A random matrix approach to many-body localization

François Huveneers (Paris Dauphine)

Collaboration with Wojciech De Roeck (KU Leuven)

QMATH 13, Atlanta 2016

Localized vs Ergodic

Spin chain in d=1, e.g. XXZ chain:

Many-body localization (MBL)

- Many-body analog of Anderson localization
- Strong breakdown of ergodicity
- No thermalization
- E.g.: quantum quench:

Perturbation around Anderson insulator: $\ J_Z/W \ll 1$

See Gornyi, Mirlin, Polyakov ('05), Basko, Aleiner, Altshuler ('06), Oganesyan, Huse ('07), Imbrie ('12), ...

Ergodic material (ETH)

Transition expected as J/W > critical value

Eigenstate Thermalization Hypothesis: each eigenstate is thermal

$$\langle E|O_i|E\rangle \;=\; \langle O_i\rangle_{T(E)} \,+\, \mathcal{O}(e^{-cL})$$

Connection with Random Matrices via Berry's conjecture: Eigenstates 'ressemble' eigenstates of a RM

More details and refinements later

Small bath connected to disordered spins

Finite bath + localized spins

Aim: Find a description of the interface region

Natural set-up

Disorder fluctuations create small baths

Stability issue:

Could the interface region be of the order of the full volume?

Avalanche scenario

(too) naive scenario:

Ergodic spot thermalizes the near spins...

... and becomes a larger spot

Eventually, the full material becomes thermal!

- d=1: 'good' models: Fallacy! see Imbrie ('12)
- d>1: open question

Our approach

Couple spins one by one to a small bath

LRAVA LAALA ALAA KANNA ANA ANA A KANNER AND AND A KAVAKA VY AVY

Random Matrix + Energy conservation

1 spin coupled to a bath

Single spin coupled to an ergodic Hamiltonian:

 $H = H_B + H_{BS} + H_S$

 $H_B = Ergodic Ham$, $H_{BS} = g \sigma_B^{(x)} \sigma_S^{(x)}$, $H_S = h \sigma_S^{(z)}$

How do uncoupled states hybridize to form the eigenstates?

$$|\mathsf{E}\rangle = \sum_{\mathsf{b},\mathsf{s}} \phi_{\mathsf{E}}(\mathsf{b},\mathsf{s}) |\mathsf{b},\mathsf{s}\rangle$$

I. Local operators in the bath (ETH)

A local operator is characterized by 3 energy scales:

 $\int \mathbf{d}\omega \, \mathbf{v}(\omega) \sim \mathbf{1}$, local interactions: $\mathbf{v}(\omega) \sim \mathbf{e}^{-|\omega|/\varepsilon}$

II. Condition for thermalization

The Bath is not 'perfect': strong enough coupling needed

$$\begin{split} \mathcal{G} &:= \frac{\text{Matrix element}}{\text{Level spacing}} = \frac{\langle b', s' | H_{\text{BS}} | b, s \rangle}{\delta/2} \\ &\sim \frac{\mathsf{g} \times \sqrt{\mathsf{v}(\omega)} \times \sqrt{\delta}}{\delta/2}, \qquad \omega = \mathsf{E}_{\mathsf{b}'} + \mathsf{E}_{\mathsf{s}'} - \mathsf{E}_{\mathsf{b}} - \mathsf{E}_{\mathsf{s}} \end{split}$$

 $\mathcal{G} \ll 1$: product structure approximatively preserved

 $\mathcal{G} \gg 1$: hybridization, the spin gets 'thermalized'

III. Energy conservation

States only hybridize within some energy window

$$|\mathsf{E}_\mathsf{B} + \mathsf{E}_\mathsf{S} - \mathsf{E}| ~\lesssim~ w$$

Fermi Golden Rule:

$$w~\sim~g^2\,v(2h)$$

Upper bound on w can be justified through Feshbach formula

III. Energy conservation (pictorially)

Cartoon for the eigenstates of H

Some refinements will be needed later...

E.g.: bath with 11 spins

New structure factors

- Crucial to iterate the procedure
- We distinguish between bath / spin operators

Common to both: ETH on the **full** Hilbert space:

Bath operator

In first approximation, structure factors do not change

!!! Dimension is **twice** as big as without extra spin:

The bath is now 'closer to being an ideal bath'

Bath operator (refinement)

This cannot be precisely true... Structure factors have a dynamical meaning:

$$\mathbf{v}(\omega) = \int \mathrm{dt} \, \mathbf{e}^{-\mathbf{i}\omega\mathbf{t}} \langle \sigma_{\mathbf{i}}(\mathbf{t})\sigma_{\mathbf{i}} \rangle_{\beta(\mathsf{E})}$$

Convergence to equilibrium of a bath operator is (weakly) affected by the (weakly) coupled spin.

The back-reaction from the spin to the bath can be estimated. It leads to a 'small' correction. Debated issue!

Spin operator

The structure factor exhibits strong frequency dependence

Coupling a second spin

New Bath +
$$spin_2$$
 = $Bath + spin_1$ + $spin_2$

Coupling is suppressed due to frequency mismatch:

$$\begin{split} |E(b')+E(s_2)-E| \ \lesssim \ w \\ w \ \sim \ g^2 v(2h_2) \quad (v: \ \text{structure factor of spin 1}) \end{split}$$

Structure factor of the second spin

Much more narrow than that of the first spin:

(from estimates on the tails of the structure factor of spin 1)

How far does this go (d=1)?

This process stops when the width of the structure factors becomes of the order of the level spacing

With **n** extra spins: width: $(g/W)^n =: e^{-n/\xi}$ level spacing: $2^{-(\ell_B + n)}$

The size of the boundary region is thus given by

$$\mathsf{n} = \frac{\log 2}{\xi^{-1} - \log 2} \, \times \, \ell_{\mathsf{B}}$$

provided that

$$\xi < (\log 2)^{-1}$$

And for d > 1?

We imagine coupling layers of spins:

When **n** layers are coupled:

Width of the structure factors: $(g/W)^n =: e^{-n/\xi}$

Level spacing: $2^{-(\ell_B+n)^2}$ 2 = d

If $\ell_B > \frac{I}{4\xi \log 2}$, the hybridization process never stops!

See also Nandkishore et al., PRB 90, 2014

Very long time scales for thermalization

Transport due to this mechanism is astronomically reduced as the bare localization length is sent to 0!

Concrete measurement: IPRs

- Peaks in the structure factors reduce the dimension on the space on which a local operator acts effectively
- IPR: parameter to quantify this effective dimension

Fix an energy **E**:

$$IPR(O_i) \ := \ -\log \sum_{E'} |\langle E' | O_i | E \rangle|^4$$

Numerics for IPRs

Localized spins already diagonalized (LIOMs): No interaction among themselves, only bath-spin interaction via tails

H_B : Bath hamiltonian (RM or ergodic)

 $g_i = 0.2 \times (0.75)^i$

 $0.5\ <\ h_i\ <\ 1.5\quad (random)$

IPRs for operators in the bath

IPRs for spin operators

Theory predicts linear decrease of IPR outside the bath

Universal features of thermalization

Thermalization of an external spin by three different baths:

To compare them, replace $\mathbf{g} = \frac{\text{Matrix element}}{\text{Level spacing}}$

Universal feature of thermalization

Conclusions

- Qualitative description of the boundary region bath / MBL
- Quantitative description through a simple parameter (IPR)
- Universal features of thermalization
- (In)stability of MBL in d>1 or with 'long range' hopping ?

See W. De Roeck, F. Huveneers, arXiv:1608.01815