Thermal conductivity of classical disordered

lattices in the weak coupling regime

François Huveneers
CEREMADE, Université Paris-Dauphine, supported by ERC MALADY

ICMP, Aalborg 2012

Issue

General goal: Thermal transport in solids from molecular dynamics
More precisely: Integrable dynamics \sim anomalous transport (often).
Generic anharmonic interactions and-or disorder ?
Typical model of solids: a classical chain of oscillators

$$
H(q, p)=\sum_{x} H_{x}(q, p)=\sum_{x}\left\{\frac{p_{x}^{2}}{2}+U_{x}\left(q_{x}\right)+V\left(q_{x+1}-q_{x}\right)\right\}
$$

Conductivity

Conservation of energy:

Let

$$
\mathrm{d} H_{x} / \mathrm{d} t=J_{x-1, x}-J_{x, x+1}
$$

$$
\begin{aligned}
N & =\text { Volume }=\text { Number of atoms } \\
\langle\cdot\rangle_{T} & =\text { Gibbs measure at temperature } T
\end{aligned}
$$

Green-Kubo conductivity:

$$
\kappa(T)=\lim _{t \rightarrow \infty} \lim _{N \rightarrow \infty} \frac{1}{T^{2}}\left\langle\left(\frac{1}{\sqrt{t}} \int_{0}^{t} \frac{1}{\sqrt{N}} \sum_{x} J_{x, x+1}(s) \mathrm{d} s\right)^{2}\right\rangle_{T}
$$

Very difficult to analyze due to long time correlations
In the hydrodynamic regime, we expect

$$
\partial_{t} T=\partial_{x}\left(\kappa(T) \partial_{x} T\right)
$$

Perturbative regime

- Example 1: (Lefevere-Schenkel, Aoki-Lukkarinen-Spohn)

$$
H(q, p)=\sum_{x}\left\{p_{x}^{2}+q_{x}^{2}+\epsilon q_{x}^{4}+\left(q_{x+1}-q_{x}\right)^{2}\right\}
$$

Ballistic motion of energy gets destroyed by anharmonic potentials.

- Example 2: (Liverani-Olla, Dolgopyat-Liverani) Roughly speaking:

$$
H(q, p)=\sum_{x}\left\{p_{x}^{2}+U\left(q_{x}\right)+\epsilon V\left(q_{x+1}-q_{x}\right)\right\} \quad \text { with } \quad U \text { "chaotic" }
$$

The system is close to a stochastic system for energy alone.

- We expect

$$
\kappa(T \sim 1, \epsilon) \sim\left\{\begin{array}{ll}
1 / \epsilon^{2} & \text { in Example 1 } \\
\epsilon^{2} & \text { in Example 2 }
\end{array} \quad \text { as } \quad \epsilon \rightarrow 0\right.
$$

What about disordered chains?

Example: Pinned 1-dimensional disordered harmonic chain:

$$
H(q, p)=\frac{1}{2} \sum_{x}\left\{p_{x}^{2}+\omega_{x}^{2} q_{x}^{2}+\left(q_{x+1}-q_{x}\right)^{2}\right\}
$$

with

$$
0<c_{-} \leq \omega_{x}^{2} \leq c_{+}<+\infty \quad \text { i.i.d. random variables. }
$$

Harmonic interactions:

- Linear equations of motions,
- Strictly equivalent to Anderson model for a single electron,
- All eigenmodes are localized,
- $\kappa(T)=0$ for all $T>0$ (only local oscillations).

Harmonic interactions are not expected to be very generic however...

Adding anharmonic potentials (I)

- Dhar and Lebowitz '08: Numerics for a 1-d chain analogous to

$$
H(q, p)=\sum_{x}\left\{p_{x}^{2}+\omega_{x}^{2} q_{x}^{2}+\left(q_{x+1}-q_{x}\right)^{2}+\epsilon q_{x}^{4}\right\} \quad \text { with } \quad \omega_{x}^{2} \text { i.i.d. }
$$

Localization - Delocalization transition expected at $\epsilon=0$:

$$
\kappa(T \sim 1, \epsilon)>0 \quad \text { for } \quad \epsilon>0
$$

- Oganesyan, Pal, Huse '09: Numerics for a 1-d classical spin chain

$$
H(\mathbf{S})=\sum_{x}\left\{\boldsymbol{\omega}_{x} \cdot \mathbf{S}_{x}+\epsilon \mathbf{S}_{x} \cdot \mathbf{S}_{x+1}\right\} \quad \text { with } \quad \boldsymbol{\omega}_{x} \text { i.i.d. }
$$

Findings by Dhar and Lebowitz are confirmed. Moreover

$$
0<\kappa(T \sim 1, \epsilon) \rightarrow 0 \quad \text { very fast } \quad \text { as } \epsilon \rightarrow 0
$$

Adding anharmonic potentials (II)

- Basko '11: Theoretical analysis of a Dhar-Lebowitz like chain. Arnold diffusion invoked to explain positive conductivity.
Roughly speaking, the message is

$$
\kappa(\epsilon) \sim \mathrm{e}^{-\log ^{2}(1 / \epsilon)} \text { for } \epsilon>0
$$

- Flach, and many others: Numerics for Dhar-Lebowitz like chains
- at positive temperature
- for an initially localized wave packet ("zero temperature") predict

$$
\kappa(T, \epsilon \sim 1) \sim T^{\alpha} \quad \text { as } T \rightarrow 0 \quad \text { for some } \alpha>0
$$

Possibly conflicting with aforementioned results.

A simple model (I)

Weakly coupled integrable dynamics:

$$
H(q, p)=\sum_{x}\left\{p_{x}^{2}+\omega_{x}^{2} q_{x}^{2}+\epsilon q_{x}^{4}+\epsilon\left(q_{x+1}-q_{x}\right)^{2}\right\}
$$

Theorem 1: For almost all realization of the disorder, for $T \sim 1$,

$$
\lim _{t \rightarrow \infty} \lim _{\epsilon \rightarrow 0} \lim _{N \rightarrow \infty} \epsilon^{-n}\left\langle\left(\frac{1}{\sqrt{\epsilon^{-m} t}} \int_{0}^{\epsilon^{-m} t} \frac{1}{\sqrt{N}} \sum_{x} J_{x, x+1}(s) \mathrm{d} s\right)^{2}\right\rangle_{T}=0
$$

for all $n \geq 1$ and all large enough $m \geq n$.

Remark 1: The result extends to higher dimensions.
Remark 2: Interesting for $n \geq 1$ large and $m \gg n$ very large. We conjecture

$$
\kappa(T \sim 1, \epsilon)=\mathcal{O}\left(\epsilon^{n}\right) \quad \text { for all } n \geq 1
$$

A simple model (II)

Theorem 2: Dynamics generated by

$$
L=A+\epsilon^{n} S, \quad n \geq 1
$$

with

$$
\begin{aligned}
A & =\text { Hamiltonian generator, } \\
S u & =\sum_{x}\left\{u\left(\ldots,-p_{x}, \ldots\right)-u\left(\ldots, p_{x}, \ldots\right)\right\}
\end{aligned}
$$

Then, for almost all realizations of the disorder, and for all $n \geq 1$,

$$
\kappa(T \sim 1, \epsilon)=\mathcal{O}\left(\epsilon^{n}\right) \quad \text { as } \quad \epsilon \rightarrow 0
$$

Remark 1: The noise S crudely models chaotic effects due to nonlinearities. Remark 2: Striking contrast with the chain

$$
\text { disordered harmonic }+ \text { noise } \epsilon S
$$

where $\kappa(T, \epsilon) \sim \epsilon$ (joint work with Cédric Bernardin).

Why is it so?

Basic phenomenon: uncoupled atoms oscillates at different frequencies

ω_{x-2}

ω_{x-1}

ω_{x}

ω_{x+1}

ω_{x+2}

Since $\left\langle J_{x, x+1}\right\rangle=0$ for all microcanonical surfaces of the uncoupled dynamics,

$$
\int_{0}^{t} J_{x, x+1}(s) \mathrm{d} s \leq C \quad \text { as } \quad t \rightarrow \infty
$$

typically, and for the uncoupled evolution.
Symmetry! Generator exchanges p-symmetric and p-antisymmetric functions. Allows us to iterate this observation at higher perturbative orders.

A bit more formally...

- Let

$$
L=\text { generator of the dynamics. }
$$

Perturbative analysis for typical currents:

$$
\begin{aligned}
J_{x, x+1} & =-L u_{x, x+1}+\epsilon^{n+1} G_{x, x+1} \\
& =\text { Oscillation }+\epsilon^{n+1} \text { New current. }
\end{aligned}
$$

- Some currents are atypical:

Resonances occur if $\left|\omega_{x}-\omega_{x+1}\right|$ is too small.
Conservation of energy implies for example

$$
\begin{aligned}
J_{x, x+1} & =L H_{x} \quad+\quad J_{x-1, x} \\
\text { Resonant } & =\text { Oscillation }+ \text { Non resonant. }
\end{aligned}
$$

Related models

- Oganesyan-Pal-Huse spin chain

The result holds with some hypotheses on the random magnetic field.

- Dhar-Lebowitz chain

Exponential localization of eigenmodes: the substitution

$$
\epsilon\left(q_{x}-q_{x+1}\right)^{2} \longrightarrow 1\left(q_{x}-q_{x+1}\right)^{2}
$$

is not harmful (not rigorous!)
Remark: Exact scaling

$$
\kappa(T, \epsilon)=\kappa(r T, \epsilon / r) \quad \text { for all } \quad r>0
$$

We also conjecture

$$
\kappa(T, \epsilon \sim 1)=\mathcal{O}\left(T^{n}\right) \quad \text { as } \quad T \rightarrow 0 \quad \text { for all } \quad n \geq 1
$$

Decay as $t^{-1 /(2+n)}$ of some solutions of $\partial_{x} T=\partial_{x}\left(T^{n} \partial_{x} T\right)$, phenomenological equation for spreading of initially localized packets.

A quartic chain?

Hamiltonian

$$
H(q, p)=\sum_{x} H_{x}=\sum_{x}\left\{p_{x}^{2}+q_{x}^{4}+\epsilon\left(q_{x+1}-q_{x}\right)^{2}\right\}
$$

For the uncoupled dynamics $(\epsilon=0)$:

- Gibbs measure is product: H_{x} selected at random.
- Each atom oscillates at a frequency $\omega_{x} \sim H_{x}^{1 / 4}$.

We recover the picture

Full picture less clear: resonances may now travel along the chain... (ongoing work with Wojciech De Roeck)

