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Abstract. In [3, 4, 5], we have developed a new tool called tquasi solutions

which approximate in some sense the compressible Navier-Stokes equation.

In particular it allows to obtain global strong solution for the compressible
Navier-Stokes equations with large initial data on the irrotational part of the

velocity (large in the sense that the smallness assumption is subcritical in
terms of scaling, it turns out that in this framework we are able to obtain

large initial data in the energy space in dimension N = 2). In this paper

we are interesting in studying in details this notion of quasi solution and in
particular proving global weak solution, we also observe that for some choice of

initial data (irrotationnal) we obtain some quasi solutions verifying the porous

medium equation, the heat equation or the fast diffusion equation in function
of the structure of the viscosity coefficients. Finally we show the convergence of

the global weak solution of compressible Navier-Stokes equations to the quasi

solutions when the pressure vanishing.

1. Introduction. The motion of a general barotropic compressible fluid is de-
scribed by the following system:

∂tρ+ div(ρu) = 0,

∂t(ρu) + div(ρu⊗ u)− div(µ(ρ)D(u))−∇(λ(ρ)divu) +∇P (ρ) = ρf,

(ρ, u)/t=0 = (ρ0, u0).

(1)

Here u = u(t, x) ∈ RN stands for the velocity field, ρ = ρ(t, x) ∈ R+ is the density
and D(u) = 1

2 (∇u +t ∇u). The pressure P is such that P (ρ) = aργ with γ ≥ 1 .
We denote by µ(ρ) > 0 and 2µ(ρ)+Nλ(ρ) > 0 the viscosity coefficients of the fluid.
Throughout the paper, we assume that the space variable x ∈ RN .
In this paper we are interested in studying the notion of quasi-solution developed in
[4, 5, 3] for general viscosity coefficients following the algebraic equality discovered
by Bresch and Desjardin in [1]:

λ(ρ) = 2ρµ
′
(ρ)− 2µ(ρ). (2)

2000 Mathematics Subject Classification. Primary: 58F15, 58F17; Secondary: 53C35.
Key words and phrases. Fluids Mechanics, Navier-Stokes.

1



2 BORIS HASPOT

We shall define in the sequel the function ϕ(ρ) by ϕ
′
(ρ) = 2µ

′
(ρ)
ρ . With this choice

of viscosity coefficients Bresch and Desjardin have obtained a new entropy giving a
L2 control on the gradient of the density. It has permit to Mellet and Vasseur in
[6] to prove the stability of the global weak solution for compressible Navier Stokes
equations with such viscosity coefficients and with γ law pressure P (ρ) = aργ with
a > 0 and γ > 1. In the sequel we will work only with such viscosity coefficients
verifying the relation (2).
This paper is devoted to prove the existence of quasi solutions for compressible
Navier-Stokes equations with degenerate viscosity coefficients. Let recall the defi-
nition of quasi solutions introduced in [3, 4, 5].

Definition 1.1. We say that (ρ, u) is a quasi solution if (ρ, u) verifies in distribution
sense: 

∂

∂t
ρ+ div(ρu) = 0,

∂

∂t
(ρu) + div(ρu⊗ u)− div(2µ(ρ) Du)−∇(λ(ρ)divu) = 0,

(ρ, u) t=0 = (ρ0, u0)

(3)

More precisely (ρ, u) is a weak solution of (3) on [0, T ]× RNwith:

ρ0L
1(RN ),

√
ρ0∇ϕ(ρ0) ∈ L2(RN ), ρ0 ≥ 0,

√
ρ0|u0|

√
ln(1 + |u0|2) ∈ L2(RN ).

(4)

if

• ρ ∈ L∞T (L1(RN ),
√
ρ∇ϕ(ρ) ∈ L∞T (L2(RN )),

√
ρu ∈ L∞T (L2(RN )),

•
√
µ(ρ)∇u ∈ L2((0, T )× RN ),

√
ρ|u|

√
ln(1 + |u|2) ∈ L∞T (L2(RN )).

with ρ ≥ 0 and (ρ,
√
ρu) satisfying in distribution sense on [0, T ]× RN :{

∂tρ+ div(
√
ρ
√
ρu) = 0,

ρ(0, x) = ρ0(x).

and if the following equality holds for all ϕ(t, x) smooth test function with compact
support such that ϕ(T, ·) = 0:∫

RN
(ρu)0 · ϕ(0, ·)dx+

∫ T

0

∫
RN

√
ρ(
√
ρu)∂tϕ+

√
ρu⊗√ρu : ∇ϕdx

− < 2µ(ρ)Du,∇ϕ > − < λ(ρ) divu,divϕ >= 0,

(5)

where we give sense to the diffusion terms by rewriting him according to
√
ρ and√

ρu:

< 2µ(ρ)Du,∇ϕ >= −
∫
µ(ρ)
√
ρ

(
√
ρuj)∂iiϕjdx dt−

∫
2(
√
ρuj)µ

′
(ρ)∂i

√
ρ∂iϕjdx dt

−
∫
µ(ρ)
√
ρ

(
√
ρuj)∂jiϕjdx dt−

∫
2(
√
ρui)µ

′
(ρ)∂j

√
ρ∂iϕjdx dt

< λ(ρ) divu,divϕ >= −
∫
λ(ρ)
√
ρ

(
√
ρui)∂jiϕjdx dt−

∫
2(
√
ρui)λ

′
(ρ)∂i

√
ρ∂jϕjdx dt

We assume also the same extra assumption on the viscosity coefficient 8-12 than in
[6].
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Remark 1. Here λ and µ verifies the condition (2), in particular we have classical
energy estimates by multiplying the momentum equation by u except that we have
no information on the density of the type ργ ∈ L∞(R+, L1(RN )) as for compressible
Navier-Stokes equation when (P (ρ) = ργ with γ ≥ 1) because here P (ρ) = 0.
However using the entropy discovered in [1] we can prove that

√
ρ∇ϕ(ρ) belongs

in L∞(R+, L2(RN )) with ϕ
′
(ρ) = 2µ

′
(ρ)
ρ and that ρ belongs in L∞(R+, L1(RN )) by

conservation of the mass. It will be sufficient to prove the stability of global weak
solution and it explains the assumption of the definition 1.1.

Remark 2. Let us remark that by using this notion of quasi solution in [3] we obtain
global strong solution with initial data small in subcritical space for the scaling of
the equations. In this sense quasi solutions are good approximate in order to obtain
global strong solution with large initial data in terms of scaling (in particular in
dimension N = 2 we can choose large initial data in energy space).

We now are going to investigate the existence of such quasi solution for the
viscosity coefficients verifying (2).More precisely as in [3] we are going to search in
a first time irrotational solution under the form u(t, x) = ∇c(t, x). Let us assume
now that:

µ(ρ) = µρα with α > 0 and λ(ρ) = 2(α− 1)µρα, (6)

with α > 1− 1
N in order to insure the relation 2µ(ρ) +Nλ(ρ) > 0. Furthermore we

observe that µ(ρ) and λ(ρ) verify the relation (2).
Let us now briefly recall the so-called porous medium and fast diffusion equations
before explaining the link between the quasi-solutions and these solutions. More
precisely the solutions of the following the nonlinear Cauchy problem:{

∂tρ− µ∆ρα = 0,

ρ(0, ·) = ρ0.
(7)

where α is a positive number which we assume different from one are solutions of the
porous media equation or fast diffusion equations, here we assume that ρ0 ∈ L1(RN )
is nonnegative.The case α > 1 (the porous media equations) arises as a model of slow
diffusion of a gas inside a porous container. Unlike the heat equation α = 1, this
equation exhibits finite speed of propagation in the sense that solutions associated
to compactly supported initial data remain compactly supported in space variable
at all times (see [7]). When 0 < α < 1, the opposite happens. Infinite speed of
propagation occurs and solutions may even vanish in finite time. This problem is
usually referred to as the fast diffusion equation.
Let us recall the notion of global strong solution for the equation (7) of the porous
medium equation (α > 1) and of the fast diffusion equation (0 < α < 1) (see [7]
chapter 9 for more details and [8]).

Definition 1.2. We say that a function ρ ∈ C([0,+∞), L1(RN )) positive is a strong
L1 solution of problem (7) if:

• ρα ∈ L1
loc(0,+∞, L1(RN )) and ρt,∆ρ

α ∈ L1
loc((0,+∞)× RN )

• ρt = µ∆ρα in distribution sense.
• u(t)→ ρ0 as t→ 0 in L1(RN ).

Let us mention (see [7]) that we have the following theorem:

Theorem 1.3. Let α > 0. For every ρ0 ∈ L1(RN ) positive there exists a unique
global strong solution ρ positive of problem (7) such that ρ ∈ C([0,+∞), L1(RN ))∩
L∞((τ,+∞)× RN ) for every τ > 0.
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Let us recall that there exists global weak solution which are not classical it
means not C∞ even if the initial data is C∞ (see a example due to Aronson in the
problem 5.7 of [7]).

Remark 3. Let us mention that if the initial data is non-negative then the unique
global weak solution is classical which means C∞ on (0,+∞)×RN (see the propo-
sition 7.21 p 177 in [7]).

Let us now give your first result describing the link between quasi-solutions and
the solutions of (7).

Theorem 1.4. Let α > 1 − 1
N . Assume that (ρ0, u0) verifies the assumptions of

the definition 1.1, ρ0 > 0 and u0 = − 2µα
α−1∇ρ

α−1
0 with α 6= 1. It exists then a

global weak solution solution of the system (3) of the form (ρ, u = − 2µα
α−1∇ρ

α−1)

when α 6= 1 with (ρ, u) belonging in C∞ on (0,+∞)×RN and solving the following
system almost everywhere : {

∂tρ− 2µ∆ρα = 0,

ρ(0, ·) = ρ0.
(8)

When α = 1 with (ρ0, u0 = −2µ∇ ln ρ0), similarly we have particular global weak
unique solution solution of the system (3) of the form (ρ, u = −2µ∇ ln ρ) solving
the heat equation: {

∂tρ− 2µ∆ρ = 0,

ρ(0, ·) = ρ0.
(9)

Remark 4. Let us point out that any solution of (7) such that ρ is in C3((0,+∞)×
RN ) is a classical solution of (3).In the case where ρ = 0 the velocity is not defined
when 0 < α < 1 that is why we assume that u = 0 on the vacuum set. In other
case we could give sense to ρu as in [6].

Remark 5. We can observe as in [2] that if we consider the compressible Navier-
Stokes equation with a friction term aρu and a pressure of the form 2µaρα then the
same solution than theorem 1.4 verify a such system.

Remark 6. We recognize here the so called equation of the porous medium when
α > 1 and of the fast diffusion when 0 < α < 1. We refer for more details on the
theory to the books of J-L Vázquez (see [7, 8]).

Proof of Theorem 1.4. Let us assume in a first time that the solution (ρ, u) of system
(3) are classical, we are going to search solution under the form: (ρ,− 2µα

α−1∇ρ
α−1).

The mass equation give us:

∂tρ− 2µ∆ρα = 0 (10)

Let us check that the second equation is compatible with the first and keep an
irrotational structure. First we have:

∂t(ρu) = − 2µα

α− 1
∂t(ρ∇ρα−1) = −2∂t∇ρα.

div(ρu⊗ u) =
4µ2α2

(α− 1
2 )2

(∆ρα−
1
2∇ρα− 1

2 +
1

2
∇|∇ρα− 1

2 |2).

(11)



ON THE EXISTENCE OF QUASI-SOLUTION FOR COMPRESSIBLE NAVIER-STOKES EQUATIONS5

Indeed we have:

div(ρu⊗ u)j =
4µ2α2

(α− 1)2

∑
i

∂i(ρ∂iρ
α−1∂jρ

α−1) = 4α2µ2
∑
i

∂i(ρ
2α−3∂iρ∂jρ)

=
4µ2α2

(α− 1
2 )2

∑
i

∂i(∂iρ
α− 1

2 ∂jρ
α− 1

2 ) =
4µ2α2

(α− 1
2 )2

(∆ρα−
1
2 ∂jρ

α− 1
2 +

1

2
∂j |∇ρα−

1
2 |2)

Next we have:

−div(2µραDu) =
4αµ2

α− 1
div(ρα∇∇ρα−1) =

4αµ2

α− 1
(ρα∇∆ρα−1 +∇ρα · ∇∇ρα−1).

−∇(λ(ρ)divu) = 2(α− 1)µ2∇(ραdiv(
2α

α− 1
∇ρα−1)) = 4αµ2∇(ρα∆ρα−1).

(12)
Finally we have from (11):

div(ρu⊗u) =
4αµ2

(α− 1)
∆ρα−1∇ρα+

2α2µ2

(α− 1
2 )
ρα−

5
2 |∇ρ|2∇ρα− 1

2 +
2α2µ2

(α− 1
2 )2
∇|∇ρα− 1

2 |2.

(13)
by using the fact that:

∆ρα−
1
2 =

∑
i

∂i(
α− 1

2

α− 1
∂iρ

α−1ρ
1
2 ) =

α− 1
2

α− 1
ρ

1
2 ∆ρα−1 +

1

2
(α− 1

2
)ρα−

5
2 |∇ρ|2.

4α2

(α− 1
2 )2

∆ρα−
1
2∇ρα− 1

2 =
4α2

(α− 1
2 )(α− 1)

ρ
1
2 ∆ρα−1∇ρα− 1

2 +
2α2

(α− 1
2 )
ρα−

5
2 |∇ρ|2∇ρα− 1

2 ,

=
4α

(α− 1)
∆ρα−1∇ρα +

2α2

(α− 1
2 )
ρα−

5
2 |∇ρ|2∇ρα− 1

2

Finally by combining (12) and (13) we obtain:

div(ρu⊗ u)−div(2ραDu) =
4αµ2

(α− 1)
∇(ρα∆ρα−1) +

4αµ2

α− 1
∇ρα · ∇∇ρα−1

+
2µ2α2

(α− 1
2 )
ρα−

5
2 |∇ρ|2∇ρα− 1

2 +
2µ2α2

(α− 1
2 )2
∇|∇ρα− 1

2 |2
(14)

Now since we have:

∇ρα · ∇∇ρα−1 =
α(α− 1)

2(α− 1
2 )2
∇|∇ρα− 1

2 |2 − α(α− 1)

2(α− 1
2 )
ρα−

5
2 |∇ρ|2∇ρα− 1

2

indeed it is due to the following calculus:

(∇ρα · ∇∇ρα−1)j =
∑
i

∂iρ
α∂ijρ

α−1

=
∑
i

α

α− 1
2

ρ
1
2 ∂iρ

α− 1
2 ∂i(

α− 1

α− 1
2

ρ−
1
2 ∂jρ

α− 1
2 )

=
α(α− 1)

(α− 1
2 )2

∑
i

(∂iρ
α− 1

2 ∂ijρ
α− 1

2 − 1

2
ρ−1∂iρ

α− 1
2 ∂jρ

α− 1
2 ∂iρ)

we finally reduce (14) to the following equation:

∇ρα · ∇∇ρα−1 =
α(α− 1)

2(α− 1
2 )2
∇|∇ρα− 1

2 |2 − α(α− 1)

2(α− 1
2 )
ρα−

5
2 |∇ρ|2∇ρα− 1

2
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We finally have:

div(ρu⊗ u)− div(2ραDu) =
4µ2α

(α− 1)
∇(ρα∆ρα−1) +

4µ2α2

(α− 1
2 )2
∇|∇ρα− 1

2 |2 (15)

Finally using (11), (12) and (15) we obtain:

∂

∂t
(ρu) + div(ρu⊗ u)− div(2ρα Du)−∇(λ(ρ)divu) =

= −2µ∇(∂tρ
α − 2µα

(α− 1)
ρα∆ρα−1 − 2µα2

(α− 1
2 )2
|∇ρα− 1

2 |2 − 2µαρα∆ρα−1),

= −2αµ∇
(
ρα−1(∂tρ−

2µ

(α− 1)
ρ∆ρα−1 − 2µαρα−2|∇ρ|2 − 2µρ∆ρα−1)

)
= −2αµ∇

(
ρα−1(∂tρ− 2µ∆ρα)

)
.

This concludes the proof inasmuch as via the above equation the momentum equa-
tion is compatible to the mass equation and verify the system (7). But when we
take initial density in L1 non negative, we know via the remark 3 that the unique
global solution of (7) is classical and non negative. It justify in particular all the
previous formal calculus and prove that (ρ, u = − 2µα

α−1∇ρ
α−1) is a classical solution

of (3) with ρ verifying (7). It concludes the proof.

Remark 7. More generally we have solution of the form (ρ,−∇ϕ(ρ)) with ρ verifying
the more general porous media equation (we refer to [7] for such equations):

∂tρ− div(ρ∇ϕ(ρ)) = 0.

Remark 8. Let us mention that when α is in the interval (0,mc) with mc =
max(0, N−2N ) then it can appears a phenomena of extinction of the solution in finite

time, in particular it implies a lost of the initial mass when ρ0 is in L1 ( it is not
the case in our framework because α1 − 1

N > mc). Let us recall that when α > 1

and ρ0 belongs in L1, it exists global unique weak solution and that the solution
converges asymptotically to the so called Barrenblatt solution

Um(t, x) = t−γF (
x

tβ
) with F (x) = (C − α− 1

2α
|x|2)

1
α−1

+ ,

which are self similar.

Finally we obtain the following theorems.

Theorem 1.5. Assume that we have a sequence (ρn, un) of global weak solutions
of system (3) satisfying the entropies of [6]) with initial data ρn0 and un0 such that:

ρn0 ≥ 0, ρn0 → ρ0 in L1(RN ), ρn0u
n
0 → ρ0u0 in L1(RN ), (16)

and satisfy the following bounds (with C constant independent on n):∫
RN

ρn0
|un0 |2

2
< C,

∫
RN

√
ρn0 |∇ϕ(ρn0 )|2dx < C and

∫
RN

ρn0
1 + |un0 |2

2
ln(1+|un0 |2)dx < C.

(17)
Then, up to a subsequence, (ρn,

√
ρnun) converges strongly to a weak solution

(ρ,
√
ρu) of (3) satisfying entropy inequalities of [6].

Furthermore when we choose (ρ0, u0) = (ρ0,− 2µα
α−1∇ρ

α−1
0 ) with α 6= 1 it exists global

weak quasi solutions in the sense of the definition 1.1.
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Theorem 1.6. Assume that there exists global weak solution (ρε, uε) verifying the
definition of [6] with the conditions (8)− (12) on µ and λ of [6] and with the same
restriction on γ as in [6] (see also theorem 2.1 in [6]) of the system:


∂tρε + div(ρεuε) = 0,

∂t(ρεuε) + div(ρεuε ⊗ uε)− div(2µ(ρε)D(uε))−∇(λ(ρε)divuε) + ε∇ργε = 0,

(ρε, uε)/t=0 = (ρ0, u0).

(18)
then (ρε, uε) converges in distribution sense to a quasi-solution (ρ, u) when ε goes
to 0 with initial data (ρ0, u0). (Here (ρ0, u0) verifies the entropies of [6]).

Proof of Theorem 1.5 and 1.6. Concerning the stability of global weak solution, as-
sume the existence of a sequel (ρn, un)n∈N of global weak solution in the sense of
[6] then it suffices to observe that we have as in [1, 6] the following uniform bounds
in n where we have multiplied the momentum equation by un and by ∇ϕ(ρn):

∫
RN

ρn|un(t, x)|2(t, x) dx+

∫ t

0

∫
RN

µ(ρn)|Dun|2dxdt+

∫ t

0

∫
RN

λ(ρn)|divun|2dxdt

≤
∫
RN

ρn0 |un0 |2(x)dx.

∫
RN

[
ρn|un(t, x)|2 + ρn|∇ϕ(ρn)|2(t, x)

]
dx ≤ C(

∫
RN

(
ρn0 |un0 |2(x)

+ ρn0 |∇ϕ(ρn0 )|2(x)
)
dx).

(19)
Finally as in [6] it remains to obtain a gain of integrability on the velocity un, it
is obvious by multiplying the momentum equation by (1 + ln(1 + |un|2))un and by
bootstrap argument assuming the condition (11) as in [6]. In particular we show

that ρn
1+|un|2

2 ln(1 + |un|2) is uniformly bounded in L∞((0, T ), L1(RN )) for any

T > 0. And by the conservation of the mass ρn is uniform bounded in L∞T (L1(RN ))
for any T > 0. By using these different entropies as in [6] we can easily show the
convergence in distribution sense of (ρn, un) to (ρ, u) via compactness argument.
We now want to prove the global existence of weak solution when (ρ0, u0) =
(ρ0,− 2µα

α−1∇ρ
α−1
0 ) with α 6= 1. To do this it only suffices to construct a sequel

of regular global weak solution (ρn, un) verifying uniformly in n the entropies of
theorem 1.5 and to use the previous result. Indeed ρn,

√
ρnun) must converge

in distribution sense to a global weak solution (ρ,
√
ρu). Let us define (ρn, un)

as the solutions of the theorem 1.4 with initial data ρn0 = ρ0 + 1
nf where f is

in L1(RN ) ∩ L∞(RN ) ∩W 1,1(RN ) (for α ≥ 1), and is non-negative and we have
un0 = − 2µα

α−1∇(ρn0 )α−1. Then by theorem 1.4 it exists global regular weak solution

(ρn, un) and (ρn0 , ρ
n
0u

n
0 ) converges to (ρ0, u0) which concludes the proof of theorem

1.5.

We are now going to prove that if we have some global weak solution (ρε, uε) for
the system (18) in the sense of the definition in [6], then these global weak solu-
tion converge in distribution sense to a quasi-solution with initial data (ρ0, u0). It
suffices then to obtain the same uniform entropies in ε than in [6] for the sequel
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(ρε, uε). Similarly we have:∫
RN

[
ρε|uε(t, x)|2(t, x) +

ε

γ − 1
ργε
]
dx+

∫ t

0

∫
RN

µ(ρε)|Duε|2dxdt

+

∫ t

0

∫
RN

λ(ρε)|divuε|2dxdt ≤
∫
RN

[
ρ0|u0|2(x) +

ε

γ − 1
ργ0
]
dx.

∫
RN

[
ρε|uε(t, x)|2 + ρε|∇ϕ(ρε)|2(t, x)

]
dx+ ε

∫ t

0

∫
RN
∇ϕ(ρε) · ∇ργεdxdt

≤ C(

∫
RN

(
ρ0|u0|2(x) + ρ0|∇ϕ(ρ0)|2(x) +

ε

γ − 1
ργ0(x)

)
dx).

(20)
By using the lemma 3.2 of [6] with ∀δ ∈ (0, 2), we have that:∫

RN
ρε

1 + |uε|2

2
ln(1 + |uε|2)(t, x)dx+ ν

∫ t

0

∫
RN

µ(ρε)(1 + ln(1 + |uε|2))|Duε|2(t, x)dxdt

≤ C
∫ t

0

∫
RN

µ(ρε)|∇uε|2(t, x)dxdt+ Cδε

∫ t

0

( ∫
RN

ρ
2γ− δ2
ε

µ(ρε)
)

2
2−δ dx

)
dt.

(21)
We can easily observe that via the energy estimates the right hand side of (21)
is uniformly bounded in ε. The last step corresponds to use the same compact-
ness argument than in [6] to show that (ρε, uε) converges in distribution sense to
a quasi-solution (ρ, u) when ε goes to 0 with initial data (ρ0, u0). Let us point
out that εργε goes to 0 in distribution sense. Indeed it suffice to observe that ρε
and
√
ρε∇ϕ(ρε) are uniformly bounded in ε respectively in L∞((0, T ), L1(RN ) and

L∞((0, T ), L2(RN ) for any T > 0. In particular by Sobolev embedding and inter-
polation (for γ not so large as in [6]) we obtain that ργε with α > 0 is uniformly
bounded in L1

loc what means that εργε goes to 0.

REFERENCES

[1] D. Bresch and B. Desjardins, Some diffusive capillary models of Koretweg type, C. R. Math.
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