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New entropy for Korteweg’s system, existence of global weak

solution and new blow-up criterion

Boris Haspot ∗†

Abstract

This work is devoted to prove the existence of global weak solution for a general
isothermal model of capillary fluids derived by J.E Dunn and J.Serrin (1985) (see
[18]), which can be used as a phase transition model. More precisely we shall derive in
a first part new entropy estimates for the density when we are dealing with specific
capillarity coefficient κ(ρ) = 1

ρ (let us emphasize on the fact that this choice of
capillarity exhibits particular regime flows in the case of the compressible Euler
system with quantic pressure which corresponds here to the capillarity, see [2]). This
allows us in particular to get enough compactness estimates in order to prove the
stability of the global weak solution, the used method follows the works of A. Mellet
and A. Vasseur (see [35]). Let us point out that the key of the proof is related to the
introduction of a new effective velocity (which depends strongly on the structure of
the viscosity and capillary coefficients).
In a second part, we shall give the main result of this paper which consists in new
blow-up criterion of Prodi-Serrin type for the Korteweg system involving only a
control on the vacuum. It is up our knowledge the first result of this type for a
compressible fluid system.

1 Introduction

We are concerned with compressible fluids endowed with internal capillarity. The model
we consider originates from the XIXth century work by Van der Waals and Korteweg
[45, 32] and was actually derived in its modern form in the 1980s using the second gradient
theory, see for instance [18, 30, 44]. The first investigations begin with the Young-Laplace
theory which claims that the phases are separated by a hypersurface and that the jump
in the pressure across the hypersurface is proportional to the curvature of the hypersur-
face. The main difficulty consists in describing the location and the movement of the
interfaces.
Another major problem is to understand whether the interface behaves as a discontinu-
ity in the state space (sharp interface SI) or whether the phase boundary corresponds to
a more regular transition (diffuse interface, DI). The diffuse interface models have the
advantage to consider only one set of equations in a single spatial domain (the density
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takes into account the different phases) which considerably simplifies the mathematical
and numerical study (indeed in the case of sharp interfaces, we have to treat a problem
with free boundary).
Another approach corresponds to determine equilibrium solutions which classically con-
sists in the minimization of the free energy functional. Unfortunately this minimization
problem has an infinity of solutions, and many of them are physically wrong. In order
to overcome this difficulty, Van der Waals in the XIX-th century was the first to add
a term of capillarity to select the physically correct solutions, modulo the introduction
of a diffuse interface. This theory is widely accepted as a thermodynamically consistent
model for equilibria. Alternatively, another way to penalize the high density variations
consists in applying a zero order but non-local operator to the density gradient (we refer
to [39], [40], [41]). We refer for a mathematical analysis on this system to [12, 14, 24, 27].
Let us now consider a fluid of density ρ ≥ 0, velocity field u ∈ Ω (both are defined on
a subset Ω with Ω = RN or the torus TN ), we are now interested in the following com-
pressible capillary fluid model, which can be derived from a Cahn-Hilliard free energy
(see the pioneering work by J.- E. Dunn and J. Serrin in [18] and also in [1, 11, 21]). The
conservation of mass and of momentum write:

∂

∂t
ρ+ div(ρu) = 0,

∂

∂t
(ρu) + div(ρu⊗ u)− div(µ(ρ) Du) +∇P(ρ) = divK,

(1.1)

where the Korteweg tensor reads as following:

divK = ∇
(
ρκ(ρ)∆ρ+

1

2
(κ(ρ) + ρκ

′
(ρ))|∇ρ|2

)
− div

(
κ(ρ)∇ρ⊗∇ρ

)
. (1.2)

Here κ is the capillary coefficient and is a regular function of the form κ(ρ) = κρα with
α ∈ R. The term divK allows to describe the variation of density at the interfaces
between two phases, generally a mixture liquid-vapor. P (ρ) = aργ with γ ≥ 1 is a
general γ law pressure term, µ(ρ) > 0 is the viscosity coefficient and Du = 1

2(∇u+t∇u)
is the strain tensor.

Remark 1 In the sequel we are focising on the case of shallow-water viscosity coeffi-
cients, it means µ(ρ) = 2µρ with µ > 0.

In the sequel we shall study the more general system:
∂

∂t
ρ+ div(ρu) = 0,

∂

∂t
(ρu) + div(ρu⊗ u)− div(µρ∇u)− div(αρ∇ut) +∇(aργ) = divK,

(1.3)

µ and α are the two Lamé viscosity coefficients and satisfying:

µ > 0 and µ ≥ α > 0.

In particular, it allows to write the diffusion tensor under the form (µ − α)div(ρ∇u) +
αdiv(ρDu) which implies the following energy inequality after multiplication of the mo-
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mentum equation by u:∫
Ω

(
ρ(t, x)|u(t, x)|2 +

a

γ − 1
ργ(t, x) + κ|∇√ρ|2(t, x)

)
dx

+

∫ t

0

∫
Ω

(
(µ− α)ρ(t, x)|∇u|2(t, x) + αρ(t, x)|Du|2(t, x)

≤ C(

∫
Ω

(
ρ0(x)|v0(x)|2 +

1

γ − 1
ργ0(x) + κ|∇√ρ0|2

)
dx).

(1.4)

Now before recalling the main results on the existence of global weak solutions for com-
pressible Navier Stokes equations and Korteweg system, we would like to point out also
on an another aspect of the Korteweg system (1.3). Indeed this system is also used in a
purely theoretical interest consisting in the selection of the physically relevant solutions
of the Euler model by a vanishing capillarity-viscosity limit (especially when the system
is not strictly hyperbolic, which is typically the case when the pressure is Van der Waals).
Indeed in this last case at least when N = 1 it is not possible to apply the classical theory
of Lax for the Riemann problem (see [33]) and of Glimm (see [20]) with small BV initial
data in order to obtain the existence of global weak-entropy solution (we refer also to
the work of Bianchini and Bressan see [6] for the uniqueness). Inthis spirit, we prove
recently in [12] with F. Charve that the global strong solution of the Korteweg system
in one dimension (we obtain also in this paper the existence of global strong solution in
one dimension for Korteweg system inspired by DiPerna [17]) converges in the setting of
a γ law for the pressure (P (ρ) = aργ , γ > 1) to weak entropy solution of the compress-
ible Euler equations. In particular it justifies that the Korteweg system is suitable for
selecting the physical solutions in the case where the Euler system is strictly hyperbolic.
The problem remains however open for a Van der Waals pressure.

Weak solutions for compressible Navier-Stokes and Korteweg system

When the viscosity coefficients are constant and the pressure is P (ρ) = aργ , with a > 0
and γ > 1, Lions in [34] proved the global existence of weak solutions (ρ, u) to the
compressible Navier-Stokes system (which corresponds to the system (1.1) when κ = 0
and µ(ρ) = µ a constant) for γ > N

2 if N ≥ 4, γ ≥ 3N
N+2 if N = 2, 3 and initial data

(ρ0,m0) such that:

ργ0 ∈ L
1(Ω) and

|m0|2

ρ0
∈ L1(Ω).

Notice that the main difficulty for proving Lions’ theorem consists in exhibiting strong
compactness properties in Lploc spaces for the density ρ what is required in order to pass
to the limit in the pressure term P (ρ) = aργ .
Let us mention that Feireisl in [19] generalized the result to γ > N

2 by obtaining renor-
malized solution without assuming that ρ ∈ L2

loc, for this he introduces the concept of
oscillation defect measure evaluating the loss of compactness.
In the context of the viscosity coefficients depending on the density the situation is rad-
ically different essentially because we loss the structure of effective pressure introduced
in [34], in particular it is not clear how to get a gain of integrability on the density in
order to deal with the pressure term. However let us mention some new results due
to Mellet and Vasseur in [35] who prove the stability of the global weak solution when
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P (ρ) = aργ with γ ≥ 1 by using new entropy estimates on the density due to Bresch
and Desjardins (see [8]). We also refer to [9] in the case of a cold pressure. The main
difficulty is coming from the degenerescence of the viscosity coefficient, indeed we lose the
control of ∇u ∈ L2((0, T ) × RN ) what makes delicate the treatment of the term ρu ⊗ u
because the vacuum. In order to overcome this difficulty they obtained new entropy on
the velocity which gives them a gain of integrability on the velocity.
In the case κ > 0, we can observe that via the energy inequality (1.4), the density

√
ρ

belongs in L∞(0,∞, Ḣ1(RN )). Hence, in contrast to the non capillary case one can easily
pass to the limit in the pressure term. However let us emphasize on a new obstruction
which consists in dealing with the quadratic terms in gradient of the density appearing
in the capillary tensor (see (1.2)), recently Bresch, Desjardins and Lin in [10] got some
stability result for the global weak solutions of the Korteweg model with some specific vis-
cosity coefficients and capillarity coefficient µ(ρ) = ρ, λ(ρ) = 0 and κ(ρ) = κ a constant.
However the global weak solutions of D. Bresch, B. Desjardins and C-K. Lin require some
specific test functions which depend on the solution itself (in other words they obtain the
stability of global weak solution for the Korteweg system where the momentum equation
is multiplied by ρ). In [31], Jüngel obtains by using an effective velocity v the existence
of global weak solution when κ(ρ) = 1

ρ modulo that as in [10] the test functions depends
on the density ρ.
In [26], we improve this result by showing the existence of global weak solution with
small initial data in the energy space for specific choices on the capillary coefficients and
with general viscosity coefficient. Comparing with the results of [10], we get global weak
solutions with general test function ϕ ∈ C0

∞(RN ) not depending on the density ρ. In
fact we have extracted of the structure of capillarity term a new energy inequality using
fractionnary derivative which allows a gain of derivative on the density ρ.
In the present paper we are interested in proving the stability of the global weak solution
for large initial data and without any condition on the test functions as in [10].

Global strong solutions and Blow-up criterion

Concerning the existence of global strong solution with small initial data, we would like
to mention the works of Danchin and Desjardins [16] in the framework of critical initial
data for the scaling of the equation. This last result has been recently improved in [22] by
working with more general initial data space which are the same for the velocity u0 than
Cannone-Meyer-Planchon (see [15]) for incompressible Navier-Stokes equations. Let us
also point out a result of global strong solution with large initial data on the rotational
part when we add friction term for the Korteweg system (see [29]).
In a second part we are presenting the main result of this paper where we exhibit new
blow-up criterion for the Korteweg system (1.3). Generally for the compressible system
the classical blow-up criterion follow the Beale-Kato-Majda criterion discovered in the
context of incompressible Euler equation (see [4]) which consists roughly speaking in

controlling the Lipschitz norm on the velocity
∫ T

0 ‖∇u(s)‖L∞ds. Indeed it appears crucial
to control the velocity in a Lipschitz norm in order to estimate the density via the mass
equation. It is one of the main difference with incompressible Navier-Stokes equation,
how to deal with the density, that is why in particular it seems very tricky to generalize
the famous Prodi-Serrin criterion (see [38, 43]) to compressible Navier-Stokes equations.
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However we would like to mention in the context of the compressible Navier-Stokes
equations with constant viscosity coefficient a recent result involving only a control in a
LpT (Lq(Ω)) norm on the density (see [28]). We would like to emphasize on the importance
of the structure of the viscosity coefficient, indeed in the case of the compressible Navier
Stokes equations when the viscosity coefficients are constant, we can exhibit a structure
of effective velocity (see [34, 28]) which plays a crucial role in the sense that this effective
velocity is regular in some sense. When the viscosity coefficients depend on the density,
the picture is less clear (in particular the problem of global weak solution remains open).
In our case we are going to prove that we can obtain new blow-up criterion involving only
a control on the vacuum, or more precisely a control on 1

ρ in L∞T (Lp) for suitable p with
T > 0. Similarly we also get a criterion of Prodi-Serrin for the Korteweg system for an
effective velocity v (in particular the strong solutions blow up in time T if ‖v‖LpT (Lq) = +∞
with 1

p + N
2q = 1

2).

1.1 Derivation of the models

We are going to prove that we can derive new entropy estimates when we choose specific
regime for the coefficients of viscosity and of capillarity. Indeed in the sequel we will
consider the following physical coefficients:

µ(ρ) = µρ and κ(ρ) =
κ

ρ
,

with µ, κ > 0.

Remark 1 Let us give some explanations on this choice of capillarity κ(ρ) = κ
ρ , indeed

this regime flows exhibits particular phenomena in the case of the compressible Korteweg
Euler system (which is called quantum compressible Euler system when κ(ρ) = κ

ρ ).
Indeed, at least heuristically, the system is equivalent via the Madelung transform to
the Gross-Pitaevskii equations which are globally well-posed for large initial data in
dimension N = 1, 2, 3 (we refer to [5]). One of the main difficulty to pass from Gross-
Pitaevskii to Quantic Euler consists in dealing with the vacuum. This is one of the
reasons why the mathematical community is interested in building solitons for this type
of problem (one of the main other reasons corresponds to give a negative answer to the
problem of scattering and after to study the stability of the soliton). Finally we would
also like to mention very interesting results of global weak solutions for the compressible
quantic Euler equation with a regime κ(ρ) = 1

ρ due to Antonelli and Marcati (see [2])

Let us do some computation in order to express in a friendly way the capillary tensor,
more precisely we obtain that (see the appendix for more details):

divK = κdiv(ρ∇∇ ln ρ) = κdiv(ρD(∇ ln ρ)).

It means in particular that the capillary term has the form of the viscosity tensor. It is
then natural to introduce the new unknown v = u+ κ

µ∇ ln ρ (let us point out that Jüngel
in [31] has used the same type of effective velocity). We now want to rewrite system (1.3)
in terms of the variables (ρ, v).When α = κ

µ we have the following system: ∂tρ+ div(ρv)− κ

µ
∆ρ = 0,

ρ∂tv + ρu · ∇v − div(µρ∇v) +∇P(ρ) = 0,
(1.5)
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When α = 0 and κ = µ2, we obtain the following simplified model: ∂tρ+ div(ρv)− κ

µ
∆ρ = 0,

ρ∂tv + ρu · ∇v − div(µρ∇v) +∇P(ρ) = 0,
(1.6)

Remark 2 Let us give some few words on the choice κ = µ2. It gives a specific structure
of effective velocity, but is also reasonable on a physic point of view (see [41] for more
details). Finally we recall that in [14], we prove in the one dimension case the convergence
of the global strong solution of the Korteweg system to an entropy weak solution when
κ = µ2 = ε2. This algebraic relation between κ and µ2 corresponds to an intermediary
regime, indeed an important research line (see [41]]) is to model the capillarity tensor and
to understand how fast the solutions converges to the Euler system when the capillarity
and the viscosity coefficients tends to zero. We want point out here that it exists three
different regimes, more precisely if we assume the viscosity coefficient equal to ε with
ε→ 0. Then we have the three different regimes:

1. κ << ε2, the viscosity dominates so the parabolic effects is primordial.

2. κ = ε2, intermediary regime.

3. κ >> ε2, the capillarity dominates so the dispersive effects are predominant.

For more details on the computation, we refer to the appendix. Let us mention that
system () is also equivalent to the following system: ∂tρ+ div(ρv)− κ

µ
∆ρ = 0,

∂t(ρv) + div(ρu⊗ v)− div(µρ∇v) +∇P(ρ) = 0,
(1.7)

Our goal is now to prove new entropy inequalities for these two systems and to prove
the stability of global weak solution for these two systems. To do this we are inspired by
works of Mellet and A. Vasseur in [35].

2 Notations and main result

2.1 Existence of global weak solution for Korteweg system

We say that (ρ, v) is a weak solution of (1.7) on [0, T ] × Ω, which the following initial
conditions

ρ/t=0 = ρ0 ≥ 0, ρu/t=0 = m0. (2.8)

with:
ρ0 ∈ Lγ(Ω) ∩ L1(Ω),

√
ρ0∇ ln ρ0 ∈ L2(Ω), ρ0 ≥ 0,

√
ρ0v0 ∈ L2(Ω), ρ

1
2+δ

0 v0 ∈ L2+δ(Ω) for somme small δ.
(2.9)

if

• ρ ∈ L∞T (L1(Ω) ∩ Lγ(Ω)),
√
ρ ∈ L∞T (L2(Ω)),

• √ρv ∈ L∞T (L2(Ω)),
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• √ρ∇v ∈ L2((0, T )× Ω),

with ρ ≥ 0 and (ρ,
√
ρv) satisfying in D′([0, T ]× RN ): ∂tρ+ div(

√
ρ
√
ρv)− κ

µ
∆ρ = 0,

ρ(0, x) = ρ0(x).

and if the following equality holds for all ϕ(t, x) smooth test function with compact
support such that ϕ(T, ·) = 0:∫

Ω
(ρv)0 · ϕ(0, ·)dx+

∫ T

0

∫
Ω

√
ρ(
√
ρv)∂tϕ+

√
ρu⊗√ρv : ∇ϕdx

+

∫ T

0

∫
Ω
ργdivϕ− < µρ∇v,∇ϕ >= 0,

(2.10)

where we give sense to the diffusion terms by rewriting him according to
√
ρ and

√
ρv:

< ρ∇v,∇ϕ >=−
∫
√
ρ(
√
ρvj)∂iiϕjdx dt−

∫
2
√
ρvj∂i

√
ρ∂iϕjdx dt

Similarly we have exactly the same type of definition for system (1.1).

< ρ∇v,∇ϕ >= −
∫
√
ρ(
√
ρvj)∂iiϕjdx dt−

∫
2
√
ρvj∂i

√
ρ∂iϕjdx dt.

Main results

We obtain in this paper the existence of global weak solutions (more exactly the stability
of global weak solutions) for systems (1.5) and (1.7). For system (1.7) we obtain the
following theorem.

Theorem 2.1 Let 1 < γ < p with p = +∞ if N = 2 and p = 3 if N = 3. Assume that
we have a sequence (ρn, vn) with vn = un + κ

µ∇ log ρn of weak solutions of system (1.7)
satisfying entropy inequalities (3.23) and (3.24) with initial data:

(ρn)/t=0 = ρn0 (x) and (ρnvn)/t=0 = ρn0v
n
0 (x)

where ρn0 and vn0 such that:

ρn0 ≥ 0, ρn0 → ρ0 in L1(Ω), ρn0v
n
0 → ρ0v0 in L1(Ω), (2.11)

and satisfy the following bounds (with C constant independent on n):∫
Ω

(
ρn0
|vn0 |2

2
+
a(ρn0 )γ

γ − 1
) < C,

∫
Ω

1

ρn0
|∇ ln ρn0 |2dx < C, (2.12)

and: ∫
Ω
ρn0
|vn0 |2+δ

2
dx < C, (2.13)

Then, up to a subsequence, (ρn,
√
ρnvn,

√
ρnun) converges strongly to a weak solution

(ρ,
√
ρv,
√
ρu) of (1.1) satisfying entropy inequalities (3.23) and (3.24) (the density ρn

converges strongly in C0((0, T ), L
3
2
loc(Ω)),

√
ρnvn converges strongly in L2(0, T, L2

loc) and
the momentum mn = ρnvn converges strongly in L1(0, T, L1

loc(Ω)), for any T > 0).
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Remark 3 Let us emphasize on the importance of the gain of integrability on v. This
is due to the specific structure of the diffusion on v which is of the form div(ρ∇v) and
not under the form div(ρ∇v). Following Mellet and Vasseur in [35] we obtain a supple-
mentary entropy on the effective velocity v which is a angular stone of the proof. It also
shall play a crucial role in the theorem 2.4.
Let us emphasize that when N = 3, we have the restriction 1 < γ < 3 essentially because
in other case we are not able to derive a gain of integrability on v.

Remark 4 Let us mention that the problem of the existence of global weak solutions
remains open. Indeed in the previous theorem we prove the stability of the global weak
solutions, however it seems very complicated to constructed approximate global weak so-
lution which verify uniformly all the entropies. We have the same problem in the case of
the shallow water system (see [35]).

Remark 5 Let us point out that compared with [10] we prove the stability of the global
weak solution without assuming that the test functions depend on the solution.

Remark 6 Let us mention that unfortunately we are not able to prove the strong con-
vergence of

√
ρnun and ∇√ρn in L2

loc but only the strong convergence of
√
ρnvn in L2

loc.

Remark 7 We could also obtain exactly the same result for system (1.5).

In the specific case of the system (1.1) we obtain new blow-up criterion in the case of
the torus TN which improves the results in [22]. In the sequel, we will set m = ρv and
q = ρ − 1 and q

′
= ln ρ. We start with recalling some results about the existence of

strong solution (see [22]). Considering the unknown q
′

leads to write the system under
the following form:

∂tq
′
+ u · ∇q′ + divu = 0,

∂tu+ u · ∇u− µ∆u− µ∇divu− µ∇q′ ·D(u) +∇F (ρ) = ∇∆q
′
+ 1

2∇(|∇q′ |2),

(q
′
, u) t=0 = (ln ρ0, u0),

(2.14)

with F
′
(ρ) = P

′
(ρ)
ρ . Let us recall a result coming from [22].

Theorem 2.2 ([22]) Let N ≥ 2 and p ∈ [1,+∞[. Assume that P (ρ) = aρ with a > 0.
Furthermore we suppose that:

q
′
0 ∈ B

N
p
p,∞ and u0 ∈ B

N
p
−1

p,∞ .

There exists a time T such that (2.14) has a unique solution (q
′
, u) on (0, T ) with:

q
′ ∈ L̃∞T (B

N
p
p,∞) ∩ L̃1

T (B
N
p

+2
p,∞ ), and u ∈ L̃∞T (B

N
p
−1

p,∞ ) ∩ L̃1
T (B

N
p

+1
p,∞ ). and Qu ∈ L̃∞(B

N
2
−1

2,1 ) ∩ L̃1(B
N
2

+1

2,1 ).

Furthermore it exists ε0 such that if in addition q
′
0 ∈ B

N
2
−1

2,∞ and:

‖q′0‖
B
N
p −1

p,∞ ∩B
N
p
p,∞

+ ‖u0‖
B
N
p −1

p,∞

≤ ε0.
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then the solution (q
′
, u) is global and:

q ∈ L̃∞(B
N
p
−1

p,∞ ∩B
N
p
p,∞) ∩ L̃1(B

N
p

+1
p,∞ ∩B

N
p

+2
p,∞ ), and u ∈ L̃∞(B

N
p
−1

p,∞ ) ∩ L̃1(B
N
p

+1
p,∞ ).

(2.15)

Remark 8 Let us point out that we only solve the system (2.14) which is equivalent to
(1.3) only if we control the vacuum. In [22], we obtain the previous theorem only when
p = 2, we are going briefly giving a sketch of the proof in the appendix.

Theorem 2.3 ([22]) Let P be a suitably smooth function of the density and 1 ≤ p <

+∞. Let u0 ∈ B
N
p
−1+ε

′

p,∞ with ε
′
> 0 and q

′
0 ∈ B

N
p

+ε
′

p,∞ such that ρ0 ≥ c > 0.
There exists then a positive time T such that system (1.1) has a unique solution (q

′
, u)

with ρ bounded away from 0 and:

q
′ ∈ C̃([0, T ], B

N
p

+ε
′

p,1 ) ∩ L̃1
T (Ḃ

N
p

+2+ε
′

p,1 ), u ∈ C̃([0, T ];B
N
p
−1+ε

′

p,1 ) ∩ L̃1([0, T ], B
N
p

+1+ε
′

p,1 ),

and it exists C > 0 and β > 0 depending only on the physical coefficients such that:

T ≥ C

(1 + ‖u0‖
B
N
p −1+ε

′

p,∞

+ ‖ ln ρ0‖
B
N
p +ε

′

p,∞

)β
(2.16)

Remark 9 We are going to give a sketch of the proof of this theorem in the appendix.
In particular we will emphasize on the estimate (2.16).

Let us give briefly the initial data space in which we will work in theorem 2.4.

Definition 2.1 We say that the initial data (ρ0, u0) verify the conditions (H) if:

• u0 ∈ B
N
p
−1+ε

′

p,∞ with ε
′
> 0 and q

′
0 ∈ B

N
p

+ε
′

p,1 for any 1 ≤ p < +∞ and we assume
that ρ0 ≥ c > 0,

• v0 ∈ L∞, q0 ∈ B1
p,∞ for any 1 ≤ p < +∞ and the initial data are in the energy

space, it means:

√
ρ0u0 ∈ L2, ∇√ρ0 ∈ L2 and Π(ρ0) ∈ L1.

(we refer to the proposition 3.1 for the definition of Π)

Let us give now our main result.

Theorem 2.4 Let P (ρ) = aρ with a > 0. We assume that (ρ0, u0) follows the condition
(H) of the definition 2.1 and let (ρ, u) the solution of system (1.1) on the interval (0, T ).
We can then extend the solution beyond (0, T ) if:

v ∈ Lp((0, T ), Lq(TN )) with
1

p
+
N

2q
=

1

2
and 2 ≤ p < +∞, N < q ≤ +∞, (2.17)
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or
v ∈ C([0, T ], LN (TN )) (2.18)

or if for any ε > 0 arbitrary small:

1

ρε
1{|ρ|≤δ} ∈ L∞((0, T ), L1(TN )). (2.19)

Remark 10 This result has to be considered like a Prodi-Serrin theorem on the effective
velocity v. In terms of blow-up condition, he improves widely [22]. In fact the second
condition could be improved as follows (we refer to the proof of theorem 2.4):

1

ρε
1{|ρ|≤δ} ∈ Lp((0, T ), Lq(TN )) with

1

p
+
N

2q
=

1

2
. (2.20)

Let us observe that compared with the compressible Navier-Stokes equation when the vis-
cosity coefficients are constant, we do not need to control a Lp1((0, T ), Lq1(TN )) norm
on ρ with suitable (p1, q1) but to estimate the vacuum (it means 1

ρ). In particular it
means that the creation of vacuum is a main obstruction to the existence of global strong
solutions.

Remark 11 We would like to give some comments on the choice on the initial data. In
particular we are working with subcritical initial data in order to have some information
on the lifespan of the strong solution. Indeed it is classical than the time T of existence
is bounded by below in function of the initial data, this plays a crucial role in our proof.

Remark 12 Let us mention that the condition (2.20) serves essentially to control the
vacuum, we refer to the lemma 12 for more details.

Remark 13 In fact the key of the proof correspond to get a gain of integrability on the

effective velocity v, more precisely we are able to control for any 1 ≤ p < +∞ ρ
1
p v in

L∞((0, T ), Lp(TN )). Unfortunately it seems quite difficult to translate this information
on v only. We would like to mention a very interesting work of Mellet and Vasseur (see
[37]) who gives a criterion for estimating the velocity u in Lp((0, T ), Lq) space modulo
some integrability control on the pressure terms and some bound by below on the viscosity
coefficients. Let us point out that we can not apply the estimate of Mellet and Vasseur
essentially because the viscosity coefficient is degenerate, it means µ(ρ) = ρ. In particular
this viscosity coefficient can not ben bounded by below due the apparition of eventual
vacuum.

Remark 14 We could probably extend this previous result for more general pressure
terms. However it would requires additional informations on the integrability of the den-
sity or on the vacuum, i.e 1

ρ1{|ρ|≤δ} and maybe some restriction on the γ if we choose a
γ law.
It would be also possible to deal with the euclidian space RN (it does not change a lot,
except that we need to be carreful when we apply interpolation argument.
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The paper is structured in the following way: in section 3 we prove some new entropies.
In section 4, we give a few notation, some compactness results and briefly introduce
the basic Fourier analysis techniques needed to prove our result. In section 5 we prove
theorem 2.1 and in section 6 we show the theorem 2.4. An appendix is devoted to justify
rigorously the computations involving the effective velocity.

3 New entropies

3.1 Entropy for the system (1.5)

We now want to establish new entropy inequality for system (1.5) and (1.1). More
precisely if we assume that (ρ, u) are exact solutions of system (1.5), we obtain the
following proposition.

Proposition 3.1 Assume that (ρ, u) are exact solutions of system (1.5) with P (ρ) = aργ

(γ ≥ 1) then for all t > 0:∫
Ω

[
ρ|u|2(t, x) + κ|∇√ρ|2(t, x) + Π(ρ)(t, x)

]
dx+

∫ t

0

∫
Ω
∇ ln ρ · ∇ργ dxdt

+ (µ− γ)

∫ t

0

∫
Ω
ρ|∇u|2dxdt+ γ

∫ t

0

∫
Ω
ρ|Du|2dxdt+ κ

∫ t

0

∫
Ω
ρ(∂ij ln ρ)2(t, x)dtdx

≤ C(

∫
RN

(
ρ0|v0|2(x) + Π(ρ0(x)) + κ|∇√ρ0|

2(t, x
)
dx).

(3.21)

with Π(s) = s
∫ s ∫ s

0
P (z)
z2
dz.

Proof: We now want to obtain this new entropy by taking profit of the specific structure
of effective velocity involved in the system (1.5). It suffices to multiply the momentum
equation in (1.5) by v, we then obtain:∫

Ω

(
ρ(t, x)|v(t, x)|2 + Π(ρ)(t, x)

)
dx+

∫ t

0

∫
Ω

(
µρ(t, x)|∇v|2(t, x)

+
κ

µ
P
′′
(ρ)|∇ρ|2(t, x)

)
dtdx ≤ C(

∫
Ω

(
ρ0(x)|v0(x)|2 + Π(ρ0)(x)

)
dx).

By the previous inequality and (1.4) we obtain the desired result. �

The following proposition comes from [36].

Proposition 3.2 Smooth solutions of system (1.5) satisfy the following inequality when
P (ρ) = aργ with γ ≥ 1:

d

dt

∫
Ω
ρ
|v|2+δ

2 + δ
+
ν

4

∫
Ω
ρ|v|δ|∇v|2dx ≤

(∫
Ω

(
ρ2γ−1− δ

2
) 2

2−δ dx

) 2
2−δ ( ∫

Ω
ρ|v|2dx

) δ
2 , (3.22)

for δ ∈ (0, 1
4).

Proof: The proof follows exactly the same lines than in [35].
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Remark 15 Let us mention that from proposition 3.1, we can easily show by interpola-
tion that ργ is bounded in L

5
3 ((0, T ) × Ω) for N = 3 (we refer to the lemma 3 for more

details). In order to prove that ρ
1

2+δ v belongs in L∞((0, T ), L2+δ(Ω)) for δ small enough,

it is necessary to control the integral
∫ T

0

∫
Ω

(
ρ2γ−1− δ

2

) 2
2−δ dxdt. Since ρ is bounded in

L
5
3 ((0, T )× Ω), a necessary condition is:

2γ − 1 <
5

3
γ ⇔ γ < 3.

It explains in particular why in the theorem 2.1, we assume that γ < 3 for N = 3.
For N = 2, we show that ρ is bounded in Lr((0, T )×Ω) for any 1 ≤ r < 2. In particular
we have always 2γ − 1 ≤ 2γ, that is why we do not need any assumption on γ for N = 2
in the theorem 2.1.

3.2 Entropy for the system (1.1)

By proceeding similarly we obtain the following propositions for system (1.1).

Proposition 3.3 Assume that (ρ, u) are exact solutions of system (1.1) then for all
t > 0:∫

Ω

(
ρ|v|2(t, x) + Π(ρ(t, x))

)
dx+

∫ t

0

∫
Ω
∇ ln ρ · ∇ργ dxdt

+ κ

∫ t

0

∫
Ω
ρ(∂ij ln ρ)2(t, x)dtdx ≤ C(

∫
Ω

(
ρ0|v0|2(x) + Π(ρ0(x))

)
dx).

(3.23)

Proposition 3.4 The smooth solutions of system 1.1 satisfy the following inequality
when P (ρ) = aργ with γ ≥ 1:

d

dt

∫
Ω
ρ
|v|2+δ

2 + δ
+
ν

4

∫
Ω
ρ|v|δ|∇v|2dx ≤

(∫
Ω

(
ρ2γ−1− δ

2
) 2

2−δ dx

) 2
2−δ ( ∫

Ω
ρ|v|2dx

) δ
2 , (3.24)

for δ ∈ (0, 1
4).

Remark 16 We have the same remark than remark 15 for the system (1.1).

4 Littlewood-Paley theory and Besov spaces

Throughout the paper, C stands for a constant whose exact meaning depends on the
context. The notation A . B means that A ≤ CB. For all Banach space X, we
denote by C([0, T ], X) the set of continuous functions on [0, T ] with values in X. For
p ∈ [1,+∞], the notation Lp(0, T,X) or LpT (X) stands for the set of measurable functions
on (0, T ) with values in X such that t→ ‖f(t)‖X belongs to Lp(0, T ). Littlewood-Paley
decomposition corresponds to a dyadic decomposition of the space in Fourier variables.
Let ϕ ∈ C∞(RN ), supported in the shell C = {ξ ∈ RN/3

4 ≤ |ξ| ≤
8
3} and χ ∈ C∞(RN )

supported in the ball B(0, 4
3). ϕ and χ are valued in [0, 1] such that:∑

l∈Z
ϕ(2−lξ) = 1 if ξ 6= 0.
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We set QN = (0, 2π)N and Z̃N = (Z/1)N the dual lattice associated to TN . We decom-
pose now u ∈ S ′(TN ) into Fourier series:

u(x) =
∑
β∈Z̃N

ûβe
iβ·x with ûβ =

1

|TN |

∫
TN

e−iβ·yu(y)dy.

Denoting;

hq(x) =
∑
β∈Z̃N

ϕ(2−qβ)eiβ·x,

one can now define the periodic dyadic blocks as:

∆qu(x) =
∑
β∈Z̃N

ϕ(2−qβ)ûβe
iβ·x =

1

|TN |

∫
TN

hq(y)u(x− y)dy, for all q ∈ Z

and we have the following low frequency cut-off:

Squ(x) = û0 +
∑
p≤q−1

∆pu(x) =
∑
β∈Z̃N

χ(2−qβ)ûβe
iβ·x.

It is obvious that ∆pu = 0 for negative enough p and formally, one can write that:

u = û0 +
∑
k∈Z

∆ku.

This decomposition is called non-homogeneous Littlewood-Paley decomposition.
Furthermore we have the following proposition where C̃ = B(0, 2

3) + C

Proposition 4.5

|k − k′ | ≥ 2 =⇒ suppϕ(2−k·) ∩ suppϕ(2−k
′
·) = ∅, (4.25)

k ≥ 1 =⇒ suppχ ∩ suppϕ(2−k·) = ∅, (4.26)

|k − k′ | ≥ 5 =⇒ 2k
′
C̃ ∩ 2kC = ∅. (4.27)

4.1 Non homogeneous Besov spaces and first properties

Definition 4.2 For s ∈ R, p ∈ [1,+∞], q ∈ [1,+∞], and u ∈ S ′(TN ) we set:

‖u‖Bsp,q = (|û0|q +
∑
l∈Z

(2ls‖∆lu‖Lp)q)
1
q .

The non homogeneous Besov space Bs
p,q is the set of temperate distribution u such that

‖u‖Ḃsp,q < +∞.

Remark 17 The above definition is a natural generalization of the nonhomogeneous
Sobolev and Hölder spaces: one can show that Bs

∞,∞ is the nonhomogeneous Hölder
space Cs and that Bs

2,2 is the nonhomogeneous space Hs.
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Proposition 4.6 The following properties holds:

1. If p1 < p2 and r1 ≤ r2 then Bs
p1,r1 ↪→ B

s−N(1/p1−1/p2)
p2,r2 .

2. Bs
′

p,r1 ↪→ Bs
p,r if s

′
> s or if s = s

′
and r1 ≤ r.

Let now recall a few product laws in Besov spaces coming directly from the paradiffer-
ential calculus of J-M. Bony (see [7]).

Proposition 4.7 We have the following laws of product:

• For all s ∈ R, (p, r) ∈ [1,+∞]2 we have:

‖uv‖Bsp,r ≤ C(‖u‖L∞‖v‖Bsp,r + ‖v‖L∞‖u‖Bsp,r) . (4.28)

• Let (p, p1, p2, r, λ1, λ2) ∈ [1,+∞]2 such that:1
p ≤

1
p1

+ 1
p2

, p1 ≤ λ2, p2 ≤ λ1, 1
p ≤

1
p1

+ 1
λ1

and 1
p ≤

1
p2

+ 1
λ2

. We have then the following inequalities:

if s1 + s2 +N inf(0, 1− 1
p1
− 1

p2
) > 0, s1 + N

λ2
< N

p1
and s2 + N

λ1
< N

p2
then:

‖uv‖
B
s1+s2−N( 1

p1
+ 1
p2
− 1
p )

p,r

. ‖u‖Bs1p1,r‖v‖B
s2
p2,∞

, (4.29)

when s1 + N
λ2

= N
p1

(resp s2 + N
λ1

= N
p2

) we replace ‖u‖Bs1p1,r‖v‖B
s2
p2,∞

(resp ‖v‖Bs2p2,∞)

by ‖u‖Bs1p1,1
‖v‖Bs2p2,r (resp ‖v‖Bs2p2,∞∩L∞), if s1 + N

λ2
= N

p1
and s2 + N

λ1
= N

p2
we take

r = 1.
If s1 + s2 = 0, s1 ∈ (Nλ1 −

N
p2
, Np1 −

N
λ2

] and 1
p1

+ 1
p2
≤ 1 then:

‖uv‖
B
−N( 1

p1
+ 1
p2
− 1
p )

p,∞

. ‖u‖Bs1p1,1
‖v‖Bs2p2,∞ . (4.30)

If |s| < N
p for p ≥ 2 and −N

p′
< s < N

p else, we have:

‖uv‖Bsp,r ≤ C‖u‖Bsp,r‖v‖
B
N
p
p,∞∩L∞

. (4.31)

Remark 18 In the sequel p will be either p1 or p2 and in this case 1
λ = 1

p1
− 1
p2

if p1 ≤ p2,

resp 1
λ = 1

p2
− 1

p1
if p2 ≤ p1.

Corollary 1 Let r ∈ [1,+∞], 1 ≤ p ≤ p1 ≤ +∞ and s such that:

• s ∈ (−N
p1
, Np1 ) if 1

p + 1
p1
≤ 1,

• s ∈ (−N
p1

+N(1
p + 1

p1
− 1), Np1 ) if 1

p + 1
p1
> 1,

then we have if u ∈ Bs
p,r and v ∈ B

N
p1
p1,∞ ∩ L∞:

‖uv‖Bsp,r ≤ C‖u‖Bsp,r‖v‖
B
N
p1
p1,∞∩L∞

.
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The study of non stationary PDE’s requires space of type Lρ(0, T,X) for appropriate
Banach spaces X. In our case, we expect X to be a Besov space, so that it is natural to
localize the equation through Littlewood-Payley decomposition. But, in doing so, we ob-
tain bounds in spaces which are not type Lρ(0, T,X) (except if r = p). We are now going
to define the spaces of Chemin-Lerner in which we will work, which are a refinement of the
spaces LρT (Bs

p,r).

Definition 4.3 Let ρ ∈ [1,+∞], T ∈ [1,+∞] and s1 ∈ R. We set:

‖u‖
L̃ρT (B

s1
p,r)

=
(
‖û0‖rLρT (Lp) +

∑
l∈Z

2lrs1‖∆lu(t)‖rLρ(Lp)

) 1
r .

We then define the space L̃ρT (Bs1
p,r) as the set of temperate distribution u over (0, T )×RN

such that ‖u‖
L̃ρT (B

s1
p,r)

< +∞.

We set C̃T (B̃s1
p,r) = L̃∞T (B̃s1

p,r) ∩ C([0, T ], Bs1
p,r). Let us emphasize that, according to

Minkowski inequality, we have:

‖u‖
L̃ρT (B

s1
p,r)
≤ ‖u‖LρT (B

s1
p,r)

if r ≥ ρ, ‖u‖
L̃ρT (B

s1
p,r)
≥ ‖u‖LρT (B

s1
p,r)

if r ≤ ρ.

Remark 19 It is easy to generalize proposition 4.7, to L̃ρT (Bs1
p,r) spaces. The indices s1,

p, r behave just as in the stationary case whereas the time exponent ρ behaves according
to Hölder inequality.

In the sequel we will need of composition lemma in L̃ρT (Bs
p,r) spaces.

Lemma 1 Let s > 0, (p, r) ∈ [1,+∞] and u ∈ L̃ρT (Bs
p,r) ∩ L∞T (L∞).

1. Let F ∈W [s]+2,∞
loc (RN ) such that F (0) = 0. Then F (u) ∈ L̃ρT (Bs

p,r). More precisely
there exists a function C depending only on s, p, r, N and F such that:

‖F (u)‖
L̃ρT (Bsp,r)

≤ C(‖u‖L∞T (L∞))‖u‖L̃ρT (Bsp,r)
.

2. Let F ∈W [s]+3,∞
loc (RN ) such that F (0) = 0. Then F (u)−F ′(0)u ∈ L̃ρT (Bs

p,r). More
precisely there exists a function C depending only on s, p, r, N and F such that:

‖F (u)− F ′(0)u‖
L̃ρT (Bsp,r)

≤ C(‖u‖L∞T (L∞))‖u‖2L̃ρT (Bsp,r)
.

Let us now give some estimates for the heat equation:

Proposition 4.8 Let s ∈ R, (p, r) ∈ [1,+∞]2 and 1 ≤ ρ2 ≤ ρ1 ≤ +∞. Assume that

u0 ∈ Bs
p,r and f ∈ L̃ρ2T (B

s−2+2/ρ2
p,r ). Let u be a solution of:{

∂tu− µ∆u = f

ut=0 = u0 .

Then there exists C > 0 depending only on N,µ, ρ1 and ρ2 such that:

‖u− û0‖L̃ρ1T (B
s+2/ρ1
p,r )

≤ C
(
(1 + T

1
ρ1 )‖u0‖Bsp,r + µ

1
ρ2
−1

(1 + T
1+ 1

ρ1
− 1
ρ2 )‖f‖

L̃
ρ2
T (B

s−2+2/ρ2
p,r )

)
.

If in addition r is finite then u belongs to C([0, T ], Bs
p,r).
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We would like to finish this section by giving very useful propositions of compactness
that we shall often apply. We are going to recall the so-called Aubin-Lions theorem.

Proposition 4.9 Let X ↪→↪→ B ↪→ Y be Banach spaces (with X which is compactly
imbedded in B) and (fn)n∈N a sequence bounded in Lq((0, T ), B) ∩ L1((0, T ), X) (with
1 < q ≤ +∞) and ( ddtfn)n∈N bounded in L1((0, T ), Y ).Then (fn)n∈N is relatively compact
in Lp((0, T ), B) for any 1 ≤ p < q.

Let us recall now the theorem of Arzèla-Ascoli.

Proposition 4.10 Let B and X Banach spaces such that B ↪→↪→ X is compact. Let
fN be a sequence of functions Ī → B (with I an interval) uniformly bounded in B and
uniformly continuous in X. Then there exists f ∈ C0(Ī , B) such that fn → f strongly in
f ∈ C0(Ī , X) up to a subsequence.

Lemma 1 Let K a compact subset of RN (with N ≥ 1) and vε a sequel such that:

• vε is uniformly bounded in L1+α(K) with α > 0,

• vε converge almost everywhere to v,

then vε converges strongly to v in L1(K) with v ∈ L1+α(K).

Proof: First by the Fatou lemma v is in L1+α(K). Next we have for any M > 0:∫
K
|vε − v|dx ≤

∫
K∩{|vε−v|≤M}

|vε − v|dx+

∫
K∩{|vε−v|≥M}

|vε − v|dx. (4.32)

We are dealing with the second member of the right hand side, by Hölder inequality and
Tchebychev lemma we have for a C > 0:∫

K∩{|vε−v|≥M}
|vε − v|dx ≤ (

∫
K
|vε − v|1+αdx)

1
1+α ({|vε − v| ≥M})

α
1+α ,

≤ C

M
α

1+α

.

(4.33)

In particular we have shown the strong convergence of vε to v, indeed from the inequality
(2) it suffices to use the Lebesgue theorem for the first term on the right hand side and
the estimate (4.33) with M going to +∞. �

5 Proof of the theorems 2.1

We now present the proof of theorem 2.1 inspired by [35]. To begin with, we need to
make precise the assumptions on the initial data.
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Initial data:

We recall that the initial data must satisfy (2.8), and (2.9) in order to take profit of the
entropy inequalities from section 3:

• ρn0 is bounded in L1(Ω) ∩ Lγ(Ω), ρn0 ≥ 0 a.e in Ω,

• ρn0 |un0 |2 is bounded in L1(Ω),

• ∇
√
ρn0 is bounded in L2(Ω),

• ρn0 |vn0 |2+δ is bounded in L1(Ω).

With those assumptions, and using the entropy inequalities (3.21), (3.22) and the mass
equation, we have the following bounds:

‖√ρn‖L∞((0,T ),L2(Ω)) ≤ C,
‖ρn‖L∞((0,T ),Lγ(Ω)) ≤ C,
‖√ρnun‖L∞((0,T ),L2(Ω)) ≤ C,
‖√ρn∂ij ln ρn‖L2((0,T )×Ω) ≤ C,
‖√ρn∇un‖L2((0,T )×Ω) ≤ C,

(5.34)

and for δ small enough:

‖ρ
γ
2
−1

n ∇ρn‖L2((0,T )×Ω) ≤ C,
‖ρn|vn|2+δ‖L∞((0,T ),L1(Ω)) ≤ C.

(5.35)

Remark 20 Let us point out that the gain of integrability on vn in (5.35) is a direct
consequence of the remark 15.

From the previous inequalities, the bounds (5.34) and (5.35) yields the following uniform
bounds on the effective velocity vn:

‖√ρn∇vn‖L2((0,T )×Ω) ≤ C,
‖∇√ρn‖L∞(0,T ;L2(Ω) ≤ C,

‖∇ρ
γ
2
n ‖L2((0,T )×Ω) ≤ C,

‖ρn|vn|2+δ‖L∞((0,T ),L1(Ω)) ≤ C.

(5.36)

The proof of theorem 2.1 will be derived in three steps and follows the proof of [35].
In the first step, we deal with the strong convergence of the density (which enables us
to treat the convergence of the pressure term). In the second step we prove the strong
convergence of

√
ρnvn in L2

loc((0, T ) × R) (it allows us to give sense to the momentum
product ρnvn⊗un) by taking advantage of the uniform gain of integrability on vn via the
entropy inequality (3.22). Indeed it will suffice to use the lemma 1 after proving almost
everywhere convergence via Sobolev injection. In this part, we also shall deal with the
strong convergence in the distribution sense of the product

√
ρn
√
ρnvn. The last step

shows the convergence of the momentum term
√
ρnvn to

√
ρu+ 2κ

µ ∇ρ.
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Step 1: Strong convergence of ρn

The first step consists in proving the convergence almost everywhere of ρn to a limit ρ
in order in the sequel to apply the lemma 1 for proving the strong convergence of P (ρn)
to P (ρ).

Lemma 2 For any T > 0, ρn converges up to a subsequence strongly to a limit ρ in
Lp((0, T ), Lqloc(Ω)) with 1 ≤ p < +∞ and q = 3 − α with α > 0 small enough if N = 3
and 1 ≤ q < +∞ if N = 2.
As a consequence up to a subsequence,

√
ρn converge almost everywhere to ρ. Furthermore

ρn strongly converges to ρ in C(0, T ;W
1−α, 3

2
loc (Ω)) with α > 0 small enough.

Proof: Indeed from (5.34) and (5.36), we know that∇√ρn is bounded in L∞((0, T ), H1(Ω)).
Furthermore from the mass equation, we have:

∂t
√
ρn = −1

2

√
ρndivun − un · ∇

√
ρn

=
1

2

√
ρndivun − div(un

√
ρn),

From (5.34) we obtain that ∂t
√
ρn is bounded in L2((0, T ), H−1(Ω)) for any T > 0.

Thanks to Aubin-Lions Lemma 4.9, we conclude to the strong convergence in Lploc((0, T ), Lq(Ω))
of ρn to a limit ρ up to a subsequence. A direct consequence is that ρn up to a subse-
quence converges almost everywhere to ρ.

We are now interesting in proving that ρn strongly converges to ρ in C(0, T ;W
1−α, 3

2
loc (Ω))

with α > 0 small enough. To do this we are going to use the Arzelà-Ascoli proposition
4.10.Sobolev embedding implies that

√
ρn is bounded in L∞(0, T ;Lq(Ω)) for q ∈ [2,+∞[

if N = 2 and q ∈ [2, 6] if N = 3. It implies that ρn is bounded (by interpolation for
N = 2 and the fact that ρn is bounded in L∞((0, T ), L1(Ω))) in L∞(0, T ;L3(Ω)), and
therefore:

ρnun =
√
ρn
√
ρnun is bounded in L∞(0, T ;L

3
2 (Ω)).

By the mass equation we deduce that ∂tρn is bounded in L∞(0, T ;W−1, 3
2 (Ω)). More-

over since ∇ρn = 2
√
ρn∇
√
ρn, we also have that ∇ρn, is bounded in L∞(0, T ;L

3
2 (Ω))

and finally ρn is bounded in L∞(0, T ;W 1, 3
2 (Ω)) (by using still an interpolation argu-

ment for proving that ρn is bounded in L∞(0, T ;L
3
2 (Ω)) ). Since ∂tρn is bounded in

L∞((0, T ),W−1, 3
2 (Ω)) we show that ρn is uniformly continuous on (0, T ) in W−1, 3

2 (Ω).

By interpolation between W−1, 3
2 (Ω) and W 1, 3

2 (Ω), we obtain that ρn is uniformly contin-

uous on (0, T ) in W 1−α, 3
2 (Ω). We conclude by using the Arzèla-Ascoli proposition 4.10

with B = W
1, 3

2
loc (Ω) and X = W

1−α, 3
2

loc (Ω).

Lemma 3 The pressure ργn is uniformly bounded in L
5
3 ((0, T ) × Ω) when N = 3 and

Lr((0, T ) × Ω) for all r ∈ [1, 2[ when N = 2. In particular, ργn converges to ργ strongly
in Lp−εloc ((0, T )× Ω) with ε > 0 small enough with p = 5

3 if N = 3 and p = 2 if N = 2.

Proof: Combining inequalities (5.36) and (5.35) implies that ρ
γ
2
n is uniformly bounded

in L2(0, T ;H1(Ω)).
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When N = 2 by Sobolev embedding ρ
γ
2
n is uniformly bounded in L2(0, T ;Lp(Ω)) for all

p ∈ [2,∞[. We deduce that ργn is uniformly bounded in L1(0, T ;Lp
′
(Ω)) ∩ L∞(L1(Ω))

for all p
′ ∈ [1,+∞[, hence by interpolation ργn is bounded in Lr((0, T )×Ω) for all r ∈ [1, 2[.

WhenN = 3, we get by Sobolev embedding that ργn is uniformly bounded in L1(0, T ;L3(Ω)).
As ργn is also uniformly bounded in L∞((0, T ), L1(Ω)), by interpolation we have:

‖ργn‖L 5
3 ((0,T )×Ω)

≤ ‖ργn‖
2
5

L∞(0,T ;L1(Ω))
‖ργn‖

3
5

L1(0,T ;L3(Ω))
≤M < +∞

Hence ργn is bounded in L
5
3 ((0, T )×Ω). By using that ρn converges up to a subsequence

almost everywhere to ρ and the previous uniform bounds on ργn we conclude the proof
via the use of the lemma 1. �

Step 2: Convergence of
√
ρnun ⊗

√
ρnvn and

√
ρnvn

The strategy remains the same, it suffices to prove that in a certain way
√
ρnvn converges

up to a subsequence almost everywhere to a limit
√
ρv and to use the lemma 1 by taking

advantage of the gain of integrability on vn via (5.36).

Lemma 4 Up to a subsequence, the momentum mn = ρnvn converges strongly in L2−ε(0, T ;Lploc(Ω))
(for any ε > 0 small enough) to some m(x, t) for all p ∈ [1, 3

2). It implies that:

ρnvn → m almost everywhere (x, t) ∈ (0, T )× Ω.

Remark 21 We observe that we can define v(t, x) = m(t,x)
ρ(t,x) outside the vacuum set

{ρ(t, x) = 0}, the only thing to check is to know if m(t, x) is zero on the vacuum set.

Proof: We have:
ρnvn =

√
ρn
√
ρnvn,

where
√
ρn is bounded in L∞(0, T ;Lq(Ω)) for q ∈ [2,+∞[ if N = 2 and q ∈ [2, 6] if

N = 3. Since
√
ρnvn is bounded in L∞(0, T ;L2(Ω)), it shows that ρnvn is bounded in

L∞(0, T ;Lq(Ω)) for all q ∈ [1, 3
2 ]. Next we are going to prove that mn is bounded in

Sobolev space in order to use Aubin-Lions proposition 4.9. We have:

∂i(ρnv
j
n) = ρn∂iv

j
n + vjn∂iρn

=
√
ρn
√
ρn∂iv

j
n + 2

√
ρnv

j
n∂i
√
ρn.

Using (5.36) the second term is bounded in L∞(0, T ;L1(Ω)), while the first term is
bounded in L2(0, T ;Lq(Ω)) for all q ∈ [1, 3

2 ]. Then∇(ρnvn) is bounded in L2(0, T ;L1
loc(Ω)).

It implies that ρnvn is bounded in L2(0, T ;W 1,1
loc (Ω)). It remains to obtain estimates on

∂t(ρnvn), more precisely we have:

for all compact K, ∂t(ρnvn) is bounded in L2(0, T ;W−2, 4
3 (K)). (5.37)
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To show (5.40), we consider the momentum equation of system (1.7), first we observe
that using (5.34) and (5.36):

div(
√
ρnvn ⊗

√
ρnun) ∈ L∞(0, T ;W−1,1(K)),

∇ργn ∈ L∞(0, T ;W−1,1(K)).

So we only have to deal with the terms div(ρn∇vn). In this goal, we write:

ρn∇vn = ∇(ρnvn)− vn : ∇ρn, (5.38)

The second term in (5.38) can be written as:

vn∇ρn = 2
√
ρnvn∇

√
ρn,

which is bounded in L∞(0, T ;L1(Ω)) in view of (5.36). The first term in (5.38) can be
rewritten:

∇[ρnvn] = ∇[
√
ρn(
√
ρnvn)],

which is bounded in L∞(0, T ;W−1, 3
2 (Ω)) thanks to lemma 2.

It implies that ρn∇vn is bounded in L∞(0, T ;W−1, 3
2 (K) + L1(K)), and by Sobolev em-

bedding we have L1(K) ⊂ W−1, 4
3 (K) and W−1, 3

2 (K) ⊂ W−1, 4
3 (K). It suffices to show

that div(ρn∇vn) is bounded in L∞(0, T ;W−2, 4
3 (K)). We have final proved (5.40).

Since ρnvn and ∂t(ρnvn) are respectively bounded in L2(0, T ;W 1,1
loc (Ω)) and in L2(0, T ;W

−2, 4
3

loc (Ω)),
by the Aubin-Lions proposition 4.9, ρnvn strongly converges up to a subsequence to a
limit m in L2−ε(0, T ;Lp(K)) for all p ∈ [1, 3

2) and any ε > 0 small enough. �

Lemma 5 The quantity
√
ρnvnconverges strongly in L2

loc((0, T ) × Ω) to m√
ρ (defined to

be zero when ρ = 0).
In particular, we have m(t, x) = 0 a.e on {ρ(t, x) = 0} and there exists a function v(t, x)
such that m(t, x) = ρ(t, x)v(t, x) and:

√
ρnvn is bounded in L∞((0, T ), L2+α(Ω)) for α > 0 small enough,
√
ρnvn →

√
ρv strongly in L2

loc((0, T )× Ω).

(Let us point out that v is not uniquely defined on the vacuum set {ρ(t, x) = 0}).

Proof: First of all, since mn√
ρn

is bounded in L∞(0, T ;L2(Ω)), Fatou’s lemma yields:∫
lim inf

m2
n

ρn
dx < +∞.

In particular, we have m(t, x) = 0 a.e. in {ρ(t, x) = 0}. So if we define the limit velocity

by v(t, x) by setting v(t, x) = m(t,x)
ρ(t,x) when ρ(t, x) 6= 0 and v(t, x) = 0 when ρ(t, x) = 0,

we have:
m(t, x) = ρ(t, x)v(t, x)

and ∫
m2

ρ
dx =

∫
ρ|v|2dx < +∞.
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For α small enough, we have:∫
Ω

(ρn|vn|2)1+αdx ≤ (

∫
Ω
ρn|vn|2+αdx)

2+2α
2+δ (

∫
Ω
ρ
δ α+1
δ−2α
n dx)

δ−2α
2+δ .

We observe that when α goes to 0 then δ α+1
δ−2α goes to 1. By using (5.35) and the

fact that ρn is a least bounded in L∞((0, T ), L3(Ω)), we conclude that
√
ρnvn is in

L∞((0, T ), L2+α(Ω)) for α small enough.
Moreover, Fatou’s lemma implies that:∫

ρ|v|2+δdx ≤
∫

lim inf ρn|vn|2+δdx

≤ lim inf

∫
ρn|vn|2+δdx,

and so ρ|v|2+δ is in L∞(0, T ;L1(Ω)).
Next, since mn and ρn converge almost everywhere, it is readily seen that in {ρ(t, x) 6= 0},√
ρnvn = mn√

ρn
converges almost everywhere to

√
ρu = m√

ρ . The natural idea now consists

in applying the lemma 1, we have only to be careful as
√
ρnvn converges a priori almost

everywhere only on A = {ρ(t, x) = 0}. In order to overcome this difficulty we are just
going to decompose Ω as follows:

Ω = (cCnM A) ∪ (cCnM ∩A) ∪ CnM

with:

CnM = {|ρ
1

2+δ
n vn| ≥M}.

We have then:∫
Ω
|√ρnvn −

m
√
ρ
|2dx =

∫
cCnM A)

· · · dx+

∫
CnM

· · · dx+

∫
(cCnM∩A)

· · · dx. (5.39)

Concerning the two first terms on the right hand side, we easily prove that theses terms
goes to 0 when n goes to +∞ by following the proof of the lemma 1. The only new term
is the last one on the right hand side of (5.39) which deals with the set A. More precisely
on (cCnM ∩A) we have m√

ρ = 0 and on (cCnM ∩A):

|√ρnvn −
m
√
ρ
|2 = |√ρnvn|2 ≤M2ρ

1− 2
2+δ

n → 0 a.e.,

because ρn converges to 0 on A. From the fact that ρn converges almost everywhere on
(cCnM ∩A) and the bounded on ρn in L∞((0, T ), L2(Ω)) by the lemma 1 we deduce that:∫

(cCnM∩A)
|√ρnvn −

m
√
ρ
|2dx→ 0.

It conclude the proof of the lemma. �

Lemma 6
√
ρnun ⊗

√
ρnvn converges in the distribution sense to

√
ρnu⊗

√
ρnv.
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Proof: It suffices to observe that
√
ρnun converges weakly in L2(0, T, L2(Ω)) to

√
ρu

and
√
ρnvn converges strongly in L2

loc((0, T ) × Ω) to
√
ρv. We have then for all ϕ ∈

C∞0 ((0, T )× Ω):∫ T

0

∫
Ω

(
√
ρnun ⊗

√
ρnvn)ϕdxdt→

∫ T

0

∫
Ω

(
√
ρu⊗√ρv)ϕdxdt.

Lemma 7 We have:

ρn∇vn → ρ∇v in D′ ,

Proof: Let φ be a test function, then:∫
ρn∇vnφdxdt = −

∫
ρnvn∇φdxdt+

∫
vn∇ρn φdxdt

= −
∫
√
ρn(
√
ρnvn)∇φdxdt+

∫
√
ρnvn∇(2

√
ρn)φdxdt.

Thanks to lemma 2 and 5, we know that
√
ρn and

√
ρnvn converges strongly in L2

loc((0, T )×
Ω) what is enough to obtain the convergence of the first term.Next as

√
ρn converges

strongly to
√
ρ in L2

loc((0, T ) × Ω) and that ∇√ρn is bounded in L2
loc((0, T ) × Ω), it

implies that:
∇√ρn → ∇

√
ρ L2

loc((0, T )× Ω)− weak.

And we conclude for the second term as
√
ρnvn converges strongly in L2

loc((0, T )×Ω). �

Step 3: Convergence of
√
ρnvn to

√
ρu+ 2κ

µ ∇
√
ρ

Lemma 8 Up to a subsequence, the momentum (m1)n = ρnun converges strongly in
L2−ε(0, T ;Lploc(Ω)) (for any ε > 0 small enough) to some m1(x, t) for all p ∈ [1, 3

2). It
implies that up to a subsequence:

ρnun → m almost everywhere (x, t) ∈ (0, T )× Ω.

The quantity
√
ρnun strongly converges in L2−ε

loc ((0, T )×Ω) (for any ε > 0 small enough)
to m1√

ρ (defined to be zero when ρ = 0).

In particular, we have m1(t, x) = 0 a.e on {ρ(t, x) = 0} and there exists a function u(t, x)
such that m(t, x) = ρ(t, x)u(t, x) (Let us point out that u is not uniquely defined on the
vacuum set {ρ(t, x) = 0}).

The quantity ∇ρn strongly converges in L2−ε((0, T ), L
3
2
−ε

loc (Ω)) (for any ε > 0 small
enough) to ∇ρ. It implies that up to a subsequence ∇√ρn converges almost everywhere
to ∇√ρ on {ρ 6= 0}.
Finally we have:

√
ρnvn →

√
ρu+

2κ

µ
∇√ρ =

√
ρv in D′(Ω),

Remark 22 Let us mention that unfortunately we are not able to prove the strong con-
vergence of

√
ρnun and ∇√ρn in L2

loc but only the strong convergence of
√
ρnvn in L2

loc.
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Proof: We have:
ρnun =

√
ρn
√
ρnun,

where
√
ρn is bounded in L∞(0, T ;Lq(Ω)) for q ∈ [2,+∞[ if N = 2 and q ∈ [2, 6] if

N = 3. Since
√
ρnun is bounded in L∞(0, T ;L2(Ω)), it shows that ρnun is bounded in

L∞(0, T ;Lq(Ω)) for all q ∈ [1, 3
2 ]. Following the lemma 4 we are interested in proving

that ρnun is bounded in Sobolev space in order to use Aubin-Lions proposition 4.9. We
have:

∂i(ρnu
j
n) = ρn∂iu

j
n + ujn∂iρn

=
√
ρn
√
ρn∂iu

j
n + 2

√
ρnu

j
n∂i
√
ρn.

Using (5.34) and (5.36) the second term is bounded in L∞(0, T ;L1(Ω)), while the first
term is bounded in L2(0, T ;Lq(Ω)) for all q ∈ [1, 3

2 ]. Then ∇(ρnun) is bounded in
L2(0, T ;L1

loc(Ω)).

It implies that ρnun is bounded in L2(0, T ;W 1,1
loc (Ω)). It remains to obtain estimates on

∂t(ρnun), more precisely we have:

for all compact K, ∂t(ρnun) is bounded in L2(0, T ;W−2, 3
2 (K)). (5.40)

In order to prove (5.40), we deal with the momentum equation of system (1.1), first we
observe that using (5.34) and (5.36):

div(
√
ρnun ⊗

√
ρnun) ∈ L∞(0, T ;W−1,1(K)),

∇ργn ∈ L∞(0, T ;W−1,1(K)).

So we only have to deal with the terms div(ρnDun) and divKn. From the appendix, we
recall that:

divKn = div(
√
ρn
√
ρn∇∇ ln ρn).

Then by (5.34), we check that
√
ρn
√
ρn∇∇ ln ρn is bounded in L2((0, T ), L

3
2 (Ω)), then

div(
√
ρn
√
ρn∇∇ ln ρn) is bounded in L2((0, T ),W−1, 3

2 (Ω)).
It remains to treat the term div(ρnDun) which is bounded in L2((0, T ),W−1,2(Ω)). By

Sobolev embedding we conclude that ∂t(ρnun) is uniformly bounded in L2((0, T ),W−1, 3
2 (Ω)).

Since ρnun and ∂t(ρnun) are respectively bounded in L2(0, T ;W 1,1
loc (Ω)) and in L2(0, T ;W

−2, 3
2

loc (Ω)),
by the Aubin-Lions proposition 4.9, ρnun strongly converges up to a subsequence to a
limit m1 in L2−ε(0, T ;Lp(K)) for all p ∈ [1, 3

2) and any ε > 0 small enough.
To prove that

√
ρnun converges strongly in L2−ε

loc ((0, T )×Ω) is a direct application of the
lemma 1 in the spirit of the proof of the lemma 5.

In order to prove that ∇ρn strongly converges in L2−ε((0, T ), L
3
2
−ε

loc (Ω)), we are going to
take advantage of the bounds on

√
ρn∆ ln ρn in L2((0, T ), L2(Ω)). Indeed we have:

∆ρn =
√
ρn(
√
ρn∆ ln ρn) + 4|∇√ρn|2,

we can show by (5.34) that ∆ρn is uniformly bounded in L∞T (L1(Ω)) +L2((0, T ), L
3
2 (Ω))

and so in L2(0, T ), L1(Ω)). We easily prove that ∂t(∇ρn) is bounded in L∞(W−2, 3
2 ). B By

Aubin Lions theorem, we deduce that ∇ρn strongly converges in L2−ε((0, T ), L
3
2
−ε

loc (Ω)).
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It implies that up to a subsequence ∇ρn converges a.e to ∇ρ and prove that ∇√ρn
converges almost everywhere to ∇√ρ on {ρ 6= 0}.
As
√
ρn and

√
ρnun strongly converge, it is easy to see that

√
ρv =

√
ρv + κ

µ∇
√
ρ which

concludes the proof of the lemma. �

6 Proof of theorem 2.4

Concerning the existence of strong solution on a finite interval (0, T ) in the theorem
2.4 with such initial data, we refer to [22] or to the appendix for a sketch of the proof.
Let us mention that in the sequel we shall work in many case with unknowns of null
average, in particular we will have to consider the variables ρ(t, x) − 1

TN
∫
TN ρ(t, y)dy,

v(t, x)− 1
TN
∫
TN v(t, y)dy.For the simplicity we will omit this fastidious notation and we

will only use the notation ρ and v. Let us mention briefly that we control 1
TN
∫
TN ρ(t, y)dy

as 1
TN
∫
TN ρ(t, y)dy = 1

TN
∫
TN ρ0(y)dy. It will be also the case for 1

TN
∫
TN v(t, y)dy due to

some control on the vacuum (indeed we observe that the momentum ρv is controled).
We now would like to focus on the result of blow-up of the theorem 2.4 and in particular
to prove that the estimate (2.17) and (2.20) are sufficient in order. To do this, we shall
derivate new regularizing effects on the density ρ combining with some important gain
of integrability on the effective velocity v. Indeed the key of the proof is to obtain
enough integrability on v (more precisely we will see that for any 1 ≤ p < +∞ v belongs
in L∞((0, T ), Lp(TN )) in order to get regularizing effects on the density via the first
equation of system 1.1 (which is a heat equation with a remainder term which depends
on v).

First step: Gain of integrability on v, for any 1 ≤ p < +∞ v is in L∞((0, T ), Lp(TN ))

In this part, we are going to prove that the effective velocity v is in L∞((0, T ), Lp(TN ))
for any 1 ≤ p < +∞ due to our choice on the pressure P , it means P (ρ) = aρ with a > 0.
We also refer for a similar result to [37].

Lemma 9 Let (ρ, v) our strong solution defined in the definition 2.1, then it exists
C(T ) > 0 depending only on the initial data of theorem 2.4 (more precisely from the
energy data conditions

√
ρ0u0 ∈ L2(TN ), Π(ρ0) ∈ L1(TN ) and ∇√ρ0 ∈ L2(TN )) and of

the time T such that:(1

p

∫
TN

(ρ|v|p)(t, x)dx+

∫ t

0

∫
TN

ρ|v|p−2|∇v|2(s, x)dsdx

+ (p− 2)

∫ t

0

∫
TN

ρ(
∑
i

∂i(|v|2)2|v|p−4(s, x)dtdx
)
≤ C(T ).

Proof: As in [28], we now want to obtain additional information on the integrability of

v, and more precisely to show that ρ
1
p v is in any L∞T (Lp(TN )) with 1 ≤ p < +∞. To do

it, we multiply the momentum equation of (1.1) by v|v|p−2 and integrate over TN , we

24



obtain then:

1

p

∫
TN

ρ∂t(|v|p)dx+

∫
TN

ρu · ∇(
|v|p

p
)dx+

∫
TN

ρ|v|p−2|∇v|2dx

+ (p− 2)

∫
TN

ρ
∑
i,j,k

vjvk∂ivj∂ivk|v|p−4dx+

∫
TN
|v|p−2v · ∇(aρ)dx = 0.

(6.41)

Next we observe that:∑
i,j,k

vjvk∂ivj∂ivk =
∑
i

(
∑
j

vj∂ivj)
2 =

∑
i

[1
2
∂i(|v|2)

]2
=

1

4
|∇(|v|2)|2.

We get then as div(ρu) = −∂tρ and by using (6.41):

1

p

∫
TN

∂t(ρ|v|p)dx+

∫
TN

ρ|v|p−2|∇v|2dx+
(p− 2)

4

∫
TN

ρ|∇(|v|2)|2|v|p−4dx

+

∫
TN
|v|p−2v · ∇(aρ)dx = 0.

(6.42)

We have then by integrating over (0, t) with 0 < t ≤ T :

1

p

∫
TN

(ρ|v|p)(t, x)dx+

∫ t

0

∫
TN

ρ|v|p−2|∇v|2(s, x)dsdx

+
(p− 2)

4

∫ t

0

∫
TN

ρ|∇(|v|2)|2|v|p−4(s, x)dsdx ≤ 1

p

∫
TN

(ρ0|v0|p)(x)dx

+ |
∫ t

0

∫
TN
|v|p−2v · ∇aρ(s, x)dsdx|.

(6.43)

We now want to take the sup of the previous estimate on (0, T ), we have then:

sup
t∈(0,T )

(1

p

∫
TN

(ρ|v|p)(t, x)dx+

∫ t

0

∫
TN

ρ|v|p−2|∇v|2(s, x)dsdx

+
(p− 2)

4

∫ t

0

∫
TN

ρ|∇(|v|2)|2|v|p−4(s, x)dsdx
)
≤ 1

p

∫
TN

(ρ0|v0|p)(x)dx

+ sup
t∈(0,T )

|
∫ t

0

∫
TN
|v|p−2v · ∇(aρ(s, x))dsdx|.

(6.44)

By integration by parts we have:∫ t

0

∫
TN
|v|p−2v · ∇aρ(s, x)dsdx = −a

∫ t

0

∫
TN

div(|v|p−2v)ρ(s, x)dsdx.

We have then:

div(|v|p−2v) = |v|p−2div(v) + (p− 2)|v|p−4v · (v · ∇v).

We now are interested in bounding the term supt∈(0,T ) |
∫ t

0

∫
TN |v|

p−2v · ∇ρ(t, x)dtdx| in
(6.43). To do this, we would like to apply Hölder’s inequalities, indeed we have:

|ρ|v|p−4v · (v · ∇v)| ≤ C|√ρ|v|
p
2
−1∇v| × |ρ

1
2
− 1
p |v|

p
2
−1| × |ρ

1
p |.
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By Hölders inequalities we can prove that |ρ|v|p−4v · (v · ∇v)| is in L1
t (L

1(TN ) with:

sup
t∈(0,T )

∫ t

0

∫
TN
|ρ|v|p−4v · (v · ∇v)|dxds ≤ sup

t∈(0,T )

(√
t‖√ρ|v|

p
2
−1∇v‖L2

t (L
2(TN ))

× ‖ρ
1
2
− 1
p |v|

p
2
−1|‖

L∞t (L
2p
p−2 (TN ))

‖ρ
1
p ‖L∞t (Lp(TN ))

)
,

≤ sup
t∈(0,T )

(√
t‖√ρ|v|

p
2
−1∇v‖L2

t (L
2(TN )) sup

s∈(0,t)

( ∫
TN

ρ|v||p(x)dx
) 1

2
− 1
p ‖ρ

1
p ‖L∞t (Lp(TN ))

)
.

(6.45)
Now we set:

A(t) =
(1

p

∫
TN

(ρ|v|p)(t, x)dx+

∫ t

0

∫
TN

ρ|v|p−2|∇v|2(s, x)dsdx

+
(p− 2)

4

∫ t

0

∫
TN

ρ|∇v|v|p−4(s, x)dtdx
)
.

We have then from (6.44) and (6.45):

sup
t∈(0,T )

A(t) ≤ C
(
1 +
√
T ( sup

t∈(0,T )
A(t))

1− 1
p ‖ρ0‖

1
p

L∞T (L1(TN ))

)
We deduce then that supt∈(0,T )A(t) is finite. In particular, we obtain that ρ

1
p v is in any

L∞T (Lp(TN )) for 1 < p < +∞. �

Step 2: Regularizing effect on the density ρ

Lemma 10 The density ρ belongs in L∞((0, T ), B1
p,∞) for any N < p < +∞ and the

nom in L∞((0, T ), B1
p,∞) depends only on the initial energy data.

Proof: We have then obtain that for any 1 ≤ p < +∞, ρ
1
p v belongs to L∞((0, T ), Lp(TN )).

We now want to take into account this information to obtain regularizing effects on the
density via the first equation of (1.1) (which is a heat equation):

∂tq −
κ

µ
∆q = −div(ρv). (6.46)

In the previous equation and In the sequel we assume that q has zero average (it suffices
just to consider the unknown q− 1

TN

∫
TN qdx). Our goal is to transfer the information on

the integrability of v (which is a subscaling estimate) on the density ρ. More precisely
we have by proposition 4.8 for any 1 ≤ p < +∞:

‖q‖
L̃∞((0,T ),B1

p,∞)
≤ C(T )(‖q0‖L̃∞(B1

p,∞)
+ ‖ρv‖

L̃∞T (B0
p,∞)

). (6.47)

We now need to prove that ρv is in L̃∞((0, T ), B0
p,∞). As ρ

1
p v is in L∞((0, T ), Lp(TN )),

we have then:

‖(ρ1− 1
p )ρ

1
p v‖L∞((0,T ),Lp(TN )) ≤ ‖ρ

1
p v‖L∞((0,T ),Lp(TN))‖ρ

1− 1
p ‖L∞T (L∞(TN )),

≤ C(p)‖ρ
1
p v‖L∞((0,T ),Lp(TN))(1 + ‖q‖

1− 1
p

L∞T (L∞(TN ))
).

(6.48)
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By injecting (6.48) in (6.47) and using the fact that Lp(TN ) is embedded in B0
p,∞, we

obtain that:

‖q‖
L̃∞((0,T ),B1

p,∞)
≤ C(p, T )(‖q0‖L̃∞(B1

p,∞)
+ ‖ρ

1
p v‖L∞((0,T ),Lp(TN ))

+ ‖ρ
1
p v‖L∞((0,T ),Lp(TN ))‖q‖

1− 1
p

L∞((0,T ),L∞(TN ))

)
.

(6.49)

By Besov embedding we know that B1
p,∞ is embedded in L∞(TN ) for p ≥ N large enough.

We obtain by (6.50) that:

‖q‖
L̃∞T (B1

p,∞)
≤ C(T )(‖q0‖L̃∞(B1

p,∞)
+ ‖ρ

1
p v‖L∞T (Lp(TN ))‖ρ‖

1− 1
p

L∞T (B1
p,∞))

)
. (6.50)

We conclude then by bootstrap that q is in L∞T (B1
p,∞) for p large enough (in fact p > N).

�

Step 3: Estimates on 1
ρ if we control 1

ρε in L∞T (L1(TN ))

Now we are interested in getting informations on the vacuum in order to express the
regularity of q

′
= ln ρ in function of the regularity on q. To do that we are going to apply

energy estimate on 1
ρ .

Lemma 11 Let ε > 0 and assume that 1
ρε belongs in L∞((0, T ), L1(TN )) then for any

1 ≤ p < +∞, 1
ρ is bounded in L∞((0, T ), Lp(TN )). Furthermore this bound depends only

on T and the energy initial data.

Proof: We now would like to obtain estimates on 1
ρ , to do this we will consider the first

equation of (1.1) that we multiply by − 1
ρp with p ≥ 2:

1

p− 1
∂t(

1

ρp−1
)− κ

µ(p− 1)
∆(

1

ρp−1
) +

4pκ

µ(p− 1)2
|∇
( 1

ρ
p
2
− 1

2

)
|2 =

1

ρp
div(ρv), (6.51)

indeed we have:

κ

µρp
∆ρ = − κ

µ(p− 1)
∆(

1

ρp−1
) +

4pκ

µ(p− 1)2
|∇
( 1

ρ
p
2
− 1

2

)
|2.

Our goal is now to integrate over (0, t)× TN the equality (6.51), we obtain then:

1

p− 1

∫
TN

1

ρp−1(t, x)
dx+

4pκ

µ(p− 1)2

∫ t

0

∫
TN
|∇
( 1

ρ
p
2
− 1

2 (s, x)

)
|2dsdx

≤ 1

p− 1

∫
TN

1

ρp−1
0 (x)

dx+
∣∣ ∫ t

0

∫
TN

1

ρp
div(ρv)(s, x)dsdx

∣∣. (6.52)

We now pass to the sup on (0, T ), and we have:

sup
t∈(0,T )

( 1

p− 1

∫
TN

1

ρp−1(t, x)
dx+

4pκ

µ(p− 1)2

∫ t

0

∫
TN
|∇
( 1

ρ
p
2
− 1

2 (s, x)

)
|2dsdx

)
≤ 1

p− 1

∫
TN

1

ρp−1
0 (x)

dx+ sup
t∈(0,T )

(∣∣ ∫ t

0

∫
TN

1

ρp
div(ρv)(s, x)dsdx

∣∣). (6.53)
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By integration by parts we get:∣∣ ∫ t

0

∫
TN

1

ρp
div(ρv)(s, x)dsdx

∣∣ = |p
∑
i

∫ t

0

∫
TN

1

ρp
∂iρ v

i(s, x)dsdx|.

We recall that:

| 1

ρp
∂iρ v

i|
(
t, x
)

= | 1

ρ
p
2

+ 1
2

∂iρ| × |
1

ρ
p
2
− 1

2

| × |vi|
(
t, x
)
. (6.54)

In the sequel we only shall deal with the case N = 3, the other cases are similar to treat.
Now as on the left side of (6.53), we have information on 1

ρ
p
2−

1
2

in L∞((0, T ), L2(TN ))

and on ∇( 1

ρ
p
2−

1
2

) in L2((0, T ), L2(TN )) we can assume by Sobolev embedding and inter-

polation that:

(
1

ρ
p
2
− 1

2

− 1

|TN |

∫
TN

1

ρ
p
2
− 1

2

dx) ∈ LkT (Lq(TN )) with
1

q
+

2

3k
=

1

2
with k ∈ [2,+∞], q ∈ [2, 6].

(6.55)
We have then:

‖ 1

ρ
p
2
− 1

2

‖LkT (Lq(TN )) ≤ ‖
1

ρ
p
2
− 1

2

‖
1− 2

p

L∞T (L2(TN ))
‖ 1

ρ
p
2
− 1

2

‖
2
p

L2
T (L6(TN ))

,

≤ ‖ 1

ρ
p
2
− 1

2

‖
1− 2

p

L∞T (L2(TN ))

(
‖∇
( 1

ρ
p
2
− 1

2

)
∥∥
L2
T (L2(TN ))

+
√
T‖ 1

ρ
p
2
− 1

2

‖L∞T (L2(TN ))|TN |
1
2
) 2
p .

(6.56)
We now want to take advantage of the fact that 1

ρε belongs to L∞T (L1(TN )) for ε arbitrary
small. Indeed the idea is now to use interpolation results in order to absorb the term on
the right side of (6.53) by the left side. More precisely we have by (6.55) that:

1

ρε
∈ L∞T (L1(TN )) and

1

ρε
∈ Lk( p−1

2ε
)

T (Lq(
p−1
2ε

)(TN )), (6.57)

with:

‖ 1

ρε
‖
L
k(
p−1
2ε )

T (Lq(
p−1
2ε )(TN ))

= ‖ 1

ρ
p
2
− 1

2

‖
2ε

(p−1)

LkT (Lq(TN ))
, (6.58)

Now by interpolation we can show that:

‖ 1

ρε
‖LαT (Lβ(TN )) ≤ ‖

1

ρε
‖1−θ
L∞T (L1(TN ))

‖ 1

ρε
‖θ
L
k(
p−1
2ε )

T (Lq(
p−1
2ε )(TN ))

, (6.59)

with 1
α = 2εθ

k(p−1) and 1
β = (1− θ) + 2εθ

q(p−1) and 0 ≤ θ ≤ 1.
We check easily that:

‖ 1

ρε
‖LαT (Lβ(TN )) = ‖ 1

ρ
p
2
− 1

2

‖
p−1
2ε

L
2εα
p−1
T (L

2εβ
p−1 (TN ))

. (6.60)

From (6.58), (6.59) and (6.60), we obtain finally that:

‖ 1

ρ
p
2
− 1

2

‖
p−1
2ε

L
2εα
p−1
T (L

2εβ
p−1 (TN ))

≤ ‖ 1

ρε
‖1−θ
L∞T (L1(TN ))

‖ 1

ρ
p
2
− 1

2

‖LkT (Lq(TN )),
2εθ

(p−1) (6.61)
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or:

‖ 1

ρ
p
2
− 1

2

‖
L

2εα
p−1
T (L

2εβ
p−1 (TN ))

≤ ‖ 1

ρε
‖

2ε
(p−1)

(1−θ)
L∞T (L1(TN ))

‖ 1

ρ
p
2
− 1

2

‖
( 2ε
(p−1)

)2θ

LkT (Lq(TN ))
. (6.62)

We recall that:
2εα

p− 1
=
k

θ
and

2εβ

p− 1
=

2εq

(1− θ)(p− 1)q + 2εθ
. (6.63)

By using (6.54), (6.56) and (6.62) we obtain by Hölder’sinequelities:

∣∣ ∫ t

0

∫
TN

1

ρp
div(ρv)(t, x)dtdx

∣∣ ≤ C‖ 1

ρ
p
2

+ 1
2

∂iρ‖L2
T (L2(TN ))

× ‖ 1

ρ
p
2
− 1

2

‖
L
k(1+α1)
T (Lq(1+α2)(TN ))

‖v‖
Lk

1
T (Lq

1
(TN ))

.

(6.64)

with α1 > 0, α2 > 0 arbitrary small, θ depending on α1 > 0 and α2 (such that 0 < θ < 1
and θ goes to 1 when α1 and α2 go to 0) and k1, k2 such that:

1

2
+

1

k(1 + α1)
+

1

k1
= 1 and

1

2
+

1

q(1 + α2)
+

1

k2
= 1.

From (6.56), (6.64) and (6.62) we have finaly:

∣∣ ∫ t

0

∫
TN

1

ρp
div(ρv)(t, x)dtdx

∣∣ ≤ C( sup
t∈(0,T )

B(t)
)1+( 2ε

(p−1)
)2θ

‖ 1

ρε
‖

2ε
(p−1)

(1−θ)
L∞T (L1(TN ))

‖v‖
Lk

1
T (Lq1 (TN ))

,

(6.65)

with:

B2(t) =
( 1

p− 1

∫
TN

1

ρp−1(t, x)
dx+

4pκ

µ(p− 1)2

∫ t

0

∫
TN
|∇
( 1

ρ
p
2
− 1

2 (t, x)

)
|2dtdx

)
.

When (p−1) > 2ε we can absorb the term |
∫ t

0

∫
TN

1
ρpdiv(ρv)(t, x)dtdx

∣∣ because from the
previous inequality, we have:(

sup
t∈(0,T )

B(t)
)2 ≤ C(1 +

(
sup

t∈(0,T )
B(t)

)1+( 2ε
(p−1)

)2θ
)‖v‖

Lk
1
T (Lq1 (TN ))

)
,

with 1 + ( 2ε
(p−1))2θ < 2. Indeed we can show easily that v is bounded in Lk

1

T (Lq
1
(TN )).

To do this, we recall that ρ
1
p v is bounded in L∞T (Lp(TN )) for p enough big. As we control

1
ρε in L∞T (L1(TN )) and that:

v =
1

ρ
1
p

ρ
1
p v,

It means that v is bounded in L∞T (L
p
2 (TN )) for p enough big and then v is bounded in

Lk
1

T (Lq
1
(TN )).

We have then proved that for any p > 0, 1
ρp is bounded in L∞T (L1(TN )). �
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Step 3 bis: Estimates on 1
ρ if we control v in Lp1T (Lq1(TN )) or in C([0, T ], LN (TN )

with 1
p1

+ N
2q1

= 1
2 and 2 ≤ p1 < +∞, 3 < q1 ≤ ∞

Lemma 12 Let ε > 0 and we assume that v belongs in Lp1T (Lq1(TN )) or in C([0, T ], LN (TN )
with 1

p1
+ N

2q1
= 1

2 and 2 ≤ p1 < +∞, 3 < q1 ≤ ∞. Then 1
ρ is bounded in L∞((0, T ), Lp(TN )).

Furthermore this bound depends only on T and the energy initial data.

Proof: For the sake of the simplicity we are only dealing with the case N = 3, indeed the
case N = 2 is similar. It suffices only to bound

∣∣ ∫ t
0

∫
TN

1
ρpdiv(ρv)(t, x)dtdx

∣∣ as follows,
we recall that we have from (6.56):

‖ 1

ρ
p
2
− 1

2

‖Lp2 ((0,T ),Lq2 (TN )) ≤ C(T )B(T ),

with 1
q2

+ 2
3p2

= 1
2 . By using (6.54) and the previous inequality we have:

∣∣ ∫ t

0

∫
TN

1

ρp
div(ρv)(t, x)dtdx

∣∣ ≤ C(T )‖ 1

ρ
p
2

+ 1
2

∂iρ‖L2
T (L2(TN ))‖

1

ρ
p
2
− 1

2

‖Lp2 ((0,T ),Lq2 (TN ))‖v‖Lp1 ((0,T ),Lq1 (TN )).

Indeed we have:
1

2
+

1

p2
+

1

p1
= 1 and

1

2
+

1

q2
+

1

q1
= 1,

and:
1

p1
+

3

2q1
=

1

2
− 1

p2
+

3

2
(
1

2
− 1

q2
) =

1

2
+

3

4
− 3

2
(

1

q2
+

2

3p2
) =

1

2
.

We finally have:∣∣ ∫ t

0

∫
TN

1

ρp
div(ρv)(t, x)dtdx

∣∣ ≤ C(T )
(

sup
t∈(0,T )

B(t)
)2‖v‖Lp((0,T ),Lq(TN )),

≤ C(T )T
ε

(p(p+ε)
(

sup
t∈(0,T )

B(t)
)2‖v‖Lp+ε((0,T ),Lq(TN )).

This term can be absorbed in (6.53) for T small enough. To obtain the result on a general
interval (0, T ) it suffices to use a density argument, indeed we can easily write v under
the following form:

v = v1 + v2,

with ‖v1‖Lp1 ((0,T ),Lq1 (TN )) small enough in function on T and v2 belongs in Lp1+ε((0, T ), Lq1(TN ))
with ε > 0. By repeating the previous procedure, it is sufficient for concluding. Indeed
the smallness on v1 ensures the possibility to use a bootstrap argument and the gain of
time integrability on v2 allows us to develop a Gronwall argument. We proceed exactly
in the same way when v belongs in C((0, T ), L3(TN )). �

Final blow-up argument

Lemma 13 Under the assumption of theorem 2.4, ln ρ belongs in B
N
p1

+ε

p1,+∞ for ε > 0 small

enough and 3 < p1 < 6. Furthermore the norm of ln ρ in B
N
p1

+ε

p1,+∞ depends only on the
initial energy data.
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Proof: To do this it suffice to recall that ∇√ρ is in L∞((0, T ), L2(TN )), and as 1
ρα

is in L∞((0, T ), L1(TN )) for any 1 < α < +∞ we deduce that ∇ 1
ρp belongs in any

L∞((0, T ), L2−ε(TN )) for any 1 ≤ p < +∞ and any ε > 0 small enough. It implies in
particular since 1

ρα is in L∞((0, T ), L1(TN )) for any 1 < α < +∞ that for any 1 ≥ p <

+∞, 1
ρp belongs in any L∞((0, T ),W 1,2−ε(TN )) for any ε > 0 small enough.

For the sake of simplicity, we are only dealing with the case N = 3, the case N = 2 is
similar. Since for any 1 ≥ p < +∞, 1

ρp belongs in any L∞((0, T ),W 1,2−ε(TN )) for any
ε > 0 small enough, by Besov embedding and interpolation in non homogeneous Besov
space we have that for any 1 ≥ p < +∞, 1

ρp is in L∞((0, T ), B0
6−ε,1) for any ε > 0 small

enough.

We are now interested in proving that ∇ ln ρ belongs in L∞((0, T ), B
N
p1
−1+ε

p1,∞ ) for a certain
p1 > N and a small ε > 0. We are going to use Bony papraproduct (for the classical
notation we refer to [3, 23]), more precisely we have for any 1 ≤ p < +∞ and any ε > 0
small enough:

‖T 1
ρ
∇ρ‖B−εp,∞ ≤ ‖

1

ρ
‖B−ε∞,∞‖∇ρ‖B0

p,∞
≤ C(1 + ‖1

ρ
‖B0

q,∞
)‖∇ρ‖B0

p,∞
.

Indeed by Besov embedding for q large enough and by interpolation we have a control
on 1

ρ in B−ε∞,∞.
Similarly for the same reasons we have:

‖T∇ρ
1

ρ
‖B−εp,∞ ≤ ‖∇ρ‖B−ε∞,∞‖

1

ρ
‖B0

p,∞
≤ C(1 + ‖∇ρ‖B0

q,∞
)‖1

ρ
‖B0

p,∞
.

The only delicate point is to treat carefully the remainder term R(∇ρ, 1
ρ), we have then

for any 1 ≤ p < +∞ and any ε > 0 small enough:

‖R(∇ρ, 1

ρ
)‖B0

p,∞
≤ C‖∇ρ‖B0

p1,∞
‖1

ρ
‖B0

6−ε,1
,

with 1
p1

= 1
6−ε + 1

p .

In conclusion we have prove that for 3 < p1 < 6, ∇ρ is in L∞T (B
N
p1
−1+ε

p1,∞ ) for any
ε > 0 small enough. We can easily observe that 1

ρ is in L∞((0, T ), B0
p1,∞) since it is

in L∞((0, T ), Lp1(TN )). It concludes the proof of the lemma. �

The idea now consists in proving that u and ln ρ are bounded respectively in L∞((0, T ), B
N
p1
−1+ε

p1,∞

and in L∞((0, T ), B
N
p1

+ε

p1,∞ . By using the theorem 2.2 and 2.3, we will be able to extend
the strong solution (ρ, u) on an interval (0, T + α) with α > 0.

From the previous lemma, it remains only to bound u in L∞((0, T ), B
N
p1
−1+ε

p1,∞ . We recall

that we have obtained a bound on ρ
1
p v and 1

ρ in L∞((0, T ), Lp(TN )) for any 1 ≤ p < +∞

and that ∇ ln ρ ∈ L∞((0, T ), B
N
p1
−1+ε

p1,∞ ). In particular we easily verify that v is in any
L∞((0, T ), Lp(TN ) for 1 ≤ p < +∞. As u = v − κ

µ∇ ln ρ, we obtain easily by Besov

embedding that u is bounded in in L∞((0, T ), B
N
p1
−1+ε

p1,∞ ). To summarize what we have
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obtained, we have:

u ∈ L∞((0, T ), B
N
p1
−1+ε

p1,∞ ) and ln ρ ∈ L∞((0, T ), B
N
p1

+ε

p1,∞ ). (6.66)

An important fact is that we easily can prove that if u0 ∈ B
N
p1
−1+ε

p1,∞ and ln ρ0 ∈ B
N
p1

+ε

p1,∞
then the system (1.1) has a strong solution (ρ, u) on (0, T

′
) with T

′
bounded by below

as follows:

T
′ ≥ C

(1 + ‖u0‖
B
N
p1
−1+ε

p1,∞

+ ‖ ln ρ0‖
B
N
p1

+ε

p1,∞

)β
,

with C, β > 0. We refer to [22] for the proof. This is an easy consequence of the fact
that the initial data are chosen subcritical this fact is well-known for the incompressible
Navier-Stokes equations).
It means that there exists a time T

′ ≥ c > 0, where c depends only on the physical
coefficients (typically the pressure term, the viscosity and the capillary coefficient) and
the subcritical initial data. We can construct by theorem 2.2 a solution (ρ1, u1) on
(T − α, T − α + T

′
) with initial data (ρ(T − α), u(T − α)) (here α < T

′
). The only

difficulty is to prove that on (T − α, T ) we have:

(ρ1, u1) = (ρ, u).

To do this, it suffices only to use the uniqueness part of theorem 1 in [22] or the theorem
2.2. It concludes the proof of theorem 2.4. �

7 Appendix

In this appendix, we only want to detail the computation on the Korteweg tensor and to
give a brief sketch of the proof of the theorem 2.2.

Lemma 14
divK = κdiv(ρ∇∇ ln ρ) = κdiv(ρD(∇ ln ρ)).

Proof: By calculus, we obtain then:

(divK)j =
(
∇∆ρ− div(

1

ρ
∇ρ⊗∇ρ)

)
j
,

= ∂j∆ρ−
1

ρ
∆ρ ∂jρ−

1

2ρ
∂j |∇ρ|2 +

1

ρ2
|∇ρ|2∂jρ,

(7.67)

Next we have:

∆ρ = ρ∆ ln ρ+
1

ρ
|∇ρ|2.

We have then:

∂j∆ρ−
1

ρ
∆ρ∂jρ = ∂j(ρ∆ ln ρ+

1

ρ
|∇ρ|2)−∆ ln ρ ∂jρ−

1

ρ2
|∇ρ|2∂jρ,

= ρ∂j∆ ln ρ+
1

ρ
∂j(|∇ρ|2)− 2

ρ2
|∇ρ|2∂jρ.

(7.68)
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Putting the expression of (7.68) in (7.67), we obtain:

(divK)j = ∂j∆ρ+
1

2ρ
∂j(|∇ρ|2)− 1

ρ2
|∇ρ|2∂jρ. (7.69)

Next by calculus, we have:

1

2ρ
∂j(|∇ρ|2)− 1

ρ2
|∇ρ|2∂jρ =

∑
i

(∂i ln ρ∂ijρ− (∂i ln ρ)2∂jρ),

=
∑
i

∂i ln ρ ρ∂i,j ln ρ,

=
ρ

2
∇(| ln ρ|2)j .

(7.70)

Finally by using (7.75) and (7.69), we obtain:

divK = ρ(∇∆(ln ρ) +
ρ

2
∇(|∇ ln ρ|2)).

We now want to prove that we can rewrite (7) under the form of a viscosity tensor. To
see this, we have:

div(ρ∇(∇ ln ρ))j =
∑
i

∂i(ρ∂ij ln ρ),

=
∑
i

[∂iρ∂ij ln ρ+ ρ∂iij ln ρ],

= ρ(∆∇ ln ρ)j +
∑
i

ρ∂i ln ρ∂j∂i ln ρ),

= ρ(∆∇ ln ρ)j +
ρ

2
(∇(|∇ ln ρ|2))j ,

= divK.

We have then:
divK = κdiv(ρ∇∇ ln ρ) = κdiv(ρD(∇ ln ρ)).

�

We are now going to give a sketch of the proof of the theorem 2.2.

Proof of the theorem 2.2

We are interested in giving here a sketch of the proof of the theorem 2.2. As a first step,
we shall study the linear part of the system (2.14) about constant reference density, that
is:

(N)

{
∂tq + divu = F,

∂tu− a∆u− b∇divu− c∇∆q = G,

We want to prove a priori estimates in Chemin-Lerner spaces for system (N) with the
following hypotheses on a, b, c, d which are constant:

0 < c1 ≤ a < M1 <∞, 0 < c2 ≤ a+ b < M2 <∞ and 0 < c3 ≤ c < M3 <∞.
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This system has been studied by Danchin and Desjardins in [16], the following proposition
uses exactly the same type of arguments (see [22] for the proof).

Proposition 7.11 Let 1 ≤ r ≤ +∞ , 0 ≤ s ≤ 1, (q0, u0) ∈ B
N
2

+s

2,r × (B
N
2
−1+s

2,r )N , and

(F,G) ∈ L̃1
T (B

N
2

+s

2,r )× (L̃1
T (B

N
2
−1+s

2,r ))N .

Let (q, u) ∈ (L̃1
T (B

N
2

+s+2

2,r ) ∩ L̃∞T (B
N
2

+s

2,r )) × ((L̃1
T (B

N
2

+s+1

2,r ))N ∩ (L̃∞T (B
N
2

+s−1

2,r )N ) be a
solution of the system (N), then there exists a universal constant C such that:

‖(∇q, u)‖
L̃1
T (B

N
2 +1+s

2,r )∩L̃∞T (B
N
2 −1+s

2,r )
≤ C(‖(∇q0, u0)‖

B
N
2 +s

2,2

+ ‖(∇F,G)‖
L̃1
T (B

N
2 −1+s

2,r )
).

We now are going to prove the existence of strong solutions in critical space for system
(2.14). In particular we recall that the main interest of theorem 2.2 is to allow discon-
tinuous initial data for the density, such that we can authorize discontinuous interfaces.

Existence of solutions

We use a standard scheme:

1. We will use a classical iterative scheme to constructed a sequence of approximated
solutions (qn, un) on a bounded interval [0, T ] which depend not on n. We will get
uniform estimates on (qn, un) in:

ET =
(
C̃T (B

N
2

2,∞) ∩ L̃1
T (B

N
2

+2

2,∞ )
)
×
(
C̃T (B

N
2
−1

2,∞ ) ∩ L̃1
T (B

N
2

+1

2,∞ )
)
.

2. We will prove that the sequence (qn, un) is of Cauchy and converges to a solution
of (2.14).

First step

We smooth out the data as follows:

qn0 = Snq0, un0 = Snu0 and fn = Snf.

Note that we have:

∀l ∈ Z, ‖∆lq
n
0 ‖Lp ≤ ‖∆lq0‖Lp and ‖qn0 ‖

B
N
p
p,∞

≤ ‖q0‖
B
N
p
p,∞

,

and similar properties for un0 and fn, a fact which will be used repeatedly during the
next steps. Now, according [25], one can solve (2.14) with the smooth data (qn0 , u

n
0 , f

n).
We get a solution (qn, un) on a non trivial time interval [0, Tn] such that:

qn ∈ C̃([0, Tn), B
N
p

p,1) ∩ L̃1
T (B

N
2

+2

2,1 ) and un ∈ C̃([0, Tn), B
N
p
−1

p,1 ) ∩ L̃1
Tn(B

N
p

+1

p,1 ). (7.71)
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Uniform bounds

Let:
qn = qL + q̄n, un = uL + ūn,

where (qL, uL) stands for the solution of:{
∂tqL + divuL = 0,

∂tuL −AuL − κ∇(∆qL) = 0,
(7.72)

supplemented with initial data:

qL(0) = q0 , uL(0) = u0.

Using the proposition 7.11, we obtain the following estimates on (qL, uL) for all T > 0:

qL ∈ C̃([0, T ], B
N
p
p,∞) ∩ L̃1

T (B
N
p

+2
p,∞ ) and uL ∈ C̃([0, T ], B

N
p
−1

p,∞ ) ∩ L̃1
T (B

N
p

+1
p,∞ ).

We let (q̄0, ū0) = (0, 0). We now want study the behavior of (q̄n, ūn) where (q̄n, ūn) are
the solution of the following system:

(N1)


∂tq̄

n + div(ūn) = Fn−1,

∂tūn −Aūn − κ∇(∆q̄n) = Gn−1,

(q̄n, ūn)t=0 = (0, 0),

where:

Fn−1 =− un−1 · ∇qn−1,

=− uL · ∇qL − ūn−1 · ∇qL − uL · ∇q̄n−1 − ūn−1 · ∇q̄n−1,

Gn−1 =− (un−1)∗.∇un−1 + µ∇qn−1 ·Dun−1 + λ∇qn−1 divun−1 +
1

2
∇(|∇qn−1|2)−K∇qn−1.

1) First Step , Uniform Bound

Let ε be a small parameter and choose T small enough so that by using the estimate of
proposition 7.11 we have:

(Hε)
‖uL‖

L̃1
T (B

N
p +1

p,∞ )
+ ‖qL‖

L̃1
T (B

N
p +2

p,∞ )
≤ ε,

‖uL‖
L̃∞T (B

N
p −1

p,∞ )
+ ‖qL‖

L̃∞T (B
N
p
p,∞)
≤ A0.

We are going to show by induction that:

(Pn), ‖(q̄n, ūn)‖FT ≤
√
ε.

for ε small enough with:

FT =
(
C̃([0, T ], B

N
p
p,∞) ∩ L̃1

T (B
N
p

+2
p,∞ )

)
×
(
C̃([0, T ], B

N
p
−1

p,∞ ) ∩ L̃1
T (B

N
p

+1
p,∞ )

)
.
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As (q̄0, ū0) = (0, 0) the result is true for n = 0. We now suppose (Pn−1) (with n ≥ 1)
true and we are going to show (Pn). Applying proposition 7.11 we have:

‖(q̄n, ūn)‖FT ≤ C‖(∇Fn−1, Gn−1)‖
L̃1
T (B

N
p −1

p,∞ )
. (7.73)

Bounding the right-hand side may be done by applying proposition 4.7, lemma 1 and
corollary 1. We begin with treating the case of ‖Fn−1‖

L̃1
T (B

N
p
p,∞)

, we have then:

‖uL · ∇qL‖
L̃1
T (B

N
p
p,∞)
≤ ‖uL‖

L̃1
T (B

N
p +1

p,∞ )
‖qL‖

L̃∞T (B
N
p
p,∞)

+ ‖qL‖
L̃1
T (B

N
p +2

p,∞ )
‖uL‖

L̃∞T (B
N
p −1

p,∞ )
.

Similarly we obtain:

‖uL ·∇q̄n−1‖
L̃1
T (B

N
p
p,∞)
≤ ‖uL‖

L̃1
T (B

N
p +1

p,∞ )
‖q̄n−1‖

L̃∞T (B
N
p
p,∞)

+‖q̄n−1‖
L̃

4
3
T (B

N
p +3

2
p,∞ )

‖uL‖
L̃4
T (B

N
p −

1
2

p,∞ )
,

‖ūn · ∇qL‖
L̃1
T (B

N
p
p,∞)
≤ ‖ūn−1‖

L̃
4
3
T (B

N
p +1

2
p,∞ )

‖qL‖
L̃4
T (B

N
p +1

2
p,∞ )

+ ‖qL‖
L̃1
T (B

N
p +2

p,∞ )
‖ūn−1‖

L̃∞T (B
N
p −1

p,∞ )
,

and:

‖ūn−1·∇q̄n−1‖
L̃1
T (B

N
p
p,∞)
≤ ‖ūn−1‖

L̃1
T (B

N
p +1

p,∞ )
‖q̄n−1‖

L̃∞T (B
N
p
p,∞)

+‖q̄n−1‖
L̃1
T (B

N
p +2

p,∞ )
‖ūn−1‖

L̃∞T (B
N
p −1

p,∞ )
.

By using the previous inequalities and (Hε), we obtain that:

‖Fn‖
L1
T (B

N
p )
≤ C(2A0ε+ 2ε

3
2 + 2

√
εε

1
4 + 2ε). (7.74)

Next we want to control ‖Gn‖
L̃1(B

N
p −1

p,∞ )
. According to propositions 4.7, corollary 1 and

7.11, we have:

‖(un−1)∗.∇un−1‖
L1
T (B

N
p −1

p,∞ )
. ‖un−1‖

L
4
3
T (B

N
p +1

2
p,∞ )

‖un−1‖
L4
T (B

N
p −

1
2

p,∞ )
,

‖∇(|∇qn−1|2)‖
L̃1
T (B

N
p −1

p,∞ )
. ‖|∇qn−1|2‖

L̃1
T (B

N
p
p,∞)

,

. ‖∇qn−1‖
L̃

4
3
T (B

N
p +1

2
p,∞ )

‖∇qn−1‖
L̃4
T (B

N
p −

1
2

p,∞ )
,

. ‖qn−1‖
L̃

4
3
T (B

N
p +3

2
p,∞ )

‖qn−1‖
L̃4
T (B

N
p +1

2
p,∞ )

.

We proceed similarly for the other terms and we obtain by using (7.73) and the different
previous inequalities:

‖(q̄n+1, ūn+1)‖FT ≤ C
√
ε(
√
εA0 +

√
ε+ ε

1
4 ). (7.75)

By taking T and ε small enough we have (Pn+1), so we have shown by induction that
(qn, un) is bounded in FT .
The rest of the proof is standard and consists in using compactness arguments for proving
the existence. The uniqueness is also classical and we refer to [22]. �

We are now going to give a sketch of the proof of the theorem 2.3 by especially em-
phasizing on the estimate (2.16).
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Proof of the theorem 2.3

We are proving the estimate (2.16). It only suffices to recall a more precise estimate on
the heat equation as in the proposition 4.8, indeed we have with the same hypothesis as
in the proposition 4.8 (see [3]) for a constant C > 0:

‖u‖
L̃
ρ1
T (B

s+2/ρ1
p,r )

≤ C
(
T

1
ρ1 ‖u0‖Bsp,r + µ

1
ρ2
−1
T

1+ 1
ρ1
− 1
ρ2 )‖f‖

L̃
ρ2
T (B

s−2+2/ρ2
p,r )

)
+
[∑

l

(1− e−CµTρ122l

Cµρ1

) r
ρ1 (2ls‖∆lu0‖Lp

)r] 1
r +

[∑
l

(1− e−CµTρ
′
222l

Cµρ
′
2

) r

ρ
′
2 (2

l(s−2+ 2
ρ2

)‖∆lu0‖Lp
)r] 1

r

(7.76)
with ρ

′
2 = (1 + 1

ρ1
− 1

ρ1
)−1. For using estimate (7.75), it is only a matter of proving

smallness assumptions on qL and uL in critical Besov space. Let us remark thatqL and
uL verify an heat equation (to see this it just suffices to introduces the effective velocity
vL = uL + κ

µ∇qL).
By the estimates (7.76) when f = 0, we easily show that:

‖uL‖
L̃
ρ1
T (B

N
p −1+2/ρ1
p,1 )

≤ C
(
T

1
ρ1 ‖u0‖

B
N
p −1

p,1

+
[∑

l

T
1
ρ1 2

2l
ρ1 (2

l(N
p
−1)‖∆lu0‖Lp

)]
+ T

1
ρ1 ‖q0‖

B
N
p
p,1

+
[∑

l

T
1
ρ1 2

2l
ρ1 (2

l(N
p

)‖∆lq0‖Lp
)])

,

≤ C
(
T

1
ρ1 ‖u0‖

B
N
p −1

p,1

+ T
1
ρ1

[∑
l

(2
l(N
p
−1+ 2

ρ1
)‖∆lu0‖Lp

)]
+ T

1
ρ1 ‖q0‖

B
N
p
p,1

+ T
1
ρ1

[∑
l

(2
l(N
p

+ 2
ρ1

)‖∆lq0‖Lp
)])

,

(7.77)

Here we recall that u0 belongs in B
N
p
−1+ε

′

p,∞ which is embedded in B
N
2
−1

p,1 . By choosing ρ1

large enough such that 2
ρ1
< ε

′
, we have shown that:

‖uL‖
L̃
ρ1
T (B

N
p +2/ρ1
p,1 )

≤ CT
1
ρ1 (‖u0‖

B
N
p −1+ε

′

p,∞

+ ‖q0‖
B
N
p +ε

′

p,∞

). (7.78)

In particular by choosing T small enough as in (2.16) we are able to show that uL is small

in L̃ρ1T (B
N
p

+ 2
ρ1

p,1 ). By interpolation we are then able to show that uL · ∇uL is sufficiently

small in L̃1
T (B

N
p

+ε
′

p,∞ ). To see this, it suffices to apply paraproduct law. We obtain the
same type of estimate on qL which allows to show that ∇P (qL) is small in appropriate
norm.
In particular it is sufficient on (0, T ) for applying bootstrap estimate in (7.75). �
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No12 pp. École polytech, palaiseau, 1994.

[16] R. Danchin and B. Desjardins, Existence of solutions for compressible fluid models
of Korteweg type, Annales de l’IHP, Analyse non linéaire 18,97-133 (2001).
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