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Abstract

In this article, we consider the compressible Navier-Stokes equation with density depen-
dent viscosity coefficients and a term of capillarity introduced formally by Van der Waals
in [44]. This model includes at the same time the barotropic Navier-Stokes equations
with variable viscosity coefficients, shallow-water system and the model introduced by
Rohde in [39].
We first study the well-posedness of the model in critical regularity spaces with respect
to the scaling of the associated equations. In a functional setting as close as possible to
the physical energy spaces, we prove global existence of solutions close to a stable equi-
librium, and local in time existence of solutions with general initial data. Uniqueness is
also obtained.

1 Introduction

This paper is devoted to the Cauchy problem for the compressible Navier-Stokes equation
with viscosity coefficients depending on the density and with a capillary term coming from
the works of Van der Waals in [44]. He has formally written the link between the local
and global expressions of the capilarity terms. Coquel, Rohde and theirs collaborators
in [12], [39] have reactualized on a modern form the results of Van der Waals. Let ρ
and u denote the density and the velocity of a compressible viscous fluid. As usual, ρ
is a non-negative function and u is a vector valued function defined on RN . Then, the
Navier-Stokes equation for compressible fluids endowed with internal capillarity studied
in [39] reads:

(SW )

{
∂tρ+ div(ρu) = 0,
∂t(ρu) + div(ρu⊗ u)− div(2µ(ρ)Du)−∇(λ(ρ)divu) +∇P (ρ) = κρ∇D[ρ],

supplemented by the initial condition:

ρ/t=0 = ρ0, ρu/t=0 = ρ0u0

and:
D[ρ] = φ ∗ ρ− ρ
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where φ is chosen so that:

φ ∈ L∞(RN ) ∩ C1(RN ) ∩W 1, 1(RN ),
∫

RN

φ(x)dx = 1, φ even, and φ ≥ 0.

Here Du = 1
2(∇u+t∇u) is the strain tensor, P (ρ) denotes the pressure and µ, λ are the

two Lamé viscosity coefficients. They depend in our case regularly on the density ρ and
satisfy: µ > 0 and 2µ+Nλ ≥ 0.
Several physical models arise as a particular case of system (SW ):

• when κ = 0 (SW ) represents compressible Navier-Stokes model with variable vis-
cosity coefficients.

• when κ = 0 and µ(ρ) = ρ, λ(ρ) = 0, P (ρ) = ρ2, N = 2 then (SW ) describes the
system of shallow-water.

• when κ 6= 0 and µ, λ are constant, (SW ) reduce to the model studied by Rohde in
[39].

One of the major difficulty of compressible fluid mechanics is to deal with the vacuum.
The problem of existence of global solution in time for Navier-Stokes equations was
addressed in one dimension for smooth enough data by Kazhikov and Shelukin in [32],
and for discontinuous ones, but still with densities away from zero, by Serre in [41] and
Hoff in [25]. Those results have been generalized to higher dimension by Matsumura
and Nishida in [35] for smooth data close to equilibrium and by Hoff in the case of
discontinuous data in [27, 28]. Concerning large initial data, Lions showed in [34] the
global existence of weak solutions for γ ≥ 3

2 for N = 2 and γ ≥ 9
5 for N = 3. Let us

mention that Feireisl in [20] generalized the result to γ > N
2 by establishing that we can

obtain renormalized solution without imposing that ρ ∈ L2
loc, for this he introduces the

concept of oscillation defect measure evaluating the loss of compactness.
Other results provide the full range γ > 1 under symmetries assumptions on the initial
datum, see Jiang and Zhang [30]. All those results do not require to be far from the
vacuum. However they rely strongly on the assumption that the viscosity coefficients are
bounded below by a positive constant. This non physical assumption allows to get some
estimates on the gradient of the velocity field.
The main difficulty when dealing with vanishing viscosity coefficients on vacuum is that
the velocity cannot even be defined when the density vanishes and so we cannot use some
properties of parabolicity of the momentum equation, see [10], [11] for results of strong
solutions in finite time with vacuum.
The first result handling this difficulty for the weak solutions is due to Bresch, Desjardins
and Lin in [7]. They show the existence of global weak solution for Korteweg system in
choosing specific type of viscosity where µ and λ are linked. The result was later improved
by Bresch and Desjardins in [4] to include the case of vanishing capillarity (κ = 0), but
with an additional quadratic friction term rρu|u| (see also [6]). However, those estimates
are not enough to treat the case without capillarity and friction effects κ = 0 and r = 0
(which corresponds to equation (SW ) with µ(ρ) = ρ and λ(ρ) = 0).
The main difficulty, to prove the stability of (SW ) , is to pass to the limit in the term
ρu⊗ u (which requires the strong convergence of

√
ρu). Note that this is easy when the
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viscosity coefficients are bounded below by a positive constant. On the other hand, the
new bounds on the gradient of the density make the control of the pressure term far
simpler than in the case of constant viscosity coefficients (see the works of Lions, Feireisl
[34], [20] where to get compactness results for the pressure is the main difficulty).
In [6] Bresch and Desjardins show a result of global existence of weak solution for the
non isothermal Navier-Stokes system assuming density dependence of µ(ρ) and λ(ρ),
considering perfect gas law with some cold pressure close to the vacuum, and the following
relation:

λ(ρ) = 2(ρµ
′
(ρ)− µ(ρ)). (1.1)

Mellet and Vasseur by using the BD entropy, get in [36] a very interesting stability result.
The interest of this result is to consider conditions where the viscosity coefficients vanish
on the vacuum set. It includes the case µ(ρ) = ρ, λ(ρ) = 0 (when N = 2 and γ = 2,
where we recover the Saint-Venant model for Shallow water). The key to the proof
is a new energy inequality on the velocity and a gain of integrability, which allows to
pass to the limit. Unfortunately, the construction of approximate solutions satisfying:
energy estimates, BD mathematical entropy and Mellet-Vasseur estimates is far from
being proven except in dimension one or with symmetry assumptions, see [37], [33], [24].
Note that approximate solutions construction process has been proposed in [3] satisfying
energy estimates and BD mathematical entropy. This means that only global existence
of weak solutions with some extra terms or cold pressure exists in dimension greater than
2.
The existence and uniqueness of local classical solutions for (SW ) with smooth initial data
such that the density ρ0 is bounded and bounded away from zero (i.e., 0 < ρ ≤ ρ0 ≤M)
has been stated by Nash in [38]. Let us emphasize that no stability condition was required
there.
On the other hand, for small smooth perturbations of a stable equilibrium with constant
positive density, global well-posedness has been proved in [35]. Many works en the
case of the one dimension have been devoted to the qualitative behavior of solutions for
large time (see for example [25, 32]). Refined functional analysis has been used for the
last decades, ranging from Sobolev, Besov, Lorentz and Triebel spaces to describe the
regularity and long time behavior of solutions to the compressible model [42], [43], [26],
[31]. The most important result on the system of Navier-Stokes compressible isothermal
comes from Danchin in [14], [17] who show the existence of global solution and uniqueness
with initial data close from a equilibrium, and he obtain a similar result in finite time.
The interest is that he works in critical Besov space (critical in the sense of the scaling of
the equation). More precisely to speak roughly, he get strong solution with initial data in

B
N
2

2,1∩B
N
2
−1

2,1 ×(B
N
2
−1

2,1 )N . Here compared with the result on Navier-Stokes incompressible,
he needs to control the vacuum and the norm L∞ of the density in the goal to use the
parabolicity of the momentum equation and to have some properties of multiplier spaces.
That’s why Danchin works in Besov spaces with a third index r = 1 for the density, and
it’s the same for the velocity as the equations are linked. In [18], R. Danchin generalize
the previous result with large initial data on the density.
We generalize here the result of Danchin by considering general viscosity coefficient and
by including this nonlocal capillarity term introduced in the works of Van der Waals. In
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particular we have to check precisely how are coupled the equations of the linear part
of the system to get global strong solution with small initial data. Indeed the behavior
in low frequencies is crucial and we need to introduce the capillarity term in the linear
part to control the low frequencies behavior. So we will get global global strong solution

with small initial data in B
N
2

2,1 ∩ B
N
2
−1

2,1 × (B
N
2
−1

2,1 )N for the system (SW ) and we will
improve the result of Danchin in [] to get strong solution in finite time in Besov space

B
N
p

p,1 × (B
N
p
−1

p,1 )N built on the space Lp with 1 ≤ p ≤ N . To finish with, we will give
a criterion of blow-up for these solutions. We can observe that our result is very close
in dimension N = 2 of the energy initial data particularly in the case of the results of

Mellet and Vasseur. Indeed in their case, ρ
1
p

0 u0 is assumed in Lp and
√
ρ0u0 in L2, we

can check easily by interpolation that if ρ0 is bounded away then u0 is in (B
N
p
−1

p,1 )N when
p > N . Moreover the condition on the initial density ρ0− ρ̄ ∈ BNpp,1 are close from these
imposing by Bresch, Desjardins and Mellet, Vasseur. To conclude, our result improves
too the case of strong solution for the shallow-water system, where Wang and Xu in [45]
have got global existence in time for small initial data with h0, u0 ∈ H2+s with s > 0.

1.1 Notations and main results

We will mainly consider the global well-posedness problem for initial data close enough
to stable equilibria. Here we want to investigate the well-posedness problem of the
system (SW ) in critical spaces. By critical, we mean that we want to solve the system
in functional spaces with norms is invariant by the changes of scales which leave (SW )
invariant. In our case, we can easily check that, if (ρ, u) solves (SW ), so does (ρλ, uλ),
where:

ρλ(t, x) = ρ(λ2t, λx) and uλ(t, x) = λu(λ2t, λx)

provided the pressure law P has been changed into λ2P .

Definition 1.1 We say that a functional space is critical with respect to the scaling of
the equation if the associated norm is invariant under the transformation for all λ > 0:

(ρ, u) −→ (ρλ, uλ)

This suggests us to choose initial data (ρ0, u0) in spaces whose norm is invariant for all
λ > 0 by (ρ0, u0) −→ (ρ0(λ·), λu0(λ·)). A natural candidate is the homogeneous Sobolev
space ḢN/2 × (ḢN/2−1)N , but since ḢN/2 is not included in L∞, we cannot expect to
get L∞ control on the density when ρ0 ∈ ḢN/2, and in particular to avoid the vacuum.
This is the reason why instead of the classical homogeneous Sobolev space, we will con-
sider homogeneous Besov spaces BN/2

2,1 ×(BN/2−1
2,1 )N with the same derivative index. This

allows to control the density from below and from above, without requiring more regular-
ity on derivatives of ρ. In the sequel, we will work around a constant state, this motivates
the following definition:

Definition 1.2 Let ρ̄ > 0, θ̄ > 0. We will note in the sequel: q = ρ−ρ̄
ρ̄ .

Let us first state a result of global existence and uniqueness of (SW ) for initial data close
to a equilibrium. In this theorem we will need to take in account the behavior in low and
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high frequencies of the system, it will explain why the initial data are more regular than
in the theorem on local strong solution.

Theorem 1.1 Let N ≥ 2. Let ρ̄ > 0 be such that: P
′
(ρ̄) > 0, µ(ρ̄) > 0 and 2µ(ρ̄) +

λ(ρ̄) > 0. There exist two positive constants ε0 and M such that if q0 ∈ B̃
N
2
−1, N

2 , u0 ∈
B

N
2
−1 and:

‖q0‖ eB N
2 −1, N

2
+ ‖u0‖

B
N
2 −1 ≤ ε0

then (SW ) has a unique global solution (q, u) in E
N
2 which satisfies:

‖(q, u)‖
E

N
2
≤M

(
‖q0‖ eB N

2 −1, N
2

+ ‖u0‖
B

N
2 −1

)
,

for some M independent of the initial data where:

E
N
2 = [Cb(R+, B̃

N
2
−1, N

2 ) ∩ L1(R+, B̃
N
2

+1, N
2 )]× [Cb(R+, B

N
2
−1) ∩ L1(R+, B

N
2

+1)]N .

In the following theorem, we show the existence of strong solutions in finite time for large
initial data in critical Besov space for the scaling of the equations. We note that we work
on Besov space Bs

p with general index p on the integrability which improves the result
of Danchin in [] and we will need to generalize some result on the heat equation with
variable coefficients used by Danchin in [].

Theorem 1.2 Let p ∈ [1,+∞[. Let q0 ∈ B
N
p

p and u0 ∈ B
N
p
−1

p . Under the assumptions
that µ and µ + 2λ are strictly bounded away zero on [ρ̄(1 − 2‖q0‖L∞), ρ̄(1 + 2‖q0‖L∞)],
there exists a time T > 0 such that the following results hold:

1. Existence: If p ∈ [1, 2N [ then system (SW ) has a solution (q, u) in F
N
p

p with:

F
N
p

p = C̃T (B
N
p

p )×
(
L1

T (B
N
p

+1
p ) ∩ C̃T (B

N
p
−1

p

)
.

2. Uniqueness: If in addition 1 ≤ p ≤ N then uniqueness holds in F
N
p

p .

It turns out that our study of the linearization of (SW ) leads also to the following
continuation criterion:

Theorem 1.3 Assume that (SW ) has a solution (q, u) ∈ C([0, T ], B
N
p

p,1×(B
N
p

p,1)
N ) on the

time interval [0, T ) which satisfies the following conditions:

• the function q is in L∞([0, T ], B
N
p

p,1 and ρ is bounded away from zero.

• we have
∫ T
0 ‖∇u‖L∞dt < +∞.

Then (q, u) may be continued beyond T .

The present paper is structured as follows. In the Section 2, we recall some basic facts
about Littlewood-Paley decomposition and Besov spaces. In the Section 3 we prove the
theorem 1.1 where we precisely show some estimates on the linear part of the system
incluing the capillarity term. In the Section 4 we generalize some estimates on the heat
equation with variable coefficient in Besov spaces and we show the theorem 1.2 and the
theorem 1.2 on a condition of blow-up.
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2 Littlewood-Paley theory and Besov spaces

2.1 Littlewood-Paley decomposition

Littlewood-Paley decomposition corresponds to a dyadic decomposition of the space in
Fourier variables. We can use for instance any ϕ ∈ C∞(RN ), supported in C = {ξ ∈
RN/3

4 ≤ |ξ| ≤ 8
3} such that: ∑

l∈Z
ϕ(2−lξ) = 1 if ξ 6= 0.

Denoting h = F−1ϕ, we then define the dyadic blocks by:

∆lu = ϕ(2−lD)u = 2lN

∫
RN

h(2ly)u(x− y)dy and Slu =
∑

k≤l−1

∆ku .

Formally, one can write that: u =
∑

k∈Z ∆ku . This decomposition is called homogeneous
Littlewood-Paley decomposition. Let us point out that the above formal equality holds
in S ′(RN ) modulo polynomials only.

2.2 Homogeneous Besov spaces and first properties

We can verify than
∑

l∈Z ∆lu = u in S ′ up to polynomials. This motivates the following
definition:

Definition 2.3 We denote by Ṡ ′ the space of temperate distributions u such that:

lim
l→−∞

Slu = 0 in S ′ .

Definition 2.4 For s ∈ R, p ∈ [1,+∞], q ∈ [1,+∞], and u ∈ S ′(RN ) we set:

‖u‖Bs
p,q

= (
∑
l∈Z

(2ls‖∆lu‖Lp)q)
1
q .

We then define the space Bs
p,q as the subset of distribution u ∈ Ṡ ′ such that ‖u‖Bs

p,q
is

finite.

Remark 1 In the sequel, we will use only Besov space Bs
p,q with q = 1 and we will denote

them by Bs
p or even by Bs if there is no ambiguity on the index p.

2.3 Hybrid Besov spaces and Chemin-Lerner spaces

Hybrid Besov spaces are functional spaces where regularity assumptions are different in
low frequency and high frequency, see [14]. We are going to give the notation of these
new spaces and give some of their main properties.

Notation 1 Let s, t ∈ R.We set:

‖u‖ eBs,t
p,r

=
( ∑

q≤0

(2qs‖∆qu‖Lp)r
) 1

r +
( ∑

q>0

(2qt‖∆qu‖Lp)r
) 1

r .

We then define the space Bs,t
p,q as the subset of distribution u ∈ Ṡ ′ such that ‖u‖B,t

p,q
is

finite.
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Let us recall a few product laws in Besov spaces which will be of constant use in the
paper.

Proposition 2.1 For all s, t > 0, 1 ≤ r, p ≤ +∞, the following inequality holds true:

‖uv‖ eBs,t
p,r
≤ C(‖u‖L∞‖v‖ eBs,t

p,r
+ ‖v‖L∞‖u‖ eBs,t

p,r
) . (2.2)

For all s1, s2, t1, t2 ≤ N
p such that min(s1 + s2, t1 + t2) > 0 we have:

‖uv‖ eBs1+t1−
N
p ,s2+t2−

N
p

p,r

≤ C‖u‖ eBs1,t1
p,r

‖v‖ eBs2,t2
p,∞

. (2.3)

‖uv‖Bs
p,r
≤ C‖u‖Bs

p,r
‖v‖

B
N
p

p,∞∩L∞
if |s| < N

p
. (2.4)

For a proof of this proposition see [2]. The limit case s1 + s2 = t1 + t2 = 0 in (2.3) is
of interest. When p ≥ 2, the following estimate holds true whenever s is in the range
(−N

p ,
N
p ] (see e.g. [40]):

‖uv‖
B
−N

p
p,∞

≤ C‖u‖Bs
p,1
‖v‖B−s

p,∞
. (2.5)

The study of non stationary PDE’s requires space of type Lρ(0, T,X) for appropriate Ba-
nach spaces X. In our case, we expect X to be a Besov space, so that it is natural to local-
ize the equation through Littlewood-Payley decomposition. But, in doing so, we obtain
bounds in spaces which are not type Lρ(0, T,X) (except if r = p). We are now going to de-
fine the spaces of Chemin-Lerner in which we will work (see [8]), which are a refinement of
the spaces Lρ

T (Bs
p,r).

Definition 2.5 Let ρ ∈ [1,+∞], T ∈ [1,+∞] and s1, s2 ∈ R. We then denote:

‖u‖eLρ
T ( eBs1,s2

p,r )
=

( ∑
l≤0

2lrs1(‖∆lu(t)‖r
Lρ

T (Lp)

) 1
r +

( ∑
l>0

2lrs2(
∫ T

0
‖∆lu(t)‖ρ

Lpdt)
r
ρ )

) 1
r .

We note that thanks to Minkowsky inequality we have:

‖u‖
Lρ

T ( eBs1,s2
p,r )

≤ ‖u‖eLρ
T ( eBs1,s2

p,r )
if ρ ≤ r, ‖u‖eLρ

T ( eBs1,s2
p,r )

≤ ‖u‖
Lρ

T ( eBs1,s2
p,r )

if ρ ≥ r.

We then define the space:

L̃ρ
T (B̃s1,s2

p ) = {u ∈ Lρ
T (B̃s1,s2

p )/‖u‖eLρ
T ( eBs1,s2

p )
<∞} .

We denote moreover by C̃T (B̃s1,s2
p ) the set of those functions of L̃∞T (B̃s1,s2

p ) which are
continuous from [0, T ] to B̃s1,s2

p .

Remark 2 It is esasy to generalize proposition 2.1 to L̃ρ
T (B̃s1,s2

p ). The indices s, p
behave just as in the stationary case whereas the time exponent ρ behaves according to
Hólder inequality.

Finally we need an estimate on the composition of functions in the spaces L̃ρ
T (B̃s

p).
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Proposition 2.2 Let s > 0, r ∈ [1,+∞] and F ∈ W s+2,∞
loc (RN ) such that F (0) = 0.

There exists a function C depending only on s, p, N and F , and such that:

‖F (u)‖L̃ρ
T (B̃

s1,s2
p,r ) ≤ C(‖u‖L∞T (L∞))‖u‖L̃ρ

T (B̃
s1,s2
p,r ).

If v, u ∈ L̃ρ
T (Bs1,s2

p ) ∩ L∞T (L∞) and G ∈ W
[s]+3,∞
loc (RN ) then G(u) − G(v) belongs to

L̃ρ
T (Bs1,s2

p ) and it exists a constant C depending only of s, p,N and G such that:

‖G(u)−G(v)‖L̃ρ
T (B

s1,s2
p,r ) ≤ C(‖u‖L∞T (L∞), ‖v‖L∞T (L∞))(‖v − u‖L̃ρ

T (B
s1,s2
p,r )

(1 + ‖u‖L∞T (L∞) + ‖v‖L∞T (L∞)) + ‖v − u‖L∞T (L∞)(‖u‖L̃ρ
T (B

s1,s2
p,r ) + ‖v‖L̃ρ

T (B
s1,s2
p,r )).

The proof is a adaptation of a theorem by J.Y. Chemin and H. Bahouri in [1]. We end
this section by recalling some estimates in Besov spaces for transport and heat equations.
For more details, the reader is referred to [8] and [16].

Proposition 2.3 Let (p, r) ∈ [1,+∞]2 and s ∈ (−min(N
p ,

N
p′

), N
p + 1). Let u be a vec-

tor field such that ∇u belongs to L1(0, T ;B
N
p

p,r ∩ L∞). Suppose that q0 ∈ Bs
p,r, F ∈

L1(0, T,Bs
p,r) and that q ∈ L∞T (Bs

p,r) ∩ C([0, T ];S ′) solves the following transport equa-
tion: {

∂tq + u · ∇q = F,

qt=0 = q0.

Let U(t) =
∫ t
0 ‖∇u(τ)‖

B
N
p

p,r∩L∞
dτ . There exits a constant C depending only on s, p and

N , and such that for all t ∈ [0, T ], the following inequality holds:

‖q‖eL∞t (Bs
p,r)

≤ expCU(t)

(
‖q0‖Bs

p,r
+

∫ t

0
exp−CU(τ) ‖F (τ)‖Bs

p,r
dτ

)
If r < +∞ then q belongs to C([0, T ];Bs

p,r).

Actually, in [16], the proposition below is proved for non-homogeneous Besov spaces. The
adaptation to homogeneous spaces is straightforward. Let us now give some estimates
for the heat equation:

Proposition 2.4 Let s ∈ R, (p, r) ∈ [1,+∞]2 and 1 ≤ ρ2 ≤ ρ1 ≤ +∞. Assume that
u0 ∈ Bs

p,r and f ∈ L̃ρ2

T (B̃s−2+2/ρ2
p,r ). Let u be a solution of:{

∂tu− µ∆u = f

ut=0 = u0 .

Then there exists C > 0 depending only on N,µ, ρ1 and ρ2 such that:

‖u‖eLρ1
T ( eBs+2/ρ1

p,r )
≤ C

(
‖u0‖Bs

p,r
+ µ

1
ρ2
−1‖f‖eLρ2

T ( eBs−2+2/ρ2
p )

)
.

If in addition r is finite then u belongs to C([0, T ], Bs
p,r).
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3 Proof of the existence of solution for theorem 1.1

3.1 Sketch of the Proof

In this section, we give the sketch of the proof of theorem 1.1 on the global existence result
with small initial data. We will suppose that ρ is close to a constant state ρ̄ > 0 to avoid
the vacuum and to use the parabolicity of the momentum equation by getting a gain of
derivatives on the velocity u. Let us rewrite the system (SW ) in a non conservative form
by using the definition 1.2.

∂tq + u.∇q + divu = F,

∂tu+ u.∇u− µ(ρ̄)
ρ̄

∆u− µ(ρ̄) + λ(ρ̄)
ρ̄

∇divu+ δ̄∇q − κρ̄φ ∗ ∇q = G,
(3.6)

with δ̄ = (κρ̄+ P
′
(ρ̄)) and where we have:

F = −q divu, G = A(ρ, u) +K(ρ)∇q ,

with:

A(ρ, u) =
[div

(
µ(ρ)D(u)

)
ρ

− µ(ρ̄)
ρ̄

∆u] +
[∇(

(µ(ρ) + λ(ρ))divu
)

ρ
− µ(ρ̄) + λ(ρ̄)

ρ̄
∇divu

]
,

K(ρ) =
ρ̄ P

′
(ρ)
ρ

− P
′
(ρ̄).

For s ∈ R, we denote Λsh = F−1(|ξ|sĥ). We set now: d = Λ−1divu and Ω = Λ−1curlu
where d represents the compressible part of the velocity and Ω the incompressible part.
We rewrite the system (3.6) by using these previous notations on a linear form:

(SW2)


∂tq + Λd = F1,

∂td− ν̄∆d− δ̄Λq + κ̄Λ(φ ∗ q) = G1

∂tΩ− µ̄∆Ω = H1

u = −Λ−1∇d− ΛdivΩ

where: µ̄ = µ(ρ̄)
ρ̄ , λ̄ = λ(ρ̄)

ρ̄ , ν̄ = 2µ̄+ λ̄, κ̄ = κρ̄. and:

F1 = −q divu− u · ∇q, G1 = −Λ−1div(G) and H1 = −Λ−1curl(G).

The first idea would be to study the linear system associated to (SW2). We concentrate
on the first two equations because the third equation is just a heat equation with a non
linear term. The system we want to study reads:{

∂tq + Λd = F
′
,

∂td− ν̄∆d− δ̄Λq + κ̄Λ(φ ∗ q) = G
′
.

This system has been studied by D. Hoff and K. Zumbrum in [29] in the case κ̄ = 0.
There, they investigate the decay estimates, and exhibit the parabolic smoothing effect
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on d and on the low frequencies of q, and a damping effect on the high frequencies of q.
The problem is that if we focus on this linear system, it appears impossible to control
the term of convection u · ∇q which is one derivative less regular than q. Hence we shall
include the convection term in the linear system. We thus have to study:

(SW2)
′

{
∂tq + v · ∇q + Λd = F,

∂td+ v · ∇d− ν̄∆d− δ̄Λq + κ̄Λ(φ ∗ q) = G,

where v is a function and we will precise its regularity in the next proposition. System
(SW2)

′
has been studied in the case where φ = 0 by R. Danchin in [14], we then have to

take into consideration the term coming from the capillarity and which paly a important
role in law frequencies. In the sequel we will assume ν̄ > 0 and δ̄− κ̄‖φ̂‖L∞ ≥ c > 0. We
obtain then the following proposition.

Proposition 3.5 Let (q, d) a solution of the system (SW2)
′
on [0, T [ , 1−N

2 < s ≤ 1+ N
2

and V (t) =
∫ t
0 ‖v(τ)‖B

N
2 +1dτ . We have then the following estimate:

‖(q, d)‖ eBs−1,s×Bs−1 +
∫ t

0
‖(q, d)(τ)‖ eBs+1,s×Bs+1dτ

≤ CeCV (t)
(
‖(q0, d0)‖ eBs−1,s×Bs−1 +

∫ t

0
e−CV (τ)‖(F,G)(τ)‖ eBs−1,s×Bs−1dτ

)
,

where C depends only on ν̄, δ̄, κ̄, φ, N and s.

Proof:

Let (q, u) be a solution of (SW2)
′
and we set:

q̃ = e−KV (t)q, ũ = e−KV (t)u, F̃ = e−KV (t)F and G̃ = e−KV (t)G. (3.7)

We are going to separate the case of the low and high frequencies, which have a different
behavior concerning the control of the derivative index for the Besov spaces. In this goal
we will consider the two different expressions in low and high frequencies where l0 ∈ Z,
A, B and K1 will be fixed later in the proof:

f2
l = δ̄‖q̃l‖2

L2 − κ̄(q̃l, φ ∗ q̃l) + ‖d̃l‖2
L2 − 2K1(Λq̃l, d̃l) for l ≤ l0,

f2
l = ‖Λq̃l‖2

L2 +A‖d̃l‖2
L2 −

2
ν̄

(Λq̃l, d̃l) for l > l0.
(3.8)

In the first two steps, we show that K1 and A may be chosen such that:

2l(s−1)f2
l ≈ 2ls max(1, 2−l)‖q̃l‖2

L2 + 2l(s−1)‖d̃l‖2
L2 , (3.9)

and we will show the following inequality:

1
2
d

dt
f2

l + αmin(22l, 1)f2
l ≤ C2−l(s−1)αlfl

(
‖(F̃ , G̃)‖ eBs−1,s×Bs−1

+ V
′‖(q̃, d̃)‖ eBs−1,s×Bs−1

)
−KV

′
f2

l .

(3.10)

where
∑

l∈Z αl ≤ 1 and α is a positive constant. This inequality enables us to get a decay
for q and d which will be used to show a smoothing parabolic effect on d.
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Case of low frequencies

Applying operator ∆l to the system (SW2)
′
, we obtain then in setting: q̃l = ∆lq̃ and

d̃l = ∆ld̃ the following system:
d

dt
q̃l + ∆l(v · ∇q̃) + Λd̃l = F̃l −KV

′
(t)q̃l,

d

dt
dl + ∆l(v · ∇d̃l)− ν̄∆d̃l − δ̄Λq̃l + κ̄Λ(φ ∗ q̃l) = G̃l −KV

′
(t)d̃l.

(3.11)

We set:
f2

l = δ̄‖q̃l‖2
L2 + ‖d̃l‖2

L2 − 2K1(Λq̃l, d̃l) (3.12)

for some K1 ≥ 0 to be fixed hereafter and (·, ·) noting the L2 inner product. To begin
with, we consider the case where F = G = 0, v = 0 and K = 0. Taking the L2 scalar
product of the first equation of (3.11) with q̃l and of the second equation with d̃l, we get
the following two identities:

1
2
d

dt
‖ql‖2

L2 + (Λdl, ql) = 0,

1
2
d

dt
‖dl‖2

L2 + ν̄‖Λdl‖2
L2 − δ̄(Λql, dl) + κ̄(Λ(φ ∗ ql), dl) = 0.

(3.13)

In the same way we have:

1
2
d

dt
(ql, ql ∗ φ) + (Λdl, φ ∗ ql) = 0, (3.14)

because we have by the theorem of Plancherel:

(
d

dt
ql, ql ∗ φ) = (

d

dt
q̂l, q̂lφ̂) =

1
2
d

dt
(q̂l, q̂lφ̂) =

1
2
d

dt
(ql, ql ∗ φ).

We want now get an equality involving ν̄(Λdl, ql). To achieve it, we apply ν̄Λ to the first
equation of (3.11) and take the L2-scalar product with dl, then take the scalar product
of the second equation with Λql and sum both equalities, which yields:

d

dt
(Λql, dl) + ‖Λdl‖2

L2 − δ̄‖Λql‖2
L2 + κ̄‖φ ∗ Λql‖2

L2 + ν̄(Λ2dl,Λql) = 0. (3.15)

By linear combination of (3.13) and (3.15), we get:

1
2
d

dt
f2

l + (ν̄ −K1)‖Λdl‖2
L2 +K1(δ̄‖Λql‖2

L2 − κ̄‖φ ∗ Λql‖2
L2)

− ν̄K1(Λ2dl,Λql) = 0.
(3.16)

And as we have assumed that: δ − κ̄‖φ̂‖L∞ ≥ c > 0 we get:

1
2
d

dt
f2

l + (ν̄ −K1)‖Λdl‖2
L2 +K1c‖ql‖2

L2 − ν̄K1(Λ2dl,Λql) ≤ 0. (3.17)

Using spectral localization for dl and convex inequalities, we find for every a > 0:

|(Λ2dl,Λql)| ≤
a22l0

2
‖Λdl‖2

L2 +
1
2a
‖Λql‖2

L2 .
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By using the previous inequality and (3.16), we get:

1
2
d

dt
f2

l + (ν̄ −K1 −
a22l0

2
)‖Λdl‖2

L2 + (K1c−
1
2a

)‖Λql‖2
L2 ≤ 0. (3.18)

From (3.12) and (3.18) we get by choosing a = ν̄ and K1 < min( 1
22l0

, ν̄
2+22l0 ν̄2 ), then:

1
2
d

dt
f2

l + α22lf2
l ≤ 0, (3.19)

for a constant α depending only on ν̄ and K1.
In the general case where F , G, K and v are not zero, we have:

1
2
d

dt
f2

l + (α22l +KV
′
)f2

l ≤ (F̃l, q̃l) + (G̃l, d̃l)−K(ΛF̃l, d̃l)−K(ΛG̃l, q̃l)− (∆l(v · ∇q̃), q̃l)

− (∆l(v · ∇d̃), d̃l) +K(Λ∆l(v · ∇q̃), d̃l

)
+ (Λ∆l(v · ∇d̃), q̃l

)
.

Now we can use a lemma of harmonic analysis in [14] to estimate the last terms, and get
the existence of a sequence (αl)l∈Z such that

∑
l∈Z αl ≤ 1 and:

1
2
d

dt
f2

l + (α22l +KV
′
)f2

l . αlfl2−l(s−1)
(
‖(F̃ , G̃)‖ eBs−1,s×Bs−1

+ V
′‖(q̃, d̃)‖ eBs−1,s×Bs−1

)
.

(3.20)

Case of high frequencies

We consider now the case where l ≥ l0 + 1 and we recall that:

f2
l = ‖Λq̃l‖2

L2 +A‖d̃l‖2
L2 −

2
ν̄

(q̃l, d̃l).

For the sake of simplicity, we suppose here that F = G = 0, v = 0 and K = 0. We
now want a control on ‖Λql‖2

L2 , we apply the operator Λ to the first equation of (3.11),
multiply by Λql and integrate over RN , and similarly we obtain:

1
2
d

dt
‖Λql‖2

L2 + (Λ2dl,Λql) = 0

1
2
d

dt
‖dl‖2

L2 + ν̄‖Λdl‖2
L2 − δ̄(Λql, dl) + κ̄(Λ(φ ∗ ql), dl) = 0.

d

dt
(Λql, dl) + ‖Λdl‖2

L2 − δ̄‖Λql‖2
L2 + κ̄‖φ ∗ Λql‖2

L2 + ν̄(Λ2dl,Λql) = 0.

(3.21)

By linear combination of (3.21) we have:

1
2
d

dt
f2

l +
1
ν̄
‖Λql‖2

L2 +
(
Aν̄ − 1

ν̄

)
‖Λdl‖2

L2 −Aδ̄(Λql, dl) +Aκ̄(Λ(φ ∗ ql), dl) = 0. (3.22)

With:
| −Aδ̄(Λql, dl) +Aκ̄(Λ(φ ∗ ql), dl)| ≤ A(δ̄ + κ̄‖φ̂‖L∞)|(Λql, dl)|

We have now by using Young inequalities for all a > 0:

1
2
d

dt
f2

l + 22l0
(
Aν̄ − 1

ν̄
− 1

2a
)
‖dl‖2

L2 + (
1
ν̄
− a

2
)‖Λql‖2

L2 . ≤ 0. (3.23)
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So by choosing: a = 1
ν̄A and A > max( 2

ν̄ , 1) there exists a constant α such that for
l ≥ l0 + 1 we have:

1
2
d

dt
f2

l + αf2
l ≤ 0. (3.24)

In the general case where F , G, H, K and v are not necessarily zero, we use a lemma of
harmonic analysis in [14] to control the convection terms. We finally get:

1
2
d

dt
f2

l + (α+KV
′
)f2

l . αlfl2−l(s−1)
(
‖(F̃ , G̃)‖ eBs−1,s×Bs−1

+ V
′‖(q̃, d̃)‖ eBs−1,s×Bs−1

)
.

(3.25)

This finish the proof of (3.8) and (3.10).

The damping effect

We are now going to show that inequality (3.10) entails a decay for q and d. In fact we
get a parabolic decay for d, while q has a behavior similar to a transport equation. Using
h2

l = f2
l + δ2, integrating over [0, t] and then having δ tend to 0, we infer:

fl(t) + αmin(22l, 1)
∫ t

0
fl(τ)dτ ≤ fl(0) + C2−l(s−1)

∫ t

0
αl(τ)‖(F̃ (τ), G̃(τ))‖ eBs−1,s×Bsdτ

+
∫ t

0
V
′
(τ)

(
C2−l(s−1)αl(τ)‖(q̃, d̃)‖B̃s−1,s×Bs −Kfl(τ)

)
dτ.

(3.26)
Thanks to (3.9), we have by taking K large enough :∑

l∈Z

(
C2−l(s−1)αl(τ)‖(q̃, d̃)‖B̃s−1,s×Bs −Kfl(τ)

)
≤ 0,

By multiplying (3.26) by 2l(s−1) and by using the last inequality, we conclude after
summation on Z, that:

‖q̃(t)‖B̃s−1,s + ‖d̃‖B̃s−1 + α

∫ t

0
‖q̃(τ)‖ eBs−1,sdτ +

∑
l∈Z

∫ t

0
α2l(s−1) min(22l, 1)

× ‖d̃l(τ)‖L2dτ . ‖(q̃0, d̃0)‖ eBs−1,s×Bs−1 +
∫ t

0
‖(F̃ , G̃)‖ eBs−1,s×Bs−1dτ.

(3.27)

The smoothing effect

Once stated the damping effect for q, it is easy to get the smoothing effect on d by
considering the last two equations where the term Λq is considered as a source term .
Thanks to (3.27), it suffices to prove it for high frequencies only. We therefore suppose
in this subsection that l ≥ l0 for a l0 big enough. We set gl = ‖d̃l‖L2 and by using the
previous inequalities, we have:

1
2
d

dt
‖d̃l‖2

L2 + ν̄‖Λd̃l‖2
L2 − δ̄(Λq̃l, d̃l) + κ̄(Λ(φ ∗ q̃l), d̃l) = G̃l · d̃l −KV

′
(t)‖d̃l‖2

L2 .
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We get finally with α > 0:

1
2
d

dt
g2
l + α22lg2

l ≤ gl

(
‖Λq̃l‖L2 + ‖G̃l‖L2

)
+ glV

′
(t)(Cαl2−l(s−1)‖d̃‖Bs−1 −Kgl

)
.

We therefore get in using standard computations:∑
l≥l0

2l(s−1)‖d̃l(t)‖L2 + α

∫ t

0

∑
l≥l0

2l(s+1)‖d̃l(τ)‖L2dτ ≤ ‖d0‖Bs−1 +
∫ t

0
‖G̃(τ)‖Bs−1dτ

+
∫ t

0

∑
l≥l0

2ls‖q̃l(τ)‖L2 + CV (t) sup
τ∈[0,t]

(‖d̃(τ)‖Bs−1).

Using the above inequality and (3.27), we have:∫ t

0

∑
l≥l0

2l(s+1)‖d̃l(τ)‖L2dτ . (1 + V (t))
(
‖q0‖ eBs−1,s + ‖d0‖Bs−1

)
+

∫ t

0
(‖F̃ (τ)‖ eBs−1,s + ‖G̃(τ)‖Bs−1)dτ.

(3.28)

Combining that last inequality (3.28) with (3.27), we achieve the proof of proposition
3.5. �

3.2 Proof of the existence for theorem 1.1

This section is devoted to the proof of the theorem 1.1. The principle of the proof is
a classical one. We want to construct a sequence (qn, un)n∈N of approximate solutions
of the system (SW ), and we will use the proposition 3.5 to get some uniform bounds
on (qn, un)n∈N. We will conclude by stating some properties of compactness, which will
guarantee that up to an extraction, (qn, un)n∈N converges to a solution (q, u) of the system
(SW ).

First step: Building the sequence (qn, un)n∈N

We start with the construction of the sequence (qn, un)n∈N, in this goal we use the
Friedrichs operators (Jn)n∈N defined by:

Jng = F−1(1B( 1
n

,n)ĝ),

where F−1 is the inverse Fourier transform. Let us consider the approximate system:

∂tq
n + Jn(Jnu

n · ∇Jnq
n) + ΛJnd

n = Fn

∂td
n + Jn(Jnu

n · ∇Jnd
n)− ν̄∆Jnd

n − δ̄ΛJnq
n − κ̄φ ∗ ΛJnq

n = Gn

∂tΩn − ν̄∆JnΩn = Hn

un = −Λ−1∇dn − Λ−1divΩn

(qn, dn,Ωn)/t=0 = (Jnq0, Jnd0, JnΩ0)

(3.29)
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with:

Fn = −Jn

(
(Jnq

n)divJnu
n
)
,

Gn = JnΛ−1div
[
A(ϕ

(
ρ̄(1 + Jnq

n)
)
, Jnu

n) +K(ϕ
(
ρ̄(1 + Jnq

n)
)
∇qn

]
,

Hn = JnΛ−1curl
[
A(ϕ

(
ρ̄(1 + Jnq

n)
)
, Jnu

n) +K(ϕ
(
ρ̄(1 + Jnq

n)
)
∇qn

]
.

where ϕ is a smooth function verifying ϕ(s) = s for 1
n ≤ s ≤ n and ϕ ≥ 1

4 . We want to
show that (3.29) is only an ordinary differential equation in L2×L2×L2. We can observe
easily that all the source term in (3.29) turn out to be continuous in L2 ×L2 ×L2. As a
example, we consider the term JnA(ϕ

(
ρ̄(1 + Jnq

n)
)
, Jnu

n). We have then by Plancherel
theorem:

‖Jn

(div
(
µ(ϕ

(
ρ̄(1 + Jnq

n)
)
DJnu

n
)

ϕ
(
ρ̄(1 + Jnqn)

) )
‖L2 ≤ n‖µ(ϕ

(
ρ̄(1 + Jnq

n)
)
DJnu

n‖L2

× ‖ 1
ϕ
(
ρ̄(1 + Jnqn)

)‖L∞ ,

≤ 4Mnn
2‖un‖L2 .

where Mn = ‖µ(ϕ
(
ρ̄(1 + Jnq

n)‖L∞ . According to the Cauchy-Lipschitz theorem, a
unique maximal solution exists in C([0, Tn);L2) with Tn > 0. Moreover, since Jn = J2

n

we show that (Jnq
n, Jnd

n, JnΩn) is also a solution and then by uniqueness we get that
(Jnq

n, Jnu
n) = (qn, un). This implies that (qn, dn,Ωn) is solution of the following system:

∂tq
n + Jn(un.∇qn) + Λdn = Fn

1

∂td
n + Jn(un.∇dn)− ν̄∆dn − δ̄Λqn − κ̄φ ∗ Λqn = Gn

1

∂tΩn − ν̄∆Ωn = Hn
1

un = −Λ−1∇dn − Λ−1divΩn

(qn, dn,Ωn)/t=0 = (Jnq0, Jnd0, JnΩ0)

(3.30)

and:
Fn

1 = −Jn

(
qndivun

)
,

Gn
1 = JnΛ−1div

[
A(ϕ

(
ρ̄(1 + qn)

)
, un) +K(ϕ

(
ρ̄(1 + qn)

)]
,

Hn
1 = JnΛ−1curl

[
A(ϕ

(
ρ̄(1 + qn)

)
, un) +K(ϕ

(
ρ̄(1 + qn)

)]
.

And the system (3.30) is again an ordinary differential equation in L2
n with: L2

n =
{g ∈ L2(RN )/suppĝ ⊂ B( 1

n , n)}. Due to the Cauchy-Lipschitz theorem again, a unique
maximal solution exists in C1([0, T

′
n);L2

n) with T
′
n ≥ Tn > 0.

Second step: Uniform estimates

In this part, we want to get uniform estimates independent of T on ‖(qn, un)‖
E

N
2

T

for all

T < T
′
n. This will show that T

′
n = +∞ by Cauchy-Lipchitz because the norms ‖ · ‖

E
N
2

and L2 are equivalent on L2
n. Let us set:

E(0) = ‖q0‖ eB N
2 −1, N

2
+ ‖u0‖

B
N
2
,

E(q, u, t) = ‖q‖
L∞t ( eB N

2 −1, N
2 )

+ ‖q‖
L∞t (B

N
2 −1)

+ ‖q‖
L1

t ( eB N
2 +1, N

2 )
+ ‖q‖

L∞t (B
N
2 +1)

,
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and:T̄n = sup{t ∈ [0, T
′
n), E(qn, un, t) ≤ 3CE(0)}. C corresponds to the constant in the

proposition 3.5 and as C > 1 we have 3C > 1 so by continuity we have T̄n > 0. We are
going to prove that T̄n = T

′
n for all n ∈ N and we will conclude that ∀n ∈ N T

′
n = +∞.

To achieve it, one can use the proposition 3.5 to the system (3.30) to obtain uniform
bounds, so we by setting Vn(t) = ‖un‖

L1
T (B

N
2 +1)

we have:

‖(qn, un)‖
E

N
2

T

≤ C eCVn(t)
(
‖q0‖

B̃
N
2 −1, N

2
+ ‖u0‖

B
N
2

+
∫ T

0
e−CVn(τ)(‖Fn

1 (τ)‖ eB N
2 −1, N

2

+ ‖Gn
1 (τ)‖

B
N
2 −1 + ‖Hn

1 (τ)‖
B

N
2 −1)dτ.

)
Therefore, it is only a matter of proving appropriate estimates for Fn

1 , Gn
1 and Hn

1 by
using properties of continuity on the paraproduct. We estimate now ‖Fn

1 ‖L1
T ( eB N

2 −1, N
2 )

by

using proposition 2.1 and 2.2:

‖Fn
1 ‖L1

T (B
N
2 −1, N

2 )
≤ C‖qn‖

L∞T (B
N
2 −1, N

2 )
‖divun‖

L1
T (B

N
2 )
,

We now want to estimate Gn
1 :

‖A(ϕ(ρ̄(1 + qn)), un)‖
L1

T (B
N
2 −1)

≤ C‖un‖
L1

T (B
N
2 +1)

‖qn‖
L∞T (B

N
2 )

(1 + ‖qn‖
L∞T (B

N
2 )

),

We can verify that K fulfills the hypothesis of the proposition 2.2, so we get:

‖K(ϕ(ρ̄(1 + qn))∇qn‖
L1

T (B
N
2 −1)

≤ C‖qn‖2

L2
T (B

N
2 )
‖qn‖

L∞T ( eB N
2 −1, N

2 )
,

Moreover we recall that according to proposition 2.1:

‖qn‖2

L2
T (B

N
2 )
≤ ‖qn‖

L∞T ( eB N
2 −1, N

2 )
‖qn‖

L1
T ( eB N

2 +1, N
2 )
.

We proceed similarly to estimate ‖Hn
1 ‖L1

T (B
N
2 −1)

and finally we have:

‖Fn
1 ‖L1

T (B
N
2 −1)

+ ‖Gn
1‖L1

T (B
N
2 −1)

+ ‖Hn
1 ‖

L1(B
N
2 −1

T )
≤ 2C(E2(qn, un, T )

+ E3(qn, un, T )),

whence: ‖(qn, un)‖
E

N
2

T

≤ CeC
23E(0)E(0)(1 + 18CE(0)(1 + 3E(0))).

We want now to obtain: e3C2E(0)(1 + 18CE(0)(1 + 3E(0))) ≤ 2 for this it suffices to
choose E(0) small enough, let E(0) < ε such that:

1 + 18CE(0)(1 + 3E(0)) ≤ 3
2

and e3C2E(0) ≤ 4
3
.

So we get T̄n = T
′
n as ∀T such that T < T̄n: E(qn, un, T ) ≤ 2CE(0). We have then

T̄n = T
′
n, because if T̄n < T

′
n we know that E(qn, un, T̄n) ≤ 2CE(0) and so by continuity

for T̄n + ε with ε small enough we obtain again E(qn, un, T̄n + ε) ≤ 3CE(0). This stands
in contradiction with the definition of T̄n. Assume now that T̄n = T

′
n < +∞ but we know

that:
E(qn, un, T

′
n) ≤ 3CE(0).
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As ‖qn‖
L∞

T
′
n
( eB N

2 )
< +∞ and ‖un‖

L∞
T
′
n
( eB N

2 −1)
< +∞, it implies that ‖qn‖L∞

T
′
n
(L2

n) < +∞

and ‖un‖L∞
T
′
n
(L2

n) < +∞, so by Cauchy-Lipschitz theorem, one may continue the solution

beyond T
′
n which contradicts the definition of T

′
n. Finally the approximate solution

(qn, un)n∈N is global in time.

Second step: existence of a solution

In this part, we shall show that, up to an extraction, the sequence (qn, un)n∈N converges
in D′

(R+×RN ) to a solution (q, u) of (SW ) which has the desired regularity properties.
The proof lies on compactness arguments. To start with, we show that the time first
derivative of (qn, un) is uniformly bounded in appropriate spaces. This enables us to
apply Ascoli’s theorem and get the existence of a limit (q, u) for a subsequence. Now, the
uniform bounds of the previous part provide us with additional regularity and convergence
properties so that we may pass to the limit in the system.
It is convenient to split (qn, un) into the solution of a linear system with initial regular
data and forcing term, and the discrepancy to that solution. More precisely, we denote
by (qn

L, u
n
L) the solution to: 

∂tq
n
L + divun

L = 0
∂tu

n
L −Aun

L +∇qn
L = 0

(qn
L, v

n
L)/t=0 = (Jnq0, Jnu0)

(3.31)

where: A = µ̄∆ + (λ̄+ µ̄)∇div and we set (q̄n, ūn) = (qn − qn
L, u

n − un
L). Obviously, the

definition of (qn
L, v

n
L)/t=0 entails:

(qn
L)/t=0 → q0 in B̃

N
2
−1, N

2 , (un
L)/t=0 → u0 in B̃

N
2
−1.

The proposition 2.4 insures that (qn
L, u

n
L) converges to the solution (qL, uL) of the linear

system associated to (3.31) in E
N
2 . We now have to prove the convergence of (q̄n, ūn).

This is of course a trifle more difficult and requires compactness results. Let us first state
the following lemma.

Lemma 1 (qn, un))n∈N is uniformly bounded in C
1
2 (R+;B

N
2
−1)× (C

1
4 (R+;B

N
2
− 3

2 ))N .

Proof:

In all the proof, we will note u.b for uniformly bounded. We first prove that ∂
∂tq

n is
u.b in L2(R+, B

N
2
−1), which yields the desired result for qn. Let us observe that qn

verifies the following equation:

∂

∂t
qn = divun − Jn(un.∇qn)− Jn(qndivun).

According to the first part, (un)n∈N is u.b in L2(B
N
2 ), so we can conclude that ∂

∂tq
n is

u.b in L2(B
N
2
−1). Indeed we have:

‖Jn(qndivun)‖
L2(B

N
2 −1)

≤ ‖un‖
L2(B

N
2 )
‖qn‖

L∞(B
N
2 )
,
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and we get the same estimate for ‖Jn(un.∇qn)‖
L2(B

N
2 −1)

. Let us prove now that ∂
∂td

n

is u.b in L
4
3 (B

N
2
− 3

2 ) + L4(B
N
2
− 3

2 ) and that ∂tΩn is u.b in L
4
3 (B

N
2
− 3

2 ) (which gives the
required result for un in using the relation un = −Λ−1∇dn−Λ−1divΩn). We recall that:

∂

∂t
dn = Jn(un · ∇dn) + JnΛ−1div

[
A(ϕ(ρ̄(1 + qn)), un) + Jn(K(ϕ(ρ̄(1 + qn)))∇qn)

]
+ ν̄∆dn + δ̄Λqn − κ̄φ ∗ Λqn,

∂

∂t
Ωn = JnΛ−1curl

[
A(ϕ(ρ̄(1 + qn)), un) + Jn(K(ϕ(ρ̄(1 + qn))∇qn))

]
+ µ̄∆Ωn.

Results of step one and an interpolation argument yield uniform bounds for un in
L∞(B

N
2
−1) ∩ L

4
3 (B

N
2

+ 1
2 ), we infer in proceeding as for ∂

∂tq
n that:

An = Jn(un · ∇dn) + JnΛ−1div
[
A(ϕ(ρ̄(1 + qn)), un) + Jn(K(ϕ(ρ̄(1 + qn)))∇qn)

]
+ ν̄∆dn

is u.b in L
4
3 (B

N
2
− 3

2 ).

Using the bounds for qn in L2(B
N
2 )∩L∞(B̃

N
2
−1, N

2 ), we get qn u.b in L4(B
N
2
− 1

2 ) by using
proposition 2.1. We thus have Jn(K(ϕ(ρ̄(1 + qn))∇qn u.b in L

4
3 (B

N
2
− 3

2 ).
Using the bounds for un in L∞(B

N
2
−1)∩L

4
3 (B

N
2

+ 1
2 ) we finally get An is u.b in L

4
3 (B

N
2
− 3

2 ).
To conclude φ ∗ Λqn is u.b in L4(B

N
2
− 3

2 ), so ∂
∂td

n is u.b in L
4
3 (B

N
2
− 3

2 ) + L4(B
N
2
− 3

2 ).
The case of ∂

∂tΩ
n goes along the same lines. As the terms corresponding to Λqn and

φ ∗ Λq̄n do not appear, we simply get ∂tΩn u.b in L
4
3 (B

N
2
− 3

2 ). �

We can now turn to the proof of the existence of a solution and using Ascoli theorem to
get strong convergence. We proceed similarly to the theorem of Aubin-Lions.

Theorem 3.4 Let X a compact metric space and Y a complete metric space. Let A be
an equicontinuous part of C(X,Y ). Then we have the two equivalent proposition:

1. A is relatively compact in C(X,Y )

2. A(x) = {f(x); f ∈ A} is relatively compact in Y

We need to localize because we have some result of compactness for the local Sobolev
space. Let (χp)p∈N be a sequence of C∞0 (RN ) cut-off functions supported in the ball
B(0, p+ 1) of RN and equal to 1 in a neighborhood of B(0, p).
For any p ∈ N, lemma 1 tells us that ((χpq

n, χpu
n))n∈N is uniformly equicontinuous

in C(R+;B
N
2
−1 × (B

N
2
− 3

2 )N ). By using Ascoli’s theorem we just need to show that
((χpq

n(t, ·), χpu
n)(t, ·))n∈N is relatively compact in B

N
2
−1 × (B

N
2
− 3

2 )N ∀t ∈ [0, p ]. Let
us observe now that the application u → χpu is compact from B̃

N
2
−1, N

2 = B
N
2 ∩ B

N
2
−1

into Ḣ
N
2
−1, and from B

N
2
−1∩B

N
2
− 3

2 into Ḣ
N
2
− 3

2 . Next we apply Ascoli’s theorem to the
family ((χpq

n, χpu
n))n∈N on the time interval [0, p]. By using Cantor’s diagonal process

we obtain a distribution (q, u) belonging to C(R+; Ḣ
N
2
−1×(Ḣ

N
2
− 3

2 )N ) and a subsequence
(which we still denote by (qn, un)n∈N) such that, for all p ∈ N, we have:

(χpq
n, χpu

n) →n7→+∞ (χpq, χpu) in C([0, p]; Ḣ
N
2
−1 × (Ḣ

N
2
− 3

2 )N ) (3.32)

18



This obviously entails that (qn, un) tends to (q, u) in D′
(R+ × RN ).

Coming back to the uniform estimates of step one, we moreover get that (q, u) belongs
to:

L1(B̃
N
2
−1, N

2 × (B
N
2

+1)N ) ∩ L∞(B̃
N
2
−1, N

2 × (B
N
2

+1)N )

and to C
1
2 (R+;B

N
2
−1)× (C

1
4 (R+;B

N
2
− 3

2 )N ). Obviously, we have the bounds provided of
the first step.
Let us now prove that (q, u) solves the system (SW ), we first recall that (qn, un) solves
the following system:
∂tq

n + Jn(un · ∇qn) + divun = −Jn(qndivun)
∂tu

n − ν̄∆un + δ̄∇qn − κ̄φ ∗ ∇qn + Jn(un · ∇un) + Jn(K(ϕ(ρ̄(1 + qn))∇qn)
+ Jn(A(ϕ(ρ̄(1 + qn)), un)) = 0

The only problem is to pass to the limit in D′
(R+ × RN ) in the non linear terms. This

can be done by using the convergence results coming from the uniform estimates (3.32).
As it is just a matter of doing tedious verifications, we show as a example the case of the
term Jn(K(ϕ(ρ̄(1 + qn)))∇qn) and Jn(A(ϕ(ρ̄(1 + qn)), un)). We decompose:

Jn(K(ϕ(ρ̄(1 + qn)))∇qn)−K(ρn)∇qn = Jn(K(ϕ(ρ̄(1 + qn)))∇qn)−K(ϕ(ρ̄(1 + q)))∇q.

(Note that for n big enough, we have K(ϕ(ρ̄(1 + qn))) = K(ρn) as we control ‖ρn‖L∞

and ‖ 1
ρn ‖L∞). Next we have:

Jn(K(ϕ(ρ̄(1 + qn)))∇qn)−K(ϕ(ρ̄(1 + q)))∇q = JnAn + (Jn − I)K(ϕ(ρ̄(1 + q)))∇q,

where An = K(ϕ(ρ̄(1 + qn)))∇qn −K(ϕ(ρ̄(1 + q)))∇q.

We have then (Jn − I)K(ϕ(ρ̄(1 + q)))∇q tends to zero as n→ +∞ due to the property
of Jn and the fact that K(ϕ(ρ̄(1 + q)))∇q belongs to L∞(B

N
2
−1) ↪→ L∞(Lq) for some

q ≥ 2. Choose ψ ∈ C∞0 ([0, T ) × RN ) and ϕ
′ ∈ C∞0 ([0, T ) × RN ) such that ϕ

′
= 1 on

suppψ, we have:

| < (Jn − I)K(ϕ(ρ̄(1 + q)))∇q, ψ > | ≤ ‖ϕ′ K(ϕ(ρ̄(1 + q)))∇q‖L∞(L2)‖(Jn − I)ψ‖L2 ,

because Lq
loc ↪→ L2

loc and we conclude by the fact that ‖(Jn − I)ψ‖L2 → 0 as n tends to
+∞. Next:

< JnAn, ψ >= I1
n + I2

n,

with:

I1
n =< (K(ϕ(ρ̄(1 + qn)))−K(ϕ(ρ̄(1 + q))))∇qn, Jnψ >

I2
n =< K(ϕ(ρ̄(1 + q)))∇(qn − q), Jnψ > .

We have then:
I1
n ≤ ‖ϕ′qn‖

L∞(B
N
2 )
‖ϕ′(qn − q)‖

L∞(Ḣ
N
2 −1)

‖ψ‖L∞ ,

Indeed we just use the fact that ϕ
′
B

N
2
−1 and ϕ

′
Ḣ

N
2
−1 are embedded in L2. Next we

conclude as we have seen that qn →n→+∞ q in Cloc(H
N
2
−1

loc ). So we obtain:

I1
n →n→+∞ 0 in D′

((0, T ∗)× RN ).
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We proceed similarly for I2
n. We concentrate us now on the term Jn(A(ϕ(ρ̄(1+qn)), un)).

Let ϕ
′ ∈ C∞0 (R+ × RN ) and p ∈ N be such that suppϕ

′ ⊂ [0, p] × B(0, p). We use the
decomposition for n big enough:

ϕ
′
JnA(ϕ(ρ̄(1 + qn)), un)− ϕ

′A(ρ, u) = ϕ
′
χpA(ϕ(ρ̄(1 + qn)), χp(un − u))

+ ϕ
′A(χpϕ(ρ̄(1 + qn))− χpρ̄(1 + q)), u).

According to the uniform estimates and (3.32), χp(un−u) tends to 0 in L1([0, p]; Ḣ
N
2

+1)
by interpolation so that the first term tends to 0 in L1(Ḣ

N
2
−1) and we conclude for the

second term in remarking that ϕ
ρn

tends to ϕ
ρ as ρn in L∞(L∞∩Ḣ

N
2 ). The other nonlinear

terms can be treated in the same way. �

4 Proof of the existence for theorem 1.2

We will proceed similarly to the proof of the theorem 1.1. It means we have to get a
sequence of smooth solutions (qn, un)n∈N to system (SW ) on a bounded interval [0, Tn]
which may depend on n. We will exhibit a positive lower bounf T for Tn and prove
uniform estimates for the smooth solutions (qn, un)n∈N, and we will conclude by using
compactness arguments. We begin with the study of the linear part associated to the
system (SW ).

4.1 Estimates for parabolic system with variable coefficients

To avoid condition of smallness on the initial density data as in [], it is crucial to study
very precisely the following parabolic system with variable coefficient which is obtained
by linearizing the momentum equation:

∂tu+ v · ∇u+ u · ∇w − b(µ∆u+ (λ+ µ)∇divu = f,

u/t=0 = u0. (4.33)

Above u is the unknown function. We assume that u0 ∈ Bs
p,1 with 1 ≤ p ≤ +∞ and

f ∈ L1(0, T ;Bs
p,1), that v and w are time dependent vector-fields with coefficients in

L1(0, T ;B
N
p

+1

p,1 ), that b is bounded by below by a positive constant b and that a = b− 1

belongs to L∞(0, T ;B
N
2

2,1). We wiil need of the following proposition to get some uniform
estimates on the smooth solutions (qn, un)n∈N. This proposition generalize a result of
Danchin in [] and the fact that we are able to take into account the variable coefficient
for heat equation, will allow us to consider large initial data on the density in critical
space.

Proposition 4.6 Let ν = bmin(µ, λ+2µ) and ν̄ = µ+|λ+µ|. Assume that s ∈ (−N
p ,

N
p ].

Let m ∈ Z be such that bm = 1+Sma and 1−Sma satisfies for c small enough (depending
only on N and on s):

inf
(t,x)∈[0,T )×RN

bm(t, x) ≥ b

2
and ‖a− Sma‖eL∞(0,T ;B

N
p

p,1)
≤ c

ν

ν̄
. (4.34)
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There exist two constants C and κ (with C, depending only on N and on s, and κ
universal) such that by setting:

V (t) =
∫ t

0
‖v‖

B
N
p +1

p,1

dτ, W (t) =
∫ t

0
‖w‖

B
N
p +1

p,1

dτ, and Zm(t) = 22mν̄2ν−1

∫ t

0
‖a‖2

B
N
p

p,1

dτ,

we have for all t ∈ [0, T ],

‖u‖eL∞((0,T )×Bs
p,1)

+ κν‖u‖eL1((0,T )×Bs+2
p,1 )

≤ eC(V +W+Zm)(t)(‖u0‖Bs
p,1

+
∫ t

0
e−C(V +W+Zm)(τ)‖f(τ)‖Bs

p,1
dτ).

Remark 3 Let us stress the fact that if a ∈ L̃∞((0, T ) × B
N
p

p,1) then assumption (4.34)
is satisfied for m large enough. Indeed, according to Bernstein inequality, we have:

‖a− Sma‖L∞((0,T )×RN ) ≤
∑
q≥m

‖∆qa‖L∞((0,T )×RN ) .
∑
q≥m

2q N
p ‖∆qa‖L∞(Lp).

The right-hand side is the remainder of a convergent series hence tends to zero when m
goes to infinity. For a similar reason, the other inequality is satisfied for m large enough.

Proof:

Let us first rewrite (4.33) as follows:

∂tu+ v · ∇u+ u · ∇w − bm(µ∆u+ (λ+ µ)∇divu) = f + Em − u · ∇w, (4.35)

with Em = (µ∆u + (λ + µ)∇divu)(Id − Sm)a. Note that, because −N
p < s ≤ N

p , the
error term Em may be estimated by:

‖Em‖Bs
p,1

. ‖a− Sma‖
B

N
p

p,1

‖D2u‖Bs
p,1
. (4.36)

and we have:
‖u · ∇w‖ . ‖∇w‖

B
N
p

p,1

‖u‖Bs
p,1
. (4.37)

Now applying ∆q to equation (4.35) yields:

d

dt
uq + v · ∇uq − µdiv(bm∇uq)− (λ+ µ)∇(bmdivuq) = fq + Em,q

−∆q(u · ∇w) +Rq + R̃q,

(4.38)

where we denote by uq = ∆qu and with:

Rq = [vj ,∆q]∂ju,

R̃q = µ
(
∆q(bm∆u)− div(bm∇uq)

)
+ (λ+ µ)

(
∆q(bm∇divu)−∇(bmdivuq)

)
.
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Next multiplying both sides by |uq|p−2uq, integrating by parts and using Hölder’s in-
equalities , we get:

1
p

d

dt
‖uq‖p

Lp −
1
p

∫
|uq|pdivvdx+

∫
µbm(|∇uq|2|uq|p−2 +

p− 2
4

|∇|uq|2|2 |uq|p−4)dx

+ (λ+ µ)bm
(
|divuq|2|uq|p−2 + (p− 2)|uq|p−4divuq

∑
i,j

∂ju
i
qu

i
qu

j
q

)
dx ≤ ‖uq‖p−1

Lp (‖fq‖Lp

+ ‖∆qEm‖Lp + ‖∆q(u · ∇w)‖Lp + ‖Rq‖Lp + ‖R̃q‖Lp),

Next by using lemma in [], Young’s inequality and the fact that µ ≥ 0 and λ + 2µ ≥ 0,
we get:

1
p

d

dt
‖uq‖p

Lp +
νb(p− 1)

p2
22q‖uq‖p

Lp ≤ ‖uq‖p−1
Lp

(
‖fq‖Lp + ‖Em,q‖Lp + ‖∆q(u · ∇w)‖Lp

+
1
p
‖uq‖Lp‖divu‖L∞ + ‖Rq‖Lp + ‖R̃q‖Lp

)
,

which leads, after time integration to:

‖uq‖Lp +
νb(p− 1)

p
22q

∫ t

0
‖uq‖Lpdτ ≤ ‖∆qu0‖Lp +

∫ t

0

(
‖fq‖Lp + ‖Em,q‖Lp

)
dτ

+
∫ t

0

(
‖∆q(u · ∇w)‖Lp +

1
p
‖uq‖Lp‖divu‖L∞ + ‖Rq‖Lp + ‖R̃q‖Lp

)
dτ,

(4.39)

For commutators Rq and R̃q, we have the following estimates (see lemma 4 and 5 in the
appendix)

‖Rq‖Lp . cq2−qs‖v‖
B

N
p +1

p,1

‖u‖Bs
p,1
, ‖R̃q‖Lp . cqν̄2−qs‖Sma‖

B
N
p +1

p,1

‖Du‖Bs
p,1
, (4.40)

where (cq)q∈Z is a positive sequence such that
∑

q∈Z cq = 1, and ν̄ = µ + |λ + µ|. Note
that, using Bernstein inequality, we have:

‖Sma‖
B

N
p +1

p,1

. 2m‖a‖
B

N
p

p,1

Hence, plugging these latter estimates and (4.36), (4.37) in (4.39), then multiplying by
2qs and summing up on q ∈ Z, we discover that, for all t ∈ [0, T ]:

‖u‖L∞t (Bs
p,1) +

νb(p− 1)
p

‖u‖L1
t (Bs+2

p,1 ) ≤ ‖u0‖Bs
p,1

+ ‖f‖L1
t (Bs

p,1) + C

∫ t

0
(‖v‖

B
N
p

p,1

+ ‖w‖
B

N
p +1

p,1

)‖u‖Bs
p,1
dτ + Cν̄

∫ t

0
(‖a− Sma‖

B
N
p

p,1

‖u‖Bs+2
p,1

+ 2m‖a‖
B

N
p

p,1

‖u‖Bs+1
p,1

)dτ,

for a constant C depending only on N and s. Let X(t) = ‖u‖L∞t (Bs
p,1) + νb‖u‖L1

t (Bs+2
p,1 ).

Assuming that m has been chosen so large as to satisfy: Cν̄‖a− Sma‖
L∞T (B

N
p

p,1)
≤ ν, and

by interpolation, we have:

Cν̄‖a‖
B

N
p

p,1

‖u‖Bs+2
p,1

≤ κν +
C2ν̄222m

4κν
‖a‖2

B
N
p

p,1

‖u‖Bs
p,1
,
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we end up with:

X(t) ≤ ‖u0‖Bs
p,1

+ ‖f‖L1
t (Bs

p,1) + C

∫ t

0
(‖v‖

B
N
p

p,1

+ ‖w‖
B

N
p +1

p,1

+
ν̄2

ν
22m‖a‖2

B
N
2

p,1

)X dτ

Grönwall lemma then leads to the desired inequality. �

Remark 4 The proof of the continuation criterion (theorem 1.3) relies on a better es-
timate which is available when u = v = w. In fact, by arguing as in the proof of the
previous proposition and by making use of inequality (7.70) instead of (7.68), one can
prove that under conditions (4.34), there exists constants C and κ such that:

∀t ∈ [0, T ], ‖u‖L∞t (Bs
p,1) + κν‖u‖L1

t (Bs+2
p,1 ) ≤ eC(U+Zm)(t)

(
‖u0‖Bs

p,1

+
∫ t

0
e−C(U+Zm)(τ)‖f(τ)‖Bs

p,1
dτ

)
with U(t) =

∫ t

0
‖∇u‖L∞dτ.

Proposition 4.6 fails in the limit case s = −N
p . One can however state the following result

which will be the key to the proof of uniqueness.

Proposition 4.7 Under condition (4.34), there exists two constants C and κ (with c,
C, depending only on N , and κ universal) such that we have:

‖u‖
L∞t (B

−N
p

p,∞ )
+ κν‖u‖eL1

t (B
2−N

p
p,∞ )

≤ 2eC(V +W )(t)(‖u0‖
B
−N

p
p,∞

+ ‖f‖eL1
t (B

N
p

p,∞)
),

whenever t ∈ [0, T ] satisfies:

ν̄2t‖a‖2eL∞t (B
N
p

p,1)

≤ c2−2mν. (4.41)

Proof

We just point out the changes that have to be be done compare to the proof of proposi-
tion 4.6. The first one is that instead of (4.36) and (4.37), we have in accordance with
proposition 2.1:

‖Em‖eL1
t (B

−N
p

p,∞ )
. ‖a− Sma‖eL∞t (B

N
p

p,1)
‖D2u‖eL1

t (B
−N

p
p,∞ )

,

‖u · w‖
B
−N

p
p,∞

. ‖u‖
B
−N

p
p,∞

‖∇u‖
B

N
p

p,1

.

The second change concerns the estimates of commutator Rq and R̃q. According to
inequality (7.69), we now have for all q ∈ Z:

‖Rq‖Lp . 2q N
p ‖v‖

B
N
p +1

p,1

‖u‖
B
−N

p
p,∞

, ‖R̃q‖ . ν̄2q N
p ‖Sma‖eL∞t (B

N
p +1

p,1 )
‖Du‖eL1

t (B
−N

p
p,∞ )

. (4.42)

Plugging all these estimates in (4.39) then taking the supremum over q ∈ Z, we get:

‖u‖
L∞t (B

−N
p

p,∞ )
+ 2ν‖u‖eL1

t (B
2−N

p
p,∞ )

≤ ‖u0‖
B
−N

p
p,1

+ Cint
t
0(‖v‖

B
N
p +1

p,1

+ ‖w‖
B

N
p +1

p,1

)‖u‖
B
−N

p
p,∞

dτ

+ Cν̄
(
‖a− Sma‖eL∞t (B

N
p

p,1)
‖u‖eL1

t (B
2−N

p
p,∞ )

+ 2m‖a‖
L∞t (B

N
p

p,1)
‖u‖eL1

t (B
1−N

p
p,∞ )

+ ‖f‖eL1
t (B

−N
p

p,∞ )
.
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Using that:

‖u‖eL1
t (B

1−N
p

p,∞ )
≤
√
t‖u‖

1
2eL1

t (B
2−N

p
p,∞ )

‖u‖
1
2

L∞t (B
N
p

p,∞)

,

and taking advantage of assumption (4.34) and (4.41), it is now easy to complete the
proof. �

4.2 The mass conservation equation

We now focus on the mass equation associated to (SW )

∂ta+ v · ∇a = (1 + a)divv,
a/t=0 = a0.

(4.43)

Proposition 4.8 Assume that a0 ∈ B
N
2

2,1, v ∈ L1(0, T ;B
N
2

+1

2,1 ) and that a ∈ L̃∞T (B
N
2

2,1)
satisfies (4.43). Let V (t) =

∫ t
0 ‖∇v(τ)‖

B
N
2 +1

2,1

dτ . There exists a constant C depending

only on N such that for all t ∈ [0, T ] and m ∈ Z, we have:

‖a‖eL∞t (B
N
2

2,1)
≤ eCV (t)‖a0‖

B
N
2

2,1

+ eCV (t) − 1, (4.44)

∑
l≥m

2l N
2 ‖∆la‖L∞t (L2) ≤

∑
l≥m

2l N
2 ‖∆la0‖L2 + (1 + ‖a0‖

B
N
2

2,1

)(eCV (t) − 1), (4.45)

∑
l≥m

2l N
2 ‖∆l(a−a0)‖L∞t (L2) ≤ (1+‖a0‖

B
N
2

2,1

)(eCV (t)−1)+C2l‖a0‖
B

N
2

2,1

∫ t

0
‖v‖

B
N
2

2,1

dτ. (4.46)

4.3 The proof of existence for theorem 1.2

We smooth out the data as follows:

qn
0 = Snq0, un

0 = Snu0 and fn = Snf.

Now according [], one can solve (SW ) with smooth initial data (qn
0 , u

n
0 , f

n) on a time
interval [0, Tn]. Let ε > 0, we get solution checking:

qn ∈ C([0, Tn], B
N
p

+ε

p,1 ) and un ∈ C([0, Tn], B
N
p
−1+ε

p,1 ) ∩ L̃1([0, Tn], B
N
p

+1+ε

p,1 ). (4.47)

Uniform Estimates for (qn, un)n∈N

Let Tn be the lifespan of (qn, un), that is the supremum of all T > 0 such that (SW ) with
initial data (qn

0 , u
n
0 ) has a solution which satisfies (4.47). Let T be in (0, Tn), we aim at

getting uniform estimates in ET for T small enough. For that, we need to introduce the
solution un

L to the linear system:

∂tu
n
L −Aun

L = fn, un
L(0) = un

0 .
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Now, the vectorfield ũn = un − un
L satisfies the parabolic system:{

∂tũ
n + un

L · ∇ũn + (1 + an)Aũn = anAun
L − un

L · ∇un
L −∇g(an),

ũn(0) = 0,
(4.48)

which has been studied in proposition 4.6. Define m ∈ Z by:

m = inf{p ∈ Z2ν̄
∑
l≥p

2l N
2 ‖∆la0‖L2 ≤ cν̄} (4.49)

where c is small enough positive constant (depending only N) to be fixed hereafter.
Let:

b̄ = 1 + sup
x∈RN

a0(x), A0 = 1 + 2‖a0‖
B

N
2
, U0 = ‖u0‖

B
N
2

+ ‖f‖
L1(B

N
2 −1 ,

and Ũ0 = 2CU0 + 4Cν̄A0 (where C stands for a large enough constant depending only
N which will be determined when applying proposition 2.1 and 4.6 in the following
computations.) We assume that the following inequalities are fulfilled for some η > 0:

(H1) ‖an − Sma
n‖eL∞T (B

N
p

p,1)
≤ cνν̄−1,

(H2) Cν̄2T‖an‖2eL∞T (B
N
p

p,1)

≤ 2−2mν,

(H3)
1
2
b ≤ 1 + an(t, x) ≤ 2b̄ for all (t, x) ∈ [0, T ]× RN ,

(H4) ‖an‖eL∞(B
N
p

p,1)
≤ A0,

(H5) ‖un
L‖eL1(B

N
p +1

p,1 )
≤ η,

(H6) ‖ũn‖eL∞(B
N
p −1

p,1 )
+ ν‖ũn‖eL1(B

N
p +1

p,1 )
≤ Ũ0η,

Remark that since:
1 + Sma

n = 1 + an + (Sma
n − an),

assumptions (H1) and (H3) combined with the embedding B
N
p

p,1 ↪→ L∞ insure that:

inf
(t,x)∈[0,T ]×RN

(1 + Sma
n)(t, x) ≥ 1

4
b. (4.50)

We are going to prove that under suitable assumptions on T and η (to be specified below)
if condition (H1) to (H6) are satisfied. Since all those conditions depend continuously on
the time variable and are strictly satisfied initially, a basic boobstrap argument insures
that (H1) to (H6) are indeed satisfied for T . First we shall assume that η satisfies:

C(1 + ν−1Ũ0)η ≤ log 2 (4.51)

so that denoting Ũn(t) =
∫ t
0 ‖ũ

n‖
B

N
p +1

p,1

dτ and Un
L(t) =

∫ t
0 ‖u

n
L‖

B
N
p +1

p,1

dτ , we have, accord-

ing to (H5) and (H6):

eC(Un
L+eUn)(T ) < 2 and eC(Un

L+eUn)(T ) − 1 ≤ C

log 2
(Un

L + Ũn)(T ) ≤ 1. (4.52)
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In order to bound an in L̃∞T (B
N
2 ), we apply proposition (2.3) and get:

‖an‖eL∞T (B
N
p

p,1)
< 1 + 2‖a0‖

B
N
2

= A0. (4.53)

Hence (H4) is satisfied with a strict inequality. Next, applying proposition 2.4 yields:

‖un‖eL∞T (B
N
p −1

p,1 )
≤ U0, (4.54)

κν‖un
L‖

L1
T (B

N
p +1

p,1 )
≤

∑
l∈Z

2l(N
p
−1)(1− e−κν22lT )(‖∆lu0‖Lp + ‖∆lf‖L1(R+,Lp)). (4.55)

Hence taking T such that:∑
l∈Z

2l(N
p
−1)(1− e−κν22lT )(‖∆lu0‖Lp + ‖∆lf‖L1(R+,Lp)) < κην, (4.56)

insures that (H5) is strictly verified.
Since (H1), (H2) and (4.50) are satisfied, proposition 4.6 may be applied, we get:

‖ũn‖eL∞T (B
N
p −1

p,1 )
+ ν‖ũn‖

L1
T (B

N
p +1

p,1 )

≤ CeC(Un
L+eUn)(T )

∫ T

0

(
‖anAun

L‖
B

N
p −1

p,1

+ ‖un
L · ∇un

L‖
B

N
p −1

p,1

+ ‖∇g(an)‖
B

N
p −1

p,1

+Rohde
)
dt.

By taking advantage of proposition 2.1 and 2.2, we end up with:

‖ũn‖eL∞T (B
N
p −1

p,1 )
+ ν‖ũn‖

L1
T (B

N
p +1

p,1 )
≤ CeC(Un

L+eUn)(T )

×
(
C‖un

L‖
L1

T (B
N
p +1

p,1 )
(ν̄‖an‖

L∞T (B
N
p −1

p,1 )
+ ‖un

L‖
L∞T (B

N
p −1

p,1 )
) + CgT‖an‖

L1
T (B

N
p

p,1)

)
dt.

(4.57)

with C = C(N) and Cg = (N, g, b, b̄). Now, using assumptions (H4), (H5) and (H6), and
inserting (4.52) in (4.57) gives:

‖ũn‖eL∞T (B
N
p −1

p,1 )
+ ‖ũn‖

L1
T (B

N
p +1

p,1 )
≤ 2C(ν̄A0 + U0)η + 2CgTA0,

hence (H6) is satisfied with a strict inequality provided: CgT < Cν̄η.
We now have to check whether (H1) is satisfied with strict inequality. For that we apply
(??) which yields for all m ∈ Z,∑

l≥m

2l N
2 ‖∆la

n‖L∞T (L2) ≤
∑
l≥m

2l N
2 ‖∆la0‖L2 + (1 + ‖a0‖

B
N
2

2,1

)
(
eC(Un

L+eUn)(T ) − 1
)
. (4.58)

Using (??) and (H5), (H6), we thus get:

‖an − Sma
n‖

L∞T (B
N
2

2,1)
≤

∑
l≥m

2l N
2 ‖∆la0‖L2 +

C

log 2
(1 + ‖a0‖

B
N
2

2,1

)(1 + ν−1L̃0)η.
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Hence (H1) is strictly satisfied provided that η further satisfies:

C

log 2
(1 + ‖a0‖

B
N
2

p,1

)(1 + ν−1L̃0)η <
cν

2ν̄
. (4.59)

Next according to (H4), condition (H2) is satisfied provided:

T <
2−2mν

Cν̄2A2
0

.

In order to check whether (H3) is satisfied, we use the fact that:

an − a0 = Sm(an − a0) + (Id− Sm)(an − a0) +
∑
l>n

∆la0,

whence, using B
N
p

p,1 ↪→ L∞ and assuming (with no loss of generality) that n ≥ m,

‖an − a0‖L∞((0,T )×RN ) ≤ C
(
‖Sm(an − a0)‖

L∞T (B
N
p

p,1)
+ ‖an − Sma

n‖
L∞T (B

N
p

p,1)

+ 2
∑
l≥m

2l N
p ‖∆la0‖Lp

)
.

Changing the constant c in the definition of m and in (4.59) if necessary, one can, in view
of the previous computations, assume that:

C
(
‖an − Sma

n‖
L∞T (B

N
p

p,1)
+ 2

∑
l≥m

2l N
p ‖∆la0‖Lp

)
≤ b

4
.

As for the term ‖Sm(an − a0)‖
L∞T (B

N
2

2,1)
, it may be bounded according to inequality (??):

‖Sm(an−a0)‖
L∞T (B

N
2

2,1)
≤ (1+‖a0‖

B
N
2

2,1

)(eC(eUn+Un
L)(T )−1)+C22m

√
T‖a0‖

B
N
2

2,1

‖un‖
L2

T (B
N
2

2,1)
.

Note that under assumptions (H5), (H6), (4.51) and (4.59) ( and changing c if necessary),
the first term in the right-hand side may be bounded by b

8 .
Hence using interpolation, (4.54) and the assumptions (4.51) and (4.59), we end up with:

‖Sm(an − a0)‖
L∞T (B

N
2

2,1)
≤ b

8
+ C2m

√
T‖a0‖

B
N
2

2,1

√
η(U0 + Ũ0η)(1 + ν−1Ũ0.

Assuming in addition that T satisfies:

C2m
√
T‖a0‖

B
N
2

2,1

√
η(U0 + Ũ0η)(1 + ν−1Ũ0 <

b

8
, (4.60)

and using the assumption b ≤ 1 + a0 ≤ b̄ yields (H3) with a strict inequality.
One can now conclude that if T < Tn has been chosen so that conditions (4.56) and (4.60)
are satisfied (with η verifying (4.51) and (4.59), and m defined in (4.49) and n ≥ m then
(an, un) satisfies (H1 to (H6, thus is bounded independently of n on [0, T ].
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We still have to state that Tn may be bounded by below by the supremum T̄ of all times
T such that (4.56)and (4.60) are satisfied. This is actually a consequence of the uniform
bounds we have just obtained.Indeed, by combining all these informations, one can prove
that if Tn < T̄ then (an, un) is actually in:

L̃∞T n(B
N
2

2,1 ∩B
N
2

+1

2,1 )×
(
L̃∞T n(B

N
2
−1

2,1 ∩B
N
2

2,1) ∩ L
1
T n(B

N
2

+1

2,1 ∩B
N
2

+2

2,1

)N

hence may be continued beyond T̄ .

2) Existence of a solution

The existence of a solution stems from compactness properties for the sequence (qn, un)n∈N
by using some results of type Ascoli as in the proof of theorem 1.1.

Lemma 2 The sequence (∂tq̄
n, ∂tū

n)n∈N is uniformly bounded for some α > 1 in:

L2(0, T ; B̃
N
p

, N
p
−1

p,1 )× (Lα(0, T ; B̃
N
p
−1, N

p
−2

p,1 ))N .

Proof:

Throughout the proof, we will extensively use that L̃ρ
T (Bs

p,1) ↪→ Lρ
T (Bs

p,1). The nota-
tion u.b will stand for uniformly bounded. We have:

∂tq
n = −un · ∇qn − (1 + qn)divun,

∂tū
n = −un · ∇un − qnA(ρn, ūn)−K(qn)∇qn +

1
n
∇∆q̄n.

(4.61)

We start with show that ∂tq̄
n is u.b in L2(0, T ; B̃

N
p

, N
p
−1

p,1 ). Since un is u.b in L2
T (B

N
p

p,1)

and ∇qn is u.b in L∞T (B
N
p
−1

p,1 ), then un · ∇qn is u.b in L2
T (B̃

N
p

, N
p
−1

p,1 ). Similar arguments

enable us to conclude for the term (1 + qn)divun which is u.b in L2
T (B̃

N
p

, N
p
−1

p,1 ) because

qn is u.b in L∞T (B
N
p

p,1) and divun is u.b in L2
T (B

N
p
−1

p,1 ).
Let us now study ∂tū

n+1. According to step one and to the definition of un
L, the term

Aūn+1 is u.b in L2(B
N
p
−2

p,1 ). Since un is u.b in L∞(B
N
p
−1

p,1 ) and ∇un is u.b in L2(B
N
p
−1

p,1 ),

so un · ∇un is u.b in L2(B
N
p
−2

p,1 ) thus in L2(B̃
N
p
−1, N

p
−2

p,1 ). Moreover we have qn is u.b in

L∞(B
N
p

p,1) and qn is u.b in L∞, so by proposition 2.2 ∇K0(qn) is u.b in L∞(B
N
p
−1

p,1 ) thus

in L2(B̃
N
p
−1, N

p
−2

p,1 ). This concludes the lemma. �

Now, let us turn to the proof of the existence of a solution for the system (SW ). We want
now use some results of type Ascoli to conclude and using the properties of compactness
of the lemma 2. According lemma 2, (qn, un)n∈N is u.b in:

C
1
2 ([0, T ]; B̃

N
p

, N
p
−1

p,1 )× (C1− 1
α ([0, T ]; B̃

N
p
−1, N

p
−2

p,1 ))N ,
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thus is uniformly equicontinuous in C(([0, T ]; B̃
N
p

, N
p
−1

p,1 ) × (B̃
N
p
−1, N

p
−2

p,1 )N ). On the other
hand we have the following result of compactness, for any φ ∈ C∞0 (RN ), s ∈ R, δ > 0
the application u → φu is compact from Bs

p,1 to B̃s,s−δ
p,1 . Applying Ascoli’s theorem, we

infer that up to an extraction (qn, un)n∈N converges in D′
([0, T ] × RN ) to a limit (q̄, ū)

which belongs to:

C
1
2 ([0, T ]; B̃

N
p

, N
p
−1

p,1 )× (C1− 1
α ([0, T ]; B̃

N
p
−1, N

p
−2

p,1 ))N .

Let (q, u) = (q̄, ū) + (q0, uL). Using again uniform estimates of step one and proceeding
as, we gather that (q, u) solves (SW ) and belongs to:

ρ̄+ L̃∞T (B̃
N
p

, N
p
−1

p,1 )×
(
L̃1

T (B
N
p

+1

p,1 ) ∩ L̃∞T (B
N
p
−1

p,1 )
)N
.

Applying proposition, we get the continuity results: ρ − ρ̄ ∈ C([0, T ], B̃
N
p

, N
p
−1

p,1 ) and

u ∈ C([0, T ], B
N
p
−1

p,1 ). �

5 Proof of the uniqueness for theorem 1.1 and 1.2

In the following theorem, we show the uniqueness for theorem 1.2 and in the sequel we
will explain how to adapt for the uniqueness in theorem 1.1.

Theorem 5.5 Let N ≥ 2, and (q1, u1) and (q2, u2) be solutions of (SW ) with the same
data (q0, u0) on the time interval [0, T ∗). Assume that for i = 1, 2:

qi ∈ C([0, T ∗), B1
N,1) and ui ∈

(
C([0, T ∗), B0

N,1) ∩ L1
loc([0, T

∗), B2
N,1)

)N
.

then (q1, u1) = (q2, u2) on [0, T ∗).

Let (q1, u1), (q2, u2) belong to E
N
p with the same initial data (we can then easily check by

embeddingthat (q1, u1), (q2, u2) verify the hypothesis of theorem 5.5). We set (δq, δu) =
(q2 − q1, u2 − u1). We can then write the system (SW ) as follows:

∂

∂t
δq + u2 · ∇δq = H1,

∂

∂t
δu− ν̄∆δu = H2

(5.62)

with:

H1 = −divδu− δu · ∇q1 − δqdivu2 − q1divu,
H2 = −δ̄∇δq − κ̄φ ∗ ∇δq − u2 · ∇δu− δu · ∇u1 +A(q1, δu) +A(δq, u2).

Due to the term δu · ∇q1 in the right-hand side of the first equation, we loose one
derivative when estimating δq: one only gets bounds in L∞(B0

N,1). Now, the right hand-
side of the second equation contains a term of type A(δq, u2) so that the loss of one
derivative for δq entails a loss of one derivative for δu. Therefore, getting bounds in:
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C(R+;B−1
N,1) ∩ L1(R+;B1

N,1) for δu is the best that one can hope.
Unfortunately in our case, the above heuristic fails because we have reached some limit
cases for the product laws. Indeed the product δu · ∇u1 does not map B0

N,1 ×B0
N,1 into

B−1
N,1 but in the somewhat larger space B−1

N,∞. At this point, we could try instead to get
bounds for δu in: C([0, T ∗);B−1

N,∞)∩L1
loc([0, T

∗);B1
N,∞), but we then have to face the lack

of control on δu in L1(0, T ;L∞) (because B1
N,∞ is not imbedded in L∞) so that we run

into troubles when estimating δu · ∇q1. The key to that difficulty relies on logarithmic
interpolation inequality and the following Osgood lemma.

Lemma 3 Let F be a measurable positive function and γ a positive locally integrable
function, each defined on the domain [t0, t1]. Let µ : [0,+∞) → [0,+∞) be a continuous
nondecreasing function, with µ(0) = 0. Let a ≥ 0, and assume that for all t ∈ [t0, t1],

F (t) ≤ a+
∫ t

t0

γ(s)µ(F (s))ds.

If a > 0, then:

−M(F (t)) +M(a) ≤
∫ t

t0

γ(s)ds, where M(x) =
∫ 1

x

ds

µ(s)
.

If a = 0 and M(0) = +∞, then F = 0.

Proof of the theorem 5.5:

Fix an integer m such that:

1 + inf
(t,x)∈[0,T ]×RN

Sma
1 ≥ b

2
and ‖1− Sma

1‖eL∞(B
N
p

p,1)
≤ c

ν

ν̄
, (5.63)

and define T1 as the supremum of all positive time such that:

t ≤ T and tν̄2‖a1‖2eL∞(B
N
p

p,1)

≤ c2−2mν. (5.64)

Remark that the proposition 2.3 ensures that a1 belongs to C̃T (B1
2,1) so that the above

two assumptions are satisfied if m has been chosen large enough. For bounding δa in
L∞T (B0

N,∞), we apply proposition 2.3 with r = +∞ and s = 0. We get ∀t ∈ [0, T ]:

‖δa(t)‖B0
N,∞

≤ CeCU2(t)

∫ t

0
e−CU2(τ)‖δadivu2 + δu · ∇a1 + (1 + a1) divδu‖B0

N,∞
dτ,

hence using that the product of two functions maps B0
N,∞ ×B

N
p

p,1 in B0
N,∞, and applying

Gronwall lemma,

‖δa(t)‖B0
N,∞

≤ CeCU2(t)

∫ t

0
e−CU2(τ)(1 + ‖a1‖B1

N,1
)‖δu‖B1

N,1
dτ. (5.65)
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Next, using proposition 4.7 combined with proposition 2.1 and 2.2 in order to bound the
nonlinear terms, we get for all t ∈ [0, T1],:

‖δu‖eL1
T (B1

N,∞)
≤ CeC(U1+U2)(t)

∫ t

0
(1+‖a1‖B1

N,1
+‖a2‖B1

N,1
+‖u2‖B1

N,1
)‖δa‖B0

N,∞
dτ. (5.66)

In order to control the term ‖δu‖B1
N,1

which appears in the right-hand side of (5.65), we
make use of the following logarithmic interpolation inequality whose proof may be found
in [?], page 120:

‖δu‖L1
t (B1

N,∞) . ‖δu‖eL1
t (B1

N,∞)
log

(
e+

‖δu‖eL1
t (B0

2,∞)
+ ‖δu‖eL1

t (B2
2,∞)

‖δu‖eL1
t (B1

2,∞)

. (5.67)

Because u1 and u2 belong to L̃∞T (B0
N,1)∩L1

T (B2
N,1), the numerator in the right-hand side

may be bounded by some constant CT depending only on T and on the norms of u1 and
u2. Therefore inserting (5.65) in (5.66) and taking advantage of (5.67), we end up for all
t ∈ [0, T1] with:

‖δu‖eL1
T (B1

N,∞)
≤ C(1 + ‖a1‖eL∞T (B1

N,1)
)∫ t

0
(1 + ‖a1‖B1

N,1
+ ‖a2‖B1

N,1
+ ‖u2‖B1

N,1
)‖δu‖eL1

τ (B1
N,∞)

log(e+ CT ‖δu‖−1eL1
τ (B1

N,∞)
dτ.

Since the function t→ ‖a1(t)‖B1
N,1

+‖a2(t)‖B1
N,1

+‖u2(t)‖B2
N,1

is integrable on [0, T ], and:∫ 1

0

dr

r log(e+ CT r−1)
= +∞

Osgood lemma yields ‖δu‖eL1
T (B1

2,1)
= 0. Note that the definition of m depends only on

T and that (5.63) is satisfied on [0, T ]. Hence, the above arguments may be repeated on
[T1, 2T1], [2T1, 3T1],etc. until the whole interval [0, T ] is exhausted. This yields uniqueness
on [0, T ].

6 Continuation criterion

In this section, we provr theorem 1.3. So we assume that we are given a solution (a, u)
to (SW ) which belongs to ET

′ for all T
′
< T and such that conditions 1, 2 and 3 of

theorem 1.3 are satisfied. Fix an integer m such that conditions (4.34) and (??) are
fullfiled. Remark that u staisfyes:

∂tu+ u · ∇u− (1 + a)Au = f −∇g(a), u t=0 = u0.

Hence, taking advantage of remark and of proposition 2.1, we get for some constant C
depending only on N , and all t ∈ [0, T ),

‖u‖eL∞t (B
N
p −1

p,1 )
+ κν‖u‖eL1

t (B
N
p +1

p,1 )

≤ e

C
R t
0

(
‖∇u‖L∞+22mν−1ν̄2‖a‖2

B

N
p

p,1

)
dτ(
‖u0‖

B
N
p −1

p,1

+ ‖f‖eL1
t (B

N
p −1

p,1 )
+ C

∫ t

0
‖a‖2

B
N
p

p,1

dτ
)
.
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This yields a bound on ‖u‖eL∞t (B
N
p −1

p,1 )
and on ‖u‖eL1

t (B
N
p +1

p,1 )
depending only on the data

and on m, ν, ν̄, ‖a‖eL1
t (B

N
p

p,1)
and ‖∇u‖L1

T (L∞).

Of course due to ‖a‖
L∞T (B

N
p

p,1)
and proposition 2.3, we also have ‖a‖eL∞T (B

N
p

p,1)
. By replacing

‖∆qa0‖Lp and ‖∆qu0‖Lp by ‖∆qa‖L∞T (Lp) and ‖∆qu‖L∞T (Lp) in the definition of m and
in the lower bounds (4.56) and (4.60) that we have obtained for the existence time, we
obtain an ε > 0 such that (SW ) with data a(T−ε), u(T−ε) and f ·+(T−ε) has a solution
on [0, 2ε]. Since the solution (a, u) is unique on [0, T ), this provides a continuation of
(a, u) beyond T .

7 Appendix

This section is devoted to the proof of commutator estimates which have been used in
section 2 and 3. They are based on paradifferentiel calculus, a tool introduced by J.-
M. Bony in [2]. The basic idea of paradifferential calculus is that any product of two
distributions u and v can be formally decomposed into:

uv = Tuv + Tvu+R(u, v) = Tuv + T
′
vu

where the paraproduct operator is defined by Tuv =
∑

q Sq−1u∆qv, the remainder opera-
tor R, by R(u, v) =

∑
q ∆qu(∆q−1v+∆qv+∆q+1v) and T

′
vu = Tvu+R(u, v). Inequalities

(4.40) and (4.42) are consequence of the following lemma:

Lemma 4 Let σ ∈ (−N
p ,

N
p + 1]. There exists a sequence cq ∈ l1(Z) such that ‖cq‖l1 = 1

and a constant C depending only on N and σ such that:

∀q ∈ Z, ‖[v · ∇,∆q]a‖Lp ≤ Ccq2−qσ‖∇v‖
B

N
p

p,1

‖a‖Bσ
p,1
. (7.68)

In the limit case σ = −N
p , we have:

∀q ∈ Z, ‖[v · ∇,∆q]a‖Lp ≤ Ccq2
q N

p ‖∇v‖
B

N
p

p,1

‖a‖
B
−N

p
p,∞

. (7.69)

Finally, for all σ > 0, there exists a constant C depending only on N and on σ and a
sequence cq ∈ l1(Z) with norm 1 such that:

∀q ∈ Z, ‖[v · ∇,∆q]v‖Lp ≤ Ccq2−qσ‖∇v‖
B

N
p

p,1

‖v‖Bσ
p,1
. (7.70)

Proof:

Inequality (7.68) has been proved in ([19]), lemma A1 under the hypothesis (which does
not play any role if σ > N

p ) that divv = 0. It is based on the decomposition:

[v · ∇,∆q]a = [Tvj ,∆q]∂ja+ T
′
∆q∂jav

j −∆qT∂jav
j −∆qR(∂ja, v

j). (7.71)

32



In the case σ = −N
p , the computations made in [19] show that the Lp norm of the first

three terms in (7.71) may be bounded by C2q N
p ‖∇v‖

B
N
p

p,1

‖a‖
B
−N

p
p,∞

.

For bounding the last term, we use the following classical result of continuity for the
remainder (see [40]):

‖R(f, g)‖
B
−N

2
2,∞

. ‖f‖B−s
2,∞
‖g‖Bs

2,1
(7.72)

which holds for all real number s. This yields (7.69). The proof of (7.70) relies on a
similar arguments. The details are left to the reader. �

Lemma 5 Letα ∈ (1 − N
p , 1], k ∈ {1, · · · , N} and Rq = ∆q(a∂kw) − ∂k(a∆qw). There

exists c = c(α,N, σ) such that:∑
q

2qσ‖Rq‖Lp ≤ C‖a‖
B

N
p +α

p,1

‖w‖Bσ+1−α
p,1

(7.73)

whenever −N
2 < σ ≤ α+ N

2 .
In the limit case σ = −N

2 , we have for some constant C = C(α,N):

sup
q

2−q N
2 ‖Rq‖Lp ≤ C‖a‖

B
N
2 +α

2,1

‖w‖
B
−N

2 +1−α

2,∞

. (7.74)

Proof

The proof is almost the same as the one of lemma A3 in [17].It is based on Bony’s
decomposition which enables us to split Rq into:

Rq = ∂k[∆q, Ta]w︸ ︷︷ ︸
R1

q

−∆qT∂kaw︸ ︷︷ ︸
R2

q

+∆qT∂kww︸ ︷︷ ︸
R3

q

+∆qR(∂kw, a)︸ ︷︷ ︸
R4

q

− ∂kT
′
∆qwa︸ ︷︷ ︸
R5

q

.

Using the fact that: R1
q =

∑q+4

q
′
=q−4

∂k[∆q, Sq
′−1a]∆q

′w, and the mean value theorem, we
readily get under the hypothesis that α ≤ 1,∑

q

2qσ‖R1
q‖Lp . ‖∇a‖Bα−1

∞,1
‖w‖Bσ+1−α

p,1
. (7.75)

Standard continuity results for the paraproduct insure that R2
q satisfies (7.75) and that:∑

q

2qσ‖R1
q‖Lp . ‖∇w‖

B
σ−α−N

p
∞,1

‖a‖
B

N
p +α

p,1

. (7.76)

provided σ − α− N
p ≤ 0. Next, standard continuity result for the remainder insure that

under the hypothesis σ > −N
p , we have:∑

q

2qσ‖R1
q‖Lp . ‖∇w‖Bσ−α

p,1
‖a‖

B
N
p +α

p,1

. (7.77)
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For bounding R5
q we use the decomposition: R5

q =
∑

q
′≥q−3 ∂k(Sq

′
+2∆qw∆q

′a), which
leads (after a suitable use of Bernstein and Hölder inequalities) to:

2qσ‖R5
q‖Lp .

∑
q′≥q−2

2(q−q
′
)(α+N

p
−1)2q(σ+1−α)‖∆qw‖Lp2q

′
(N

p
+α)‖∆q

′a‖Lp .

Hence, since α+ N
p − 1 > 0, we have:∑

q

2qσ‖R5
q‖Lp . ‖∇w‖Bσ+1−α

p,1
‖a‖

B
N
p +α

p,1

.

Combining this latter inequality with (7.75), (7.76) and (7.77), and using the embedding

B
N
2

p,1 ↪→ B
r−N

p

∞,1 for r = N
p + α− 1, σα completes the proof of (7.73).

The proof of (7.74) is almost the same: for bounding R1
q , R

2
q , R

3
q and R5

q , it is just a
matter of changing

∑
q into supq. As for R4

q we use (7.72).
�

Remark 5 For proving proposition 4.7, we shall actually use the following non-stationary
version of inequality (7.74):

sup
q

2−q N
p ‖Rq‖L1

T (Lp) ≤ C‖a‖eL∞T (B
N
p +α

p,1 )
‖w‖eL1

T (B
−N

p +1−α

p,∞ )
,

which may be easily proved by following the computations of the previous proof, dealing
with the time dependence according to Hölder inequality.
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