
‖Ḃs

2,1
∼
∑

j∈Z

1− e−cε
222j

ε2
2js‖∆̇jf‖L2

∼
∑

j∈Z
min(

1

ε2
, 22j)2js‖∆̇jf‖L2 (1.4)

Consequently the non-local capillary term φε∗∇qε−∇qε
ε2

has in fact the same regularity as

the local capillary term ∇∆q : both of them belong to L1
t (Ḃ

d
2
−2

2,1 ∩ Ḃ
d
2
−1

2,1 ).

Let us now give the main result of the present article, which is a sharper version of
Proposition 1 (see the previous section):

Theorem 4 Let ε > 0, −d
2 +1 < s < d

2 +1, I = [0, T [ or [0,+∞[ and v ∈ L1(I, Ḃ
d
2
+1

2,1 )∩
L2(I, Ḃ

d
2
2,1). Assume that (q, u) is a solution of System (LRε) defined on I. There exists

ε0 > 0, a constant C > 0 depending on d, s such that if ε ≤ ε0, for all t ∈ I (denoting
ν = µ+ 2λ and ν0 = min(ν, µ)),

‖u‖L̃∞
t Ḃs−1

2,1
+ ‖q‖L̃∞

t Ḃs−1
2,1

+ ν‖q‖L̃∞
t Ḃs

2,1
+ ν0‖u‖L̃1

t Ḃ
s+1
2,1

+ ν‖q‖L̃1
t Ḃ

s+1,s−1
ε

+ ν2‖q‖L̃1
t Ḃ

s+2,s
ε

≤ C
p, ν

2

4κ

e

C
p, ν

2

4κ

Cvisc

∫ t

0
(‖∇v(τ)‖

Ḃ
d
2
2,1

+ ‖v(τ)‖2
Ḃ

d
2
2,1

)dτ

×
(
‖u0‖Ḃs−1

2,1
+ ‖q0‖Ḃs−1

2,1
+ ν‖q0‖Ḃs

2,1
+ ‖F‖L̃1

t Ḃ
s−1
2,1

+ ν‖F‖L̃1
t Ḃ

s
2,1

+ ‖G‖L̃1
t Ḃ

s−1
2,1

)
. (1.5)
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where 



C
p, ν

2

4κ

= Cmax(
√
p,

1√
p
)max(

4κ

ν2
, (
ν2

4κ
)2),

Cvisc =
1 + |λ+ µ|+ µ+ ν

ν0
+max(1,

1

ν3
).

Remark 6 The viscous coefficient Cvisc satisfies:

Cvisc =

{
1+2ν
µ +max(1, 1

ν3
) If λ+ µ > 0,

1+2µ
ν +max(1, 1

ν3
) If λ+ µ ≤ 0

and when both viscosities are small, we simply have Cvisc ≤ max(1, 1
ν30
).

Remark 7 The norm ‖q‖
L̃1
t Ḃ

s+1,s−1
ε

in the left-hand side has to be compared to the term

‖q‖L̃1
t Ḃ

s+1,s
ε

from proposition 1. Thanks to the last term in the left-hand side, there is no

loss of regularity. We only chose to write it this way in reference to the more meaningful
equivalent expression from (3.49).

Remark 8 Let us give a few comments about the advantages of the Lagrangian method
compared to the symetrizers techniques used in [7]:

• First we are able with this method to provide accurate estimates tracking the
physical coefficients and especially the influence of the ratio ν2

4κ (we also refer to
[14] for the importance of this ratio in the local Korteweg system). Indeed it plays
an important role when considering the vanishing viscosity-capillarity process. In
the one dimensional case we proved in [8] the global convergence of the classical
Korteweg solutions to the global weak entropy solutions of the compressible Euler
system when κ = ν2 and ν goes to zero. Let us also mention the works of Lax and
Levermore ([30]) who consider the non-viscous case and prove a vanishing capillarity
process from the KdV equation to the Burger equation in the context of dispersive
shock solutions (the main tool is the inverse scattering theory). Lefloch also studies
the KdV equation with viscosity, and shows that the previous ratio is critical for
the convergence towards a weak entropy solution or to a dispersive shock solution
(notice that this also seems to be observed in numerical simulations). In particular
we expect our linear a priori estimates to be useful to study the vanishing process.
This is the object of a future work.

• Seconds, the coefficients of the last two terms in the left-hand side of (1.5) are ν
and ν2, which in the setting κ ∼ ν2 with ν small, are larger than the ν3 obtained
in [7] (see the end of section 2.1 therein).

• Another important feature of the present paper is that this method allows us to
deal with Besov spaces constructed on general Lr spaces with r 6= 2 in the spirit
of [6]. Indeed, such results cannot be obtained with symmetrizers methods, which
are by nature based on energy methods and scalar products in L2. We refer to the
appendix for results in this direction and to [7] for the compressible Navier-Stokes
system.
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The paper is structured in the following way: instead of using energy methods and
symmetrizers (see [11, 7]), we will first consider the linear system (LRε) without transport
(this is the object of the second section, where we precisely study the different frequency
regimes). In section 3 after presenting the Langrangian change of coordinates, we provide
equivalent expressions for the hybrid Besov norm, and perform the Lagrangian change
of variable, as introduced by T. Hmidi in [24] (in high frequency regime, transport terms
prevent any direct use of the linear estimates).

As in [15, 6, 25, 26, 27] we get estimates on the advected linear system and for this we
need to bound additional external force terms generated by the change of variable. This
is done thanks to estimates dealing with the action of a lagrangian change of variables
on frequency truncation, such as the one proved by Vishik (see [37]), we also refer to
[3]. In this part we focus on the main difficulty of the present article which consists
in estimating the commutator of our non-local capillary operator under the Lagrangian
change of variables. We end this section by giving an extension of our estimates allowing
results in Besov spaces defined on Lr with r 6= 2. The appendix is devoted to give the
main tools of the Littlewood-Paley theory and recall classical results on the Lagrangian
flow.

Remark 9 Let us mention that another approach would consist in introducing an effec-
tive velocity as in [17] in order to diagonalize the system in a certain way and to cancel
out the coupling between density and velocity. This is the object of another article.

Remark 10 For general considerations about non-local operators we can refer to the
work of Rohde and Yong (see [34]) and the recent paper of Alibaud, Cifani and Jakobsen
(see [1]).

2 Linear estimates

The aim of this section is to obtain linear estimates for the following system:

(Lε)

{
∂tq + div u = F,

∂tu−Au+ p∇q − κ

ε2
∇(φε ∗ q − q) = G.

With
Au = µ∆u+ (λ+ µ)∇div u.

Let us state the frequency-localized result that we will use in this article:

Proposition 2 Let ε > 0, s ∈ R, I = [0, T [ or [0,+∞[. Assume that (q, u) is a solution
of System (Lε) defined on I. There exists ε0 > 0, a constant C > 0 depending on d, s,
c0 and C0 such that if ε ≤ ε0, for all t ∈ I (as usual ν0 = min(ν, µ)), and for all j ∈ Z,

‖∆̇ju‖L∞
t L2 + ν02

2j‖∆̇ju‖L1
tL

2 + (1 + ν2j)

(
‖∆̇jq‖L∞

t L2 + νmin(
1

ε2
, 22j)‖∆̇jq‖L1

tL
2

)

≤ Cmax(
√
p,

1√
p
)max(

4κ

ν2
, (
ν2

4κ
)2)

×
(
(1 + ν2j)‖∆̇jq0‖L2 + ‖∆̇ju0‖L2 + (1 + ν2j)‖∆̇jF‖L1

tL
2 + ‖∆̇jG‖L1

tL
2

)
(2.6)
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2.1 Study of the eigenvalues

As in [11] or [6] we first introduce the Helmholtz decomposition of u. If the pseudo-
differential operator Λ is defined by Λf = F−1(|.|f̂ (.)), we set:

{
v = Λ−1div u,

w = Λ−1curlu
(2.7)

then u = −Λ−1∇v + Λ−1divw and the system turns into:

(L′
ε)





∂tq + Λv = F,

∂tv − ν∆v − pΛq +
κ

ε2
Λ(φε ∗ q − q) = Λ−1divG,

∂tw − µ∆w = Λ−1curlG.

The last equation is a heat equation, easily dealt thanks to classical heat estimates in
Besov spaces (we refer to [3] chapter 2), so we can focus on the first two lines and compute
the eigenvalues and eigenvectors of the matrix associated to the Fourier transform of this
new system:




∂tq̂ + |ξ|v̂ = F̂ ,

∂tv̂ + ν|ξ|2v̂ − p|ξ|q̂ + κ

ε2
|ξ|(e−ε2|ξ|2 − 1)q̂ =

i

|ξ|ξ.Ĝ.

As the external forces appear through homogeneous pseudo-differential operators of de-
gree zero, we can compute the estimates in the case F = G = 0 and deduce the general
case from the Duhamel formula. So we finally study the following system:

∂t

(
q̂
v̂

)
= A(ξ)

(
q̂
v̂

)
with A(ξ) :=

(
0 −|ξ|

p|ξ|+ κ
ε2
|ξ|(1− e−ε

2|ξ|2) −ν|ξ|2
)
.

The discriminant of the characteristic polynomial of the matrix is:

∆ = |ξ|2
(
ν2|ξ|2 − 4

(
p+

κ

ε2
(1− e−ε

2|ξ|2)
))

,

and thanks to the variations of function fε : x 7→ ν2x− 4
(
p+ κ

ε2
(1− e−ε

2x)
)
, we obtain

the existence of a unique threshold xε > 0 such that

∆(ξ)

{
< 0 if |ξ|2 < xε,

> 0 if |ξ|2 > xε.

We emphasize that when ν2

4K ≥ 1, fε is an increasing function on R+, and when ν2

4K < 1,
fε is decreasing in [0, 1

ε2
log(4K

ν2
)] and then increasing.

Proposition 3 Under the same assumptions, we have:

xε ∼
ε→0





4p

ν2 − 4κ
if ν2

4κ > 1,

1

ε

√
2p

κ
if ν2

4κ = 1,

aκ,ν
ε2

if ν2

4κ < 1,

9



where aκ,ν = a( ν
2

4κ) is the unique positive root of function x 7→ 1 − 4κ
ν2

1−e−x

x . Moreover
we have 4κ

ν2
− 1 < aκ,ν <

4κ
ν2
.

Proof: First, as the function h : x 7→ 1−e−x

x decreases from [0,∞[ to ]0, 1], we easily
prove that the following function:

gε(x) =
fε(x)

ν2x
= 1− 4p

ν2x
− 4κ

ν2
1− e−ε

2x

ε2x
(2.8)

is an increasing function from ]0,∞[ to ] −∞, 1[, and for a fixed x > 0, it is increasing
with respect to ε (∀x > 0, ∀0 < ε < ε′, gε(x) < gε′(x)), which implies that ε 7→ xε
increases when ε decreases to zero.
Then, computing gε(

4κ
ν2ε2 ) = e−

4κ
ν2 − pε2

κ , which is positive when ε is small enough, as gε
is increasing, we obtain that xε <

4κ
ν2ε2 when ε is small enough. Computing gε(

4p
ν2 ) =

−4κ
ν2
h(ε2 4p

ν2
) < 0 we easily get that xε >

4p
ν2
. Finally we obtain that:

• If ν
2

4κ > 1, as for all x, 0 < h(x) ≤ 1, we have 1− 4κ
ν2

− 4p
ν2xε

< gε(xε) = 0 ≤ 1− 4p
ν2xε

which implies that the sequence xε is bounded (and therefore convergent because
monotonous), so that ε2xε goes to zero, and thanks to the fact that fε(xε) = 0 and
h(x) →

x→0
1, we obtain that xε →

ε→0

4p
ν2−4κ .

• If ν
2

4κ = 1, guided by the value of gε(
C
ε ) = 1− 4pε

ν2C
− h(εC), and thanks to function

study and Taylor expansions, we get that:
√

2p

κ

1 + ε2

ε
< xε <

√
2p

κ

1 +
√
ε

ε
.

• If ν2

4κ < 1, guided by the value of gε(
C
ε2 ), we obtain that for sufficently small ε:

a( ν
2

4κ)

ε2
< xε <

a( ν
2

4κ) + ε

ε2
,

where a( ν
2

4κ) is the unique positive root of function x 7→ 1 − 4κ
ν2

1−e−x

x and satisfies
4κ
ν2 − 1 < aκ,ν <

4κ
ν2 . �

Then we can compute the expressions of q̂ and v̂:

-For the low frequencies (∆ < 0), when |ξ| < √
xε, we have:





q̂(ξ) = 1
2

(
(1 + i

S(ξ))e
tλ+ + (1− i

S(ξ))e
tλ−
)
q̂0(ξ)− ie

tλ+−etλ−
ν|ξ|S(ξ) v̂0(ξ),

v̂(ξ) = i
(
p+ κ

ε2
(1− e−ε

2|ξ|2)
)
etλ+−etλ−
ν|ξ|S(ξ) q̂0(ξ) +

1
2

(
(1− i

S(ξ))e
tλ+ + (1 + i

S(ξ))e
tλ−
)
v̂0(ξ),

with:

S(ξ) =
√

−gε(|ξ|2) =
√

4

ν2|ξ|2
(
p+

κ

ε2
(1− e−ε2|ξ|2)

)
− 1 (2.9)

and

λ± = −ν|ξ|
2

2
(1± iS(ξ)).
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-For the high frequencies (∆ > 0), when |ξ| > √
xε, we have:





q̂(ξ) = 1
2

(
(1− 1

R(ξ))e
tλ+ + (1 + 1

R(ξ))e
tλ−
)
q̂0(ξ) +

etλ+−etλ−
ν|ξ|R(ξ) v̂0(ξ),

v̂(ξ) = −
(
p+ κ

ε2 (1− e−ε
2|ξ|2)

)
etλ+−etλ−
ν|ξ|R(ξ) q̂0(ξ) +

1
2

(
(1 + 1

R(ξ))e
tλ+ + (1− 1

R(ξ))e
tλ−
)
v̂0(ξ),

with:

R(ξ) =
√
gε(|ξ|2) =

√
1− 4

ν2|ξ|2
(
p+

κ

ε2
(1− e−ε2|ξ|2)

)
(2.10)

and

λ± = −ν|ξ|
2

2
(1±R(ξ)).

Remark 11 It will be crucial for the time integration to observe that

p+
κ

ε2
(1− e−ε

2|ξ|2) =
ν2|ξ|2
4

(1−R(ξ))(1 +R(ξ)).

Remark 12 In the low frequency regime, both eigenvalues provide parabolic heat regu-
larization. In the high frequency regime, when |ξ| is large, λ+ ∼ −ν|ξ|2 (which generates
parabolic regularization), but λ− ∼ −(p+ κ

ε2
), that only provides a damping. This is the

same behaviour as for the compressible Navier-Stokes system, and we refer to [11], [3]
and [6] (for a precise computation of the Fourier transform of the solutions).

Remark 13 These results have to be compared to the same study for the local Korteweg
system, in this case the matrix becomes:

(
0 −|ξ|

|ξ|(p+ κ|ξ|2) −ν|ξ|2
)
.

And the discriminant of the characteristic polynomial, ∆ = |ξ|2
(
(ν2 − 4κ)|ξ|2 − 4p

)
,

satisfies:

• If ν2

4κ ≤ 1, ∆ ≤ 0 and λ± =
−ν|ξ|2±i|ξ|

√
4p−(ν2−4κ)|ξ|2
2 (parabolic regularization

everywhere),

• If ν
2

4κ > 1, ∆ < 0 then∆ > 0 with threshold 4p
ν2−4κ

, and in the high frequency regime,

when |ξ| is large, λ− ∼ −ν|ξ|2
2 (1−

√
1− 4κ

ν2
) which, contrarily to the previous cases,

generates parabolic regularization.
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2.2 Pointwise estimates

2.2.1 Thresholds

As seen previously, we recall that xε satisfies:

xε ≥





4p

ν2
if ν2

4κ > 1,

1

ε

√
2p

κ
if ν2

4κ = 1,

a( ν
2

4κ)

ε2
if ν2

4κ < 1.

But in the following we will be able to get a frequency threshold of size 1/ε2 in each of
the three cases, for that we will not directly use xε as the announced threshold but a
larger term, yε, defined the following way (we refer to (2.8) for the definition of gε):

yε =





g−1
ε (

1

4
) if M <

3

4
,

g−1
ε (1 − 1

2M
) if M ≥ 3

4
,

where M =
ν2

4κ
. (2.11)

As gε is an increasing function from ]0,∞[ to ] −∞, 1[, we have xε < yε. The following
property shows that yε is large enough:

Proposition 4 Under the previous estimates, there exist two constants 0 < γ1 < γ2 and
ε0 such that for all 0 < ε < ε0,

xε <
γ1
ε2

≤ yε ≤
γ2
ε2
.

Moreover, if M = ν2

4κ ≥ 3
4 , then γ1 and γ1 are universal constants, and if M = ν2

4κ <
3
4

then we have:
1

3
≤ 1

M
− 1 < a(M) < γ1 < γ2 <

3

M
.

Proof: Here it will be more efficient to compare ν2

4κ to 3
4 instead of 1:

First case: If M = ν2

4κ ≥ 3
4 we define γ1 and γ2 by:

h(γ1) =
1

2
and h(γ2) =

1

4
.

As gε(
C
ε2
) = 1− 4p

ν2C
ε2 − 1

M h(C), we obtain that

gε(
γ1
ε2

) = 1− 1

2M
− 4p

ν2γ1
ε2 < 1− 1

2M
= gε(yε)

and if ε is small enough (depending on p, ν, γ2 and M),

gε(
γ2
ε2

) = 1− 1

4M
− 4p

ν2γ2
ε2 > gε(yε)

12



Second case: If M = ν2

4κ <
3
4 , γ1 and γ2 are defined by:

h(γ1) =
3

4
M and h(γ2) =

1

2
M.

Like previously, we compute:

gε(
γ1
ε2

) = 1− 1

4
− 4p

ν2γ1
ε2 <

1

4
= gε(yε),

and if ε is small enough (depending on p, ν and γ2),

gε(
γ2
ε2

) = 1− 1

2
− 4p

ν2γ2
ε2 > gε(yε),

In both cases we conclude using that function gε is increasing.
In the second case, to get the lower estimate we use that h(γ1) < M = h(a(M)) to

obtain that (remind that the function h is decreasing) a(M) < γ1. We conclude thanks
to the fact that a(M) ≥ 1

M − 1 ≥ 1
3 . �

2.2.2 Estimates

Now that we have defined the frequency thresholds xε and yε we can state the main
result of this section:

Proposition 5 Under the previous notations, there exists a constant C, such that for
all j ∈ Z and all ξ ∈ 2jC where C is the annulus {ξ ∈ Rd, c0 = 3

4 ≤ |ξ| ≤ C0 = 8
3}, we

have the following estimates (we denote by fj = ∆̇jf and we refer to the appendix for
details on the Littlewood-Paley theory):

• If |ξ| < √
xε:





(1 + ν2j)|q̂j(ξ)| ≤ Ce−
νtc202

2j

4

(
(1 + ν2j)|q̂0,j(ξ)|+ (1 + 1√

p)|v̂0,j(ξ)|
)
,

|v̂j(ξ)| ≤ Ce−
νtc202

2j

4

(
(1 + ν2j)(1 +

√
p)(1 + 4κ

ν2 )|q̂0,j(ξ)|+ |v̂0,j(ξ)|
)
.

• If
√
xε < |ξ| < √

yε:





(1 + ν2j)|q̂j(ξ)| ≤ C
1−me

− νtc202
2j

4
(1−m)

(
(1 + ν2j)|q̂0,j(ξ)| + (1 + 1√

p)|v̂0,j(ξ)|
)
,

|v̂j(ξ)| ≤ C
1−me

− νtc202
2j

4
(1−m)

(
(ν2j)|q̂0,j(ξ)|+ |v̂0,j(ξ)|

)
,

where m = 1
2 if M = ν2

4κ <
3
4 , m =

√
1− 1

2M if M ≥ 3
4 .

• If |ξ| > √
yε:





(1 + ν2j)|q̂j(ξ)| ≤ C

(
e−

νt|ξ|2

2 + e−
κ

νε2
(1−e−γ1 )t

)(
(1 + ν2j)|q̂0,j(ξ)| + (1 + 1√

p)|v̂0,j(ξ)|
)
,

|v̂j(ξ)| ≤ C

(
e−

νtc202
2j

4 +
(
1−

√
gε(c

2
02

2j)
)
e−

νtc202
2j

2

(
1−
√
gε(C2

02
2j )
)) (

ν2j|q̂0,j(ξ)|+ |v̂0,j(ξ)|
)
.
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Proof: We split the study according to the two frequency thresholds:
Low frequencies: assume that ξ ∈ 2jC with |ξ| < √

xε, then the discriminant ∆ < 0
and the system has two non-real conjugated eigenvalues, thanks to (2.9), we can write:





q̂j(ξ) =
1
2

(
(etλ+ + etλ−) + ie

tλ+−etλ−
S(ξ) )

)
q̂0,j(ξ)− ie

tλ+−etλ−
ν|ξ|S(ξ) v̂0,j(ξ),

v̂j(ξ) = i
(
p+ κ

ε2 (1− e−ε
2|ξ|2)

)
etλ+−etλ−
ν|ξ|S(ξ) q̂0,j(ξ) +

1
2

(
(etλ+ + etλ−) + ie

tλ−−etλ+
S(ξ)

)
v̂0,j(ξ),

with:

S(ξ) =
√

−gε(|ξ|2) =
√

4

ν2|ξ|2
(
p+

κ

ε2
(1− e−ε2|ξ|2)

)
− 1

and

λ± = −ν|ξ|
2

2
(1± iS(ξ)).

Here we have to cope with two difficulties:

1. neutralize S(ξ)−1 for frequencies close to
√
xε, as S(ξ) goes to zero as |ξ| goes to√

xε,

2. if we are not careful, the first term in the expression of the velocity will provide
either ε−2, either 2−2j which would make our estimates useless.

The first point will be adressed by considering the following block:

etλ+ − etλ−

S(ξ)
= −e−

νt|ξ|2

2
ei

νt|ξ|2

2
S(ξ) − e−i

νt|ξ|2

2
S(ξ)

2iνt|ξ|
2

2 S(ξ)
iνt|ξ|2 = −iνt|ξ|2e−

νt|ξ|2

2
sin(νt|ξ|

2

2 S(ξ))
νt|ξ|2

2 S(ξ)
.

As for all x ≥ 0, xe−x ≤ 2
ee

−x/2, we obtain that:

|e
tλ+ − etλ−

S(ξ)
| ≤ 4

e
e−

νt|ξ|2

4 . (2.12)

We then deduce:

|q̂j(ξ)| ≤ Ce−
νtc202

2j

4

(
|q̂0,j(ξ)|+

1

ν|ξ| |v̂0,j(ξ)|
)
. (2.13)

And finally:

ν2j |q̂j(ξ)| ≤ Ce−
νtc202

2j

4
(
ν2j |q̂0,j(ξ)|+ |v̂0,j(ξ)|

)
. (2.14)

For the velocity, we can also use (2.12), except for the first term (that provides large
coefficients described as difficulty 2 in the previous page.):

A = i
(
p+

κ

ε2
(1− e−ε

2|ξ|2)
) etλ+ − etλ−

ν|ξ|S(ξ) .

We can observe that S(ξ) ≥
√

4p
ν2|ξ|2 − 1 = 1

ν|ξ|
√

4p − ν2|ξ|2, which makes sense only

when |ξ| ≤ 2
√
p/ν. Therefore we split the study into two cases:

14



• If |ξ| ≤ √
2p/ν then ν|ξ|S(ξ) ≥

√
4p − ν2|ξ|2 ≥ √

2p and as 1− e−x ≤ x, we get:

|A| ≤ p+ κ|ξ|2|√
2p

(|etλ+ |+ |etλ− |) ≤
p+ κ 2p

ν2√
2p

2e−
νt|ξ|2

2 .

Using this together with (2.12), we get:

|v̂j(ξ)| ≤ Ce−
νtc202

2j

2

(√
p(1 +

4κ

ν2
)|q̂0,j(ξ)|+ |v̂0,j(ξ)|

)
.

going back to the density we can estimate the last term, and in addition to (2.14),
we obtain:

|q̂j(ξ)| ≤ Ce−
νtc202

2j

4 (|q̂0,j(ξ)|+ |v̂0,j(ξ)|) .

• If
√
2p/ν < |ξ| ≤ √

xε, then we have gε(
2p
ν2
) < gε(|ξ|2) < gε(xε), which implies:

1 <
4

ν2|ξ|2
(
p+

κ

ε2
(1− e−ε

2|ξ|2)
)
< 2(1 +

4κ

ν2
)

and we obtain for the velocity:

|v̂j(ξ)| ≤ Ce−
νtc202

2j

4

(
(1 +

4κ

ν2
)ν2j |q̂0,j(ξ)|+ |v̂0,j(ξ)|

)
.

and for the density fluctuation, thanks to (2.13), as |ξ| > √
2p/ν, we also have:

|q̂j(ξ)| ≤ Ce−
νtc202

2j

4

(
|q̂0,j(ξ)|+

1√
2p

|v̂0,j(ξ)|
)
.

Finally, gathering these estimates gives the first point of the proposition 5.

Remark 14 Note that gε(
2p
ν2
) < gε(

4p
ν2
) < 0 = gε(xε) so

4p
ν2
< xε in any case.

Remark 15 We emphasize that in the case of the compressible Navier-Stokes system

(see [6]), such a distinction was not necessary as the analogous of S(ξ) was
√

4p
ν2|ξ|2 − 1

and the threshold was located at |ξ|2 = 2p
ν2
.

High frequencies: assume that ξ ∈ 2jC with |ξ| > √
yε >

√
xε, then the discrim-

inant ∆ > 0 and the system has two real eigenvalues. Thanks to (2.10) we write the
localized quantities:





q̂j(ξ) =
1
2

(
(1− 1

R(ξ))e
tλ+ + (1 + 1

R(ξ))e
tλ−
)
q̂0,j(ξ) +

etλ+−etλ−
ν|ξ|R(ξ) v̂0,j(ξ),

v̂j(ξ) = −
(
p+ κ

ε2 (1− e−ε
2|ξ|2)

)
etλ+−etλ−
ν|ξ|R(ξ) q̂0,j(ξ) +

1
2

(
(1 + 1

R(ξ))e
tλ+ + (1− 1

R(ξ))e
tλ−
)
v̂0,j(ξ),

with:

R(ξ) =
√
gε(|ξ|2) =

√
1− 4

ν2|ξ|2
(
p+

κ

ε2
(1− e−ε2|ξ|2)

)
(2.15)
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and

λ± = −ν|ξ|
2

2
(1±R(ξ)).

We have etλ+ ≤ e−
νt|ξ|2

2 and as explained, when |ξ| is large we cannot hope to get
parabolic regularization from λ−. But the definition of yε implies that in this case

gε(|ξ|2) ≥ gε(yε) =





1
4 if M = ν2

4κ <
3
4 ,

1− 1
2M ≥ 1

3 if M ≥ 3
4 ,

therefore 1
2 ≤ R(ξ) ≤ 1, 1 + R(ξ) ∈ [1, 2] and 1 − R(ξ) ∈ [0, 12 ]. More precisely, as

|ξ|2 ≥ yε ≥ γ1
ε2
, we have:

1−R(ξ) =
1−R(ξ)2

1 +R(ξ)
=

4
ν2|ξ|2

(
p+ κ

ε2 (1− e−ε
2|ξ|2)

)

1 +R(ξ)
≥ 2

ν2|ξ|2
κ

ε2
(1− e−γ1).

So that we can bound λ− = −ν|ξ|2
2 (1−R(ξ)) and etλ− ≤ e−t

κ

νε2
(1−e−γ1 ), which allows to

estimate the density fluctuation the following way:

|q̂j(ξ)| ≤
1

2

(
(1 +

1

R(ξ)
)(etλ+ + etλ−)

)
|q̂0,j(ξ)|+

etλ+ + etλ−

ν|ξ|R(ξ) |v̂0,j(ξ)|,

≤ C(e−
νt|ξ|2

2 + e−t
κ

νε2
(1−e−γ1 ))

(
|q̂0,j(ξ)|+

1

ν|ξ| |v̂0,j(ξ)|
)
. (2.16)

Using successively that |ξ| ≥ c02
j and |ξ| ≥ √

xε ≥
√
2p
ν yields the estimate given in

proposition 5.
Concerning the velocity, we have two main difficulties in this frequency domain:

• Obtain parabolic regularization for the velocity, even when the ”damping eigen-
value” λ− is involved.

• As previously, estimating like before the first term provides coefficients ε−2 (un-
bounded in ε) or 22j (too many derivatives).

In order to neutralize these large coefficients, we rewrite the velocity as in Remark 11:

|v̂j(ξ)| ≤ A+ B+ C with





A = ν|ξ|
4 (1−R(ξ))(1 +R(ξ))e

tλ−−etλ+
R(ξ) |q̂0,j(ξ)|,

B = 1
2 (1 +

1
R(ξ))e

tλ+ |v̂0,j(ξ)|,

C = 1
2 (

1
R(ξ) − 1)etλ− |v̂0,j(ξ)|.

We can easily estimate B:

B ≤ Ce−
νtc202

2j

2 |v̂0,j(ξ)|. (2.17)

The other two terms involve λ− and have to be handled carefully as we wish to get L1

in time estimates:

C ≤ C(1−R(ξ))e−
νtc202

2j

2
(1−R(ξ))|v̂0,j(ξ)|.
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Using the fact that function gε is increasing, as c02
j ≤ |ξ| ≤ C02

j , we have:

√
gε(c

2
02

2j) ≤ R(ξ) =
√
gε(|ξ|2) ≤

√
gε(C

2
02

2j)

and

1−
√
gε(C2

02
2j) ≤ 1−R(ξ) ≤ 1−

√
gε(c202

2j),

so that we can write:

C ≤ C

(
1−

√
gε(c

2
02

2j)

)
e
− νtc202

2j

2

(
1−
√
gε(C2

02
2j)

)

|v̂0,j(ξ)|. (2.18)

We estimate the last term by:

A ≤ A1 + A2 with





A1 =
ν|ξ|
4 (1−R(ξ))(1 +R(ξ))

e−
νt|ξ|2

2
(1−R(ξ))

R(ξ)
|q̂0,j(ξ)|,

A2 =
ν|ξ|
4 (1−R(ξ))(1 +R(ξ))

e−
νt|ξ|2

2
(1+R(ξ))

R(ξ)
|q̂0,j(ξ)|,

A2 is easily dealt:

A2 ≤ Cν2je−
νtc202

2j

2 |q̂0,j(ξ)|,
and finally we get:

A1 ≤ Cν2j
(
1−

√
gε(c

2
02

2j)

)
e
− νtc202

2j

2

(
1−
√
gε(C2

02
2j)

)

|q̂0,j(ξ)|.

Gathering these estimates together with estimates (2.17) and (2.18) leads to the an-
nounced result in this case.

Remark 16 Though small, terms like 1 −
√
gε(C2

02
2j) will allow to get L1 in time

estimates with parabolic regularization.

Medium frequencies: assume that ξ ∈ 2jC with
√
xε < |ξ| < √

yε. We use the
same formula as in the high frequency case. Due to the fact that R(ξ) goes to zero when
|ξ| goes to √

xε, we write the localized density and velocity as in the low frequency case:





q̂j(ξ) =
1
2

(
etλ+ + etλ− +

etλ− − etλ+

R(ξ)

)
q̂0,j(ξ) +

etλ+ − etλ−

ν|ξ|R(ξ) v̂0,j(ξ),

v̂j(ξ) =
ν|ξ|
4 (1−R(ξ))(1 +R(ξ))

etλ+ − etλ−

R(ξ)
q̂0,j(ξ) +

1

2

(
etλ+ + etλ− +

etλ+ − etλ−

R(ξ)

)
v̂0,j(ξ),

In this frequency domain, we define m such that:

0 =
√
gε(xε) < R(ξ) =

√
gε(|ξ|2) < m

def
=
√
gε(yε) =





1
2 if M = ν2

4κ <
3
4 ,√

1− 1
2M if M ≥ 3

4 ,

17



As m < 1 we have {
1 < 1 +R(ξ) < 2

1−m < 1−R(ξ) < 1
(2.19)

The aim is to get parabolic regularization and neutralize the possibly vanishing R(ξ)
near

√
xε, by considering the following blocks:

|e
tλ+ − etλ−

R(ξ)
| = etλ− − etλ+

R(ξ)
= etλ−

1− et(λ+−λ−)

R(ξ)
.

As λ± = −ν|ξ|2
2 (1 ± R(ξ)) (see 2.10), we have: λ+ − λ− = −ν|ξ|2R(ξ) and then (thanks

to the variations of function h and to (2.19)):

|e
tλ+ − etλ−

R(ξ)
| = νt|ξ|2etλ− 1− e−νt|ξ|

2R(ξ)

νt|ξ|2R(ξ) ≤ νt|ξ|2etλ− ≤ νt|ξ|2e−
νt|ξ|2

2
(1−m).

Finally, using once again that xe−x ≤ 2
ee

−x/2, we obtain:

|e
tλ+ − etλ−

R(ξ)
| ≤ C

1−m
e−

νt|ξ|2

4
(1−m). (2.20)

From this we easily get that:

|q̂j(ξ)| ≤
C

1−m
e−

νtc202
2j

4
(1−m)

(
|q̂0,j(ξ)|+

1

ν|ξ| |v̂0,j(ξ)|
)
. (2.21)

Using successively that ξ ∈ 2jC and |ξ| ≥ √
xε ≥

√
2p
ν the estimate of proposition 5. As

λ+ ≥ λ−, with the same method, we obtain the corresponding estimate for the velocity.
This ends the proof of the proposition. �

2.3 Time estimates

As in the case of the compressible Navier-Stokes system (see [6] section 3.1), due to the
choice c0 = 3/4 and C0 = 8/3 (see the appendix), we can observe that there exist at
most two indices j

0
= j0 − 1 or j

0
= j0 such that

√
yε ∈ 2j[c0, C0] for j ∈ {j

0
, j0}.

The aim of this part is to prove the following result, which implies Proposition 2.

Proposition 6 Under the same assumptions as in Proposition 2, there exists a constant
C such that for all j ∈ Z (denoting M = ν2

4κ):

• For all j ≤ j0,

‖vj‖L∞
t L2 + ν22j‖vj‖L1

tL
2 + (1 + ν2j)

(
‖qj‖L∞

t L2 + ν22j‖qj‖L1
tL

2

)
≤

Cmax(
1

M
,M2)

(
(1 + ν2j)(1 +

√
p)‖q0,j‖L2 + (1 +

1√
p
)‖v0,j‖L2

)
,

(2.22)
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• For all j > j0,

‖vj‖L∞
t L2 + ν22j‖vj‖L1

tL
2 + (1 + ν2j)

(
‖qj‖L∞

t L2 +
ν

ε2
‖qj‖L1

tL
2

)
≤

Cmax(1,M)

(
(1 + ν2j)‖q0,j‖L2 + (1 +

1√
p
)‖v0,j‖L2

)
.

(2.23)

Remark 17 Notice that due to the separated results in low and high frequencies, the
coefficients here are more precise than in Theorem 4.

Proof: As previously, three cases have to be considered:

High frequencies: if j ≥ j0 + 1 then
√
yε /∈ 2j [c0, C0] and for all ξ ∈ 2jC, we have

γ1
ε2 <

√
yε < c02

j ≤ |ξ| ≤ C02
j so that we only use the high frequency case from the

previous proposition. Integrating with respect to ξ (we recall that the frequencies are
localized in 2jC), we obtain thanks to the Plancherel formula:




(1 + ν2j)‖qj‖L2 ≤ C
(
e−

νtγ1
2ε2 + e−

κ

νε2
(1−e−γ1 )t

)(
(1 + ν2j)‖q0,j‖L2 + (1 + 1√

p)‖v0,j‖L2

)
,

‖vj‖L2 ≤ C

(
e−

νtc202
2j

4 +
(
1−

√
gε(c

2
02

2j)
)
e−

νtc202
2j

2

(
1−
√
gε(C2

02
2j)
)) (

ν2j‖q0,j‖L2 + ‖v0,j‖L2

)
.

This immediately implies that:



(1 + ν2j)‖qj‖L∞

t L2 ≤ C
(
(1 + ν2j)‖q0,j‖L2 + (1 + 1√

p)‖v0,j‖L2

)
,

‖vj‖L∞
t L2 ≤ C

(
ν2j‖q0,j‖L2 + ‖v0,j‖L2

)
.

The L1
t -estimates require a little more work:





(1 + ν2j)‖qj‖L1
tL

2 ≤ C
(

2ε2

νγ1
+ νε2

κ(1−e−γ1 )

)(
(1 + ν2j)‖q0,j‖L2 + (1 + 1√

p)‖v0,j‖L2

)
,

‖vj‖L1
tL

2 ≤ C

(
4

νc202
2j +

2
νc202

2j

1−
√
gε(c202

2j )

1−
√
gε(C2

02
2j)

)(
ν2j‖q0,j‖L2 + ‖v0,j‖L2

)
.

Thanks to the definition of γ1 (see Proposition 4) we can write:

M
γ1

1− e−γ1
=

{
2M if M = ν2

4κ ≥ 3
4 ,

4
3 if M = ν2

4κ <
3
4 ,

so that:
2ε2

νγ1
+

νε2

κ(1 − e−γ1)
=

ε2

νγ1

(
2 +

ν2

κ

γ1
1− e−γ1

)
≤ ε2

νγ1
(2 +

M

4
).

Proposition 4 also implies that 1/γ1 is bounded from above by a universal constant, so
that we obtain:

(1 + ν2j)‖qj‖L1
tL

2 ≤ C
ε2

ν
max(1,M)

(
(1 + ν2j)‖q0,j‖L2 + (1 +

1√
p
)‖v0,j‖L2

)
. (2.24)

19



We now turn to the velocity: as function gε in increasing, we get that gε(c
2
02

2j) ≤
gε(C

2
02

2j) and then
1−
√
gε(c202

2j)

1−
√
gε(C2

02
2j)

> 1. This term has to be bounded uniformly in ε and

j. Thanks to the expression and variations of gε we first write:

1−
√
gε(c202

2j)

1−
√
gε(C

2
02

2j)
=

1− gε(c
2
02

2j)

1− gε(C2
02

2j)
× 1 +

√
gε(C2

02
2j)

1 +
√
gε(c

2
02

2j)

≤ 4
C2
0

c20

p

κ
+

1− e−ε
2c202

2j

ε2

p

κ
+

1− e−ε
2C2

02
2j

ε2

≤ 4
C2
0

c20
, (2.25)

as function x 7→ 1− e−x is increasing. This yields:

‖vj‖L∞
t L2 + ν22j‖vj‖L1

tL
2 ≤ C

(
ν2j‖q0,j‖L2 + ‖v0,j‖L2

)
,

so that estimate (2.23) immediately follows.

low frequencies: when j ≤ j
0
− 1 we know that

√
yε /∈ [c02

j , C02
j ] and here we will

have to consider both cases |ξ| < xε and xε < |ξ| < yε:

‖qj‖L2 ≤ C
(
‖q̂j1{|ξ|<√

xε}‖L2 + ‖q̂j1{√xε<|ξ|<√
yε}‖L2

)
.

Using the medium and low frequencies estimates from Proposition 5 provides:

(1 + ν2j)‖qj‖L2 ≤ C

(
e−

νtc202
2j

4 +
1

1−m
e−

νtc202
2j

4
(1−m)

)

×
(
(1 + ν2j)‖q0,j‖L2 + (1 +

1√
p
)‖v0,j‖L2

)
, (2.26)

which implies:

(1 + ν2j)
(
‖qj‖L∞

t L2 + ν22j‖qj‖L1
tL

2

)
≤

C

(1−m)2

(
(1 + ν2j)‖q0,j‖L2 + (1 +

1√
p
)‖v0,j‖L2

)
. (2.27)

Let us recall that from Proposition 4 we have:

1 ≤ 1

1−m
≤
{
2 if M = ν2

4κ ≤ 3
4 ,

4M if M > 3
4

≤ 4max(1,M).

The same can be done to the velocity and gives:

‖vj‖L∞
t L2 + ν22j‖vj‖L1

tL
2 ≤

Cmax(1,M2)

(
(1 + ν2j)(1 +

√
p)(1 +

1

M
)|q̂0,j(ξ)|+ |v̂0,j(ξ)|

)
. (2.28)
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Which implies 2.22 in the case j ≤ j
0
− 1.

Threshold frequencies: in the case j ∈ {j
0
, j0}, we know that

√
yε ∈ 2j [c0, C0]

which may also be true for
√
xε. Therefore we are forced to write (even if the first term

of the right-hand side is zero when M > 1...)

‖qj‖L2 ≤ C
(
‖q̂j1{|ξ|<√

xε}‖L2 + ‖q̂j1{√xε<|ξ|<√
yε}‖L2 + ‖q̂j1{|ξ|>√

yε}‖L2

)
.

Using all three estimates from Proposition 5, together with the specific bounds

γ1
C2
0

< ε222j <
γ2
c20
,

we end up with:

(1 + ν2j)‖qj‖L2 ≤ C

(
1

1−m
e−

νtc202
2j

4
(1−m) + e

−κ
ν

1−e−γ1
γ2

c202
2jt
)

×
(
(1 + ν2j)‖q0,j‖L2 + (1 +

1√
p
)‖v0,j‖L2

)
, (2.29)

The rest of the proof follows the lines of the low frequencies case, except that for the
time integral, we get:

ν22j(1 + ν2j)‖qj‖L1
tL

2 ≤

C

(
1

(1−m)2
+
ν2

4κ

γ2
1− e−γ1

)(
(1 + ν2j)‖q0,j‖L2 + (1 +

1√
p
)|v0,j |L2

)
, (2.30)

From Proposition 4, we have:

γ2
1− e−γ1

≤
{
2γ2γ1 if M ≥ 3

4 ,
4

3M
γ2
γ1

if M < 3
4 ,

and
γ2
γ1

≤
{
C if M ≥ 3

4 ,
3

1−M ≤ 12 if M < 3
4 .

which allows to write:

1

(1−m)2
+
ν2

4κ

γ2
1− e−γ1

≤ C

(
max(1,M2) +M max(1,

1

M
)

)
≤ Cmax(1,M2).

Doing the same frequency truncations for the velocity achieves the proof of the proposi-
tion. �.

2.4 End of the proof of Proposition 2

Let us recall that in 2.7, w satisfies a classical heat equation, then for all j ∈ Z (still in
the homogenous assumption):

‖wj‖L∞
t L2 + µ22j‖wj‖L1

tL
2 ≤ C‖w0,j‖L2 ,

and, together with Proposition 6 (we recall that ν0 = min(ν, µ) = min(µ + 2λ, µ) > 0),
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• For all j ≤ j0,

‖uj‖L∞
t L2 + ν02

2j‖uj‖L1
tL

2 + (1 + ν2j)

(
‖qj‖L∞

t L2 + νmin(
1

ε2
, 22j)‖qj‖L1

tL
2

)
≤

Cmax(
1

M
,M2)

(
(1 + ν2j)(1 +

√
p)‖q0,j‖L2 + (1 +

1√
p
)‖u0,j‖L2

)
,

(2.31)

• For all j > j0,

‖uj‖L∞
t L2 + ν02

2j‖uj‖L1
tL

2 + (1 + ν2j)

(
‖qj‖L∞

t L2 + νmin(
1

ε2
, 22j)‖qj‖L1

tL
2

)
≤

Cmax(1,M)

(
(1 + ν2j)‖q0,j‖L2 + (1 +

1√
p
)‖u0,j‖L2

)
,

(2.32)

which implies Proposition 2. �

3 Proof of the advected linear estimates

3.1 Presentation of the difficulties

The aim of this section is to prove Theorem 4. A natural idea is to use Proposition 2
and put the advection terms as external forces: we can write that for all j ∈ Z,

‖∆̇ju‖L∞
t L2 + ν02

2j‖∆̇ju‖L1
tL

2 + (1+ ν2j)

(
‖∆̇jq‖L∞

t L2 + νmin(
1

ε2
, 22j)‖∆̇jq‖L1

tL
2

)
≤

C
p, ν

2

4κ

[
(1 + ν2j)‖∆̇jq0‖L2 + ‖∆̇jv0‖L2 + (1 + ν2j)

(
‖∆̇jF‖L1

tL
2 + ‖∆̇j(v.∇q)‖L1

tL
2

)

+
(
‖∆̇jG‖L1

tL
2 + ‖∆̇j(v.∇u)‖L1

tL
2

)]
. (3.33)

The next step consists in multiplying by 2j(s−1) with −d
2 + 1 < s < d

2 + 1 and sum over
all frequencies. There are three additional terms to estimate. Thanks to paraproduct
and remainder laws (we refer to (4.125) in the appendix) we have:

‖v.∇u‖Ḃs−1
2,1

≤ ‖Ṫv∇u‖Ḃs−1
2,1

+ ‖Ṫ∇uv‖Ḃs−1
2,1

+ ‖Ṙ(v,∇u)‖Ḃs−1
2,1

≤ C

(
‖v‖L∞‖∇u‖Ḃs−1

2,1
+ ‖∇u‖

Ḃ
s−1− d

2
∞,∞

‖v‖
Ḃ

d
2
2,1

+ ‖v‖Ḃ0
∞,∞

‖∇u‖Ḃs−1
2,1

)
≤ C‖v‖

Ḃ
d
2
2,1

‖u‖Ḃs
2,1

≤ C‖v‖
Ḃ

d
2
2,1

‖u‖
1
2

Ḃs−1
2,1

‖u‖
1
2

Ḃs+1
2,1

≤ 1

2K
ν0‖u‖Ḃs+1

2,1
+ C2 K

2ν0
‖v‖2

Ḃ
d
2
2,1

‖u‖Ḃs−1
2,1

, (3.34)

22



Consequently there exists a nonnegative summable sequence (cj(t) = cj(u, v, t))j∈Z whose
sum is 1 such that for all j ∈ Z,

‖∆̇j(v.∇u)‖L1
tL

2 ≤ 2−j(s−1)

∫ t

0
cj(τ)

(
1

2K
ν0‖u‖Ḃs+1

2,1
+ C2 K

2ν0
‖v‖2

Ḃ
d
2
2,1

‖u‖Ḃs−1
2,1

)
dτ.

(3.35)
Similarly we obtain thanks to Proposition 13:

‖v.∇q‖Ḃs−1
2,1

≤ C‖v‖
Ḃ

d
2
2,1

‖q‖Ḃs
2,1

≤ C‖v‖
Ḃ

d
2
2,1

(‖q‖Ḃs−1
2,1

+‖q‖Ḃs
2,1
)
1
2 (‖q‖Ḃs+1,s−1

ε
+‖q‖Ḃs+2,s

ε
)
1
2 ,

and there exists a nonnegative summable sequence whose sum is 1, once again denoted
by (cj(t) = cj(q, v, t))j∈Z, such that for all j ∈ Z

‖∆̇j(v.∇q)‖L1
tL

2 ≤ 2−j(s−1)

∫ t

0
cj(τ)

(
1

2K
(ν‖q‖

Ḃs+1,s−1
ε

+ ν2‖q‖
Ḃs+2,s

ε
)

+ C2K

2
max(1,

1

ν3
)‖v‖2

Ḃ
d
2
2,1

(‖q‖Ḃs−1
2,1

+ ν‖q‖Ḃs
2,1
)

)
dτ. (3.36)

Writing the Bony decomposition,

‖v.∇q‖Ḃs
2,1

≤ ‖Ṫv∇q‖Ḃs
2,1

+ ‖Ṫ∇qv‖Ḃs
2,1

+ ‖Ṙ(v,∇q)‖Ḃs
2,1

Using (4.125), we get that:

‖Ṫ∇qv‖Ḃs
2,1

+ ‖Ṙ(v,∇q)‖Ḃs
2,1

≤ C‖v‖
Ḃ

d
2+1

2,1

‖q‖Ḃs
2,1

≤ C‖v‖
Ḃ

d
2+1

2,1

1

ν

(
‖q‖Ḃs−1

2,1
+ ν‖q‖Ḃs

2,1

)
.

which implies that there exists a nonnegative summable sequence whose sum is 1, once
again denoted by (cj(t))j∈Z such that:

ν2j‖∆̇j(Ṫ∇qv + Ṙ(v,∇q))‖L1
tL

2 ≤ C2−j(s−1)

∫ t

0
cj(τ)‖v‖

Ḃ
d
2+1

2,1

(
‖q‖Ḃs−1

2,1
+ ν‖q‖Ḃs

2,1

)
dτ.

(3.37)
Unfortunately, we are not able to estimate this way Ṫv∇q: there are too many derivatives
involved in high frequency for the density fluctuation. But if we restrict to the low
frequencies when j ≤ 0 we can deal with this term: as the frequencies of Ṡk−1v.∆̇k∇q
are localized in an annulus of size 2k, there exists an integer N1 (only depending on the
parameters chosen in the Littlewood-Paley theory) such that:

∆̇j(Ṫv∇q) =
∑

|k−j|≤N1

∆̇j(Ṡk−1v.∆̇k∇q)

and for all j ≤ 0,

2js‖∆̇j(Ṫv∇q)‖L2 ≤ 2js
∑

|k−j|≤N1

‖v‖L∞2k‖∆̇kq‖L2
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There exists a nonnegative summable sequence (dl(t) = dl(q, t))l∈Z− , with ‖d‖l1(Z−) ≤ 1
and a constant C = C(N1) such that for all l ≤ N1,

‖∆̇lq(t)‖L2 ≤ Cdl(t)2
−l(s+1)‖q(t)‖Ḃs+1

2,1,N1

,

where the low frequency summation is well-defined because:

‖q‖Ḃs+1
2,1,N1

=
∑

l≤N1

2l(s+1)‖∆̇lq‖L2 ≤
√∑

l≤N1

2l(s+2)‖∆̇lq‖L2

√∑

l≤N1

2ls‖∆̇lq‖L2

As we consider j ≤ 0, we have j −N1 ≤ k ≤ j+N1 ≤ N1 ≤ − log2 ε if ε is small enough,
so that we can write

‖∆̇kq‖L2 ≤ Cdk(t)2
−k(s+1)‖q‖

1
2

Ḃs+2,s
ε

‖q‖
1
2

Ḃs
2,1

,

and then

2js‖∆̇j(Ṫv∇q)‖L2 ≤ Cd′j(t)‖v‖L∞‖q‖
1
2

Ḃs+2,s
ε

‖q‖
1
2

Ḃs
2,1

,

where d′j(t) =
∑

|k−j|≤N1
dk2

(j−k)s is in l1(Z−) as a convolution of summable sequences
(and its norm is bounded and only depends on s). Finally, we obtain that for all j ≤ 0,

ν2j‖∆̇j(Ṫv∇q)‖L1
tL

2 ≤ C2−j(s−1)

∫ t

0
d′j(τ)ν‖v‖L∞‖q‖

1
2

Ḃs+2,s
ε

‖q‖
1
2

Ḃs
2,1

dτ

≤ 2−j(s−1)

∫ t

0
d′j(τ)

(
1

2K
ν2‖q‖

Ḃs+2,s
ε

+
C2K

2ν
‖v‖2L∞ν‖q‖Ḃs

2,1

)
dτ (3.38)

For all j ∈ Z and t ∈ I, let us introduce:

Uj(t) = ‖∆̇ju‖L∞
t L2+ν02

2j‖∆̇ju‖L1
tL

2+(1+ν2j)

(
‖∆̇jq‖L∞

t L2 + νmin(
1

ε2
, 22j)‖∆̇jq‖L1

tL
2

)

(3.39)
and

U(t) = ‖u‖L̃∞
t Ḃs−1

2,1
+‖q‖L̃∞

t Ḃs−1
2,1

+ν‖q‖L̃∞
t Ḃs

2,1
+ν0‖u‖L̃1

t Ḃ
s+1
2,1

+ν‖q‖L̃1
t Ḃ

s+1,s−1
ε

+ν2‖q‖L̃1
t Ḃ

s+2,s
ε

.

(3.40)

Using estimates (3.35), (3.36), (3.37), (3.38) in (3.33) (and the fact that Ḃ
d
2
2,1 →֒ L∞, see

appendix), we obtain that there exists a nonnegative summable sequence whose sum is
1, denoted by (cj(t))j∈Z such that for all j ≤ 0,

Uj(t) ≤ C
p, ν

2

4κ

[
Uj(0) + (1 + ν2j)‖∆̇jF‖L1

tL
2 + ‖∆̇jG‖L1

tL
2

+
1

2K
2−j(s−1)

∫ t

0
cj(τ)

(
ν0‖u‖Ḃs+1

2,1
+ ν‖q‖

Ḃs+1,s−1
ε

+ ν2‖q‖
Ḃs+2,s

ε

)
dτ

+ C2K

2
2−j(s−1)

∫ t

0
cj(τ)

(
(
max(1,

1

ν3
) +

1

ν0

)
‖v(τ)‖2

Ḃ
d
2
2,1

+C‖v(τ)‖
Ḃ

d
2+1

2,1

)
U(τ)dτ

]
.

(3.41)
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When j > 0 we are not able to estimate the problematic term Ṫv∇q with this method.
The key idea is to get rid of every advection term using a Lagrangian change of variable
as in [24] to [27], [15] and [6]. This is the main difficulty of the article and the object of
the following section.

3.2 Lagrangian change of coordinates

As stated before, the aim of this part is to get rid of the advection terms involved in
system (LRε). Let us first consider the localized equations (as usual we set fj = ∆̇jf ...)
written in the following way:




∂tqj + Ṡj−1v.∇qj + div uj = fj,

∂tuj + Ṡj−1v.∇uj −Auj + p∇qj −
κ

ε2
∇(φε ∗ qj − qj) = gj ,

where the external force terms are defined by:

fj = Fj +
(
Ṡj−1v.∇qj − ∆̇j(v.∇q)

)
and gj = Gj +

(
Ṡj−1v.∇uj − ∆̇j(v.∇u)

)
.

These two terms can be estimated thanks to the following commutator estimate from
[15] (we refer to lemma B.1 from appendix B):

Lemma 1 ([15]) There exists a sequence (cj)j∈Z ∈ l1(Z) such that ‖c‖l1(Z) = 1 and a
constant C = C(d, σ) such that for all j ∈ Z,

‖Ṡj−1v.∇hj − ∆̇j(v.∇h)‖L2 ≤ Ccj2
−jσ‖∇v‖

Ḃ
d
2
2,∞∩L∞

‖h‖Ḃσ
2,1

Remark 18 Let us emphasize that we considered, up to adding external force terms
that we can control (fj and gj), the advection by the low frequencies of v, that is exactly
the quantities that we were not able to deal with.

Let us set ψj,t as the flow associated to Ṡj−1v:

{
∂tψj,t(x) = Ṡj−1v(t, ψj,t(x))

ψj,0(x) = x.
(3.42)

we can also write:

ψj,t(x) = x+

∫ t

0
Ṡj−1v(τ, ψj,τ (x))dτ.

Thanks to propositions 14 and 15 from the appendix (we refer to [15] or [6]), there exists
a constant C such that:

‖g ◦ ψj,t‖Lp ≤ eCV ‖g‖Lp for all function g in Lp,

‖Dψ±
j,t‖L∞ ≤ eCV ,

‖Dψ±
j,t − Id‖L∞ ≤ eCV − 1,

‖Dkψ±
j,t‖L∞ ≤ C2(k−1)j

(
eCV − 1

)
for k ≥ 2,

(3.43)
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where

V (t)
def
=

∫ t

0
‖∇v(τ)‖L∞dτ. (3.44)

Let us also emphasize that in the present case, the jacobian determinant of the change
of variable will play a crucial role in the obtention of uniform estimates with respect to
ε (contrary to the case of lemma 2.6 from [3] where it produces a term that we are not
able to sum):
{
det(Dψj,t(x)) = e

∫ t

0
(div Ṡj−1v)(τ,ψj,τ(x))dτ ,

det(Dψ−1
j,t (x)) = e−

∫ t
0 (div Ṡj−1v)(τ,Xj (τ,t,x))dτ = e−

∫ t

0
(div Ṡj−1v)(τ,ψj,τ ◦ψ−1

j,t (x))dτ ,
(3.45)

where Xj(τ, t, x)) denotes the two parameter flow associated to Ṡj−1v (we refer to (4.126)
in the appendix).

We will now perform the announced change of variable, for a function h, let us define
h̃ = h ◦ ψj,t = h(t, ψj,t). Then we have ∂tq̃j(t, x) = (∂tqj + Ṡj−1v.∇qj)(t, ψj,t(x)), which
provides the following system:




∂tq̃j + div ũj = f̃j +R1

j ,

∂tũj −Aũj + p∇q̃j −
κ

ε2
∇(φε ∗ q̃j − q̃j) = g̃j +R2

j +R3
j + κRj ,

(3.46)

where most of the remainder terms R1
q , R

2
q and R3

q are exactly the same as in [6] (with

the same convention: if f : Rd → Rm is a differentiable function then Df denotes the
Jacobian matrix of f, and ∇f is the transposed matrix of Df.):

R1
j (t, x) := Tr

(
∇ũj(t, x) · (Id −∇ψ−1

j,t (ψj,t(x)))
)
,

R2
j (t, x) := ∇q̃j(t, x) · (∇ψ−1

j,t (ψj,t(x))− Id)

and R3
j := µR4

j + (λ+ µ)R5
j with

R4,i
j (t, x) := Tr

(
(∇ψ−1

j,t (ψj,t(x)) − Id) · ∇Dũij(t, x) ·Dψ−1
j,t (ψj,t(x))

+∇Dũij(t, x) · (Dψ−1
j,t (ψj,t(x))− Id)

)
+∇ũij(t, x) ·∆ψ−1

j,t (ψj,t(x))

R5,k
j (t, x) := Tr

(
Dũj(t, x) · ∂kDψ−1

j,t (ψj,t(x))
)

+
∑

a,b,c,b6=a,c 6=k
∂2bcũ

i
j(t, x) · ∂kψ−1,c

j,t (ψj,t(x)) · ∂aψ−1,b
j,t (ψj,t(x))

+

d∑

i=1

∂2kiũ
i
j(t, x) ·

(
∂kψ

−1,k
j,t (t, ψj,t(x))− Id) · ∂iψ−1,i

j,t (t, ψj,t(x)) + (∂iψ
−1,i
j,t (ψj,t(x))− Id)

)
.

There is only one additionnal remainder term compared to [6]:

Rj =
φε ∗ ∇qj −∇qj

ε2
◦ ψj,t −

φε ∗ ∇q̃j −∇q̃j
ε2

. (3.47)

Thanks to the definition of φε and φ we obtain that:

φε ∗ f − f

ε2
=

1

ε2

∫

Rd

φ(z) (f(x− εz) − f(x)) dz (3.48)
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and the difficulty comes from the fact that we need to obtain bounds in L1
tL

2 that are
uniform with respect to ε, that go to zero when t is small (estimated by eCV (t) − 1),
and that do not involve too many derivatives (that is 2σj) for the density fluctuation
in high frequencies. Remember that formally ”φε∗f−f

ε2
→ ∆f” so we formally have

”Rj → ∆qj ◦ ψj,t −∆(qj ◦ ψj,t)”: this term has no reason to be small in ε and the best
we can hope is to get uniform bounds with respect to ε.

Dealing with Rj is the object of the rest of this section.

3.3 Precisions on the capillary term

Before dealing with Rj let us briefly go back in this section to the convolution term
written in (3.48): for a function f ,

̂φε ∗ f − f

ε2
(ξ) = −1− e−ε

2|ξ|2

ε2
f̂(ξ).

Proposition 7 For any suitable function f and any s ∈ R, the following two norms are
equivalent:

‖f‖Ḃs+2,s
ε

∼ ‖φε ∗ f − f

ε2
‖Ḃs

2,1
. (3.49)

Proof: When we consider a frequency localization of f : if j ∈ Z,

̂φε ∗ ∆̇jf − ∆̇jf

ε2
(ξ) = −1− e−ε

2|ξ|2

ε2
̂̇∆jf(ξ),

and thanks to the Plancherel formula,

‖φε ∗ ∆̇jf − ∆̇jf

ε2
‖2L2 = C

∫

2jC

(
1− e−ε

2|ξ|2

ε2

)2

|̂̇∆jf(ξ)|2dξ.

Thanks again to the fact that on R+, g : x 7→ 1−e−x is increasing and h : x 7→ (1−e−x)/x
is decreasing, if c02

j ≤ |ξ| ≤ C02
j , we can write:

1− e−c
2
0ε

222j

ε2
≤ 1− e−ε

2|ξ|2

ε2
≤ 1− e−C

2
0ε

222j

ε2
,

and
c20
C2
0

1− e−C
2
0ε

222j

ε2
≤ 1− e−ε

2|ξ|2

ε2
≤ C2

0

c20

1− e−c
2
0ε

222j

ε2
.

therefore

‖∆̇j
φε ∗ f − f

ε2
‖L2 ∼ 1− e−c

2
0ε

222j

ε2
‖∆̇lf‖L2 .

Remark 19 Obviously we can replace c0 by any positive constant.

On the other hand, it will be useful to compare 1−e−c20ε
222j

ε2
and min( 1

ε2
, 22j).
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• If 2j ≥ 1
ε2

then 2jε2c20 ≥ c20 and as function g is increasing and bounded from above
by 1:

1− e−c
2
0

ε2
≤ 1− e−c

2
0ε

222j

ε2
≤ 1

ε2
= min(

1

ε2
, 22j). (3.50)

• If 2j ≤ 1
ε2 then 2jε2c20 ≤ c20 and as function h is decreasing as for all x ≥ 0,

0 < h(x) ≤ 1 we have:

1− e−c
2
0

c20
≤ 1− e−c

2
0ε

222j

ε2c202
2j

≤ 1,

and

(1− e−c
2
0)22j ≤ 1− e−c

2
0ε

222j

ε2
≤ c202

2j = c20 min(
1

ε2
, 22j). (3.51)

From (3.50) and (3.51), we deduce that for all j ∈ Z:

(1− e−c
2
0)min(

1

ε2
, 22j) ≤ 1− e−c

2
0ε

222j

ε2
≤ max(1, c20)min(

1

ε2
, 22j),

and

‖φε ∗ ∆̇jf − ∆̇jf

ε2
‖L2 ∼ min(

1

ε2
, 22j)‖∆̇lf‖L2 .

Multiplying by 2js and summing over j ∈ Z, we obtain that

‖φε ∗ f − f

ε2
‖Ḃs

2,1
∼ ‖f‖Ḃs+2,s

ε
. �

Remark 20 This new formulation seems more natural than (1.1) as instead of a fixed
frequency threshold there is a continuous transition zone between the parabolically reg-
ularized frequencies and the damped frequencies.

Remark 21 Notice that the norm obtained by replacing φ̂(ξ) = e−|ξ|2 by e−α|ξ|
2
is

equivalent (the multiplicative constants depending on α).

Remark 22 Our space is a particular case of the general hybrid Besov spaces introduced

by R. Danchin (see [11, 3]): we refer to the appendix for the fact that Ḃs+2,s
ε ∼ B̃

s, 2
3

ε .

Remark 23 In the Lr-setting, we can prove that for all j ∈ Z:

‖φε ∗ ∆̇jf − ∆̇jf

ε2
‖Lr ≤ Cmin(

1

ε2
, 22j)‖∆̇lf‖Lr .
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3.4 Estimates on the capillary term

In this section we wish to focus on the capillary term:

Rj =
φε ∗ ∇qj −∇qj

ε2
◦ ψj,t −

φε ∗ ∇q̃j −∇q̃j
ε2

.

Thanks to

∇q̃j = ∇(qj ◦ ψj,t) = ∇qj ◦ ψj,t ×Dψj,t = ∇qj ◦ ψj,t × (Dψj,t − Id) +∇qj ◦ ψj,t,

we obtain the following decomposition: Rj = Ij + IIj with





Ij =
φε ∗ gj − gj

ε2
where gj = ∇qj ◦ ψj,t × (Id −Dψj,t),

IIj =
φε ∗ ∇qj −∇qj

ε2
◦ ψj,t −

φε ∗ (∇qj ◦ ψj,t)−∇qj ◦ ψj,t
ε2

.

(3.52)

The main difficulty of this paper is then clearly established and consists in estimating
(locally in frequency) the commutator between the Lagrangian change of variable and
the non-local operator:

Lε(f) =
φε ∗ f − f

ε2
=

1

ε2

∫

Rd

φ(z) (f(x− εz)− f(x)) dz.

For a function f , and for all j ∈ Z we set fj = ∆̇jf and:

II ′j = II ′j(f) =
φε ∗ fj − fj

ε2
◦ ψj,t −

φε ∗ (fj ◦ ψj,t)− fj ◦ ψj,t
ε2

. (3.53)

Theorem 5 Let σ ∈ R. There exists a constant C = Cσ,d such that for all f ∈ Ḃσ+2,σ
ε ,

there exists a summable positive sequence (cj(f))j∈Z whose sum is 1 such that for all t
so small that

e2CV − 1 ≤ 1

2
. (3.54)

and for all j ∈ Z,

‖II ′j(f)‖L2 ≤ CeCV (V + e2CV − 1)cj(f)2
−jσ‖φε ∗ f − f

ε2
‖Ḃσ

2,1
,

where V (t) =
∫ t
0 ‖∇v(τ)‖L∞dτ .

Remark 24 As a by-product we obtain that under the previous assumptions, if t is
small enough,

1

ε2
‖(φε ∗∆̇jf)◦ψj,t−φε∗(∆̇jf ◦ψj,t)‖L2 ≤ CeCV (V +e2CV −1)cj(f)2

−jσ‖φε ∗ f − f

ε2
‖Ḃσ

2,1

even if neither of the left-hand side terms are spectrally localized.
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Proof: Let us first rewrite the non-local operator:

Lε(f)(x) =
φε ∗ f − f

ε2
(x) =

1

ε2

∫

Rd

φε(x− y) (f(y)− f(x)) dy. (3.55)

In the works of T. Hmidi, S. Keraani, H. Abidi, M. Zerguine (we refer to [24], [25], [26]
and [27]) the key idea is to express the difference II ′j as an integral formulation and
try to retrieve the desired Besov norm thanks to an equivalent expression of this norm
involving finite differences of f of order 1 (that is expressions of the type τ−yf − f where
τ−yf(x) = f(x+ y)) or order 2.

Remark 25 Due to the equivalent forms of our hybrid norm, it would be useless here
to simplify the expression of II ′j(f) and write II ′j =

1
ε2 ((φε ∗ fj) ◦ ψj,t − φε ∗ (fj ◦ ψj,t)).

We refer to the following results of [3] for these useful alternative characterizations of
Besov norms (we also refer to proposition 1.37 with a simpler proof in the specific case
of Sobolev spaces):

Theorem 6 ([3], 2.36) Let s ∈]0, 1[ and p, r ∈ [1,∞]. There exists a constant C such
that for any u ∈ C′

h,

C−1‖u‖Ḃs
p,r

≤ ‖‖τ−yu− u‖Lp

|y|s ‖
Lr(Rd; dy

|y|d
)
≤ C‖u‖Ḃs

p,r
.

and in the case where s = 1,

Theorem 7 ([3], 2.37) Let p, r ∈ [1,∞]. There exists a constant C such that for any
u ∈ C′

h,

C−1‖u‖Ḃ1
p,r

≤ ‖‖τ−yu+ τyu− 2u‖Lp

|y| ‖
Lr(Rd; dy

|y|d
)
≤ C‖u‖Ḃ1

p,r
.

Remark 26 We emphasize that in the second case, when the regularity index s is an
integer, we have to use finite differences of order 2 instead of order 1. In the present
article, due to the capillary term we will have to completely rewrite these results.

For example, in [25], the authors need to estimate in Lp the commutator |D|α(f ◦ ψ) −
(|D|αf)◦ψ in terms of the Ḃα

p,1-norm of f (with α ∈]0, 1[), where ψ is the flow associated
to a divergence-free vectorfield. To do so they write both terms in the commutator in
a unified shape and manage to get the result thanks to a non-local expression of the
fractionnal derivative:

|D|αf(x) = Cα

∫

Rd

f(x)− f(y)

|x− y|d+α dy,

and thanks to an equivalent expression of the Besov norm, using finite differences of
order 1. Let us emphasize that in this case, the vectorfield is divergence-free therefore
the Jacobian determinant of ψ is 1, which simplifies the estimates.

In our case, we have to estimate II ′j which is a commutator between the non-local
operator Lε and the Lagrangian change of variable. Our operator is still non-local but the
vectorfield is not incompressible anymore, and more important, we will have to construct
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an analogous of the finite difference expression of our hybrid Besov norm. As the Jacobian
determinant of ψj,t is not constant we cannot use the following estimate, used in [24],
[25], which is due to Vishik (see [37] in the divergence-free case):

‖∆̇l(∆̇ja ◦ ψ)‖Lp ≤ C2−|j−l|‖∇ψsign(j−l)‖L∞ · ‖∆̇ja‖Lp (3.56)

In the non measure-preserving case we can recall the following result:

Lemma 2 ([3] lemma 2.6) There exists a constant C > 0 such that for all global diffeo-
morphism of Rd ψ, for all p ≥ 1, for all tempered distribution a, and for all j, l ∈ Z, we
have

‖∆̇l(∆̇ja ◦ ψ)‖Lp ≤ C2−j‖Jψ−1‖L∞‖∆̇ja‖Lp(‖∇Jψ−1‖L∞‖Jψ‖L∞ + 2l‖∇ψ‖L∞).

Using this result in our non measure-preserving case involves an additionnal term (due
to the Jacobian determinant) that we are not able to deal with (indeed, the first term
in our case is not summable in l). On the other hand, we cannot hope to use a better
estimate than the following one, that is small when t is small but consumes too many
derivatives:

‖fj(ψj,t(.))− fj(.)‖L2 ≤ CV (t)2j‖fj‖L2

To bypass this difficulty we will simply write directly the expression in the Lagrangian
variable and precisely trace the Jacobian determinant. Let us go back to our estimate:

II ′j(x) =
1

ε2

( ∫

Rd

φε(ψj,t(x)− y) (fj(y)− fj(ψj,t(x))) dy

−
∫

Rd

φε(x− y) (fj(ψj,t(y))− fj(ψj,t(x))) dy
)
. (3.57)

Let us now study II ′j(ψ
−1
j,t (x)) instead of II ′j(x):

II ′j(ψ
−1
j,t (x)) =

1

ε2

(∫

Rd

φε(x− y) (fj(y)− fj(x)) dy

−
∫

Rd

φε(ψ
−1
j,t (x)− y) (fj(ψj,t(y))− fj(x)) dy

)
. (3.58)

Performing in the second integral the change of variable y = ψ−1
j,t (z), we obtain:

∫

Rd

φε(ψ
−1
j,t (x)− y) (fj(ψj,t(y))− fj(x)) dy

=

∫

Rd

φε(ψ
−1
j,t (x)− ψ−1

j,t (z)) (fj(z) − fj(x)) |detDψ−1
j,t (z)|dz (3.59)

Thanks to (3.45) we have (recall that Xj is the two-parameter flow associated to Ṡj−1v:
Xj(τ, t, z) = ψj,τ ◦ ψ−1

j,t (z)):

det(Dψ−1
j,t (z)) = e

−
∫ t

0
(div Ṡj−1v)(τ,Xj(τ, t, z))dτ

,
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so that

II ′j(ψ
−1
j,t (x)) =

1

ε2

(∫

Rd

φε(x− y) (fj(y)− fj(x)) .


1−

φε
(
ψ−1
j,t (x)− ψ−1

j,t (y)
)

φε(x− y)
e
−
∫ t

0
(div Ṡj−1v)(τ,Xj(τ, t, y))dτ


 dy

)
. (3.60)

Recall that for all x ∈ Rd, φε(x) = 1
(2πε)d

e−
|x|2

4ε2 and perform the change of variable

z = x−y
ε , we obtain:

II ′j(ψ
−1
j,t (x)) =

1

(2π)dε2

(∫

Rd

e
−|y|2

4 (fj(x− εy)− fj(x)) .


1− e

|y|2
4

(
1−

|ψ−1
j,t (x)− ψ−1

j,t (x− εy)|2

ε2|y|2

)

e
−
∫ t

0
(div Ṡj−1v)(τ,Xj(τ, t, x − εy))dτ


 dy

)
.

(3.61)

As we want to estimate the L2 norm of this quantity, that is a Besov norm with integer
regularity index s = 0, the finite difference of order 1 will not be sufficient for our need,
and we will have to introduce finite differences of order 2. Indeed, using the present
quantity would only involve a term in ε|y| and when estimating in low frequencies, there
would be either a multiplicative coefficient 1/ε or an additionnal derivative term 2−j (that
would prevent any convergence when −j is large). To be able to do a correct estimate
we need at least ε2|y|2.

To do this we simply write II ′j = 1
2(II

′
j + II ′j), and perform the change of variable

z = −y in the second integral. If we set:





A =
|y|2
4

(
1−

|ψ−1
j,t (x)− ψ−1

j,t (x− εy)|2

ε2|y|2

)
,

B = −
∫ t

0
(div Ṡj−1v)(τ,Xj(τ, t, x − εy))dτ,

C =
|y|2
4

(
1−

|ψ−1
j,t (x)− ψ−1

j,t (x+ εy)|2

ε2|y|2

)
,

D = −
∫ t

0
(div Ṡj−1v)(τ,Xj(τ, t, x+ εy))dτ,

(3.62)
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then

II ′j(ψ
−1
j,t (x)) =

1

2(2π)dε2

(∫

Rd

e
−|y|2

4 (fj(x− εy)− fj(x))
[
1− eAeB

]
dy

+

∫

Rd

e
−|y|2

4 (fj(x+ εy)− fj(x))
[
1− eCeD

]
dy

)

= IIIj + IVj . (3.63)

where




IIIj =
1

2(2π)dε2

∫

Rd

e
−|y|2

4 (fj(x− εy) + fj(x+ εy)− 2fj(x))
[
1− eAeB

]
dy,

IVj =
1

2(2π)dε2

∫

Rd

e
−|y|2

4 (fj(x+ εy)− fj(x))
[
eAeB − eCeD

]
dy.

(3.64)

Remark 27 Even if there is only a finite difference of degree 1 in the second term, we
will be able to get correct estimates thanks to the coefficient eAeB − eCeD.

We will make an extensive use of the following elementary consequence of the mean-value
theorem:

Lemma 3 For any x, y ∈ R, |ex − ey| ≤ |x− y|emax(x,y).

Let us begin with IIIj:

Proposition 8 Under the previous assumptions, there exist a positive constant C = Cσ,d
and a nonnegative sequence (cj = cj(f))j∈Z whose summation is 1, such that if t is so
small that e2CV (t) − 1 ≤ 1

2 , we have:

‖IIIj‖L2 ≤ C(V + e2CV − 1)eCV 2−jσcj‖
φε ∗ f − f

ε2
‖Ḃσ

2,1
.

To prove this result we will successively prove the following lemmas:

Lemma 4 There exists a constant C such that for all j ∈ Z, f , and all t is so small that
e2CV (t) − 1 ≤ 1

2 ,

‖IIIj‖L2 ≤ 1

2(2π)d
(V + e2CV − 1)eCV

× 1

ε2

∫

Rd

e−
|y|2

16 ‖fj(.− εy) + fj(.+ εy)− 2fj(.)‖L2dy, (3.65)

where V is defined in (3.44).
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Lemma 5 For all σ ∈ R there exists a constant Cσ,d such that for any f ∈ Ḃσ
2,1, there

exists a nonnegative summable sequence (cj(f))j∈Z with ‖cj(f)‖l1(Z) = 1, such that

1

ε2

∫

Rd

e−
|y|2

16 ‖fj(.− εy) + fj(.+ εy)− 2fj(.)‖L2dy

≤ Cσ,d2
−jσcj(f)‖

φε ∗ f − f

ε2
‖Ḃσ

2,1
. (3.66)

Proof of lemma 4: we only need to estimate with lemma 3 the following decomposition
of the coefficient appearing in IIIj :

1− eAeB = 1− eB + eB(1− eA).

The first estimate is straightforward: as |B| ≤ C
∫ t
0 ‖∇Ṡj−1v(τ)‖L∞dτ ≤ CV (t),

|1− eB | ≤ |B|e|B| ≤ CV (t)eCV (t). (3.67)

Before estimating the second term, as in the work of T. Hmidi and S. Keraani ([25]) we
need to give a precise bound for the variation ratio of the flow:

Lemma 6 Under the same assumptions, for all x, y ∈ Rd with y 6= 0, we have:
∣∣∣∣∣
|ψ−1
j,t (x)− ψ−1

j,t (x− εy)|2

ε2|y|2 − 1

∣∣∣∣∣ ≤ e2CV (t) − 1.

Proof: For all x 6= y ∈ Rd, thanks to (3.43),

|ψ−1
j,t (x)− ψ−1

j,t (y)|
|x− y| ≤ ‖Dψ−1

j,t ‖L∞ ≤ eCV (t).

Similarly, for all x 6= y ∈ Rd,

|ψj,t(x)− ψj,t(y)|
|x− y| ≤ ‖Dψj,t‖L∞ ≤ eCV (t).

and applying it at ψ−1
j,t (x) and ψ

−1
j,t (y),

|x− y|
|ψ−1
j,t (x)− ψ−1

j,t (y)|
≤ eCV (t),

so that we get that for all x and y 6= 0,

−e−2CV (t)(e2CV (t) − 1) = e−2CV (t) − 1 ≤
|ψ−1
j,t (x)− ψ−1

j,t (x− εy)|2

ε2|y|2 − 1 ≤ e2CV (t) − 1

in other words,

−1 ≤ −e−2CV (t) ≤ 1

e2CV (t) − 1

(
|ψ−1
j,t (x)− ψ−1

j,t (x− εy)|2

ε2|y|2 − 1

)
≤ 1
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that is exactly the announced result. �
Coming back to lemma 4 and thanks to lemma 3, we immediately get that:

eB |1− eA| ≤ e|B|e|A||A| ≤ eCV (t)e

|y|2
4

(e2CV (t) − 1) |y|2
4

(e2CV (t) − 1). (3.68)

Gathering (3.67) and (3.68), we get

‖1− eAeB‖L∞
x

≤ eCV (t)


CV (t) + e

|y|2
4

(e2CV (t) − 1) |y|2
4

(e2CV (t) − 1)


 .

so that, taking the L2
x-norm in the expression of IIIj from (3.64), we obtain:

‖IIIj‖L2
x
≤ 1

2(2π)dε2

∫

Rd

e
−|y|2

4 ‖fj(.− εy) + fj(.+ εy)− 2fj(.)‖L2‖1− eAeB‖L∞dy,

≤ 1

2(2π)dε2

∫

Rd

eCV (t)

(
CV (t)e−

|y|2

4 +
|y|2
4
e−

|y|2

4 e
|y|2

4
(e2CV (t)−1)(e2CV (t) − 1)

)

× ‖fj(.− εy) + fj(.+ εy)− 2fj(.)‖L2
x
dy. (3.69)

Assume that t is so small that e2CV (t) − 1 ≤ 1
2 , then (using again that for all x ≥ 0,

xe−x ≤ 2
ee

−x/2)
|y|2
4
e−

|y|2

4 e
|y|2

4
(e2CV (t)−1) ≤ |y|2

4
e−

|y|2

8 ≤ 4

e
e−

|y|2

16 ,

which ends the proof of lemma 4. �

Remark 28 Similarly, writing Lε(fj) =
1
2 (Lε(fj) + Lε(fj)) and performing the change

of variable z = −y in the second term lead to:

Lε(fj) =
1

2(2π)dε2

∫

Rd

e
−|y|2

4 (fj(x− εy) + fj(x+ εy)− 2fj(x)) dy,

taking the L2
x-norm we obtain that:

‖φε ∗ fj − fj
ε2

‖L2 ≤ 1

2(2π)dε2

∫

Rd

e
−|y|2

4 ‖fj(.− εy) + fj(.+ εy)− 2fj(.)‖L2dy,

and as τα(∆̇jf) = ∆̇j(ταf) (which is localized in frequency), we immediately get that:

‖φε ∗ f − f

ε2
‖Ḃσ

2,1
≤ C

ε2

∫

Rd

e
−|y|2

16 ‖f(.− εy) + f(.+ εy)− 2f(.)‖Ḃσ
2,1
dy.

On the other hand, lemma 5 gives the reverse estimate so that:

‖q‖
Ḃσ+2,σ

ε
∼ 1

ε2

∫

Rd

e
−|y|2

16 ‖f(.− εy) + f(.+ εy)− 2f(.)‖Ḃσ
2,1
dy.
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Proof of lemma 5: let us adapt the proof of [3] (th 2.36 and 2.37). As fj = ∆̇jf , we
can write that for all x and y,

fj(x− εy) + fj(x+ εy)− 2fj(x) =
(
τ−εy∆̇jf + τεy∆̇jf − 2∆̇jf

)
(x)

and as in the proof of theorem 2.37 from [3], thanks twice to the mean value theorem,
we get that:

‖τ−εy∆̇jf + τεy∆̇jf − 2∆̇jf‖L2 ≤ C22jε2|y|2
∑

|j′−j|≤1

‖∆̇j′f‖L2 ,

and thanks to the definition of the hybrid Besov norm ‖φε∗f−fε2 ‖Ḃσ
2,1

= ‖f‖Ḃσ+2,σ
ε

, there

exists a nonnegative summable sequence (whose summation is 1) (cj)j∈Z such that:

‖τ−εy∆̇jf + τεy∆̇jf − 2∆̇jf‖L2 ≤ C22jε2|y|2
∑

|j′−j|≤1

2−j
′σcj′

min( 1
ε2
, 22j′)

‖φε ∗ f − f

ε2
‖Ḃσ

2,1
.

Moreover
1

min( 1
ε2
, 22j′)

=
1

min( 1
ε2
, 22j)

max(ε2, 2−2j′)

max(ε2, 2−2j)
,

and thanks to the following result,

Lemma 7 ([11], Proposition 5.3) Let α > 0, a, b ∈ R. Then we have

max(α, 2−a)
max(α, 2−b)

≤
{
1 if a ≥ b,

2b−a if a ≤ b.

as |j′ − j| ≤ 1, we obtain that:

1

min( 1
ε2
, 22j′)

≤ 2
1

min( 1
ε2
, 22j)

,

so there exists a nonnegative summable sequence of summation 1, that we will also denote
by (cj)j∈Z, such that:

‖τ−εy∆̇jf + τεy∆̇jf − 2∆̇jf‖L2 ≤ Cσ2
2jε2|y|22−jσcj max(ε2, 2−2j)‖φε ∗ f − f

ε2
‖Ḃσ

2,1
.

On the other hand, we can also roughly write:

‖τ−εy∆̇jf + τεy∆̇jf − 2∆̇jf‖L2 ≤ 3‖∆̇jf‖L2 ≤ C2−jσcj max(ε2, 2−2j)‖φε ∗ f − f

ε2
‖Ḃσ

2,1
.

Combining the last two estimates, if we define jεy ∈ Z the unique integer satisfying
1 ≤ ε|y|2jεy < 2 (that is ε|y|2jεy ∼ 1) , we get the following statement:

‖τ−εy∆̇jf + τεy∆̇jf − 2∆̇jf‖L2 ≤ Cσ2
−jσcj max(ε2, 2−2j)‖φε ∗ f − f

ε2
‖Ḃσ

2,1

×
{
22jε2|y|2 if ε|y|2j < 1 (j < jεy)

1 if ε|y|2j ≥ 1 (j ≥ jεy).
(3.70)

36



We can now prove lemma 5: let us follow the proof from [3] and begin by splitting the
integral:

1

ε2

∫

Rd

e−
|y|2

16 ‖fj(.− εy) + fj(.+ εy)− 2fj(.)‖L2dy

≤ 1

ε2

(
22jε2

∫

ε|y|2j<1
|y|2e−

|y|2

16 dy +

∫

ε|y|2j≥1
e−

|y|2

16 dy

)

× Cσ2
−jσcj max(ε2, 2−2j)‖φε ∗ f − f

ε2
‖Ḃσ

2,1
(3.71)

We have:

∫

|y|< 1

ε2j

|y|2e−
|y|2

16 dy = C

∫ 1

ε2j

0
r2e−

r2

16 rd−1dr ≤ Cd

∫ 1

ε2j

0
re−

r2

32 dr = Cd(1− e
− 1

32ε222j )

≤ Cdmin(1,
1

ε222j
). (3.72)

Similarly,

∫

|y|≥ 1

ε2j

e−
|y|2

16 dy = C

∫ ∞

1

ε2j

e−
r2

16 rd−1dr ≤ Cd

∫ ∞

1

ε2j

re−
r2

32 dr = Cde
− 1

32ε222j . (3.73)

Plugging this into (3.71), we obtain that:

1

ε2

∫

Rd

e−
|y|2

16 ‖fj(.− εy) + fj(.+ εy)− 2fj(.)‖L2dy

≤ Cσ2
−jσcj max(1,

1

ε222j
)‖φε ∗ f − f

ε2
‖Ḃσ

2,1
Cd

(
22jε2 min(1,

1

ε222j
) + e−

1

32ε222j

)

≤ Cσ,d2
−jσcj‖

φε ∗ f − f

ε2
‖Ḃσ

2,1
(R1 +R2) , (3.74)

where 


R1 = 22jε2 min(1,

1

ε222j
)max(1,

1

ε222j
) = 1,

R2 = max(e
− 1

32ε222j ,
1

ε222j
e
− 1

32ε222j ) ≤ max(1, Ce
− 1

64ε222j ) ≤ C,

which ends the proof of lemma 5. �
Lemmas 4 and 5 immediately imply proposition 8, and we can now turn to IVj:

Proposition 9 Under the same assumptions, there exist a positive constant C = Cσ,d
and a nonnegative summable sequence (cj = cj(f))j∈Z whose sum is 1, such that if t is
so small that e2CV (t) − 1 ≤ 1

2 , we have:

‖IVj‖L2 ≤ Cσ,d(V + eCV − 1)eCV 2−jσcj‖
φε ∗ f − f

ε2
‖Ḃσ

2,1
.

To prove this result we will prove the following lemmas:
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Lemma 8 There exists a constant C such that for all j ∈ Z, f , and all t so small that
e2CV (t) − 1 ≤ 1

2 ,

‖IVj‖L2 ≤ 1

(2π)d
(V + eCV − 1)eCV

× 1

ε2

∫

Rd

min(1, ε2j |y|)e−
|y|2

16 ‖fj(.+ εy)− fj(.)‖L2dy, (3.75)

where V is defined in (3.44).

Lemma 9 For all σ ∈ R there exists a constant Cσ,d such that for any f ∈ Ḃσ
2,1, there

exists a nonnegative summable sequence (cj(f))j∈Z with ‖cj(f)‖l1(Z) = 1, such that

1

ε2

∫

Rd

min(1, ε2j |y|)e−
|y|2

16 ‖fj(.+ εy)− fj(.)‖L2dy

≤ Cσ,d2
−jσcj(f)‖

φε ∗ f − f

ε2
‖Ḃσ

2,1
. (3.76)

Proof of lemma 8: as announced here we can only rely on a finite difference of order 1,
and we need to carefully estimate the following coefficient to obtain summable sequences
in low frequencies:

eAeB − eCeD = eB(eA − eC) + eC(eB − eD).

Let us begin with the second term: thanks to lemma 3 (we refer to (3.62) for the expres-
sions of the various terms involved),

|eB − eD| ≤ emax(|D|,|B|)|D −B| ≤ emax(|D|,|B|)(|D|+ |B|)

≤ 2eCV
∫ t

0
‖div Ṡj−1(τ)‖L∞dτ ≤ 2V eCV . (3.77)

and then,

eC |eB − eD| ≤ 2e

|y|2
4

(e2CV (t) − 1)
V eCV . (3.78)

This estimate is useful only for high frequencies: indeed for the low frequency regime,
as in the proof of proposition 8, after integration with respect to y, the result won’t be
summable when j goes to −∞. In order to get a suitable estimate for low frequencies,
let us use once again the elementary mean value theorem:

|eB − eD| ≤ emax(|D|,|B|)|D −B|

≤ eCV (t)

∣∣∣∣
∫ t

0

(
div Ṡj−1v(τ,Xj(τ, t, x+ εy))− div Ṡj−1v(τ,Xj(τ, t, x− εy))

)
dτ

∣∣∣∣

≤ eCV (t)

∫ t

0
2ε|y|‖∇

(
div Ṡj−1v(τ,Xj(τ, t, .))

)
‖L∞dτ. (3.79)
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Obviously:

∇
(
div Ṡj−1v(τ,Xj(τ, t, z))

)
= ∇div Ṡj−1v(τ,Xj(τ, t, z)) ×DXj(τ, t, z)),

so that, thanks to the Bernstein lemma (we refer to the appendix), (3.43) and (3.45):

‖∇
(
div Ṡj−1v(τ,Xj(τ, t, .))

)
‖L∞ ≤ ‖∇div Ṡj−1v(τ,Xj(τ, t, .))‖L∞‖DXj(τ, t, .))‖L∞

≤ ‖∇div Ṡj−1v(τ)‖L∞eCV (t) ≤ 2j‖∇v(τ)‖L∞eCV (t), (3.80)

and

|eB − eD| ≤ e2CV 2ε2j |y|
∫ t

0
‖∇v(τ)‖L∞dτ ≤ e2CV 2ε2j |y|V (t). (3.81)

Combining (3.78) and (3.81) we end up with the better estimate:

eC |eB − eD| ≤ Ce

|y|2
4

(e2CV (t) − 1)
eCV V (t)min(1, ε2j |y|), (3.82)

which now can be used for all frequency. The same has to be done for the other term:
rough estimates first imply that

|eA − eC | ≤ emax(|A|,|C|)2max(|A|, |C|) ≤ 2e

|y|2
4

(e2CV (t) − 1) |y|2
4

(e2CV (t) − 1). (3.83)

And more precisely (needed later for the low frequencies convergence), we write that:

|eA − eC | ≤ e

|y|2
4

(e2CV (t) − 1)
|F |, (3.84)

with

F =
|y|2
4

(
|ψ−1
j,t (x)− ψ−1

j,t (x+ εy)|2

ε2|y|2 −
|ψ−1
j,t (x)− ψ−1

j,t (x− εy)|2

ε2|y|2

)

=
1

4ε2

(
|ψ−1
j,t (x)− ψ−1

j,t (x+ εy)|2 − |ψ−1
j,t (x)− ψ−1

j,t (x− εy)|2
)
. (3.85)

Thanks to the identity |a|2 − |b|2 = (a+ b|a− b), where (.|.) is the usual scalar product
in Rd, we get:

|F | = 1

4ε2

∣∣∣
(
2ψ−1

j,t (x)− ψ−1
j,t (x+ εy)− ψ−1

j,t (x− εy)
∣∣∣ψ−1
j,t (x− εy)− ψ−1

j,t (x+ εy)
)∣∣∣

≤ 1

4ε2
|2ψ−1

j,t (x)− ψ−1
j,t (x+ εy)− ψ−1

j,t (x− εy)| × |ψ−1
j,t (x− εy)− ψ−1

j,t (x+ εy)|. (3.86)

Thanks to the mean value theorem (used twice for the first factor and once for the
second), we can write:

|F | ≤ 1

4ε2
(ε|y|)2‖D2ψ−1

j,t ‖L∞ × (ε|y|)‖Dψ−1
j,t ‖L∞ ≤ 1

4
ε|y|3‖D2ψ−1

j,t ‖L∞‖Dψ−1
j,t ‖L∞ ,
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and using the estimates for the flow (see (3.43)), we obtain that

|F | ≤ Cε|y|32jeCV (eCV − 1),

and

|eA − eC | ≤ Ce

|y|2
4

(e2CV (t) − 1)
ε|y|32jeCV (eCV − 1). (3.87)

From (3.83) and (3.87) we deduce that:

eB |eA − eC | ≤ CeCV (t)(eCV (t) − 1)min(1, ε2j |y|)|y|2e
|y|2
4

(e2CV (t) − 1)
. (3.88)

Finally, thanks to (3.88) and (3.82),

‖eAeB− eCeD‖L∞
x

≤ CeCV (t)(V (t)+ eCV (t)−1)min(1, ε2j |y|)(1+ |y|2)e
|y|2
4

(e2CV (t) − 1)
.

(3.89)
Taking the L2-norm in (3.64), and thanks to the previous estimate, we have:

‖IVj‖L2
x
≤ 1

2(2π)dε2

∫

Rd

e
−|y|2

4 ‖fj(.+ εy)− fj(.)‖L2‖eAeB − eCeD‖L∞dy

≤ 1

2(2π)d
CeCV (t)(V + eCV (t) − 1)

× 1

ε2

∫

Rd

e
−|y|2

4 min(1, ε2j |y|)(1 + |y|2)e
|y|2
4

(e2CV (t) − 1)
‖fj(.+ εy)− fj(.)‖L2dy

(3.90)

and as previously, if t is small enough so that e2CV (t) − 1 ≤ 1
2 ,

‖IVj‖L2
x
≤ 1

2(2π)d
CeCV (t)(V + eCV (t) − 1)

× 1

ε2

∫

Rd

(1 + |y|2)e
−|y|2

8 min(1, ε2j |y|)‖fj(.+ εy)− fj(.)‖L2dy (3.91)

We conclude thanks to the fact that for all x ≥ 0, xe−x ≤ 2
ee

−x
2 . �

The proof of lemma 9 will follow the lines of the proof of theorem 2.36 from [3]:

fj(x+ εy)− fj(x) =
(
τεy∆̇jf − ∆̇jf

)
(x)

and thanks to the mean value theorem,

‖τεy∆̇jf − ∆̇jf‖L2 ≤ C2jε|y|
∑

|j′−j|≤1

‖∆̇j′f‖L2 ,
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and as in the proof of lemma 5, using the definition of the hybrid Besov norm, there
exists a nonnegative summable sequence (whose summation is 1) once more denoted by
(cj)j∈Z (depending on f and t) such that:

‖τεy∆̇jf − ∆̇jf‖L2 ≤ C2jε|y|2−jσcj max(ε2, 2−2j)‖φε ∗ f − f

ε2
‖Ḃσ

2,1
.

On the other hand, a rough estimate provides:

‖τεy∆̇jf − ∆̇jf‖L2 ≤ 2‖∆̇jf‖L2 ≤ C2−jσcj max(ε2, 2−2j)‖φε ∗ f − f

ε2
‖Ḃσ

2,1
.

so that we end up with:

‖τεy∆̇jf − ∆̇jf‖L2 ≤ Cσ2
−jσcj max(ε2, 2−2j)‖φε ∗ f − f

ε2
‖Ḃσ

2,1

×
{
2jε|y| if ε|y|2j < 1 (j < jεy)

1 if ε|y|2j ≥ 1 (j ≥ jεy).
(3.92)

Returning to the integral, we have:

1

ε2

∫

Rd

min(1, ε2j |y|)e−
|y|2

16 ‖fj(.+ εy)− fj(.)‖L2dy

≤ max(1,
1

ε222j
)Cσ,d2

−jσcj(f)‖
φε ∗ f − f

ε2
‖Ḃσ

2,1

∫

Rd

min(1, ε222j |y|2)e−
|y|2

16 dy. (3.93)

Then the same computation as in the proof of lemma 5 leads to:

1

ε2

∫

Rd

min(1, ε2j |y|)e−
|y|2

16 ‖fj(.+ εy)− fj(.)‖L2dy

≤ Cσ,d2
−jσcj(f)‖

φε ∗ f − f

ε2
‖Ḃσ

2,1
. (3.94)

This concludes the proof of lemma 9 and together with lemma 8 it implies proposition 9.
Finally, propositions 8 and 9, with the first estimate from (3.43) end the proof of theorem
5. �

3.5 End of the proof

Once obtained the desired estimates of the additionnal remainder term introduced by
the effect of the Lagrangian change of coordinates on the non-local capillary term, we
can go back to the use of the linear estimates from proposition 2 on system (3.46): for
all l ∈ Z, as q̃j(0) = qj(0, ψj,0(.)) = qj(0),

‖∆̇lũj‖L∞
t L2 + ν02

2l‖∆̇lũj‖L1
tL

2 + (1 + ν2l)

(
‖∆̇lq̃j‖L∞

t L2 + νmin(
1

ε2
, 22l)‖∆̇j q̃j‖L1

tL
2

)

≤ C
p, ν

2

4κ

[
(1 + ν2l)‖∆̇lqj(0)‖L2 + ‖∆̇luj(0)‖L2 + (1 + ν2l)‖∆̇lf̃j + ∆̇lR

1
j‖L1

tL
2

+ ‖∆̇lg̃j + ∆̇lR
2
j + ∆̇lR

3
j + κ∆̇lRj‖L1

tL
2

]
. (3.95)
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Let us recall that thanks to (3.41), all we need is to estimate the high frequencies, that
is (qj , uj) for j ≥ 0. For this, as in [15] and [6], let us define some N0 ∈ Z (that will be
fixed later), and write:

‖qj‖L2 = ‖q̃j ◦ ψ−1
j,t ‖L2 ≤ eCV ‖q̃j‖L2 ≤ eCV


‖Ṡj−N0 q̃j‖L2 +

∑

l≥j−N0

‖∆̇lq̃j‖L2


 .

Moreover, as in [15] and [6], we can use the version of (3.56) given by lemma 2 in the
non measure-preserving case (we refer for example to [3] lemma 2.6, or [15], lemma A.1)
to obtain:

‖Ṡj−N0 q̃j‖L2 ≤ CeCV
(
eCV − 1 + 2−N0eCV

)
‖qj‖L2 ,

so that:

‖qj‖L2 ≤ CeCV


(eCV − 1 + 2−N0eCV )‖qj‖L2 +

∑

l≥j−N0

‖∆̇lq̃j‖L2


 , (3.96)

and for the velocity,

‖uj‖L2 ≤ CeCV


(eCV − 1 + 2−N0eCV )‖uj‖L2 +

∑

l≥j−N0

‖∆̇lũj‖L2


 . (3.97)

Multiplying (3.96) by 2j and using that in the summation, l ≥ j −N0, we obtain:

2j‖qj‖L2 ≤ CeCV


(eCV − 1 + 2−N0eCV )2j‖qj‖L2 +

∑

l≥j−N0

2l2N0‖∆̇lq̃j‖L2


 .

Then, going back to Uj (we refer to (3.39) for the definition), we can write that for all
j ≥ 0,

Uj(t) ≤ CeCV

[
(
eCV − 1 + 2−N0eCV

)
Uj(t) + max(1, 22N0)

∑

l≥j−N0

(
‖∆̇lũj‖L∞

t L2 + ν02
2l‖∆̇lũj‖L1

tL
2 + (1 + ν2l)

(
‖∆̇lq̃j‖L∞

t L2 + νmin(
1

ε2
, 22l)‖∆̇j q̃j‖L1

tL
2

))]
,

(3.98)

where we used once again lemma 7 to prove that for all l ≥ j −N0:

min(
1

ε2
, 22j) = min(

1

ε2
, 22l)

max(ε2, 2−2l)

max(ε2, 2−2j)
≤ 22N0 min(

1

ε2
, 22l). (3.99)
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Thanks to (3.95) we obtain that for all j ≥ 0,

Uj(t) ≤ CeCV

[
(
eCV − 1 + 2−N0eCV

)
Uj(t) + max(1, 22N0)C

p, ν
2

4κ

×
∑

l≥j−N0

(
(1 + ν2l)‖∆̇lqj(0)‖L2 + ‖∆̇luj(0)‖L2 + (1 + ν2l)

(
‖∆̇lf̃j‖L1

tL
2 + ‖∆̇lR

1
j‖L1

tL
2

)

+ ‖∆̇lg̃j‖L1
tL

2 + ‖∆̇lR
2
j‖L1

tL
2 + ‖∆̇lR

3
j‖L1

tL
2 + κ‖∆̇lRj‖L1

tL
2

)
]
, (3.100)

Except Rj, all of the remainder terms are the same as those from [6]. As we will sum
for l ≥ j − N0, we need to provide estimates involving some positive power of 2j−l. To
do this we use the well-known method of Vishik (see [37]) which takes advantage of the
Bernstein lemma: the idea is to derivate the function in order to obtain a positive power
of 2j−l which is summable over l ≥ j −N0. Let us detail this for example on f̃j: thanks
to (3.43),

‖∆̇lf̃j‖L2 ≤ C2−l‖∆̇l∇f̃j‖L2 ≤ C2−l‖∇fj ◦ ψj,t‖L2‖Dψj,t‖L∞

≤ C2−le2CV ‖∇fj‖L2 ≤ C2j−le2CV ‖fj‖L2 .

and thanks to lemma 1 (for σ = s − 1), we can write that there exists a nonnegative
sequence (cj(t))j∈Z ∈ l1(Z) such that ‖c‖l1(Z) = 1 and a constant still denoted by C =
C(d, s) such that for all j ∈ Z,

‖∆̇lf̃j‖L2 ≤ C2j−leCV
(
‖Fj‖L2 + cj(t)2

−j(s−1)‖∇v‖
Ḃ

d
2
2,1

‖q‖Ḃs−1
2,1

)
. (3.101)

Similarly, we obtain that (using lemma 1 for σ = s in the second case):





‖∆̇lg̃j‖L2 ≤ C2j−leCV
(
‖Gj‖L2 + cj(t)2

−j(s−1)‖∇v‖
Ḃ

d
2
2,1

‖u‖Ḃs−1
2,1

)

2l‖∆̇lf̃j‖L2 ≤ C‖∆̇l∇f̃j‖L2 ≤ C2j−leCV
(
2j‖Fj‖L2 + cj(t)2

−j(s−1)‖∇v‖
Ḃ

d
2
2,1

‖q‖Ḃs
2,1

)

(3.102)
With the same argument we obtain (we refer to [6], section 3.2 for details):





‖∆̇lR
1
j‖L2 ≤ C2j−l(eCV − 1)eCV 2j‖uj‖L2 ≤ C2j−l(eCV − 1)eCV 22j‖uj‖L2

2l‖∆̇lR
1
j‖L2 ≤ C‖∆̇l∇R1

j‖L2 ≤ C2j−l(eCV − 1)eCV 22j‖uj‖L2

‖∆̇lR
2
j‖L2 ≤ C2j−l(eCV − 1)eCV 2j‖qj‖L2

‖∆̇lR
3
j‖L2 ≤ C(|λ+ µ|+ µ)2j−l(eCV − 1)eCV 22j‖uj‖L2

(3.103)

Remark 29 Note that the last estimate from the first line is valid only when j ≥ 0. Let
us recall that we already treated the low frequencies thanks to the linear estimates (we
refer to (3.41)).
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All that remains is to estimate κRj : as for the other terms, a direct estimate will not
be sufficient as we eventually have to sum over l ≥ j − N0. We then need to use the
Bernstein lemma in order to be able to factor by a positive power of 2j−l. Let us recall
that Rj = Ij + II ′j(∇q) with (we refer to (3.52)):




Ij =

φε ∗ gj − gj
ε2

where gj = ∇qj ◦ ψj,t × (Id −Dψj,t),

II ′j(f) =
φε∗fj−fj

ε2
◦ ψj,t − φε∗(fj◦ψj,t)−fj◦ψj,t

ε2
.

Let us recall that section 3.4 is devoted to the following estimate (see theorem 5 for
details): there exists a nonnegative summable sequence cj(t) (whose sum is 1) such that

for all j ∈ Z (recall that V (t) =
∫ t
0 ‖∇v(τ)‖L∞dτ),

‖II ′j(f)‖L2 ≤ Cσ,de
CV (V + e2CV − 1)cj(t)2

−jσ‖φε ∗ f − f

ε2
‖Ḃσ

2,1
,

Let us begin with Ij: a rough estimate gives:

‖∆̇lIj‖L2 = ‖φε ∗ ∆̇lgj − ∆̇lgj
ε2

‖L2 ≤ Cmin(
1

ε2
, 22l)‖gj‖L2

≤ Cmin(
1

ε2
, 22l)‖∇qj ◦ ψj,t‖L2‖(Id −Dψj,t)‖L∞ . (3.104)

Thanks again to lemma 7,

min(
1

ε2
, 22l) = min(

1

ε2
, 22j)

max(ε2, 2−2j)

max(ε2, 2−2l)
≤ min(

1

ε2
, 22j)

{
1 if j −N0 ≤ l ≤ j,

22(l−j) if j ≤ l,

so that (thanks to (3.43)) as max(1, 22(l−j)) ≤ 22N022(l−j) (N0 will be taken positive),

‖∆̇lIj‖L2 ≤ CeCV (eCV − 1)22N022(l−j)min(
1

ε2
, 22j)‖∇qj‖L2 ,

which implies that in our case, in order to use Vishik’s trick we need to derivate three
times ∆̇lIj because we have to absorb 22(l−j) and obtain a positive power of 2j−l (which
is summable over l ≥ j −N0):

‖∆̇lIj‖L2 ≤ C2−3l‖∆̇l∇3Ij‖L2 ≤ C2−3l‖φε ∗ ∆̇l∇3gj − ∆̇l∇3gj
ε2

‖L2 .

We then compute the third derivatives of gj = ∇qj ◦ ψj,t × (Id −Dψj,t) and obtain that:

‖∇3gj‖L2 ≤ Ce4CV (eCV − 1)23j‖∇qj‖L2 ,

which allows to conclude that

‖∆̇lIj‖L2 ≤ Ce4CV (eCV − 1)2j−l22N0 min(
1

ε2
, 22j)‖∇qj‖L2 . (3.105)
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For the second term (II ′j(∇q)), we have to derivate one time and decompose ∇IIj into
three parts:

∇IIj =
φε ∗ ∇2qj −∇2qj

ε2
◦ψj,t ·Dψj,t−

φε ∗ (∇2qj ◦ ψj,t ·Dψj,t)− (∇2qj ◦ ψj,t ·Dψj,t)
ε2

= Aj +Bj + Cj, (3.106)

where




Aj =
φε ∗ ∇2qj −∇2qj

ε2
◦ ψj,t · (Dψj,t − Id),

Bj = II ′j(∇2q),

Cj = −φε ∗ (∇
2qj ◦ ψj,t · (Dψj,t − Id))−∇2qj ◦ ψj,t · (Dψj,t − Id)

ε2
,

and thanks to the Bernstein lemma:

‖∆̇lIIj‖L2 ≤ C2−l‖∆̇l∇IIj‖L2 ≤ C2−l
(
‖∆̇lAj‖L2 + ‖∆̇lBj‖L2 + ‖∆̇lCj‖L2

)
. (3.107)

Thanks to theorem 5 with σ = s− 2 and for t small enough (e2CV − 1 ≤ 1
2 , see the proof

of theorem 5) there exists a nonnegative summable sequence (cj(τ))j∈Z whose sum is 1
such that

‖∆̇lBj‖L2 ≤ ‖Bj‖L2 ≤ Cs,de
CV (V +e2CV −1)cj(∇2q, τ)2−j(s−2)‖φε ∗ ∇

2q −∇2q

ε2
‖Ḃs−2

2,1
,

≤ Cs,de
CV (V + e2CV − 1)cj(∇2q, τ)2j2−j(s−1)‖φε ∗ ∇q −∇q

ε2
‖Ḃs−1

2,1
. (3.108)

A direct estimate gives:

‖∆̇lAj‖L2 ≤ ‖Aj‖L2 ≤ ‖φε ∗ ∇
2qj −∇2qj
ε2

◦ ψj,t‖L2 · ‖Dψj,t − Id‖L∞

≤ CeCV (eCV − 1)2j‖φε ∗ ∇qj −∇qj
ε2

‖L2 , (3.109)

and finally, for the same reason as in Ij, rough estimates of ∆̇lCj will provide min( 1
ε2
, 22l) ≤

22(l−j)min( 1
ε2 , 2

2j) and we once again have to derivate Cj : this time we will derivate only
two more times because we already have 2−l in factor:

2−l‖∆̇lCj‖L2 ≤ C2−3l‖∆̇l∇2Cj‖L2 ≤ Ce3CV (eCV − 1)22N02j−lmin(
1

ε2
, 22j)‖∇qj‖L2 .

Plugging this together with (3.109) and (3.108) into (3.107), and using (3.105) allows to
get the estimate on Rj:

‖∆̇lRj‖ ≤ CeCV (V + e2CV − 1)2j−l22N0cj(t)2
−j(s−1)‖φε ∗ ∇q −∇q

ε2
‖Ḃs−1

2,1
(3.110)
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Plugging (3.101), (3.102), (3.103) and (3.110) into (3.100), then summing over l ≥ j−N0

implies that for all j ≥ 0 and for t small enough (e2CV − 1 ≤ 1
2 ) we have:

Uj(t) ≤ Ce2CV

[
(
eCV − 1 + 2−N0

)
Uj(t) + 25N0C

p, ν
2

4κ

(
(1 + ν2j)‖qj(0)‖L2 + ‖uj(0)‖L2

+(1+ν2j)‖Fj‖L1
tL

2+‖Gj‖L1
tL

2+(eCV−1)
(
(1 + |λ+ µ|+ µ+ ν)22j‖uj‖L1

tL
2 + ‖∇qj‖L1

tL
2

)

+

∫ t

0
2−j(s−1)cj(τ)‖∇v(τ)‖

Ḃ
d
2
2,1

(
‖q(τ)‖Ḃs−1

2,1
+ ν‖q(τ)‖Ḃs

2,1
+ ‖u(τ)‖Ḃs−1

2,1

)
dτ

+
κ

ν2
(V + e2CV − 1)

∫ t

0
cj(τ)2

−j(s−1)ν2‖φε ∗ ∇q −∇q
ε2

‖Ḃs−1
2,1

dτ

)]
. (3.111)

As j ≥ 0, we have 1 ≤ min(1ε , 2
2j) and

(1 + |λ+ µ|+ µ+ ν)22j‖uj‖L1
tL

2 + ‖∇qj‖L1
tL

2 ≤
(
1 + |λ+ µ|+ µ+ ν

ν0
+

1

ν2

)
Uj(t),

so that (remember that t is so small that eCV − 1 ≤ 1
2):

Uj(t) ≤
9

4
C

[(
(eCV − 1)

(
1 + 25N0C

p, ν
2

4κ

(
1 + |λ+ µ|+ µ+ ν

ν0
+

1

ν2
)

)
+ 2−N0

)
Uj(t)+

25N0C
p, ν

2

4κ

(
(1 + ν2j)‖qj(0)‖L2 + ‖uj(0)‖L2 + (1 + ν2j)‖Fj‖L1

tL
2 + ‖Gj‖L1

tL
2

+

∫ t

0
2−j(s−1)cj(τ)‖∇v(τ)‖

Ḃ
d
2
2,1

(
‖q(τ)‖Ḃs−1

2,1
+ ν‖q(τ)‖Ḃs

2,1
+ ‖u(τ)‖Ḃs−1

2,1

)
dτ

+
κ

ν2
(V + e2CV − 1)

∫ t

0
cj(τ)2

−j(s−1)ν2‖φε ∗ ∇q −∇q
ε2

‖Ḃs−1
2,1

dτ

)]
. (3.112)

Let us fix N0 > 0 large enough, and take t small enough so that:




9

4
C · 2−N0 ≤ 1

8
,

9

4
C(eCV − 1)

(
1 + 25N0C

p, ν
2

4κ

(
1 + |λ+ µ|+ µ+ ν

ν0
+

1

ν2
)

)
≤ 1

8

(3.113)

Then we obtain that for all j ≥ 0,

Uj(t) ≤ 3C25N0C
p, ν

2

4κ

(
(1 + ν2j)‖qj(0)‖L2 + ‖uj(0)‖L2

+ (1 + ν2j)‖Fj‖L1
tL

2 + ‖Gj‖L1
tL

2 +

∫ t

0
2−j(s−1)cj(τ)‖∇v(τ)‖

Ḃ
d
2
2,1

U(τ)dτ

+
κ

ν2
(V + e2CV − 1)

∫ t

0
cj(τ)2

−j(s−1)ν2‖φε ∗ ∇q −∇q
ε2

‖Ḃs−1
2,1

dτ

)
. (3.114)
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Now, if t is so small that:

3C25N0C
p, ν

2

4κ

(V + e2CV − 1) ≤ 1

2

ν2

κ
, (3.115)

then for all j ≥ 0,

2j(s−1)Uj(t) ≤ 3C25N0C
p, ν

2

4κ

(
2j(s−1)Uj(0)+(1+ν2j )2j(s−1)‖Fj‖L1

tL
2 +2j(s−1)‖Gj‖L1

tL
2

+

∫ t

0
cj(τ)‖∇v(τ)‖

Ḃ
d
2
2,1

U(τ)dτ

)
+

1

2
ν2
∫ t

0
cj(τ)‖

φε ∗ ∇q −∇q
ε2

‖Ḃs−1
2,1

dτ. (3.116)

Going back to the low frequencies, if we take K = (2C
p, ν

2

4κ

)−1 in (3.41), then for all j ≤ 0

2j(s−1)Uj(t) ≤ C
p, ν

2

4κ

[
2j(s−1)Uj(0) + (1 + ν2j)2j(s−1)‖∆̇jF‖L1

tL
2 + 2j(s−1)‖∆̇jG‖L1

tL
2

+ 2−j(s−1)

∫ t

0
cj(τ)

(
(
max(1,

1

ν3
) +

1

ν0

)
‖v(τ)‖2

Ḃ
d
2
2,1

+ ‖v(τ)‖
Ḃ

d
2+1

2,1

)
U(τ)dτ

]

+
1

2
2−j(s−1)

∫ t

0
cj(τ)

(
ν0‖u‖Ḃs+1

2,1
+ ν‖q‖Ḃs+1,s−1

ε
+ ν2‖q‖Ḃs+2,s

ε

)
dτ. (3.117)

Summing over j ∈ Z gives that

U(t) ≤ U(t)

2
+C

p, ν
2

4κ

(
U(0) + ‖F‖L1

t Ḃ
s−1
2,1

+ ν‖F‖L1
t Ḃ

s
2,1

+ ‖G‖L1
t Ḃ

s−1
2,1

+ (
1 + |λ+ µ|+ µ+ ν

ν0
+max(1,

1

ν3
))

∫ t

0
W ′(τ)U(τ)

)
(3.118)

where

V (t)
def
=

∫ t

0
‖∇v(τ)‖L∞dτ ≤W (t)

def
=

∫ t

0
(‖∇v(τ)‖ ˙

B
d
2
2,1

+ ‖v(τ)‖2 ˙
B

d
2
2,1

)dτ. (3.119)

and thanks to the Gronwall lemma, we obtain that for t small enough (satisfying condi-
tions (3.54), (3.113) and (3.115)),

U(t) ≤ 2C
p, ν

2

4κ

(
U(0) + ‖F‖L1

t Ḃ
s−1
2,1

+ ν‖F‖L1
t Ḃ

s
2,1

+ ‖G‖L1
t Ḃ

s−1
2,1

)

× e
2C

p, ν
2

4κ

(
1 + |λ+ µ|+ µ+ ν

ν0
+max(1,

1

ν3
))W (t)

(3.120)

Using conditions (3.54), (3.113) and (3.115) gives the result for small times t (it does
not depend on the initial data, only on V (t) and such that (3.113) is satisfied), then we
globalize the result (for example as in [26], end of section 4) for all time t by subdividing

[0, t] into intervals [Ti+1, Ti] where we have e
2C

∫ Ti+1
Ti

V (τ)dτ−1 ≤ 1
2 as well as the analogous

of (3.113) (we also refer to [3] chapter 10 for a connexity argument). �
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3.6 Extension of the results

In this short section, we mention the following extension of the linear estimates from
proposition 2 in Besov spaces constructed on Lr spaces with r 6= 2. This high-frequency
result can be obtained from the Fourier expression of the solution of the linear system as
done in [6] (see section 2.1).

Proposition 10 Under the same assumptions as in proposition 6 (adapted to r 6= 2),
there exists a constant such that for all j > j0,

‖vj‖L∞
t Lr + ν22j‖vj‖L1

tL
r + (1 + ν2j)

(
‖qj‖L∞

t Lr +
ν

ε2
‖qj‖L1

tL
r

)
≤

Cmax(1,M)

(
(1 + ν2j)‖q0,j‖Lr + (1 +

1√
p
)‖v0,j‖Lr

)
,

(3.121)

Using the Lagrangian change of variable, remark 23 and the methods from [6], we
obtain the analogous in the Lr-setting of theorem 1.5 for high frequencies, which is similar
to the key proposition 6 from [6] that leads to the main result of [6]. Let us recall that
in this case, the regularity index of the Besov spaces is d

r − 1 which is negative when
d < r, that allows initial data with large modulus provided that they have fast enough
oscillations.

4 Appendix

The first part is devoted to a quick presentation of the Littlewood-Paley theory and
specific properties for hybrid Besov norms used in this paper. The second section to
general considerations on flows.

4.1 Besov spaces

4.1.1 Littlewood-Paley theory

As usual, the Fourier transform of u with respect to the space variable will be denoted by
F(u) or û. In this section we will briefly state (as in [6]) classical definitions and properties
concerning the homogeneous dyadic decomposition with respect to the Fourier variable.
We will recall some classical results and we refer to [3] (Chapter 2) for proofs (and more
general properties).

To build the Littlewood-Paley decomposition, we need to fix a smooth radial function
χ supported in (for example) the ball B(0, 43), equal to 1 in a neighborhood of B(0, 34) and
such that r 7→ χ(r.er) is nonincreasing over R+. So that if we define ϕ(ξ) = χ(ξ/2)−χ(ξ),
then ϕ is compactly supported in the annulus {ξ ∈ Rd, c0 = 3

4 ≤ |ξ| ≤ C0 = 8
3} and we

have that,

∀ξ ∈ R
d \ {0},

∑

l∈Z
ϕ(2−lξ) = 1. (4.122)
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Then we can define the dyadic blocks (∆̇l)l∈Z by ∆̇l := ϕ(2−lD) (that is ̂̇∆lu = ϕ(2−lξ)û(ξ))
so that, formally, we have

u =
∑

l

∆̇lu (4.123)

As (4.122) is satisfied for ξ 6= 0, the previous formal equality holds true for tempered
distributions modulo polynomials. A way to avoid working modulo polynomials is to
consider the set S ′

h of tempered distributions u such that

lim
l→−∞

‖Ṡlu‖L∞ = 0,

where Ṡl stands for the low frequency cut-off defined by Ṡl := χ(2−lD). If u ∈ S ′
h, (4.123)

is true and we can write that Ṡlu =
∑

k≤l−1

∆̇qu. We can now define the homogeneous Besov

spaces used in this article:

Definition 2 For s ∈ R and 1 ≤ p, r ≤ ∞, we set

‖u‖Ḃs
p,r

:=

(∑

l

2rls‖∆lu‖rLp

) 1
r

if r <∞ and ‖u‖Ḃs
p,∞

:= sup
l

2ls‖∆lu‖Lp .

We then define the space Ḃs
p,r as the subset of distributions u ∈ S ′

h such that ‖u‖Ḃs
p,r

is

finite.

Once more, we refer to [3] (chapter 2) for properties of the inhomogeneous and homoge-
neous Besov spaces. Among these properties, let us mention:

• for any p ∈ [1,∞] we have the following chain of continuous embeddings:

Ḃ0
p,1 →֒ Lp →֒ Ḃ0

p,∞;

• if p < ∞ then Ḃ
d
p

p,1 is an algebra continuously embedded in the set of continuous
functions decaying to 0 at infinity, in particular we make in this paper an extensive

use of the injection Ḃ
d
2
2,1 →֒ L∞;

• for any smooth homogeneous of degree m function F on Rd\{0} the operator F (D)
maps Ḃs

p,r in Ḃ
s−m
p,r . This implies that the gradient operator maps Ḃs

p,r in Ḃ
s−1
p,r .

We refer to [3] (lemma 2.1) for the following result describing how derivatives act on
spectrally localized functions:

Lemma 10 (Bernstein lemma) Let 0 < r < R. A constant C exists so that, for any
nonnegative integer k, any couple (p, q) in [1,∞]2 with q ≥ p ≥ 1 and any function u
of Lp, we have for all λ > 0,

Supp û ⊂ B(0, λR) =⇒ ‖Dku‖Lq ≤ Ck+1λ
k+N( 1

p
− 1

q
)‖u‖Lp ;

Supp û ⊂ {ξ ∈ R
N / rλ ≤ |ξ| ≤ Rλ} =⇒ C−k−1λk‖u‖Lp ≤ ‖Dku‖Lp ≤ Ck+1λk‖u‖Lp .
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This implies the following embedding result:

Proposition 11 For all s ∈ R, 1 ≤ p1 ≤ p2 ≤ ∞ and 1 ≤ r1 ≤ r2 ≤ ∞, the space Ḃs
p1,r1

is continuously embedded in the space Ḃ
s−d( 1

p1
− 1

p2
)

p2,r2 .

In this paper, we mainly work with functions or distributions depending on both the
time variable t and the space variable x. We denote by C(I;X) the set of continuous
functions on I with values in X. For p ∈ [1,∞], the notation Lp(I;X) stands for the set
of measurable functions on I with values in X such that t 7→ ‖f(t)‖X belongs to Lp(I).

In the case where I = [0, T ], the space Lp([0, T ];X) (resp. C([0, T ];X)) will also be
denoted by LpTX (resp. CTX). Finally, if I = R+ we alternately use the notation LpX.

The Littlewood-Paley decomposition enables us to work with spectrally localized
(hence smooth) functions rather than with rough objects. We naturally obtain bounds for
each dyadic block in spaces of type LρTL

p. Going from those type of bounds to estimates
in LρT Ḃ

s
p,r requires to perform a summation in ℓr(Z). When doing so however, we do

not bound the LρT Ḃ
s
p,r norm for the time integration has been performed before the ℓr

summation. This leads to the following notation (after J.-Y. Chemin and N. Lerner in
[9]):

Definition 3 For T > 0, s ∈ R and 1 ≤ r, ρ ≤ ∞, we set

‖u‖L̃ρ
T
Ḃs

p,r
:=
∥∥2js‖∆̇qu‖Lρ

T
Lp

∥∥
ℓr(Z)

.

One can then define the space L̃ρT Ḃ
s
p,r as the set of tempered distributions u over (0, T )×

Rd such that limq→−∞ Ṡqu = 0 in Lρ([0, T ];L∞(Rd)) and ‖u‖L̃ρ
T
Ḃs

p,r
< ∞. The letter T

is omitted for functions defined over R+. The spaces L̃ρT Ḃ
s
p,r may be compared with the

spaces LρT Ḃ
s
p,r through the Minkowski inequality: we have

‖u‖L̃ρ
T
Ḃs

p,r
≤ ‖u‖Lρ

T
Ḃs

p,r
if r ≥ ρ and ‖u‖L̃ρ

T
Ḃs

p,r
≥ ‖u‖Lρ

T
Ḃs

p,r
if r ≤ ρ.

All the properties of continuity for the product and composition which are true in Besov
spaces remain true in the above spaces. The time exponent just behaves according to
Hölder’s inequality.

Let us now recall a few nonlinear estimates in Besov spaces. Formally, any product
of two distributions u and v may be decomposed into

uv = Tuv + Tvu+R(u, v), where (4.124)

Tuv :=
∑

l

Ṡl−1u∆̇lv, Tvu :=
∑

l

Ṡl−1v∆̇lu and R(u, v) :=
∑

l

∑

|l′−l|≤1

∆̇lu ∆̇l′v.

The above operator T is called “paraproduct” whereas R is called “remainder”. The
decomposition (4.124) has been introduced by J.-M. Bony in [5].

In this article we will frequently use the following estimates (we refer to [3] section 2.6,
[11], [18] for general statements, more properties of continuity for the paraproduct and
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remainder operators, sometimes adapted to L̃ρT Ḃ
s
p,r spaces): under the same assumptions

there exists a constant C > 0 such that:

‖Ṫuv‖Ḃs
2,1

≤ C‖u‖L∞‖v‖Ḃs
2,1

≤ C‖u‖
Ḃ

d
2
2,1

‖v‖Ḃs
2,1
, (4.125)

‖Ṫuv‖Ḃs+t
2,1

≤ C‖u‖Ḃt
∞,∞

‖v‖Ḃs
2,1

≤ C‖u‖
Ḃ

t+ d
2

2,1

‖v‖Ḃs
2,1

(t < 0),

‖Ṙ(u, v)‖
Ḃ

s1+s2
2,1

≤ C‖u‖Ḃs1
∞,∞

‖v‖Ḃs2
2,1

≤ C‖u‖
Ḃ

s1+
d
2

2,1

‖v‖Ḃs2
2,1

(s1 + s2 > 0),

‖Ṙ(u, v)‖
Ḃ

s1+s2−
d
2

2,1

≤ C‖Ṙ(u, v)‖
Ḃ

s1+s2
1,1

≤ C‖u‖Ḃs1
2,1
‖v‖Ḃs2

2,1
(s1 + s2 > 0).

4.1.2 Complements for hybrid Besov spaces

As explained, in the compressible Navier-Stokes system, the density fluctuation has two
distinct behaviours in some low and high frequencies, separated by a frequency threshold.
This leads to the definition of the hybrid Besov spaces. Let us begin with the spaces that
are introduced by R. Danchin in [11] or [3] (we will use these spaces only in the appendix
to prove estimates with the Hybrid norms introduced in (1.1)):

Definition 4 For α > 0, r ∈ [0,∞] and s ∈ R we denote

‖u‖B̃s,r
α

def
=
∑

l∈Z
2lsmax(α, 2−l)1−

2
r ‖∆̇lu‖L2

For example with r ∈ {1,∞}:

‖u‖B̃s,∞
α

=
∑

l≤log2(
1
α
)

2l(s−1)‖∆̇lu‖L2 +
∑

l>log2(
1
α
)

α2ls‖∆̇lu‖L2 , and

‖u‖B̃s,1
α

=
∑

l≤log2(
1
α
)

2l(s+1)‖∆̇lu‖L2 +
∑

l>log2(
1
α
)

1

α
2ls‖∆̇lu‖L2 ,

Remark 30 As stated in [3] we have the equivalence

1

2

(
‖u‖Ḃs−1

2,1
+ α‖u‖Ḃs

2,1

)
≤ ‖u‖B̃s,∞

α
≤ ‖u‖Ḃs−1

2,1
+ α‖u‖Ḃs

2,1
.

We refer to (1.1) and Proposition 7 for the precise expression of the hybrid norm used in
the present article. Let us just mention that this particuliar hybrid norm is accurate for
our problem, but it is also related to the hybrid norms introduced by R. Danchin:

‖.‖Ḃs+2,s
ε

= ‖.‖
B̃

s, 23
ε

Let us now state the following result (Proposition 5 from [7])

Proposition 12 Let s ∈ R, α > 0. For all q ∈ B̃s,∞
α ∩ B̃s,1

α , we have

‖q‖2
Ḃs

2,1
≤ ‖q‖B̃s,∞

α
‖q‖B̃s,1

α
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Remark 31 For all q ∈ Ḃs−1
2,1 ∩ Ḃs

2,1 = B̃s,∞
1 we have

‖q‖
B̃s,∞

1
≤ ‖q‖Ḃs−1

2,1
+ ‖q‖Ḃs

2,1

and when ε > 0 is small enough, for all q ∈ Ḃs+1,s
ε , we have

‖q‖B̃s,1
1

≤ ‖q‖B̃s,1
ε

≤ ‖q‖Ḃs+1,s
ε

≤ ‖q‖Ḃs+1,s−1
ε

+ ‖q‖Ḃs+2,s
ε

,

so we can use the hybrid norms introduced in (1.1) and we will in fact use the following
results:

Proposition 13 Let s ∈ R. There exists a constant C > 0 such that for all 0 < ε < 1,
and all q ∈ Ḃs−1

2,1 ∩ Ḃs
2,1 ∩ Ḃ

s+1,s−1
ε ∩ Ḃs+2,s

ε , we have

‖q‖2
Ḃs

2,1
≤ C(‖q‖Ḃs−1

2,1
+ ‖q‖Ḃs

2,1
)(‖q‖Ḃs+1,s−1

ε
+ ‖q‖Ḃs+2,s

ε
)

4.2 Estimates for the flow of a smooth vector-field

In this section, we recall classical estimates for the flow of a smooth vector-field with
bounded spatial derivatives. We refer to [15] or [6] for more details. We also refer to [24]
for the incompressible Navier-Stokes case.

Proposition 14 Let v be a smooth globally Lipschitz time dependent vector-field. Let
W (t) :=

∫ t
0 ‖∇v(t′)‖L∞ dt′. Let ψt satisfy

ψt(x) = x+

∫ t

0
v(t′, ψt′(x)) dt

′.

Then for all t ∈ R, the flow ψt is a smooth diffeomorphism over Rd and one has if t ≥ 0,

‖Dψ±1
t ‖L∞ ≤ eW (t),

‖Dψ±1
t − Id‖L∞ ≤ eW (t) − 1,

‖D2ψ±1
t ‖L∞ ≤ eW (t)

∫ t

0
‖D2v(t′)‖L∞eW (t′)dt′,

‖D3ψ±1
t ‖L∞ ≤ eW (t)

∫ t

0
‖D3v(t′)‖L∞e2W (t′)dt′ + 3

(
eV (t)

∫ t

0
‖D2v(t′)‖L∞eW (t′)dt′

)2

.

As in [6] we also introduce the two-parameter flow (t, t′, x) 7→ X(t, t′, x) which is (uniquely)
defined by

X(t, t′, x) = x+

∫ t

t′
v
(
t′′,X(t′′, t′, x)

)
dt′′. (4.126)

Uniqueness for Ordinary Differential Equations entails that

X(t, t′′,X(t′′, t′, x)) = X(t, t′, x).

Hence ψt = X(t, 0, ·) and ψ−1
t = X(0, t, ·).
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Proposition 15 Under the previous notations, the jacobian determinant of X satisfies:

det(DX(t, t′, x)) = e
∫ t
t′(div v)(τ,X(τ,t′,x))dτ , (4.127)

and {
det(Dψt(x)) = e

∫ t

0
(div v)(τ,ψτ (x))dτ ,

det(Dψ−1
t (x)) = e−

∫ t
0 (div v)(τ,X(τ,t,x))dτ = e−

∫ t
0 (div v)(τ,ψτ ◦ψ−1

t (x))dτ .

Proof: differentiating (4.126) with respect to x, one gets by virtue of the chain rule,

DX(t, t′, x) = Id +

∫ t

t′
Dv(τ,X(τ, t′, x)) ·DX(τ, t′, x) dτ. (4.128)

This immediately implies that:

∂t(DX)(t, t′, x) = Dv(t,X(t, t′, x)) ·DX(t, t′, x),

and
∂tdet(DX(t, t′, x)) = tr

(
Dv(t,X(t, t′, x))

)
· det(DX(t, t′, x)),

so that we obtain the result. �.

The authors wish to thank Raphaël Danchin, Taoufik Hmidi, Miguel Rodrigues and
the anonymous referees for useful remarks and suggestions.
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