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Global strong solution for the Korteweg system in dimension

N ≥ 2

Boris Haspot ∗

Abstract

This work is devoted to prove the existence of global strong solution in dimension N ≥ 2
for a general isothermal model of capillary fluids derived by J.E Dunn and J.Serrin (1985)
(see [16]), which can be used as a phase transition model. In a first part we prove the
existence of strong solution in finite time for large initial data with a precise bound by
below on the life span T ∗ of existence of the solution. This one depends on the norm
of the initial data (ρ0, v0). The second part consists in proving the existence of global

strong solution with particular choice on the capillary coefficient κ(ρ) = µ2

ρ and on the

viscosity tensor which corresponds to the shallow water case −2µdiv(ρDu). To do this
we derivate different energy estimate on the density and the effective velocity v which
ensures that the strong solution can be extended beyond T ∗. The main difficulty consists
in controlling the vacuum or in other words to estimate the L∞ norm of 1

ρ . The proof relies

mostly on a method introduced by De Giorgi [14] (see also Ladyzhenskaya et al in [30]
for the parabolic case) to obtain regularity results for elliptic equations with discontinuous
diffusion coefficients and a suitable bootstrap argument.
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1 Introduction

We are concerned with compressible fluids endowed with internal capillarity. The model we
consider originates from the XIXth century work by Van der Waals and Korteweg [43, 28] and
was actually derived in its modern form in the 1980s using the second gradient theory, see for
instance [16, 26, 42]. The first investigations begin with the Young-Laplace theory which claims
that the phases are separated by a hypersurface and that the jump in the pressure across the
hypersurface is proportional to the curvature of the hypersurface. The main difficulty consists
in describing the location and the movement of the interfaces.
Another major problem is to understand whether the interface behaves as a discontinuity in
the state space (sharp interface SI) or whether the phase boundary corresponds to a more
regular transition (diffuse interface, DI). The diffuse interface models have the advantage to
consider only one set of equations in a single spatial domain (the density takes into account the
different phases) which considerably simplifies the mathematical and numerical study (indeed
in the case of sharp interfaces, we have to treat a problem with free boundary).
Another approach corresponds to determine equilibrium solutions which classically consists
in the minimization of the free energy functional. Unfortunately this minimization problem
has an infinity of solutions, and many of them are physically wrong. In order to overcome
this difficulty, Van der Waals in the XIX-th century was the first to add a term of capillarity
to select the physically correct solutions, modulo the introduction of a diffuse interface. This
theory is widely accepted as a thermodynamically consistent model for equilibria. Alternatively,
another way to penalize the high density variations consists in applying a zero order but non-
local operator to the density gradient (we refer to [38], [39], [40]). We refer for a mathematical
analysis on this system to [9, 10, 11, 19, 22].
Let us now consider a fluid of density ρ ≥ 0, velocity field u ∈ RN , we are now interested in
the following compressible capillary fluid model, which can be derived from a Cahn-Hilliard
free energy (see the pioneering work by J.- E. Dunn and J. Serrin in [16] and also in [1, 8, 18]).
The conservation of mass and of momentum write:

∂

∂t
ρ+ div(ρu) = 0,

∂

∂t
(ρu) + div(ρu⊗ u)− div(µ(ρ) Du)−∇(λ(ρ)divu) +∇P(ρ) = divK,

(1.1)

where the Korteweg tensor reads as following:

divK = ∇
(
ρκ(ρ)∆ρ+

1

2
(κ(ρ) + ρκ

′
(ρ))|∇ρ|2

)
− div

(
κ(ρ)∇ρ⊗∇ρ

)
. (1.2)
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Here κ is the capillary coefficient and is a regular function of the form κ(ρ) = κρα with α ∈ R.
The term divK allows to describe the variation of density at the interfaces between two phases,
generally a mixture liquid-vapor. The pressure P (ρ) = aργ with γ ≥ 1 is a general γ law
pressure term, µ(ρ) > 0 and λ(ρ) are the viscosity coefficient and Du = 1

2(∇u +t ∇u) is the
strain tensor.

Remark 1. In the sequel we are focusing on the case of shallow-water viscosity coefficients, it
means µ(ρ) = 2µρ with µ > 0 and λ(ρ) = 0. In addition we will deal only with the case of the
quantum compressible Navier-Stokes system studied in particular in [27] which corresponds to
the capillary coefficient κ(ρ) = κ

ρ .

Let us express now the energy of the system when P (ρ) = aρ with a > 0 and when the
density is close from a constant state ρ̄ > 1, multiplying the momentum equation by u we have:
with q(t) = t

∫ t
1
P (s)
s2
ds:

E(ρ, u)(t) =

∫
RN

(1

2
ρ(t, x)|u(t, x)|2 + (Π(ρ)(t, x)−Π(ρ̄)) + κ|∇√ρ(t, x)|2

)
dx

+

∫ t

0

∫
RN

2µρ(t, x)|Du|2(t, x)dtdx ≤
∫
RN

(
ρ0(x)|u0(x)|2 + Π(ρ0)(x)

)
dx.

(1.3)

with Π(ρ) defined as follows:

Π(ρ) = a
(
ρ ln(

ρ

ρ̄
) + ρ̄− ρ

)
= q(ρ)− q(ρ̄)− q′(ρ̄)(ρ− ρ̄).

Let us observe that in comparison with the compressible Navier-Stokes system the capillary
tensor provides additional regularity on the density since the gradient of the square roots of
the density is conserved. In fact the capillary tensor makes the system parabolic-parabolic on
the density and the velocity.

Remark 2. When κ(ρ) = κ
ρ we obtain (see the appendix)t:

divK = κdiv(ρ∇∇ ln ρ).

Let us introduce the unknown v = u + µ∇ ln ρ (which has been introduced by Jüngel in
[27] in order to prove the existence of global weak solution) such that we have:{

∂tρ+ div(ρv)− µ∆ρ = 0,

ρ∂tv + ρu · ∇v − µdiv(ρ∇u)− κdiv(ρ∇∇ ln ρ) +∇P (ρ) = 0.

In particular if κ ≥ µ2 we have:{
∂tρ+ div(ρv)− µ∆ρ = 0,

ρ∂tv + ρu · ∇v − µdiv(ρ∇v)− (κ− µ2)div(ρ∇∇ ln ρ) +∇P (ρ) = 0.
(1.4)

Multiplying the previous momentum equation by v when P (ρ) = aρ we have:

E1(ρ, v)(t) =

∫
RN

(1

2
ρ(t, x)|u(t, x)|2 + (Π(ρ)(t, x)−Π(ρ̄))

)
dx+

∫ t

0

∫
RN

µρ(t, x)|∇v|2(t, x)dtdx

≤
∫
RN

(
ρ0(x)|u0(x)|2 + (Π(ρ0)(x)−Π(ρ̄)

)
dx.

(1.5)
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Remark 3. In the following we shall consider the simple case κ = µ2and P (ρ) = aρ with
a > 0. We can observe that when κ = µ2 the previous system can be rewritten as follows:{

∂tρ+ div(ρv)− µ∆ρ = 0,

ρ∂tv + ρu · ∇v − µdiv(ρ∇v) +∇P (ρ) = 0.
(1.6)

It appears clearly that the density ρ and the effective velocity v verifies parabolic equation.

1.1 Motivation and main issue for the Korteweg system

Now before recalling the main results on the existence of global weak solutions for compressible
Navier Stokes equations and Korteweg system, we would like to point out also an another
aspect of the Korteweg system (1.1). Indeed this system is also used in a purely theoretical
interest consisting in the selection of the physically relevant solutions of the Euler model by
a vanishing capillarity-viscosity limit (especially when the system is not strictly hyperbolic,
which is typically the case when the pressure is Van der Waals). Indeed in this last case at
least when N = 1 it is not possible to apply the classical theory of Lax for the Riemann problem
(see [31]) and of Glimm (see [17]) with small BV initial data in order to obtain the existence of
global weak-entropy solution (we refer also to the work of Bianchini and Bressan see [5] for the
uniqueness). It explains in particular why it seems important to prove the existence of global
strong solution with large initial data for the Korteweg system.
In this spirit, we prove recently in [12] with F. Charve inspired by DiPerna [15] the existence
of global strong solution with large initial data of the Korteweg system in one dimension when
κ = µ2. To do this we adapt the notion of Riemann invariant to the Korteweg system which
allows us to control the L∞ norm on v, next using the maximum principle we can estimate the
L∞ norm on the vacuum 1

ρ what is sufficient in order to propagate globally the regularity. In
addition we show that this global strong solution converges in the setting of a γ law for the
pressure (P (ρ) = aργ , γ > 1) to weak entropy solution of the compressible Euler equations. In
particular it justifies that the Korteweg system is suitable for selecting the physical solutions in
the case where the Euler system is strictly hyperbolic and when κ = µ2. The problem remains
however open for a Van der Waals pressure.
Let us give some few words on the choice κ = µ2. It gives a specific structure of effective velocity
(see the system (1.6), but is also reasonable on a physic point of view (see [40] for more details).
This algebraic relation between κ and µ2 corresponds to an intermediary regime, indeed an
important research line (see [40]]) is to model the capillarity tensor and to understand how
the solutions converges to the Euler system when the capillarity and the viscosity coefficients
tends to zero. We want point out here that it exists three different regimes, more precisely if
we assume the viscosity coefficient equal to ε with ε→ 0. Then we have the following regimes:

1. κ << ε2, the viscosity dominates so the parabolic effects is primordial.

2. κ ∼ ε2, intermediary regime.

3. κ >> ε2, the capillarity dominates so the dispersive effects are predominant.

In particular in the parabolic regime we attend to converge to weak entropy solution, in [12] this
result is proved in the case of the intermediary regime when κ = µ2. In the last case we probably
converge to ”dispersive solutions” which generates ”dispersive shocks”. This problem remains
open, it has been studied in the case of Korteweg de Vries equation by Lax and Levermore
(see [32, 33, 34]) using the inverse scattering theory (in this case the solutions converges to a
”dispersive solution” of the Burger equation).
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1.2 Existence of global weak solutions for Korteweg system

We can observe that via the energy inequality (1.3), the density
√
ρ belongs in L∞(0,∞, Ḣ1(RN )).

Hence, in contrast to the compressible Navier-Stokes system one can easily deal with the pres-
sure term by involving Sobolev embedding (in other words we have enough compactness on the
density). However it appears a new obstruction compared with the compressible Navier-Stokes
system which consists in dealing with the quadratic terms in gradient of the density coming
from the capillary tensor (see (1.2)). Bresch, Desjardins and Lin in [7] got some stability result
for the global weak solutions of the Korteweg model with some specific viscosity coefficients and
capillarity coefficient µ(ρ) = ρ, λ(ρ) = 0 and κ(ρ) = κ a constant. To do this they exhibit new
entropy inequalities which ensures regularizing effects on the density, roughly speaking they
obtain a control of ∆ρ in L2

T (L2(RN )) for any T > 0. It provides enough compactness in order
to deal with the capillary tensor. However the global weak solutions of [7] require some specific
test functions which depend on the solution itself (in other words they obtain the stability of
global weak solution for the Korteweg system where the momentum equation is multiplied by
ρ). This is due to the difficulty to deal with the term ρu⊗u (indeed compared withe the case of
non degenerate viscosity coefficient we have not directly a control on the gradient of u but only
on ρ∇u which is in L2

T (L2(RN ))). In [27], Jüngel in a very interesting paper obtains by using
an effective velocity v the existence of global weak solution when κ(ρ) = 1

ρ (which corresponds
to the quantum compressible Navier-Stokes system) modulo that as in [7] the test functions
depends on the density ρ. In particular he is the first to introduce this new effective velocity
v which allows to simplify the system as we have seen in (1.6). It allows him to establish new
entropy estimates in the spirit of [7].
In [21], we improve this result by showing the existence of global weak solution with small
initial data in the energy space for specific choices on the capillary coefficients and with gen-
eral viscosity coefficient. Comparing with the results of [7], we get global weak solutions with
general test function ϕ ∈ C0

∞(RN ) not depending on the density ρ. In fact we have extracted
of the structure of capillarity term a new energy inequality using fractionary derivative which
allows a gain of derivative on the density ρ. Finally in [24] we extend the result of [27] when
κ = µ2 by proving the stability of the weak solution with classical test functions (they do not
depend on the solution itself). To do this we involve additional entropy on the effective velocity
which provide a gain of integrability on the velocity v (in the spirit of [36]).

1.3 Global strong solutions with small initial data for the Korteweg system

Let us now recall the notion of scaling for the Korteweg’s system (1.1). Such an approach
is now classical for incompressible Navier-Stokes equation and yields local well-posedness (or
global well-posedness for small data) in spaces with minimal regularity. In our situation we
can easily check that, if (ρ, u) solves (1.1), then (ρλ, uλ) solves also this system:

ρλ(t, x) = ρ(λ2t, λx) , uλ(t, x) = λu(λ2t, λx)

provided the pressure laws P have been changed into λ2P .

Definition 1.1. We say that a functional space is critical with respect to the scaling of the
equation if the associated norm is invariant under the transformation:

(ρ, u) −→ (ρλ, uλ)

(up to a constant independent of λ).
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This suggests us to choose initial data (ρ0, u0) in spaces whose norm is invariant for all
λ > 0 by the transformation (ρ0, u0) −→ (ρ0(λ·), λu0(λ·)). A natural candidate is the Besov

space (see the section 3 for some definitions of Besov spaces) B
N/2
2,∞ × (B

N/2−1
2,∞ )N , however since

B
N/2
2,∞ is not included in L∞, we cannot expect to get a priori L∞ estimate on the density when

ρ0 ∈ BN/2
2,∞ (in particular it makes the study of the non linear term delicate since it appears

impossible to use composition theorems). Danchin and Desjardins in [13] have been the first
to obtain the existence of global strong solution with small initial data in the framework of

critical Besov spaces choosing (ρ0 − 1, u0) in B
N
2

2,1 × B
N
2
−1

2,1 . Let us mention that this choice

allows to control the L∞ norm on the density since B
N
2

2,1 is embedded in L∞. This last result
has been recently improved in [25] inasmuch as we can deal with large space of initial data,

here (ρ0 − 1, u0) belong in (B
N
2

2,2 ∩ L∞) × B
N
2
−1

2,2 . The main difficulty consists in estimating
the L∞ norm of the density, to do this we use a characterization of the Besov space in terms
of the semi-group associated to the linearized Korteweg system combined with a maximum
principle. Let us also point out that when κ = µ2 we prove the existence of global strong
solution with large initial data for the scaling of the equation when N ≥ 2 on the rotational
part. In particular it shows that for some suitable initial data we have existence of global
strong solution in dimension N = 2 however that these initial data are large in the energy
space (let us mention that the problem of global strong solution in dimension N = 2 with large
initial data remains open in full generality). The key ingredient of the proof is the notion of
quasi-solution, which consists to approximate our solution by an exact solution of the pressure
less system of (1.1). We take into account the fact that we have not an exact invariance by
scaling because the pressure term and it allows us to consider this term as a small perturbation
in high frequencies. We refer also to [23] when we consider the system with friction, we have
in this case exact global strong solution with large initial data provided that the velocity is
irrotational. Let us finally cite the work of Kotschote in [29] who showed the existence of strong
solution for the isothermal model in bounded domain by using Doreâ-Venni Theory and H∞
calculus. In [20], we generalize the results of [13] in the case of non isothermal Korteweg system
with physical coefficients depending on the density and the temperature.
Actually the existence of global strong solution with large initial data in the general case
remains a open problem in dimension N ≥ 2. We would like in the present paper answer to

this question when κ(ρ) = µ2

ρ , µ(ρ) = 2µρ, λ(ρ) = 0 and P (ρ) = aρ. To do this we start by
giving a result of strong solution in finite time in critical Besov space, the main issue of our
analysis in this first result will be to give an accurate estimate on the time of existence T ∗.
More precisely we shall bounded by below T ∗ in terms of the norms of the initial data. The next
step and the main ingredients of the proof of the existence of global strong solution correspond

to provide new energy estimate. In particular we are going to show that we can control ρ
1
p v in

any L∞T (Lp(RN )) space with 2 ≤ p < +∞ (in other word we get a gain of integrability on the

effective velocity). In the sequel, we shall transfer these new regularity on ρ
1
p v on the density

ρ via the first equation of (1.6) which is parabolic. To realize this program it seems necessary
to control the vacuum or the L∞ norm of 1

ρ . In order to get such estimates, we will apply
method introduced by De Giorgi (see [14]) to obtain regularity results for elliptic equations
with discontinuous diffusion coefficients and extended by Ladyzenskaya et al (see [30]) to the
parabolic case. One of the main difficulty in order to adapted these technics is that we have

no control on v but only on ρ
1
p v, in order to overcome this difficulty we shall apply a suitable

bootstrap argument (indeed 1
ρ is bounded in L∞ norm at least on (0, T ∗)) which enables us
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to prove that 1
ρ is bounded in reality in L∞loc(L

∞(RN )). To finish via the accurate estimate on
the time existence of a strong solution in terms of the norm of the initial data, we are going to
extend our strong solution beyond T ∗ which will imply that necessary we must have T ∗ = +∞.
Let us state now our mains results.

2 Main results

Let us rewrite the system (1.4) in terms of q = ln(ρρ̄) and we assume that

P (ρ) = aρ, κ(ρ) =
µ2

ρ
, µ(ρ) = 2µρ, λ(ρ) = 0, (2.7)

we have (assuming that the density does not admit vacuum):{
∂tq − µ∆q + u · ∇ ln q + divv = 0,

∂tv + u · ∇v − µ∆v − µ∇q · ∇v + a∇q = 0.
(2.8)

Our first result concerns the existence of strong solution in finite time with in addition an
estimate on the time of existence in terms of the initial data.

Theorem 2.1. Let N ≥ 2 and assume that the physical coefficients verify (2.7). Let (q0, v0) ∈

B
N
p

p,1 × B
N
p
−1

p,1 with 1 ≤ p < 2N and c such that 0 < c ≤ ρ0, then it exists a time T such that
system (2.8) has a unique solution on [0, T ] with:

q ∈ C̃T (B
N
p

p,1) ∩ L1
T (B

N
p

+2

p,1 ),
1

ρ
, ρ ∈ L∞T (L∞(RN )) and v ∈ C̃T (B

N
p
−1

p,1 ) ∩ L1
T (B

N
p

+1

p,1 ). (2.9)

If in addition (q0, v0) belongs in Bs
p,1 ×B

s−1
p,1 for any s > N

p then we have:

q ∈ C̃T (Bs
p,1) ∩ L1

T (Bs+2
p,1 ),

1

ρ
, ρ ∈ L∞T (L∞(RN )) and v ∈ C̃T (Bs−1

p,1 ) ∩ L1
T (Bs+1

p,1 ). (2.10)

Now we assume that (q0, v0) ∈ (B
N
p

p,1 ∩ B
N
p

+ε

p,1 ) × (B
N
p
−1

p,1 ∩ B
N
p
−1+ε

p,1 ) with ε > 0 then it exists
C,C1, c > 0 such that:

T ≥
( 2(cµ)

2
ε′−1ε

2
ε′

(8C)
2
ε′ ‖q0‖

2
ε′

B
N
p +ε′

p,1

,
2(cµ)

2
ε′−1ε

2
ε′

(8C)
2
ε′ ‖v0‖

2
ε′

B
N
p −1+ε′

p,1

,
C1

4
,

1

16C2
1 (‖q0‖

B
N
p
p,1

+ ‖v0‖
B
N
p −1

p,1

)(1 +
√
‖q0‖

B
N
p
p,1

+ ‖v0‖
B
N
p −1

p,1

)2)
).

(2.11)

Remark 4. Let us mention that this theorem is not really new, indeed similar results have
been proved in [13]. In [24] it is even possible to obtain strong solution with large class of

initial data, it means with (q0, v0) in (B
N
2

2,2 ∩L∞)×B
N
2
−1

2,2 . Here the main interest of this result
provides of the precise estimate (2.11) on the time of existence which will be crucial in order
to prove the existence of global strong solution. Let us observe that we need to choose initial
data which are slightly surcritical for the scaling of the equation.
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Let us define now the maximal time T ∗ of existence of global strong solution:

T ∗ = sup{T ∈ R ; it exists a solution (q, u) of the system 2.8 on [0, T ] verifying (2.9)}

Theorem 2.2. Let N ≥ 2 and assume that the physical coefficients verify (2.7). Let (q0, v0) ∈

(B
N
p

p,1∩B
N
p

+ε

p,1 )×(B
N
p
−1

p,1 ∩B
N
p
−1+ε

p,1 with ε > 0 and with N
1−ε < p < 2N and c such that 0 < c ≤ ρ0.

In addition we assume v0 ∈ L∞ and (ρ, v0) are of finite energy which implies:

E(ρ0, u0) < +∞,
E1(ρ0, v0) < +∞.

then we have T ∗ = +∞.

Remark 5. The above assumption on v0 ensures that ρ
1
p1
0 v0 is uniformly bounded in uniformly

bounded in p1 in Lp1 for any 2 ≤ p1 < +∞. It will be important in the sequel in order to get
a gain of integrability on the velocity v.

Remark 6. This is the first result up our knowledge of global strong solution with large initial
data in full generality when N ≥ 2 for the Korteweg system with the specific choice on the
physical coefficients (2.7). Let us mention that this particular choice on the coefficients enables
us to obtain gain of integrability on the effective velocity v which is crucial in the proof of our
result.

Remark 7. This result allows also to prove the existence of global weak solution with initial
data in the energy space with this particular choice on the physical coefficients. Indeed in
[24] we prove the stability of the global weak solution, it was however difficult to construct
approximate global weak solution which verify uniformly the different entropy inequalities.
This is done now using the previous theorem.

The paper is structured in the following way: in section 3 we recall some important results
on the Littlewood-Paley theory and the notion of Besov spaces. In section 4, we prove the
theorem 2.1. In the section 5 we show uniform estimate in time on the solution (ρ, v). In the
last section 6 we end up with the proof of the theorem 2.2. To conclude we postpone in the
appendix the derivation of the model (1.4).

3 Littlewood-Paley theory and Besov spaces

Throughout the paper, C stands for a constant whose exact meaning depends on the context.
The notation A . B means that A ≤ CB.
As usual, the Fourier transform of u with respect to the space variable will be denoted by
F(u) or û. In this section we will state classical definitions and properties concerning the
homogeneous dyadic decomposition with respect to the Fourier variable. We will recall some
classical results and we refer to [3] (Chapter 2) for proofs (and more general properties).

To build the Littlewood-Paley decomposition, we need to fix a smooth radial function χ
supported in (for example) the ball B(0, 4

3), equal to 1 in a neighborhood of B(0, 3
4) and such

that r 7→ χ(r.er) is nonincreasing over R+. So that if we define ϕ(ξ) = χ(ξ/2) − χ(ξ), then ϕ
is compactly supported in the annulus {ξ ∈ Rd, 3

4 ≤ |ξ| ≤
8
3} and we have that,

∀ξ ∈ Rd \ {0},
∑
l∈Z

ϕ(2−lξ) = 1. (3.12)

8



Then we can define the dyadic blocks (∆̇l)l∈Z by ∆̇l := ϕ(2−lD) (that is ̂̇∆lu = ϕ(2−lξ)û(ξ))
so that, formally, we have

u =
∑
l

∆̇lu (3.13)

As (3.12) is satisfied for ξ 6= 0, the previous formal equality holds true for tempered distributions
modulo polynomials. A way to avoid working modulo polynomials is to consider the set S ′h of
tempered distributions u such that

lim
l→−∞

‖Ṡlu‖L∞ = 0,

where Ṡl stands for the low frequency cut-off defined by Ṡl := χ(2−lD). If u ∈ S ′h, (3.13) is

true and we can write that Ṡlu =
∑
q≤l−1

∆̇qu. We can now define the homogeneous Besov spaces

used in this article:

Definition 3.1. For s ∈ R and 1 ≤ p, r ≤ ∞, we set

‖u‖Bsp,r :=

(∑
l

2rls‖∆lu‖rLp
) 1
r

if r <∞ and ‖u‖Bsp,∞ := sup
l

2ls‖∆lu‖Lp .

We then define the space Bs
p,r as the subset of distributions u ∈ S ′h such that ‖u‖Bsp,r is finite.

Once more, we refer to [3] (chapter 2) for properties of the inhomogeneous and homogeneous
Besov spaces. Among these properties, let us mention:

• for any p ∈ [1,∞] we have the following chain of continuous embeddings:

B0
p,1 ↪→ Lp ↪→ B0

p,∞;

• if p <∞ then B
d
p

p,1 is an algebra continuously embedded in the set of continuous functions
decaying to 0 at infinity;

• for any smooth homogeneous of degree m function F on Rd \ {0} the operator F (D)

defined by F (D)u = F−1
(
F (·)F(u)(·)

)
mapsBs

p,r inBs−m
p,r . This implies that the gradient

operator maps Bs
p,r in Bs−1

p,r .

We refer to [3] (lemma 2.1) for the Bernstein lemma (describing how derivatives act on spectrally
localized functions), that entails the following embedding result:

Proposition 3.1. For all s ∈ R, 1 ≤ p1 ≤ p2 ≤ ∞ and 1 ≤ r1 ≤ r2 ≤ ∞, the space Bs
p1,r1 is

continuously embedded in the space B
s−d( 1

p1
− 1
p2

)

p2,r2 .

Then we have:

B
d
p

p,1 ↪→ B0
∞,1 ↪→ L∞.

In this paper, we shall mainly work with functions or distributions depending on both the time
variable t and the space variable x. We shall denote by C(I;X) the set of continuous functions
on I with values in X. For p ∈ [1,∞], the notation Lp(I;X) stands for the set of measurable
functions on I with values in X such that t 7→ ‖f(t)‖X belongs to Lp(I).
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In the case where I = [0, T ], the space Lp([0, T ];X) (resp. C([0, T ];X)) will also be denoted
by LpTX (resp. CTX). Finally, if I = R+ we shall alternately use the notation LpX.

The Littlewood-Paley decomposition enables us to work with spectrally localized (hence
smooth) functions rather than with rough objects. We naturally obtain bounds for each dyadic
block in spaces of type LρTL

p. Going from those type of bounds to estimates in LρT Ḃ
s
p,r requires

to perform a summation in `r(Z). When doing so however, we do not bound the LρT Ḃ
s
p,r norm for

the time integration has been performed before the `r summation. This leads to the following
notation:

Definition 3.2. For T > 0, s ∈ R and 1 ≤ r, σ ≤ ∞, we set

‖u‖
L̃σTB

s
p,r

:=
∥∥2js‖∆̇qu‖LσTLp

∥∥
`r(Z)

.

One can then define the space L̃σT Ḃ
s
p,r as the set of tempered distributions u over (0, T )×Rd

such that limq→−∞ Ṡqu = 0 in Lσ([0, T ];L∞(Rd)) and ‖u‖
L̃σTB

s
p,r
<∞. The letter T is omitted

for functions defined over R+. The spaces L̃σTB
s
p,r may be compared with the spaces LσT Ḃ

s
p,r

through the Minkowski inequality: we have

‖u‖
L̃σTB

s
p,r
≤ ‖u‖LσTBsp,r if r ≥ σ and ‖u‖

L̃σTB
s
p,r
≥ ‖u‖LσTBsp,r if r ≤ σ.

All the properties of continuity for the product and composition which are true in Besov
spaces remain true in the above spaces. The time exponent just behaves according to Hölder’s
inequality.

Let us now recall a few nonlinear estimates in Besov spaces. Formally, any product of two
distributions u and v may be decomposed into

uv = Tuv + Tvu+R(u, v), where (3.14)

Tuv :=
∑
l

Ṡl−1u∆̇lv, Tvu :=
∑
l

Ṡl−1v∆̇lu and R(u, v) :=
∑
l

∑
|l′−l|≤1

∆̇lu ∆̇l′v.

The above operator T is called “paraproduct” whereas R is called “remainder”. The decom-
position (3.14) has been introduced by Bony in [6].

In this article we will frequently use the following estimates (we refer to [3] section 2.6):.

Proposition 3.2. Under the same assumptions there exists a constant C > 0 such that if
1/p1 + 1/p2 = 1/p, and 1/r1 + 1/r2 = 1/r:

‖Ṫuv‖Bs2,1 ≤ C‖u‖L∞‖v‖Bs2,1 ,

‖Ṫuv‖Bs+tp,r
≤ C‖u‖Btp1,r1‖v‖Ḃsp2,r2 (t < 0),

‖Ṙ(u, v)‖
B
s1+s2−

d
2

p,r

≤ C‖u‖Bs1p1,r1‖v‖B
s2
p2,r2

(s1 + s2 > 0). (3.15)

Let us now turn to the composition estimates. We refer for example to [3] (Theorem 2.59,
corollary 2.63)):
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Proposition 3.3. 1. Let s > 0, u ∈ Bs
p,1 ∩ L∞ and F ∈ W [s]+2,∞

loc (Rd) such that F (0) = 0.
Then F (u) ∈ Bs

p,1 and there exists a function of one variable C0 only depending on s, p,
d and F such that

‖F (u)‖Bsp,1 ≤ C0(‖u‖L∞)‖u‖Bsp,1 .

2. If u and v ∈ B
d
2
p,1 and if v−u ∈ Bs

p,1 for s ∈]−d
2 ,

d
2 ] andG ∈W [s]+3,∞

loc (Rd), thenG(v)−G(u)
belongs to Bs

p,1 and there exists a function of two variables C only depending on s, d and
G such that

‖G(v)−G(u)‖Bsp,1 ≤ C(‖u‖L∞ , ‖v‖L∞)

(
|G′(0)|+ ‖u‖

B
d
2
p,1

+ ‖v‖
B
d
2
p,1

)
‖v − u‖Bsp,1 .

Let us now recall a result of interpolation which explains the link between the space Bs
p,1

and the space Bs
p,∞ (see [3] sections 2.11 and 10.2.4):

Proposition 3.4. There exists a constant C such that for all s ∈ R, ε > 0, σ ≥ 1 and
1 ≤ p < +∞,

‖u‖
L̃σT (Bsp,1)

≤ C 1 + ε

ε
‖u‖

L̃σT (Bsp,∞)
log

(
e+
‖u‖

L̃σT (Bs−εp,∞)
+ ‖u‖

L̃σT (Bs+εp,∞)

‖u‖
L̃σT (Bsp,∞)

)
.

Parabolic equations

Let us end this section by recalling the following estimates for the heat equation:

Proposition 3.5. Let s ∈ R, (p, r) ∈ [1,+∞]2 and 1 ≤ ρ2 ≤ ρ1 ≤ +∞. Assume that u0 ∈ Bs
p,r

and f ∈ L̃ρ2T (B
s−2+2/ρ2
p,r ). Let u be a solution of:{

∂tu− µ∆u = f

u/t=0 = u0,

where µ > 0. Then there exists C > 0 depending only on N,µ, ρ1 and ρ2 such that:

‖u‖
L̃
ρ1
T (B

s+2/ρ1
p,r )

≤ C
(
‖u0‖Bsp,r + ‖f‖

L̃
ρ2
T (B

s−2+2/ρ2
p,r )

)
.

If in addition r is finite then u belongs to C([0, T ], Bs
p,r). We have in fact for ρ′1 = (1+ 1

ρ1
− 1
ρ2

)−1:

‖uL‖
L̃
ρ1
T (B

s+ 2
ρ1

p,1 )
≤ C

(∑
q∈Z

2qs‖∆qu0‖Lp
(1− e−cµT22qρ1

cµρ1
)

1
ρ1

+
∑
q∈Z

2
q(s−2+ 2

ρ2
)‖∆qf‖Lρ2T (Lp)

(1− e−cµT22qρ1

cµρ′1
)

1
ρ′1
) (3.16)
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4 Proof of the theorem 2.1

4.1 Existence of local solutions for system (1.1)

We now are going to prove the existence of strong solutions in finite time with large initial
data verifying the hypothesis of theorem 2.1 for the system (2.8). In addition we will provide

estimate on the time of existence. We assume now that (q0, v0) belongs in B
N
p

p,1 × B
N
p
−1

p,1 with
1 ≤ p < 2N .

Existence of solutions

Let us recall the form of the system (2.8):{
∂tq − µ∆q + divv = −v · ∇q + µ|∇q|2,
∂tv + u · ∇v − µ∆v − µ∇q · ∇v + a∇q = 0.

(4.17)

The existence part of the theorem is proved by an iterative method. We define a sequence
(qn, un) as follows:

qn = qL + q̄n, un = uL + v̄n,

where (qL, uL) stands for the solution of:{
∂tqL + divvL − µ∆qL = 0,

∂tvL − µ∆vL = 0,
(4.18)

supplemented with initial data:

qL(0) = q0 , vL(0) = v0.

Using the proposition 3.5, we obtain the following estimates on (qL, uL) for all T > 0:

qL ∈ C̃([0, T ], B
N
p

p,1) ∩ L̃1
T (B

N
2

+2

p,1 ) and vL ∈ C̃([0, T ], B
N
p
−1

p,1 ) ∩ L̃1
T (B

N
2

+1

p,1 ).

Setting (q̄0, v̄0) = (0, 0) we now define (q̄n, v̄n) as the solution of the following system:

(N1)


∂tq̄

n + div(v̄n)− µ∆q̄n = Fn−1,

∂tv̄n − µ∆v̄n = Gn−1,

(q̄n, ūn)t=0 = (0, 0),

where:
Fn−1 =− vn−1 · ∇qn−1 + µ|∇qn−1|2,
Gn−1 =− un−1 · ∇vn−1 + µ∇qn−1 · ∇vn−1 − a∇qn−1.

1) First Step , Uniform Bound

Let ε be a small parameter and choose T small enough such that according to the proposition
3.5 we have:

(Hε)
‖vL‖

L̃1
T (B

N
p +1

p,1 )
+ ‖qL‖

L̃1
T (B

N
p +2

p,1 )
≤ 2ε,

‖vL‖
L̃∞T (B

N
p −1

p,1 )
+ ‖qL‖

L̃∞T (B
N
p
p,1)
≤ CA0,
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with A0 = ‖q0‖
B
N
p
p,1

+ ‖v0‖
B
N
p −1

p,1

. We are going to show by induction that:

(Pn) ‖(q̄n, ūn)‖FT ≤
√
ε.

for ε small enough with:

FT =
(
C̃([0, T ], B

N
p

p,1) ∩ L̃1
T (B

N
p

+2

p,1 )
)
×
(
C̃([0, T ], B

N
p
−1

p,1 ) ∩ L̃1
T (B

N
p

+1

p,1 )
)N
.

As (q̄0, ū0) = (0, 0) the result is true for n = 0. We now suppose (Pn−1) (with n ≥ 1) true and
we are going to show (Pn). Applying proposition 3.5 we have:

‖(q̄n, v̄n)‖FT ≤ C‖(∇Fn−1, Gn−1)‖
L̃1
T (B

N
p −1

p,1 )
. (4.19)

Bounding the right-hand side of (4.19) may be done by applying proposition 3.2 and proposition
3.3. We begin with treating the case of ‖Fn−1‖

L̃1
T (B

N
p
p,1)

, let us recall that:

Fn−1 =− vL · ∇qL − vL · ∇q̄n−1 − v̄n−1 · ∇qL − v̄n−1 · ∇q̄n−1 + µ|∇qL|2

+ 2µ∇qL · ∇q̄n−1 + µ|∇q̄n−1|2.
(4.20)

We are going to bound each term of (4.20), we have then for C > 0 large enough:

‖vL · ∇qL‖
L̃1
T (B

N
p
p,1)
. ‖vL‖

L̃2
T (B

N
2
p,1)
‖qL‖

L̃2
T (B

N
p +1

p,1 )
,

≤ CA0ε.
(4.21)

Similarly we obtain for C large enough and 1 ≤ p < 2N

‖vL · ∇q̄n−1‖
L̃1
T (B

N
p
p,1)
≤ C‖∇q̄n−1‖

L̃2
T (B

N
p
p,1)
‖vL‖

L̃2
T (B

N
p
p,1)
,

≤ C
√
A0ε.

(4.22)

‖v̄n−1 · ∇qL‖
L̃1
T (B

N
p
p,1)
. ‖v̄n−1‖

L̃2
T (B

N
p
p,1)
‖∇qL‖

L̃2
T (B

N
p
p,1)
,

≤ Cε
√
A0.

(4.23)

and:
‖v̄n−1 · ∇q̄n−1‖

L̃1
T (B

N
p
p,1)
. ‖v̄n−1‖

L̃2
T (B

N
p
p,1)
‖∇q̄n−1‖

L̃2
T (B

N
p
p,1)
,

≤ Cε.
(4.24)

Similarly we have:

‖ |∇qn−1|2‖
L̃1
T (B

N
p
p,1)
. ‖∇qn−1‖2

L̃2
T (B

N
p
p,1)

. (
√
ε(1 +

√
CA0))2

(4.25)

By using the previous inequalities (4.21), (4.22), (4.23), (4.25), (Pn−1) and by interpolation,
we obtain that for C > 0 large enough:

‖Fn‖
L̃1
T (B

N
p
p,1)
≤ Cε

(
CA0 + 1 + 2

√
CA0

)
. (4.26)
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Next we want to control ‖Gn‖
L̃1(B

N
p −1

p,1 )
. According to propositions 3.2 we have when 2Np −1 > 0

(which is equivalent to 1 ≤ p < 2N) for C > 0 large enough:

‖vL · ∇vL‖
L̃1
T (B

N
p −1

p,1 )
. ‖vL‖

L̃2
T (B

N
p
p,1)
‖∇vL‖

L̃2
T (B

N
p −1

p,1 )
≤ CA0ε,

‖vL · ∇v̄n−1‖
L̃1
T (B

N
p −1

p,1 )
. ‖vL‖

L̃2
T (B

N
p
p,1)
‖∇v̄n−1‖

L̃2
T (B

N
p −1

p,1 )
≤ C

√
A0ε,

(4.27)

‖v̄n−1 · ∇vL‖
L̃1
T (B

N
p −1

p,1 )
≤ C

√
A0ε,

‖v̄n−1 · ∇v̄n−1‖
L̃1
T (B

N
p −1

p,1 )
≤ Cε.

‖∇qn−1 · ∇vn−1‖
L̃1
T (B

N
p −1

p,1 )
. ‖∇qn−1‖

L̃2
T (B

N
p
p,1)
‖∇vn−1‖

L̃2
T (B

N
p −1

p,1 )
≤ C(

√
ε+

√
A0

√
ε)2

≤ Cε(1 + 2
√
A0 +A0)

‖∇qn−1‖
L̃1
T (B

N
p −1

p,1 )
≤ T‖qn−1‖

L̃∞T (B
N
p
p,1)
≤ T (CA0 +

√
ε).

(4.28)

Using (4.19), (4.26), (4.27), (4.28) we obtain for a certain C1 > 0 large enough and with ε < 1:

‖(q̄n, ūn)‖FT ≤ C1ε(1 + 2
√
A0 +A0) + C1T (A0 +

√
ε).

By choosing T and ε small enough the property (Pn) is verified, so we have shown by induction
that (qn, un) is bounded in FT . To do this we are going to take:

√
ε ≤ 1

4C1(1 + 2
√
A0 +A0)

and T ≤ min(

√
ε

4C1A0
,
C1

4
). (4.29)

It implies that T must verify the hypothesis (Hε) and:

T ≤ min(
1

16C2
1 (‖q0‖

B
N
p
p,1

+ ‖v0‖
B
N
p −1

p,1

)(1 +
√

(‖q0‖
B
N
p
p,1

+ ‖v0‖
B
N
p −1

p,1

))2)
,
C1

4
).

(4.30)

We will show in the next section how to explicit the condition (Hε) in the case of slightly
surcritical assumption on the initial data.

Second Step: Convergence of the sequence

We will show that (qn, vn) is a Cauchy sequence in the Banach space FT , hence converges to
some (q, v) ∈ FT . Let:

δqn = qn+1 − qn, δvn = vn+1 − vn.

The system verified by (δqn, δun) reads:
∂tδq

n + divδvn − µ∆δqn = Fn − Fn−1,

∂tδv
n − µ∆δvn = Gn −Gn−1,

δqn(0) = 0 , δvn(0) = 0,
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Applying propositions 3.5, we obtain:

‖(δqn, δun)‖FT ≤ C(‖Fn − Fn−1‖
L̃1
T (B

N
p
p,1)

+ ‖Gn −Gn−1‖
L̃1
T (B

N
p −1

p,1 )
). (4.31)

Tedious calculus ensure that:

Fn − Fn−1 = −δvn−1 · ∇qn − vn−1 · ∇δqn−1 + µ∇δqn−1 · ∇qn + µ∇δqn−1 · ∇qn−1,

Gn −Gn−1 = −un · ∇δvn−1 − δun−1 · ∇vn−1 + µ∇qn · ∇δvn−1 + µδqn−1 · ∇vn−1 − a∇δqn−1.

It remains only to estimate the terms on the right hand side of (4.31) by using the same type
of estimates than in the previous section and the property (Pn). More precisely we have via
the proposition 3.2 and (Pn), it exists C > 0 such that:

‖Fn − Fn−1‖
L̃1
T (B

N
p
p,1)
. ‖δun−1‖

L̃
4
3
T (B

N
2 +1

2
p,1 )

‖∇qn‖
L̃4
T (B

N
p −

1
2

p,1 )

+ ‖δun−1‖
L̃∞T (B

N
p −1

p,1 )
‖∇qn‖

L̃1
T (B

N
p +1

p,1 )
+ ‖un−1‖

L̃1
T (B

N
p +1

p,1 )
‖∇δqn−1‖

L̃∞T (B
N
p −1

p,1 )

+ ‖∇δqn−1‖
L̃

4
3
T (B

N
p +1

2
p,1 )

‖un−1‖
L̃4
T (B

N
p −

1
2

p,1 )

≤ C(A
3
4
0 ε

1
4 +A

1
4
0 ε

3
4 +
√
ε+ ε)‖(δqn−1, δvn−1)‖FT .

(4.32)

In a similar way we show that it exists C > 0 large enough such that:

‖Gn −Gn−1‖
L̃1
T (B

N
p −1

p,1 )
≤ C(A

3
4
0 ε

1
4 +A

1
4
0 ε

3
4 +
√
ε+ ε+ T )‖(δqn−1, δvn−1)‖FT . (4.33)

By combining (4.31), (4.32) and (4.33) , we get for C > 0 large enough:

‖(δqn, δvn)‖FT ≤ C(A
3
4
0 ε

1
4 +A

1
4
0 ε

3
4 +
√
ε+ ε+ T )‖(δqn−1, δvn−1)‖FT .

It implies that choosing ε and T small enough (qn, vn) is a Cauchy sequence in FT which is a
Banach space. It provides that (qn, vn) converges to (q, v) is in FT . The verification that the
limit (q, v) is solution of (2.8) in the sense of distributions is a straightforward application of
proposition 3.2.

Third step: Uniqueness

Now, we are going to prove the uniqueness of the solution in FT . Suppose that (q1, v1) and
(q2, v2) are solutions with the same initial conditions and belonging in FT where (q1, v1) corre-
sponds to the previous solution. We set:

δq = q2 − q1 and δv = v2 − v1.

We deduce that (δq, δv) satisfy the following system:
∂tδq + divδv − µ∆δq = F2 − F1,

∂tδv − µ∆δv = G1 −G2,

δq(0) = 0 , δu(0) = 0.
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We now apply proposition 3.5 to the previous system, and by using the same type of estimates
than in the previous part, we show that:

‖(δq, δv)‖
F̃T1
. (‖q1‖

L̃2
T1

(B
N
p +1

p,1 )
+ ‖q2‖

L̃2
T1

(B
N
p +1

p,1 )
+ ‖u1‖

L̃2
T1

(B
N
p
p,1)

+ ‖u2‖
L̃2
T1

(B
N
p
p,1)

)

× ‖(δq, δv)‖
F̃T1

.

We have then for T1 small enough: (δq, δv) = (0, 0) on [0, T1] and by connectivity we finally
conclude that:

q1 = q2, v1 = v2 on [0, T ].

2

4.2 Estimate of the time of existence

Here we can estimate T such that the assumption (Hε) is verified, indeed we have seen in
proposition 3.5 that when 1 ≤ ρ1 ≤ +∞ it exists two constants c, C > 0 such that vL verifying
a heat equation has the following property:

‖vL‖
L̃
ρ1
T (B

s+ 2
ρ1

p,1 )
≤ C

(∑
q∈Z

2qs‖∆qv0‖Lp
(1− e−cµT22qρ1

cµρ1
)

1
ρ1

)
. (4.34)

In particular we have:

‖vL‖
L̃1
T (B

N
p +2

p,1 )
≤ C

(∑
q∈Z

2
qN
p ‖∆qv0‖Lp

(1− e−cµT22q

cµ
)
)
. (4.35)

Now estimating qL in the system (4.18) and using again the proposition (3.5), we get for C > 0
large enough :

‖qL‖
L̃1
T (B

N
p +2

p,1 )
≤ C

(∑
q∈Z

2
qN
p ‖∆qq0‖Lp

(1− e−cµT22q

cµ
)

+
∑
q∈Z

2
qN
p ‖∆qdivvL‖L1

T (Lp)

(1− e−cµT22q

cµ
)
)
,

≤ C
(∑
q∈Z

2
qN
p ‖∆qq0‖Lp

(1− e−cµT22q

cµ
) + ‖divvL‖

L1
T (B

N
p
p,1)

)
(4.36)

We deduce that for C large enough:

‖qL‖
L̃1
T (B

N
p +2

p,1 )
≤ C

(∑
q∈Z

2
qN
p ‖∆qq0‖Lp

(1− e−cµT22q

cµ
)

+
∑
q∈Z

2
qN
p ‖∆qv0‖Lp

(1− e−cµT22q

cµ
)
) (4.37)

It remains only to choose T sufficiently small such that (Hε) is verified, let us start with the
case:

C
∑
q∈Z

2
qN
p ‖∆qq0‖Lp

(1− e−cµT22q

cµ
) ≤ ε

2
.
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We have then using the fact that 1− e−x ≤ x when x ∈ R:

∑
q∈Z

2
qN
p ‖∆qq0‖Lp

(1− e−cµT22q

cµ
) ≤

∑
q≤l0

2
qN
p ‖∆qq0‖LpT22q +

2

cµ

∑
q≥l0

2
qN
p ‖∆qq0‖Lp ,

≤ (2(2−ε′)l0T +
2

cµ
2−l0ε

′
)‖q0‖

B
N
p +ε′

p,1

.

Let us choose l0 such that:

C
2

cµ
2−l0ε

′‖q0‖
B
N
p +ε′

p,1

≤ ε

4
. (4.38)

In particular we must have:

2l0ε
′ ≥

8C‖q0‖
B
N
p +ε′

p,1

cµε
. (4.39)

In particular it implies that:

l0 ≥
1
ε′ ln(

8C‖q0‖
B

N
p +ε′

p,1

cµε )

ln 2
.

Let us choose now l0 =
1
ε′ ln(

8C‖q0‖
B

N
p +ε′

p,1
cµε

)

ln 2 and we want to ensure that:

C2(2−ε′)l0T‖q0‖
B
N
p +ε′

p,1

≤ ε

4
.

In particular we must have:

T ≤ ε

4C‖q0‖
B
N
p +ε′

p,1

2(2−ε′)l0
.

Since we have:

2(2−ε′)l0 =
(8C‖q0‖

B
N
p +ε′

p,1

cµε

) 2
ε′

cµε

8C‖q0‖
B
N
p +ε′

p,1

It implies that:

T ≤ 2(cµ)
2
ε′−1ε

2
ε′

(8C)
2
ε′ ‖q0‖

2
ε′

B
N
p +ε′

p,1

In other term we have prove that for:

T = min
( 2(cµ)

2
ε′−1ε

2
ε′

(8C)
2
ε′ ‖q0‖

2
ε′

B
N
p +ε′

p,1

,
2(cµ)

2
ε′−1ε

2
ε′

(8C)
2
ε′ ‖v0‖

2
ε′

B
N
p −1+ε′

p,1

,
)
, (4.40)
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the assumption (Hε) is verified. We recall that we need also that T verifies the condition (4.30),
so we have finally:

T = D(‖q0‖
B
N
p
p,1

, ‖v0‖
B
N
p −1

p,1

, ‖q0‖
B
N
p +ε′

p,1

, ‖v0‖
B
N
p −1+ε′

p,1

)

≤
( 2(cµ)

2
ε′−1ε

2
ε′

(8C)
2
ε′ ‖q0‖

2
ε′

B
N
p +ε′

p,1

,
2(cµ)

2
ε′−1ε

2
ε′

(8C)
2
ε′ ‖v0‖

2
ε′

B
N
p −1+ε′

p,1

,

1

16C2
1 (‖q0‖

B
N
p
p,1

+ ‖v0‖
B
N
p −1

p,1

)(1 +
√
‖q0‖

B
N
p
p,1

+ ‖v0‖
B
N
p −1

p,1

)2)
,
C1

4
).

(4.41)

Here D is a decreasing function in terms of each variable. It implies in particular that the time
of existence T ∗ of the strong solution is superior at least to T .

4.3 Propagation of the regularity

Here we assume in addition that (q0, v0) belongs in Bs
p,1×B

s−1
p,1 with s > N

p . In a very classical
way the regularity is preserved on [0, T ], it means that:

(q, u) ∈ C̃T (Bs
p,1)× C̃T (Bs−1

p,1 ).

It suffices to proceed as in the previous section.

5 Uniform energy estimates

In this section we assume that (q0, v0) verify the assumption of the theorem 2.2. In particular

since (q0, v0) belongs in B
N
p

p,1 × B
N
p
−1

p,1 for N < p < 2N , we know via the theorem 2.1 that it
exists a strong solution (q, v) to the system (2.8) on the interval (0, T ∗) with T ∗ the maximal
time of existence. In the sequel we shall assume by absurd that T ∗ < +∞, our goal is now to
prove that it is not possible.
In addition we assume an extra hypothesis on the initial data since we choose (q0, v0) in Bs

p,1×
Bs−1
p,1 with s > N

p sufficiently large such that our solution (q, v) are in Ck((0, T ∗)×RN ) in order
to justify all the integrations by parts. Let us mention that this regularity result is obtain by
Besov embedding and the propagation of the regularity proved in theorem 2.1. More precisely
we have for any T ∈ (0, T ∗) via the theorem 2.1:

q ∈ C̃([0, T ], B
N
p

p,1 ∩B
s
p,1) ∩ L1([0, T ], B

N
p

+2

p,1 ∩Bs+2
p,1 ),

v ∈ C̃([0, T ], B
N
p
−1

p,1 ∩Bs−1
p,1 ) ∩ L1([0, T ], B

N
p

+1

p,1 ∩Bs+1
p,1 ),

ρ,
1

ρ
∈ L∞T (L∞(RN )).

(5.42)

In addition in order to justify that v belongs in C([0, T ], Lp1) for any T ∈ (0, T ∗) we assume in
addition that (q0, v0) are in all B1

p1,1
×B0

p1,1
with 2 ≤ p1 < +∞.

Remark 8. In the theorem 2.2 the assumptions on the initial data are more restrictive, it
suffices then when we have prove the result of global strong solution for the previous choice of
initial data to use a regularization process and to pass to the limit using compactness argument.
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We are now going to prove a series of estimates on ρ and v which will depend only on the
time T . All the integration by parts and all the quantity estimates will have sense via the
condition (5.42) and the remarks 8.

5.1 Energy estimates

Following Lions in [35] p 207 we set: q(t) = t
∫ t

1
P (s)
s2
ds. Since P (ρ) = aρ we have q(t) = at ln t.

Multiplying the momentum equation of (1.4) by v we get:∫
RN

(1

2
ρ(t, x)|v(t, x)|2 + (Π(ρ)(t, x)−Π(ρ̄))

)
dx+

∫ t

0

∫
RN

(
µρ(t, x)|∇v|2(t, x)

+
aµ

ρ
|∇ρ|2(t, x)

)
dtdx ≤

∫
RN

(
ρ0(x)|v0(x)|2 + (Π(ρ0)(x)−Π(ρ̄))

)
dx.

(5.43)

with Π(ρ) defined as follows:

Π(ρ) = a
(
ρ ln(

ρ

ρ̄
) + ρ̄− ρ

)
= q(ρ)− q(ρ̄)− q′(ρ̄)(ρ− ρ̄).

We have then Π(ρ̄) = Π′(ρ̄) = 0 with:

Π′(s) = a ln(
s

ρ̄
), Π′′(s) =

a

s
.

We deduce that Π is convex. It implies in particular that (Π(ρ)− Π(ρ̄)) ≥ 0 and using (5.43)
we observe that (Π(ρ)−Π(ρ̄)) is in L∞T (L1(RN )) for any T > 0.
Let us prove now useful proposition which ensure a H1 control on the density.

Proposition 5.6. We have (ρ− ρ̄) ∈ L∞(L2
1(RN ))

Proof: For δ > 0 we show that it exists C > 0 such that:

1

C
|ρ− ρ̄|1{|ρ−ρ̄|≥δ} ≤ (Π(ρ)−Π(ρ̄))1{|ρ−ρ̄|≥δ}.

Next since Π(ρ̄) = Π′(ρ̄) = 0 it exists C > 0 such that:

1

C
|ρ− ρ̄|21{|ρ−ρ̄|≤δ} ≤ (Π(ρ)−Π(ρ̄))1{|ρ−ρ̄|≤δ}.

It implies in particular that (ρ − ρ̄) is in L∞T (L1(RN )) for any T > 0 using the fact that
(Π(ρ)−Π(ρ̄)) is in L∞T (L1(RN )). �

Proposition 5.7. We have (
√
ρ−
√
ρ̄) ∈ L∞(L2).

Proof: We have:
(
√
ρ−
√
ρ̄)2 = (ρ− ρ̄) + 2

√
ρ̄(
√
ρ̄−√ρ).

By Young inequality we have:

1

2
|√ρ−

√
ρ̄|2 ≤ |ρ− ρ̄|+ 2ρ̄

And we have then:

1

2
‖(√ρ−

√
ρ̄)1{|ρ−ρ̄|≥δ}‖2L2 ≤ ‖(ρ− ρ̄)1{|ρ−ρ̄|≥δ}‖L1 + 2ρ̄|{|ρ− ρ̄| ≥ δ}| < +∞,
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because (ρ− ρ̄) ∈ L∞(L2
1(RN )). Next it exists C > 0 such that:

1

C
|√ρ−

√
ρ̄|1{|ρ−ρ̄|≤δ} ≤

1

2
√
ρ̄
|ρ− ρ̄|1{|ρ−ρ̄|≤δ}.

And we deduce that (
√
ρ −
√
ρ̄)1{|ρ−ρ̄|≤δ} is in L∞T (L2) since (ρ − ρ̄) is in L∞T (L2

1(RN )). It
concludes the proof of the proposition. �

Proposition 5.8. We have (
√
ρ−
√
ρ̄) ∈ L∞(H1(RN )).

Proof: Since we have shown that (
√
ρ −
√
ρ̄) is in L∞T (L2(RN )) and that ∇√ρ is also in

L∞T (L2(RN )) via the energy estimate (5.43) it concludes the proof of the proposition. �

5.2 Gain of integrability on v

In this part, we are going to prove that the effective velocity v preserves in some sense the
Lp norm following an idea developed by Mellet and Vasseur in [36, 37] for the compressible

Navier-Stokes system. More precisely we are going to show that ρ
1
p v is in L∞((0, T ), Lp(RN ))

for any 2 ≤ p < +∞ provided that ρ
1
p v0 is also in Lp(RN ) for any 2 ≤ p < +∞. We shall

observe in the proof of this result that it is strongly related to our choice of pressure P (ρ) = aρ
with a > 0.

Lemma 1. Let (ρ, v) be our strong solution on (0, T ∗), then it exists C an increasing function
depending only on the initial data of theorem 2.2 such that for all T ∈ (0, T ∗) we have for all
p ∈ [4,+∞):

‖ρ
1
p v(T, ·)‖Lp ≤ C(T ).

Remark 9. Let us point out that C(T ) does not depend on p ∈ [4,+∞).

Proof: As in [36, 37], we now want to obtain additional information on the integrability
of v, to do it we multiply the momentum equation of (1.4) by v|v|p−2 and integrate over RN ,
we obtain then:

1

p

∫
RN

ρ∂t(|v|p)dx+

∫
RN

ρu · ∇(
|v|p

p
)dx+

∫
RN

ρ|v|p−2|∇v|2dx

+ (p− 2)

∫
RN

ρ
∑
i,j,k

vjvk∂ivj∂ivk|v|p−4dx+

∫
RN
|v|p−2v · ∇(aρ)dx = 0.

(5.44)

Next we observe that:∑
i,j,k

vjvk∂ivj∂ivk =
∑
i

(
∑
j

vj∂ivj)
2 =

∑
i

[1
2
∂i(|v|2)

]2
=

1

4
|∇(|v|2)|2.

We get then as div(ρu) = −∂tρ and by using (5.44):

1

p

∫
RN

∂t(ρ|v|p)dx+

∫
TN

ρ|v|p−2|∇v|2dx+
(p− 2)

4

∫
RN

ρ|∇(|v|2)|2|v|p−4dx

+

∫
RN
|v|p−2v · ∇(aρ)dx = 0.

(5.45)
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We have then by integrating over (0, t) with 0 < t ≤ T :

1

p

∫
RN

(ρ|v|p)(t, x)dx+

∫ t

0

∫
RN

ρ|v|p−2|∇v|2(s, x)dsdx

+
(p− 2)

4

∫ t

0

∫
RN

ρ|∇(|v|2)|2|v|p−4(s, x)dsdx ≤ 1

p

∫
RN

(ρ0|v0|p)(x)dx

+ |
∫ t

0

∫
RN
|v|p−2v · ∇aρ(s, x)dsdx|.

(5.46)

By integration by parts we have since (ρ, v) are regular:∫ t

0

∫
RN
|v|p−2v · ∇aρ(s, x)dsdx = −a

∫ t

0

∫
RN

div(|v|p−2v)ρ(s, x)dsdx.

Next we have:
div(|v|p−2v) = |v|p−2div(v) + (p− 2)|v|p−4v · (v · ∇v).

By Young inequality we have:

| − a
∫ t

0

∫
RN
|v|p−2div(v)ρ(s, x)dsdx| . ε

2

∫ t

0

∫
RN

ρ|v|p−2|∇v|2dsdx

+
1

2ε
a2N2

∫ t

0

∫
RN

ρ|v|p−2dsdx.

(5.47)

Plugging (5.47) in (5.46) with ε = 1 we have:

1

p

∫
RN

(ρ|v|p)(t, x)dx+
1

2

∫ t

0

∫
RN

ρ|v|p−2|∇v|2(s, x)dsdx

+
(p− 2)

4

∫ t

0

∫
RN

ρ|∇(|v|2)|2|v|p−4(s, x)dsdx ≤ 1

p

∫
RN

(ρ0|v0|p)(x)dx

+
1

2
a2N2

∫ t

0

∫
RN

ρ|v|p−2dsdx+ (p− 2)|
∫ t

0

∫
RN
|v|p−4v · (v · ∇v)dxds|.

(5.48)

It remains to estimates the two last terms on the right hand side of (5.48). We have for p ≥ 4:

ρ|v|p−2 = |√ρv|2(1−θ)|ρ
1
p v|pθ,

with p− 2 = 2(1− θ) + pθ with θ ∈ (0, 1). We deduce by Hölder’s inequality that:∫
RN

ρ|v|p−2dx ≤ ‖√ρv‖2(1−θ)
L2 ‖ρ

1
p v‖pθLp .

In particular we have:

θ =
p− 4

p− 2
, 1− θ =

2

p− 2
.

Then by Hölder’s inequality we get:∫ t

0

∫
RN

ρ|v|p−2dx ≤ ‖√ρv‖
4
p−2

L∞t (L2)

∫ t

0
‖ρ

1
p v(s)‖

p(p−4)
p−2

Lp ds.
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We deduce by Young inequality (and choosing ε = 1
p) that:∫ t

0

∫
RN

ρ|v|p−2dx ≤ ‖√ρv‖
4
p−2

L∞t (L2)

∫ t

0
‖ρ

1
p v‖

p(p−4)
p−2

Lp ds,

≤ ‖√ρv‖
4
p−2

L∞t (L2)

∫ t

0

(ε(p− 4)

p− 2
‖ρ

1
p v‖pLp +

2

ε(p− 2)

)
ds,

≤ ‖√ρv‖
4
p−2

L∞t (L2)

((p− 4)

p− 2

∫ t

0

1

p
‖ρ

1
p v(s, ·)‖pLpds+

2p

(p− 2)
t
)
.

(5.49)

Similarly we have by Young inequality:

|
∫ t

0

∫
RN

(p− 2)aρ|v|p−4v · (v · ∇v)dxds| = |
∫ t

0

∫
RN

(p− 2)

2
aρ|v|p−4v · ∇|v|2dxds|,

.
ε

2

∫ t

0

∫
RN

ρ|v|p−4|∇|v|2|2dxds+
1

2ε

(p− 2)2a2

4

∫ t

0

∫
RN

ρ|v|p−2dx ds.

(5.50)

We choose ε = p−2
4 and plugging (5.50) in (5.48) we have:

1

p

∫
RN

(ρ|v|p)(t, x)dx+
1

2

∫ t

0

∫
RN

ρ|v|p−2|∇v|2(s, x)dsdx

+
(p− 2)

8

∫ t

0

∫
RN

ρ|∇(|v|2)|2|v|p−4(s, x)dsdx ≤ 1

p

∫
RN

(ρ0|v0|p)(x)dx

+ [
1

2
a2N2 +

a2

2
(p− 2)]

∫ t

0

∫
RN

ρ|v|p−2dsdx.

(5.51)

Next using (5.49) we have with ε = 1
p(p−4) :

(p− 2)

∫ t

0

∫
RN

ρ|v|p−2dxds

≤ ‖√ρv‖
4
p−2

L∞t (L2)

(
ε(p− 4)

∫ t

0
‖ρ

1
p v‖pLpds+

2

ε
t
)

≤ ‖√ρv‖
4
p−2

L∞t (L2)

(1

p

∫ t

0
‖ρ

1
p v‖pLpds+ 2p(p− 4)t

)
(5.52)

Finally plugging (5.49) and (5.52) in (5.51) we have:

1

p

∫
RN

(ρ|v|p)(t, x)dx+
1

2

∫ t

0

∫
RN

ρ|v|p−2|∇v|2(s, x)dsdx

+
(p− 2)

8

∫ t

0

∫
RN

ρ|∇(|v|2)|2|v|p−4(s, x)dsdx ≤ 1

p

∫
RN

(ρ0|v0|p)(x)dx

+ ‖√ρv‖
4
p−2

L∞t (L2)

(
a2

2
(N2 (p− 4)

p− 2
+ 1)

∫ t

0

1

p
‖ρ

1
p v(s, ·)‖pLpds+

a2t

2

(
N2 2p

(p− 2)
+ 2p(p− 4)

))
.

(5.53)
By Gronwall lemma, we conclude that for all t ∈ [0, T ] we have:

1

p

∫
RN

(ρ|v|p)(t, x)dx ≤
(

1

p

∫
RN

(ρ0|v0|p)(x)dx+ ‖√ρv‖
4
p−2

L∞T (L2)

a2

2

(
N2 2p

(p− 2)
+ 2p(p− 4)

)
T

)
× exp(‖√ρv‖

4
p−2

L∞T (L2)

a2

2
(N2 (p− 4)

p− 2
+ 1)t).
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In particular we have:

‖ρ
1
p v(t, ·)‖Lp ≤

(∫
RN

(ρ0|v0|p)(x)dx+ ‖√ρv‖
4
p−2

L∞T (L2)

a2

2

(
N2 2p2

(p− 2)
+ 2p2(p− 4)

)
T

) 1
p

× exp(
1

p
‖√ρv‖

4
p−2

L∞T (L2)

a2

2
(N2 (p− 4)

p− 2
+ 1)t).

(5.54)

For x, y ≥ 0 and for all p ≥ 1 we verify easily that:

(x+ y)
1
p ≤ 2

1
p (x

1
p + y

1
p )

then for all p ≥ 4 we have:

‖ρ
1
p v(t, ·)‖Lp ≤ 2

1
p

(
‖ρ

1
p

0 v0‖Lp + ‖√ρv‖
4

p(p−2)

L∞T (L2)
(
a2

2
)
1
p
(
N2 2p2

(p− 2)
+ 2p2(p− 4)

) 1
pT

1
p

)
× exp(

1

p
‖√ρv‖

4
p−2

L∞T (L2)

a2

2
(N2 (p− 4)

p− 2
+ 1)t).

(5.55)

It ends up the proof of the lemma 1. �

5.3 Control on max(t,x)∈[0,T ]×RN
1

ρ(t,x)
for 0 < T < T ∗

Proposition 5.9. Under the assumption of theorem 2.2, the density ρ verifies for any T ∈
(0, T ∗) with in our case T ∗ < +∞ which is a priori strictly finite:

‖1

ρ
‖L∞T (L∞(RN )) ≤ C(T ), (5.56)

with C an increasing function in T .

ProofLet us deal with the momentum equation:{
∂tρ− µ∆ρ+ div(ρv) = 0,

ρ(0, ·) = ρ0.

On (0, T ∗) since the density ρ is regular and is far away from the vacuum, ρ verifies the following
equation:

∂t(
1

ρα
)− αρ−α−1div(ρu) = 0.

And we deduce since v = u+ µ∇ ln ρ that:

∂t(ρ
−α)− αρ−αdivv + v · ∇ρ−α + αµρ−α−1∆ρ = 0.

Since
−αρ−α−1∆ρ = ∆ρ−α − α(α+ 1)ρ−α−2|∇ρ|2,

we obtain then the following equation:

∂tρ
−α − µ∆ρ−α + µα(α+ 1)ρ−α−2|∇ρ|2 + v · ∇ρ−α − αρ−αdivv = 0. (5.57)

We are going following in a crucial way some deep ideas due to Ladyzenskaja et al in [30]
which extend the De Giorgi method (introduced to obtain regularity results for the elliptic
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equations) to the parabolic equations. Let us start by multiplying the previous equation by
(ρ−α)(k) = max(ρ−α(t, x) − k, 0), and integrate over (0, t1) × RN , it gives using the fact that
the term µα(α+ 1)ρ−α−2|∇ρ|2 is positive:

1

2

∫
RN

[(ρ−α)(k)(t1, x)]2dx+ µ

∫ t1

0

∫
Ak(t)

|∇ρ−α(t, x)|2dxdt

≤ −(α+ 1)

∫ t1

0

∫
Ak(t)

vi∂i(ρ
−α)(ρ−α)(k)(t, x)dxdt− α

∫ t1

0

∫
Ak(t)

ρ−αvi∂i(ρ
−α)dxdt.

(5.58)
with:

Ak(t) = {x ∈ RN ;
1

ρα(t, x)
≥ k} = {x ∈ RN ; 0 ≤ ρ(t, x) ≤ 1

k
1
α

}.

Remark 10. Let us mention that ρ is regular choosing initial data (ρ0− ρ̄) sufficiently regular
in Besov space and using the fact that the regularity is preserved on (0, T ∗) by the section 4.3.
In addition the integrals in (5.58) are well defined, indeed if we consider:∫

RN
[(ρ−α)(k)(t1, x)]2dx,

we know that supp
[
(ρ−α)(k)

]
is included in Ak(t1). It implies that supp(ρ−α)(k) is in {|ρ(t1, x)−

ρ̄| ≥ (ρ̄− 1

k
1
α

)}. This set is of finite measure since we know that ρ(t1, ·) belongs in L2
1(RN ), and

using the fact that for all t ∈ (0, T ∗) 1
ρ(t,·) is in L∞(RN ) we deduce that the previous integral

is finite.

Now by Young inequality we have:

1

2

∫
RN

[(ρ−α)(k)(t1, x)]2dx+ µ

∫ t1

0

∫
Ak(t)

|∇ρ−α(t, x)|2dxdt

≤ |(α+ 1)|
∫ t1

0

∫
Ak(t)

(∑
i

1

2ε
|vi|2(ρ−α − k)2 +

ε

2
|∇(ρ−α)|2

)
(t, x)dxdt

+ |α|
∫ t1

0

∫
Ak(t)

( 1

2ε1
|ρ−α|2

∑
i

|vi|2 +
ε1
2
|∇(ρ−α)|2

)
(t, x)dxdt.

(5.59)

We choose ε = µ
4|α+1| , ε1 = µ

4|α| and we have for k ≥ 1:

1

2

∫
RN

[(ρ−α)(k)(t1, x)]2dx+
µ

2

∫ t1

0

∫
Ak(t)

|∇ρ−α(t, x)|2dxdt

≤ 2|(α+ 1)|2

µ

∫ t1

0

∫
Ak(t)

(
|v|2[(ρ−α − k)2 + k2]

)
(t, x)dxdt

+
2|α|2

µ

∫ t1

0

∫
Ak(t)

(
2[(ρ−α − k)2 + k2]|v|2

)
(t, x)dxdt

≤ 2

µ
(|α+ 1|2 + 2α2)

∫ t1

0

∫
Ak(t)

(
|v|2[(ρ−α − k)2 + k2]

)
(t, x)dxdt

(5.60)

Following [30], we set:

|(ρ−α)(k)|2Qt1 (k) = sup
0≤t≤t1

‖(ρ−α)(k)(t)‖L2 + ‖∇(ρ−α)(k)‖L2
t1

(L2(RN )).
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From (5.60) we have by Hölder’s inequalities:

min(
1

2
,
µ

2
)|(ρ−α)(k)|2Qt1 (k) ≤ Cα,µ‖|v|

2‖Lrt1 (Lq(RN ))‖(ρ−α − k)2 + k2‖
L

r
r−1 (L

q
q−1 )(Qt1 (k))

, (5.61)

with Qt1(k)) = {(t, x); t ∈ [0, t1], x ∈ Ak(t)}, Cα,µ = 2
µ(|α+ 1|2 + 2α2) and:

1

r
+
N

2q
= 1− κ1, (5.62)

with 0 < κ1 < 1. It remains to estimate the right hand side of (5.61), let us start with the
term (ρ−α − k)2, applying Hölder’s inequality we have:

‖(ρ−α − k)2‖
L

r
r−1 (L

q
q−1 )(Qt1 (k))

= ‖(ρ−α − k)‖2
L

2r
r−1 (L

2q
q−1 )(Qt1 (k))

,

≤ ‖(ρ−α)(k)‖2
L
r2
t1

(Lq2 (RN )
|(
∫ t1

0
λ(Ak(t))

( 1
r1
− 1
r2

)−1( 1
q1
− 1
q2

)
dt)

1
r1
− 1
r2 |2

(5.63)

with q1 = 2q
q−1 , r1 = 2r

r−1 , q2 = q1(1 + κ), r2 = r1(1 + κ) and κ = 2κ1
N ( λ is the Lebesgue

measure). Now we have:

1

q1
− 1

q2
=

κ

(1 + κ)q1
,

1

r1
− 1

r2
=

κ

(1 + κ)r1
.

It implies that using (5.63) we have:

‖(ρ−α − k)2‖
L

r
r−1 (L

q
q−1 )(Qt1 (k))

≤ ‖(ρ−α)(k)‖2
L
r2
t1

(Lq2 (RN ))
(

∫ t1

0
λ(Ak(t))

r1
q1 dt)

2κ
(1+κ)r1 (5.64)

Using the relation (5.62) and the fact that κ1 = Nκ
2 we observe that:

1

r2
+

N

2q2
=

r − 1

2r(1 + κ)
+
N(q − 1)

4q(1 + κ)

=
2 +N

4(1 + κ)
− 1

2(1 + κ)
(
1

r
+
N

2q
)

=
N

4(1 + κ)
+

κ1

2(1 + κ)
=
N

4
.

(5.65)

q2 ∈ [2(1 + κ),
2N(1 + κ)

N − 2 + 2κ1
], r2 ∈ [2(1 + κ),

2(1 + κ)

κ1
],

Now using the Gagliardo-Niremberg inequality we have:

‖(ρ−α)(k)(t, ·)‖Lq2 (RN ) ≤ β‖∇(ρ−α)(k)(t, ·)‖αL2(RN )‖(ρ
−α)(k)(t, ·)‖1−α

L2(RN )
,

with: α = N
2 −

N
q2

and α = 2
r2

. Using now Hölder’s inequality we have:

‖(ρ−α)(k)‖Lr2t1 (Lq2 (RN ) ≤ β‖∇(ρ−α)(k)‖
1− 2

r2

L2
t1

(L2(RN ))
sup

0≤t≤t1
‖(ρ−α)(k)‖

2
r2

L2(RN )
.

Using Young inequality we have:

‖(ρ−α)(k)‖Lr2t1 (Lq2 (RN ) ≤ β|(ρ
−α)(k)|Qt1 . (5.66)
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Plugging this last inequality in (5.64) we have:

‖(ρ−α − k)2‖
L

r
r−1 (L

q
q−1 )(Qt1 (k))

≤ β2|(ρ−α)(k)|2Qt1µ(k)
2κ

(1+κ)r1 , (5.67)

with µ(k) =
∫ t1

0 λ(Ak(t))
r1
q1 dt.

It remains to bound the term ‖k2‖
L

r
r−1 (L

q
q−1 )(Qt1 (k))

‖k2‖
L

r
r−1 (L

q
q−1 )(Qt1 (k))

= k2‖1‖2Lr1 (Lq1 )(Qt1 (k)),

= µ(k)
2
r1 .

(5.68)

Combining (5.67) and (5.68) we finally obtain:

min(
1

2
,
µ

2
)|(ρ−α)(k)|2Qt1 (k) ≤ Cα,µ‖|v|

2‖Lr(Lq)(Qt1 (k))

(
β2|(ρ−α)(k)|2Qt1 (k)µ(k)

2κ
(1+κ)r1 + k2µ(k)

2
r1

)
,

≤ Cα,µ‖v‖2L2r
t1

(L2q(RN ))

(
β2|(ρ−α)(k)|2Qt1 (k)µ(k)

2κ
r1(1+κ) + k2µ(k)

2
r1

)
.

(5.69)
with:

1

r
+
N

2q
= 1− κ1 and κ =

2κ1

N
.

Remark 11. Let us recall that we deal with t1 ∈ (0, T ∗) with T ∗ the lifespan of our strong
solution. It implies in particular that 1

ρ belongs in L∞t1 (L∞(RN )) for any t1. We are going to
prove a postiori that this L∞ norm depends only of t1 (and not of T ∗).

We deduce that for all k ≥ supx ρ
−α
0 and t1 ∈ (0, T ∗):

min(
1

2
,
µ

2
)|(ρ−α)(k)|2Qt1 (k) ≤ Cα,µ‖

1

ρ
1
2q

‖2L∞t1 (L∞)‖ρ
1
2q v‖2L∞t1 (L2q(RN ))t

2
r
1

×
(
β2|(ρ−α)(k)|2Qt1 (k)µ(k)

2κ
r1(1+κ) + k2µ(k)

2
r1

)
,

≤ Cα,µ‖
1

ρ
‖

1
q

L∞t1
(L∞)‖ρ

1
2q v‖2L∞t1 (L2q(RN ))t

2
r
1

(
β2|(ρ−α)(k)|2Qt1 (k)µ(k)

2κ
r1(1+κ) + k2µ(k)

2
r1

)
.

(5.70)

Next we recall that:

µ(k) =

∫ t1

0
λ(Ak(s))

r1
q1 ds.

We easily verify that for ρ̄ > 1 and k ≥ 1:

Ak(s) ⊂ {x; |√ρ−
√
ρ̄| ≥ (

√
ρ̄− (

1

k
)

1
2α )}.

And by Tchebytchev inequality we have for q3 ≥ 1 (that we shall determinate later):

λ(Ak(s)) ≤
‖√ρ(s, ·)−

√
ρ̄‖q3Lq3

(
√
ρ̄− ( 1

k )
1
2α )q3

In particular we deduce that:

µ(k)
2κ

r1(1+κ) ≤ t
2κ

r1(1+κ)

1

‖√ρ−
√
ρ̄‖

2κq3
q1(1+κ)

L∞t1
(Lq3 )

(
√
ρ̄− ( 1

k )
1
2α )

2κq3
q1(1+κ)

(5.71)
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It suffices then to choose t1 such that for any k ≥ max(1, supx ρ
−α
0 ):

t
2
r

+ 2κ
r1(1+κ)

1 ≤ 1

2
min(

1

2
,
µ

2
)

(
√
ρ̄− ( 1

k )
1
2α )

2κq3
q1(1+κ)

Cα,µ‖1
ρ‖

1
q

L∞t1
(L∞)‖ρ

1
2q v‖2

L∞t1
(L2q(RN ))

β2‖√ρ−
√
ρ̄‖

2κq3
q1(1+κ)

L∞t1
(Lq3 )

.

Since we have 2
r + 2κ

r1(1+κ) = κ(r+1)+2
r(1+κ) we need to take for ρ̄ > 1:

t1 ≤
(

1

2
min(

1

2
,
µ

2
)

(
√
ρ̄− 1)

2κq3
q1(1+κ)

Cα,µ‖1
ρ‖

1
q

L∞t1
(L∞)‖ρ

1
2q v‖2

L∞t1
(L2q(RN ))

β2‖√ρ−
√
ρ̄‖

2κq3
q1(1+κ)

L∞t1
(Lq3 )

) r(1+κ)
κ(r+1)+2

. (5.72)

Using (5.72) we deduce from the inequality (5.70):

1

2
min(

1

2
,
µ

2
)|(ρ−α)(k)|2Qt1 (k) ≤ Cα,µ‖

1

ρ
‖

1
q

L∞t1
(L∞)‖ρ

1
2q v‖2L∞t1 (L2q(RN ))t

2
r
1 k

2µ(k)
2
r1 . (5.73)

and it gives:

|(ρ−α)(k)|Qt1 (k) ≤
√
Cα,µ‖

1

ρ
‖

1
2q

L∞t1
(L∞)‖ρ

1
2q v‖L∞t1 (L2q(RN ))t

1
r
1 kµ(k)

1
r1 . (5.74)

We are going to use the lemma 6.1 from Ladyzenskaya et al p102 [30] that we recall.

Lemma 5.1. Assume that supx∈RN
1

ρα0 (x) < +∞ and that the inequalities

|(ρ−α)(k)|Qt1 (k) ≤ γkµ(k)
1+κ

r1(1+κ) (5.75)

hold for k ≥ max(1, k̂0) with supx∈RN
1

ρα0 (x) = k̂0 with certain positive constants γ and κ. Then

we have for q3 ≥ 1:

sup
(t,x)∈[0,t1]×RN

1

ρα(t, x)
≤ 2 max(1, sup

x∈RN

1

ρα0 (x)
)(1 + 2

2
κ

+ 1
κ2 (βγ)1+ 1

κ

× t
1
r1
1 (

1√
ρ̄− 1

)
q3
q1 ‖√ρ−

√
ρ̄‖

q3
q1

L∞t1
(Lq3 )

(5.76)

with β > 0 a constant related with Gagliardo-Niremberg inequality.

Proof of Lemma 5.1: Let us take the sequence of levels kn = M(2 − 2−n) with n ∈ N
and we assume that M ≥ max(1, k̂0) > 0. Then we have:

(kn+1 − kn)µr1(1+κ)(kn+1) ≤ ‖(ρ−α)(kn)‖Lr2t1 (Lq2 (RN )). (5.77)

By (5.66) and (5.75) we have:

‖(ρ−α)(kn)‖Lr2t1 (Lq2 (RN )) ≤ β|(ρ
−α)(k)|Qt1 ≤ βγknµ(kn)

1+κ
r1(1+κ) , (5.78)

and then:

µ
1
r2 (kn+1) ≤ βγkn

kn+1 − kn
µ

1+κ
r2 (kn) ≤ 4βγ2nµ

1+κ
r2 (kn). (5.79)

Let us recall now the lemma 5.6 p 95 from [30].
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Lemma 5.2. Let (yn)n∈N a nonnegative sequence verifying for all n ≥ 0:

yn+1 ≤ cbny1+ε
n , (5.80)

with some positive constants c, ε and b ≥ 1. Then:

yn ≤ c
(1+ε)n−1

ε b
(1+ε)n−1

ε2
−n
ε y

(1+ε)n

0 . (5.81)

In particular if:

y0 ≤ θ = c−
1
ε b−

1
ε2 and b > 1, (5.82)

then
yn ≤ θb−

n
ε (5.83)

and in particular yN → 0 for n→ +∞.

Applying the lemma 5.2 to the inequality (5.79), we deduce that µ
1
r2 (kn) goes to zero when

n goes to +∞ if µ1r2(k0) is sufficiently small, namely if:

µ
1
r2 (k0) = µ

1
r2 (M) ≤ (4βγ)−

1
κ 2−

1
κ2 . (5.84)

In order to satisfy the previous inequality we set M = mk̂0, m > 1 and substitute k̂ for kn and
M for kn+1 in (5.77) this gives by Tchebytchev inequality:

µ
1
r2 (M) ≤ βγ

m− 1
µ

1
r1 (max(1, k̂0)) ≤ βγ

m− 1
t

1
r1
1

‖√ρ−
√
ρ̄‖

q3
q1

L∞t1
(Lq3 )

(
√
ρ̄− ( 1

max(1,k̂0))
)

1
2α )

q3
q1

.

It suffice to choose:

m = 1 + βγt
1
r1
1

‖√ρ−
√
ρ̄‖

q3
q1

L∞t1
(Lq3 )

(
√
ρ̄− ( 1

max(1,k̂0))
)

1
2α )

q3
q1

(4βγ)
1
κ 2

1
κ2 .

Then the condition (5.84) is verified and then µ(2M) is equal to zero which implies that:

‖ρ−α‖L∞([0,t1]×RN ) ≤ 2M = 2mmax(1, k̂0).

�

We deduce that choosing t1 as in (5.72) we have via the lemma 5.1 and the fact that γ =

Cα,µ‖1
ρ‖

1
2q

L∞t1
(L∞)‖ρ

1
2q v‖L∞t1 (L2q(RN ))t

1
r
1 :

sup
(t,x)∈[0,t1]×RN

1

ρα(t, x)
≤ 2 sup

x∈RN

1

ρα0 (x)

(
1 + 2

2
κ

+ 1
κ2 (βCα,µ‖

1

ρ
‖

1
2q

L∞(L∞)‖ρ
1
2q v‖L∞t1 (L2q(RN ))t

1
r
1 )1+ 1

κ t
1
r1
1

× (
1√
ρ̄− 1

)
q3
q1 ‖√ρ−

√
ρ̄‖

q3
q1

L∞t1
(Lq3 )

)
.

(5.85)
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In order to simplify the notations we are going to deal with α = 1, κ1 = 1
2 such that κ = 1

N
and:

1

r
+
N

2q
=

1

2
. (5.86)

We have then since sup(t,x)∈[0,t1]×RN
1
ρ(t, x) = ‖1

ρ‖L∞t1 (L∞) and setting abusively Cα,µβ = β (in

order to simplify the notation):

‖1

ρ
‖L∞t1 (L∞) ≤ 2 max(1, ‖ 1

ρ0
‖L∞)

(
1 + ‖1

ρ
‖

1
2q

(N+1)

L∞t1
(L∞) 22N+N2

(β‖ρ
1
2q v‖L∞t1 (L2q(RN ))t

1
r
1 )N+1t

1
r1
1

× (
1√
ρ̄− 1

)
q3
q1 ‖√ρ−

√
ρ̄‖

q3
q1

L∞t1
(Lq3 )

)
.

(5.87)
Choosing q large enough and applying the Young inequality with p = 2q

N+1 and p′ = 2q
2q−N−1

we have:

‖1

ρ
‖L∞t1 (L∞) ≤

N + 1

2q
‖1

ρ
‖L∞t1 (L∞) +

2q −N − 1

2q

(
2 max(1, ‖ 1

ρ0
‖L∞)22N+N2

(β‖ρ
1
2q v‖L∞t1 (L2q(RN ))t

1
r
1 )N+1

× t
1
r1
1 (

1√
ρ̄− 1

)
q3
q1 ‖√ρ−

√
ρ̄‖

q3
q1

L∞t1
(Lq3 )

) 2q
2q−N−1

+2 max(1, ‖ 1

ρ0
‖L∞).

(5.88)
It gives:

‖1

ρ
‖L∞t1 (L∞) ≤ max(1, ‖ 1

ρ0
‖L∞)

(
4q

2q −N − 1
+ max(1, ‖ 1

ρ0
‖L∞)

N+1
2q−N−1

(
222N+N2

× (β‖ρ
1
2q v‖L∞t1 (L2q(RN ))t

1
r
1 )N+1t

1
r1
1 (

1√
ρ̄− 1

)
q3
q1 ‖√ρ−

√
ρ̄‖

q3
q1

L∞t1
(Lq3 )

) 2q
2q−N−1

)
.

(5.89)

It implies in particular:

‖1

ρ
‖L∞t1 (L∞) ≤ max(1, ‖ 1

ρ0
‖L∞)

1+ N+1
2q−N−1

(
2 +

(
222N+N2

(β‖ρ
1
2q v‖L∞t1 (L2q(RN ))t

1
r
1 )N+1t

1
r1
1

× (
1√
ρ̄− 1

)
q3
q1 ‖√ρ−

√
ρ̄‖

q3
q1

L∞t1
(Lq3 )

) 2q
2q−N−1

)
.

(5.90)

Using the lemma 1 and the proposition 5.8 with q3 = 2, we deduce that for t1 ∈ (0, T ∗) and t1
verifying the assumption (5.72) we have for any large q:

‖1

ρ
‖L∞t1 (L∞) ≤ max(1, ‖ 1

ρ0
‖L∞)

1+ N+1
2q−N−1

(
2 +

(
222N+N2

(βC(T ∗)× (T ∗)
1
r )N+1(T ∗)

1
r1

× ((
1√
ρ̄− 1

)
q−1
q E

q−1
q

0

) 2q
2q−N−1

)
≤ max(1, ‖ 1

ρ0
‖L∞)

1+ N+1
2q−N−1

(
2 +

(
222N+N2

(βC(T ∗)× (T ∗)
1
r )N+1(T ∗)

1
r1

) 2q
2q−N−1

×
(
(

1√
ρ̄− 1

)E0

) 2(q−1)
2q−N−1

)
,

(5.91)
with E0 depending only on the initial data. It implies that for any q it exists C large enough

and γ > 0 depending only on the norm of the initial data ‖ρ
1
q

0 v‖Lq and from E0 such that:

‖1

ρ
‖L∞t1 (L∞) ≤ max(1, ‖ 1

ρ0
‖L∞)

1+ N+1
2q−N−1 (2 + C(1 + (T ∗)γ)). (5.92)
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Remark 12. Since with the choice on the initial data in the theorem 2.2, ‖ρ
1
q

0 v‖Lq is uniformly
bounded in q, it implies that C and γ do not depend on q.

Combining the condition (5.72) and the previous inequality (5.92) t1 must verify the fol-
lowing condition with Cα,µ = Cµ by notation:

t1 ≤
(

1

2
min(

1

2
,
µ

2
)

(
√
ρ̄− 1)

2κ(q−1)
q(1+κ)

Cµ max(1, ‖ 1
ρ0
‖L∞)

2
2q−N−1 (2 + C(1 + (T ∗)γ))

1
q ‖ρ

1
2q v‖2

L∞t1
(L2q)

β2‖√ρ−
√
ρ̄‖

2κ(q−1)
q(1+κ)

L∞t1
(L2)

) r(1+κ)
κ(r+1)+2

.

(5.93)
We deduce using lemma 1 and proposition 5.8 that for q ≥ 1:

t1 ≤
M

M ′(1 + T β)

1

max(1, ‖ 1
ρ0
‖L∞)

2
2q−N−1

α1
,

‖1

ρ
‖L∞t1 (L∞) ≤ max(1, ‖ 1

ρ0
‖L∞)

1+ N+1
2q−N−1 (2 + C(1 + (T ∗)γ)).

(5.94)

with α1 = r(1+κ)
κ(r+1)+2 . Here C > 0, M,M ′ > 0, β > 0 depends only on the initial data ‖ρ

1
q

0 v0‖Lq ,
E0 and is independent of q and of t1. In an other way we have:

t1 ≤
C1

max(1, ‖ 1
ρ0
‖L∞)

2
2q−N−1

α1
,

‖1

ρ
‖L∞t1 (L∞) ≤ C2 max(1, ‖ 1

ρ0
‖L∞)

1+ N+1
2q−N−1 .

(5.95)

with C1 = M
M ′(1+Tβ)

and C2 = (2 + C(1 + (T ∗)γ)).

For the moment we have proved estimates on 1
ρ in L∞ norm when t1 verifies the condition

(5.95), we would like to get the same type of estimate for any T ∈ (0, T ∗). To do this we are
going to repeat the argument used for the case t1, it implies that by recurrence it exists a sequel
(tn)n∈N verifying for n ≥ 2:

tn ≤
C1

C
(
∑n−2
i=0 β

i
1) 2

2q−N−1
α1

2 max(1, ‖ 1
ρ0
‖L∞)

βn−1
1

2
2q−N−1

α1

,

‖1

ρ
‖L∞∑n

i=1
ti

(L∞) ≤ C
∑n−1
i=0 β

i
1

2 max(1, ‖ 1

ρ0
‖L∞)β

n
1 .

(5.96)

with β1 = 1 + N+1
2q−N−1 .

Our goal is now to verify that
∑+∞

i=1 ti can cover any T ∈ (0, T ∗) or in other terms that∑+∞
i=1 ti > T for any T ∈ (0, T ∗) when q is large enough. It will prove that it exists n large

enough such that
∑n−1

i=1 ti ≤ T <
∑n

i=1 ti and this for any T ∈ (0, T ∗) (with n depending on
T ). We have then:

n∑
i=1

ti =
C1

max(1, ‖ 1
ρ0
‖L∞)

2
2q−N−1

α1
+

n∑
j=2

C1

C
(
∑j−2
i=0 β

i
1) 2

2q−N−1
α1

2 max(1, ‖ 1
ρ0
‖L∞)

βj−1
1

2
2q−N−1

α1

(5.97)
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Next we have:

j−2∑
i=0

βi1 =
1− βj−1

1

1− β1
=

2q −N − 1

N + 1

(
(1 +

N + 1

2q −N − 1
)j−1 − 1

)
.

It implies that:

(

j−2∑
i=0

βi1)
2

2q −N − 1
α1 =

2α1

N + 1

(
(1 +

N + 1

2q −N − 1
)j−1 − 1

)
(5.98)

Now we are going to consider the limq→+∞
∑n

i=1 ti in order to prove that this sum converges
to +∞. We have then:

(

j−2∑
i=0

βi1)
2

2q −N − 1
α1 ∼q→+∞ (j − 1)

2α1

2q −N − 1

βj−1
1

2α1

2q −N − 1
∼q→+∞

2α1

2q −N − 1

(5.99)

Here we recall via the relation (5.86) that r goes to 2 when q goes to +∞. It implies that α1

converges to
2(1+ 1

N
)

3
N

+2
. We deduce via the previous estimates and the equality (5.97) that:

lim
q→+∞

n∑
i=1

ti = C1n. (5.100)

And for n large enough depending on T , q large enough we have the existence of n such that∑n−1
i=1 ti ≤ T <

∑n
i=1 ti. It concludes the proof of the proposition 5.9 since via the estimate

(5.96) we observe that ‖1
ρ‖L∞T (L∞(RN )) depends only on n, q and ‖ 1

ρ0
‖L∞ but n depends on T .

This is exactly what we want. �

5.4 Control on ‖(q, v)(T, ·)‖
B
N
p +ε′

p,1 ×B
N
p −1+ε′

p,1

for any T < T ∗ and ε′ > 0

5.4.1 Estimate on ‖v(T, ·)‖
B
N
p −1+ε′

p,1

for any T < T ∗ and ε′ > 0

Let us recall that we have proved in the lemma 1 and proposition 5.9 that for any p ≥ 2 it
exists increasing functions C and C1 with C and C1 depending only on the initial data (ρ0, v0)
such that:

‖ρ
1
p v‖L∞T (Lp) ≤ C(T )

‖ 1

ρ
1
p

‖L∞T (L∞) ≤ C
1
p

1 (T ).
(5.101)

It yields:

‖v‖L∞T (Lp) ≤ C(T )C
1
p

1 (T ). (5.102)

By Besov embedding we observe that for p ≥ 2 it exists C > 0 such that:

‖v‖L∞T (B0
p,∞) ≤ CC(T )C

1
p

1 (T ),

‖v‖
L∞T (B

−N( 12−
1
p )

p,∞ )
≤ CC(T )C

1
2
1 (T ).

(5.103)
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By interpolation in the Besov space, we deduce that when −N
2 + N

p < N
p − 1 + ε′ < 0 (it

corresponds to p > N
1−ε′ ) we have for M an increasing function depending only on the initial

data (ρ0, v0):
‖v‖

L̃∞T (B
N
p −1+ε′

p,1 )
≤M(T ). (5.104)

Since we know that v belongs in C̃T ∗(B
N
p
−1+ε′

p,1 ) (5.104) implies that:

‖v(T, ·)‖
B
N
p −1+ε′

p,1

≤M(T ). (5.105)

�

5.4.2 Estimate on ‖q(T, ·)‖
B
N
p +ε′

p,1

for any T < T ∗ and ε′ > 0

It suffices to use the first equation in (1.4) and the proposition 3.5 on the heat equation which
ensures that for any T ∈ (0, T ∗) we have for C > 0 and q1 = ρ− ρ̄:

‖q1‖
L̃∞T (B

N
p +ε′

p,1 )
≤ C(‖q1

0‖
B
N
p +ε′

p,1

+ ‖div(ρv)‖
L̃∞T (B

N
p −2+ε′

p,1 )
)

≤ C(‖q1
0‖
B
N
p +ε′

p,1

+ ‖ρv‖
L̃∞T (B

N
p −1+ε′

p,1 )
).

(5.106)

Proceeding as in the previous section we have for any p ≥ 2:

‖ρv‖
L̃∞T (B0

p,∞)
= ‖ρv‖L∞T (B0

p,∞) ≤ ‖ρ‖
1− 1

p

L∞T (L∞)‖ρ
1
p v‖L∞T (Lp),

‖ρv‖
L̃∞T (B

−N( 12−
1
p )

p,∞ )
= ‖ρv‖

L∞T (B
−N( 12−

1
p )

p,∞ )
≤ ‖ρ‖

1
2

L∞T (L∞)‖ρ
1
2 v‖L∞T (L2).

(5.107)

By interpolation we deduce that for −N
2 + N

p < N
p − 1 + ε′ < 0 we have with N

p − 1 + ε′ =

θ(−N
2 + N

p ) and (1− θ)(1− 1
p) + θ

2 = 1− 1−ε′
N :

‖ρv‖
L̃∞T (B

N
p −1+ε′

p,1 )
≤ ‖ρ‖

θ
2

L∞T (L∞)‖ρ
1
2 v‖θL∞T (L2)‖ρ‖

(1−θ)(1− 1
p

)

L∞T (L∞) ‖ρ
1
p v‖1−θL∞T (Lp)

≤ ‖ρ‖1−
1−ε′
N

L∞T (L∞)‖ρ
1
2 v‖θL∞T (L2)‖ρ

1
p v‖1−θL∞T (Lp).

(5.108)

Using the lemme 1 and (5.109) it exists a increasing function M1 such that:

‖ρv‖
L̃∞T (B

N
p −1+ε′

p,1 )
≤ ‖ρ‖1−

1−ε′
N

L∞T (L∞)M1(T ). (5.109)

Plugging the previous estimate in (5.107) we have:

‖q1‖
L̃∞T (B

N
p +ε′

p,1 )
≤ C(‖q1

0‖
B
N
p +ε′

p,1

+ (‖q1‖L∞T (L∞) + ρ̄)1− 1−ε′
N M1(T )). (5.110)

Now by Besov embedding and interpolation, we recall that it exists C > 0 such that:

‖q1‖L∞T (L∞) ≤ C‖q1‖
L̃∞T (B

N
p
p,1)
,

≤ C ′‖q1‖θ
L̃∞T (B

−N( 12−
1
p )

p,1 )
‖q1‖1−θ

L̃∞T (B
N
p +ε′

p,1 )

,
(5.111)
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with N
p = −θN(1

2 −
1
p) + (1− θ)(Np + ε′). Next since via the lemma 5.8 we know that

√
ρ−
√
ρ̄

is in L∞T (H1(RN )). We deduce in particular that q1 = (ρ− ρ̄) is in L∞T (L2(RN )) when N ≤ 4.
Indeed we have:

ρ− ρ̄ = (
√
ρ−
√
ρ̄)2 + 2

√
ρ̄(
√
ρ−
√
ρ̄),

and we conclude using the fact that (
√
ρ−
√
ρ̄)2 is in L∞T (L2(RN )) by Sobolev embedding when

N ≤ 4. When N ≥ 5 it suffices to observe that q1 is in L∞T (L1(RN ) + L2(RN )) and using
again interpolation. By Young inequality and the lemma 5.8 we deduce that it exists M ′ an
increasing function such that:

‖q1‖L∞T (L∞) ≤M ′(T ) + ‖q1‖
L̃∞T (B

N
p +ε′

p,1 )
, (5.112)

By Young inequality and Besov embedding we have for C > 0 and any ε > 0:

‖q1‖
L̃∞T (B

N
p +ε′

p,1 )
≤ C(‖q1

0‖
B
N
p +ε′

p,1

+ (‖q1‖
L̃∞T (B

N
p +ε′

p,1 )
+M ′(T ))1− 1−ε′

N M1(T ))

≤ C(‖q1
0‖
B
N
p +ε′

p,1

+
ε(N − 1 + ε′)

N
(‖q1‖

L̃∞T (B
N
p +ε′

p,1 )
+M ′(T )) +

1− ε′

εN
M1(T )

N
1′ε ).

(5.113)

Choosing ε sufficiently small we deduce that it exists C > 0 such that:

‖q1‖
L̃∞T (B

N
p +ε′

p,1 )
≤ C(1 + ‖q1

0‖
B
N
p +ε′

p,1

+M ′(T ) +M1(T )
N

1−ε′ ) (5.114)

It implies in particular that ρ is in L∞T (L∞). Now since q = ln(ρρ̄) = ln( q1+ρ̄
ρ̄ ) we deduce by

proposition 3.3, (5.115) and the fact that ρ and 1
ρ are in L∞T (L∞) (see the proposition 5.9) that

it exists M2, M3 increasing function and C > 0 such that:

‖q‖
L̃∞T (B

N
p +ε′

p,1 )
≤ C(1 + ‖q1

0‖
B
N
p +ε′

p,1

+M3(T ) +M2(T )
N

1−ε′ ). (5.115)

In particular since q belongs in C̃T ∗(B
N
p

+ε′

p,1 ) we have for any T ∈ (0, T ∗):

‖q(T, ·)‖
B
N
p +ε′

p,1

≤ C(1 + ‖q1
0‖
B
N
p +ε′

p,1

+M3(T ) +M2(T )
N

1−ε′ ). (5.116)

6 Proof of the theorem 2.2

Since we have assumed that T ∗ < +∞, we are interested in proving that this is absurd. It
suffices to extend the strong solution (q, v) of the system (2.8) beyond T ∗. Let us summarize
which estimates we have obtained on q, for all T ∈ (0, T ∗) and p > N

1−ε′ with N ≥ 2 we have
via (5.105) and (5.116) :

‖v(T, ·)‖
B
N
2 −1+ε′
p,1

≤M(T ),

‖q(T, ·)‖
B
N
2 +ε′
p,1

≤M3(T ),
(6.117)

with M and M3 increasing function depending only on the initial data (q0, v0). Let us start
with studying the case N ≥ 3. By proceeding as in the previous section we who that:

‖v(T, ·)‖
B
N
2 −1

p,1

≤M4(T ),

‖q(T, ·)‖
B
N
2
p,1

≤M5(T ),
(6.118)
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with M4 and M5 increasing function depending only on the initial data (q0, v0) (indeed we need
to verify the condition −N

2 + N
2 < N

2 − 1 < 0).
Let us consider now the system (2.8) with initial data (q(T ∗ − ε1, ·), v(T ∗ − ε1, ·)) such that:

ε1 < D(M(T ),M3(T )). (6.119)

Using the theorem 2.1 we know that it exists a strong solution (q1, v1) to the system (2.8)
with initial data (q(T ∗ − ε1, ·), v(T ∗ − ε1, ·)) such that the time of existence T ∗1 verifies via the
estimate (4.41):

T ∗1 ≥ D(M(T ),M3(T )) > ε1.

It implies that T ∗− e1 + T ∗1 > T ∗, in addition using the uniqueness part of the theorem 2.1 we
observe that:

(q1(t, ·), v1(t, ·)) = (q(T ∗ − ε1 + t, ·), v(T ∗ − ε1 + t, ·)) on (0, ε1).

It implies that we can extend the solution (q, v) beyond T ∗ which implies that T ∗ < +∞ is
absurd. We have proved then that T ∗ = +∞ when N ≥ 3.
Let us deal now with the case N = 2. The difficulty here corresponds to estimate v in

L̃∞T (B
N
p
−1

p,1 ) using interpolation argument. The problem comes from the low frequencies since

v belongs in L∞T (L2) using the energy estimate and the fact that 1
ρ is in L∞T (L∞). It implies

that v is only in L∞T (B
N
2
−1

2,2 ) which is embedded in L∞T (B
N
p
−1

p,2 ) when p ≥ 2. We have no hope
to estimate ‖v(T, ·)‖

B
N
p −1

p,1

, we need to proceed in a different way.

It suffices to repeat all the procedure with initial data (q0, v0) which belong in B
N
p

p,2 × B
N
p
−1

p,2 .
We can prove the existence of strong solution in finite time (we refer to [25], let us mention that
to prove this result the choice of the physical coefficient is crucial, in particular the fact that
P (ρ) = aρ. It allows to avoid any control on the L∞ norm of the density what is important in
general in order to apply composition theorem). Newt in a similar way we bounded by below
the time of existence. And using the same previous arguments we obtain that for ε′ > 0:

‖v(T, ·)‖
B
N
2 −1+ε′
p,2

≤M ′(T ),

‖q(T, ·)‖
B
N
2 +ε′
p,2

≤M ′3(T ),
(6.120)

with M ′ and M ′3 increasing function depending only on the initial data (q0, v0) and:

‖v(T, ·)‖
B
N
2 −1

p,2

≤M ′4(T ),

‖q(T, ·)‖
B
N
2
p,2

≤M ′5(T ),
(6.121)

with M ′4 and M ′5 increasing function depending only on the initial data (q0, v0). The conclusion
is now the same that for the case N ≥ 3 and we have T ∗ = +∞ when N = 2. It concludes the
proof of the theorem 2.2. �

7 Appendix

In this appendix, we only want to detail the computation on the Korteweg tensor.
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Lemma 2.
divK = κdiv(ρ∇∇ ln ρ) = κdiv(ρD(∇ ln ρ)).

Proof: By calculus, we obtain then:

(divK)j =
(
∇∆ρ− div(

1

ρ
∇ρ⊗∇ρ)

)
j
,

= ∂j∆ρ−
1

ρ
∆ρ ∂jρ−

1

2ρ
∂j |∇ρ|2 +

1

ρ2
|∇ρ|2∂jρ,

(7.122)

Next we have:

∆ρ = ρ∆ ln ρ+
1

ρ
|∇ρ|2.

We have then:

∂j∆ρ−
1

ρ
∆ρ∂jρ = ∂j(ρ∆ ln ρ+

1

ρ
|∇ρ|2)−∆ ln ρ ∂jρ−

1

ρ2
|∇ρ|2∂jρ,

= ρ∂j∆ ln ρ+
1

ρ
∂j(|∇ρ|2)− 2

ρ2
|∇ρ|2∂jρ.

(7.123)

Putting the expression of (7.123) in (7.122), we obtain:

(divK)j = ∂j∆ρ+
1

2ρ
∂j(|∇ρ|2)− 1

ρ2
|∇ρ|2∂jρ. (7.124)

Next by calculus, we have:

1

2ρ
∂j(|∇ρ|2)− 1

ρ2
|∇ρ|2∂jρ =

∑
i

(∂i ln ρ∂ijρ− (∂i ln ρ)2∂jρ),

=
∑
i

∂i ln ρ ρ∂i,j ln ρ,

=
ρ

2
∇(| ln ρ|2)j .

(7.125)

Finally by using (7.125) and (7.124), we obtain:

divK = ρ(∇∆(ln ρ) +
ρ

2
∇(|∇ ln ρ|2)).

We now want to prove that we can rewrite (7) under the form of a viscosity tensor. To see
this, we have:

div(ρ∇(∇ ln ρ))j =
∑
i

∂i(ρ∂ij ln ρ),

=
∑
i

[∂iρ∂ij ln ρ+ ρ∂iij ln ρ],

= ρ(∆∇ ln ρ)j +
∑
i

ρ∂i ln ρ∂j∂i ln ρ),

= ρ(∆∇ ln ρ)j +
ρ

2
(∇(|∇ ln ρ|2))j ,

= divK.

We have then:
divK = κdiv(ρ∇∇ ln ρ) = κdiv(ρD(∇ ln ρ)).

�
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regolari. Mem. Accad. Sci. Torino. Cl. Sci. Fis. Mat. Nat. (3), 3:2543, 1957.

[15] R. J. DiPerna, Convergence of the viscosity method for isentropic gas dynamics, Commun.
Math. Phys. 91 (1983), 1-30.

[16] J.E. Dunn and J. Serrin, On the thermomechanics of interstitial working , Arch. Rational
Mech. Anal. 88(2) (1985) 95-133.

36



[17] J. Glimm, Solutions in the large for nonlinear hyperbolic systems of equations,.Comm.
Pure Appl. Math. 18. 1965 (697-715).

[18] M.E. Gurtin, D. Poligone and J. Vinals, Two-phases binary fluids and immiscible fluids
described by an order parameter, Math. Models Methods Appl. Sci. 6(6) (1996) 815–831.

[19] B. Haspot, Cauchy problem for viscous shallow water equations with a term of capillarity,
M3AS, 20 (7) (2010), 1049-1087.

[20] B. Haspot, Existence of solutions for compressible fluid models of Korteweg type, Annales
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