Slow or no heating in many-body quantum systems

François Huveneers

Joint work with

Dmitry Abanin (Geneva)

Wojciech De Roeck (Leuven)

Raphael Ducatez (Paris)

Wen Wei Ho (Geneva)

Ergodicity breaking: Ping-pong (... Fermi acceleration)

Ergodicity breaking:

$$E(t) < E_{max}, \quad S(t) < S_{max}$$

(See e.g. D. Dolgopyat and J. De Simoi)

Ergodicity:

$$E(t) \sim t, \quad S(t) \to \infty$$

Ergodicity breaking: many-body quantum systems

Overall question:

Similar dichotomy in many-body quantum systems?

Outline of the talk

- Define 'ergodicity breaking'
- Linear response
- Beyond linear response: pre-thermalization in ergodic systems
- Beyond linear response: true ergodicity breaking in MBL systems

4/29

High frequency driving in many-body physics

Time dependent Hamiltonian:

$$H(t) = H^{(0)} + gV(t),$$
 $V(t+T) = V(t),$

where $H^{(0)}$ and V are sum of local terms

E.g.: Spin chain with $V(t) = f(t)\overline{V}$

$$H^{(0)} = \sum_{i \in \Lambda} h_i \sigma_i^{(z)} + J_i \sigma_i^{(z)} \sigma_{i+1}^{(z)}, \qquad \overline{V} = \sum_{i \in \Lambda} \sigma_i^{(x)} \sigma_{i+1}^{(x)}$$

What means "heating up to infinite temperature?"

Define an effective (= Floquet) Hamiltonian H_{eff}

$$U(t_0, t_0 + T) = e^{-iH_{eff}T}$$

Two cases in the thermodynamic limit $\Lambda \to \infty$:

• H_{eff} is itself a sum of (quasi)-local terms:

$$H_{\mathit{eff}} = \sum_{i \in \Lambda} H_{\mathit{eff},i}$$

 H_{eff} makes sense in the limit $\lambda \to \infty$, Ergodicity breaking: existence of an effective conserved quantity

• H_{eff} has no structure:

 H_{eff} makes no sense in the limit $\Lambda \to \infty$, Heating up to infinite temperature (= maximal entropy)

L. D'Alessio and A. Polkovnikov, Ann. of Phys. 333, 2013

Try to settle the issue via BHC expansion

E.g.: Switch protocol

$$U(0,T) = U(0,T/2)U(T/2,T) = e^{-iH_1T/2}e^{-iH_2T/2}$$
$$= \exp\left\{-i\left(\frac{H_1 + H_2}{2}T - i[H_1, H_2]\frac{T^2}{2} + \mathcal{O}(T^3)\right)\right\}$$

This *suggests* (ε local energy scale):

- $T\varepsilon \ll 1$: one may expand in powers of T: ergodicity breaking.
- $T\varepsilon \gtrsim 1$: no effective Hamiltonian as $\Lambda \to 0$: ergodicity

Is this correct?

Asside remark: forced pendulum

Time-dependent one-body classical system

$$H(t) = \frac{p^2}{2m} - m\Omega^2 \cos \phi - g \cos(\phi - \omega t)$$
 rotations
$$\int_{\sqrt{2}m\Omega}^{p} \cos(d\phi - \omega t)$$
 ergodic trajectories within the stochastic layer

(figure from D. Basko)

|Stochastic layer|
$$\sim \frac{g}{\Omega} e^{-\omega/\Omega}$$
, $\omega = \frac{2\pi}{T} \to \infty$

Free systems: BHC is OK!

Energy absorption remains bounded if

$$\omega = \frac{2\pi}{T} > W$$
 single particle bandwidth

Why? Linear response \sim Golden rule (V_i on site i)

$$\Gamma_{\beta}^{ii}(\omega) = g^2 \sum_{\eta,\eta'} e^{-\beta E_{\eta}} |\langle \eta' | V_i | \eta \rangle|^2 \delta(E_{\eta} - E_{\eta'} - \omega)$$

Interacting systems: BHC is an asymptotic expansion

Why? Linear response again:

$$\Gamma^{ii}_{\beta}(\omega) = \sum_{\eta,\eta'} e^{-\beta E_{\eta}} |\langle \eta' | V_i | \eta \rangle|^2 \delta(E_{\eta} - E_{\eta'} - \omega)$$

Imagine N spins satisfying the Eigenstate Thermalization Hypothesis (ETH):

$$|\langle \eta' | V_i | \eta \rangle|^2 \sim rac{\mathrm{e}^{-|E_{\eta'}-E_{\eta}|/arepsilon}}{2^N}$$

(in the middle of the band). Hence

$$\Gamma_{\beta}^{ii}(\omega) \sim e^{-\omega/\varepsilon}$$

N spins with local interactions

Remark: exponential decay comes from locality

Why? You need to modify the configuration in $\mathcal{O}(\varepsilon/\omega)$ sites around *i* to modify the energy by an amount of order ω :

$$\begin{split} \langle \eta' | V_i | \eta \rangle &= \frac{\langle \eta' | [H, V_i] | \eta \rangle}{E_{\eta'} - E_{\eta}} = \dots = \frac{\langle \eta' | [H, [H, \dots, [H, V_i]] | \eta \rangle}{(E_{\eta'} - E_{\eta})^n} \\ &\sim \frac{n! \varepsilon^n}{\omega^n} \sim \mathrm{e}^{-\omega/\varepsilon} \quad \text{(optimize over } n\text{)}. \end{split}$$

We derive analytical bounds in linear response for $V(t) = \sum_{i} V_i(t)$:

$$\Gamma(\omega) \lesssim |\Lambda| e^{-\omega/\varepsilon}$$

See D. Abanin, W. De Roeck, F. H., W. W. Ho, PRL 115.

Remark: The bound is not always optimal; e.g. Araki analyticity in d=1 guarantees faster than exponential decay.

Moving to the rotating frame

We want to go beyond linear response! Floquet representation:

$$U(t_0, t) = P(t)e^{-iH_{eff}t}$$
, with $P(t+T) = P(t)$, $P(t)$ unitary.

Analogy with diagonalization:

• Diagonalize H(static): find a base change U such that

$$U^{\dagger}HU=H_{diag}.$$

• Find H_{eff} : find a rotating frame P(t) such that

$$P^{\dagger}(t)\Big(H(t)-\mathrm{i}rac{\mathrm{d}}{\mathrm{d}t}\Big)P(t)=H_{eff}.$$

Very useful: P(t) can be constructed perturbatively/iteratively (inspiration: Imbrie's work on MBL)

The rotating frame in three examples

- Quasi-conserved quantities in ergodic driven systems: H_{eff} is nor perturbative nor interesting (no locality), Some 'asymptotic' $\widetilde{H}_{eff}(t)$ is much more useful!
- Quasi-conserved quantities in non-driven systems:
 Singlons and doublons in the Fermi-Hubbard model.
- ③ True effective conserved quantity in MBL systems: ETH is violated (previous reasoning does not apply). "Locally, MBL system remains finite-dimensional as $\Lambda \to \infty$ ". True H_{eff} (sum of local terms) if ω/ε is high enough.

1. Quasi-conserved quantities in driven systems (I)

We remind the set-up: we take the Hamiltonian

$$H(t) = H^{(0)} + gV(\omega t), \quad H^{(0)} = \sum_{i \in \Lambda} H_i^{(0)}, \quad V(\omega t) = \sum_{i \in \Lambda} V_i(\omega t)$$

We assume that the frequency is high

$$g/\omega \ll 1$$
, $\varepsilon/\omega \ll 1$.

We try to find a periodic unitary $P(\omega t)$ that preserves locality so that

$$P^{\dagger}(\omega t)\Big(H(\omega t) - \mathrm{i} \frac{\mathrm{d}}{\mathrm{d}t}\Big)P(\omega t) = \widetilde{H}_{eff}(\omega t).$$

1. Quasi-conserved quantities in driven systems (II)

We look for periodic $P(\omega t)$ of the form

$$P(\omega t) = e^{-i\frac{g}{\omega}A(\omega t)}, \qquad A(\omega t) = \sum_{i \in \Lambda} A_i(\omega t).$$

• Locality:

$$P^{\dagger}(\omega t)O_{i}P(\omega t) = \sum_{A\supset\{i\}} O_{A}(\omega t), \quad \|O_{A}(\omega t)\| \le \varepsilon e^{-|A|/\ell_{0}}$$

• Choose A(t) properly:

$$P^{\dagger}(t)\Big(H(t) - i\frac{\mathrm{d}}{\mathrm{d}t}\Big)P(t) = H^{(0)} + gV(\omega t) + g\frac{\mathrm{d}A}{\mathrm{d}t}(\omega t) + \mathcal{O}(g/\omega)(\varepsilon + g)$$
Choose A to cancel this part
$$OK: g/\omega \ll 1$$

We take

$$A_i(\omega t) = \int_0^{\omega t} \mathrm{d}s \, V_i(s)$$

1. Quasi-conserved quantities in driven systems (III)

Iterate this procedure *n* times... but not at infinitum! Trade-off:

- Taking *n* large, the time-dependent part becomes $(g/\omega)^n \ll 1$,
- Taking n large, $A_i^{(n)}$ are on n sites, and combinatorial factors n! pop out.

Upshot: We have constructed quasi-conserved quantity \widetilde{H}_{eff} such that, for all stroboscopic times kT,

$$\left\| U^\dagger(kT) \widetilde{H}_{\mathit{eff}} U(kT) - \widetilde{H}_{\mathit{eff}} \right\| \leq C \cdot |\Lambda| \cdot kT \cdot g \mathrm{e}^{-\omega/\varepsilon},$$

and \widetilde{H}_{eff} is extensive and of the form

$$\widetilde{H}_{e\!f\!f} = \sum_{i \in \Lambda} \widetilde{H}_{e\!f\!f,i}.$$

Example of use: Driven system coupled to a bath

$$H(t) = H_{S}(t) + H_{B} + g_{BS}H_{BS}$$

Q: Does the system reach a thermal ensemble? Which one?

A: assume that

$$g_{\rm BS} \gg g {\rm e}^{-\omega/\varepsilon}$$
,

then the system equilibrates to a state close to the Gibbs state

$$\frac{\mathrm{e}^{-\beta_{\mathrm{B}}\widetilde{H}_{\mathit{eff}}}}{Z}, \qquad \beta_{\mathrm{B}} = (\mathrm{bath\ temperature})^{-1}$$

Why? Timescale for thermalization is g_{BS}^{-1}

2. Fermi-Hubbard model (I)

Similar phenomenon in non-driven systems, e.g.

$$H = U \sum_{i} n_{i\uparrow} n_{i\downarrow} + \tau \sum_{i} \left(a_{i}^{\dagger} a_{i+1} + a_{i} a_{i+1}^{\dagger} \right)$$

Particles come in singlons or doublons:

Very hard to create/destroy a doublon in the strongly interacting regime

$$U/\tau \gg 1$$

because of the big energy mismatch $\Delta E = U \gg \tau$.

2. Fermi-Hubbard model (II)

Three exactly conserved quantities:

$$H, \qquad N_{\uparrow} = \sum_{i} a^{\dagger}_{i \uparrow} a_{i \uparrow}, \qquad N_{\downarrow} = \sum_{i} a^{\dagger}_{i \downarrow} a_{i \downarrow}.$$

We exhibit an extra approximately conserved, extensive, quantity

$$\mathcal{N}_D = \sum_i \mathcal{N}_{D,i}$$

("dressed" number of doublons) such that

$$\frac{1}{\Lambda} \| \mathbf{e}^{-\mathbf{i}Ht} \mathcal{N}_D \mathbf{e}^{\mathbf{i}Ht} - \mathcal{N}_D \| \le C \cdot t \cdot \tau \mathbf{e}^{-U/\tau}$$

Same method: successive transformations to eliminate the terms in the Hamiltonian responsible for non-conservation of doublons.

See also N. Strohmaier et al., PRL 104, R. Sensarma et al., PRB 82, A & A

3. MBL systems (I)

1-*d* disorder spin chain as a typical example:

$$H^{(0)} = \sum_{i} \left(h_i \sigma_i^{(z)} + J \sigma_i^z \sigma_{i+1}^{(z)} + \tau_i \sigma_i^{(x)} \right)$$

Described by a full set of local integrals of motion (LIOMs):

$$H = \sum_{i} J_{i} \tau_{i}^{(z)} + \sum_{i < j} J_{i,j} \tau_{i}^{(z)} \tau_{j}^{(z)} + \sum_{i < j < k} J_{i,j,k} \tau_{i}^{(z)} \tau_{j}^{(z)} \tau_{k}^{(z)} + \dots$$

with

$$[\tau_i^{(z)}, \tau_i^{(z)}] = 0, \qquad |J_{i_1, \dots, i_n}| \lesssim e^{-(i_n - i_1)/\xi}.$$

3. MBL systems (II)

Previous argument for heating up invalidated!

For the local perturbation $V_i(t)$, only a finite number of levels to match with ω .

Upshot: If

$$g/W \ll 1, \qquad g/\omega \ll 1,$$

then

$$H_{e\!f\!f} = \sum_i H_{e\!f\!f,i}$$

is well defined as $\Lambda \to \infty$ and is itself MBL.

3. MBL and linear response

For MBL systems, linear response and Floquet regime are different:

Linear response:

• Free systems (Anderson insulator): Mott law for the AC conductivity:

$$\sigma(\omega) \sim \omega^2 > 0$$
 as $\omega \to 0$.

• Generalization to interacting MBL systems (S. Gopalakrishnan et al., PRB 92):

$$\sigma(\omega) \sim \omega^{\alpha} > 0$$
 as $\omega \to 0$.

What happend?

- $\sigma(\omega)$ is computed in equilibrium
- For ergodic systems, equilibrium is preserved upon heating up
- MBL systems go out of equilibrium after a transient time

Linear response Floquet regime t

Rotating frame for MBL systems (I)

We want more than an asymptotic expansion; we need to improve the scheme

• Ergodic systems: $1/\omega$ expansion in disguise:

$$1 \rightsquigarrow 1/\omega \rightsquigarrow 1/\omega^2 \rightsquigarrow \ldots \rightsquigarrow 1/\omega^n$$
.

• MBL systems: Renormalization Group approach:

$$g \rightsquigarrow (g/\delta E)g \rightsquigarrow (g/\Delta E)^{2^2-1}g \rightsquigarrow \ldots \rightsquigarrow (g/\Delta E)^{2^n-1}g \rightsquigarrow \ldots$$

It turns out that

- Allows to overcome combinatorial problems (aka KAM scheme, Imbrie's schme)
- Possible thanks to the MBL structure of the eigenstates of $H^{(0)}$.

Rotating frame for MBL systems (II)

Again try $P(\omega t)$ of the form

$$P(\omega t) = e^{-gA(\omega t)}, \qquad A(\omega t) = \sum_{i \in \Lambda} A_i(\omega t).$$

and expand

$$P^{\dagger}(t)\left(H(t) - i\frac{\mathrm{d}}{\mathrm{d}t}\right)P(t) = H^{(0)} + gV(\omega t) + g[V(t), H^{(0)}] + g\omega\frac{\mathrm{d}A}{\mathrm{d}t}(\omega t) + \mathcal{O}(g/\min\{\omega, W\})g.$$

We can now take A to cancel the whole expression in red:

$$\langle \eta' | \hat{A}(k) | \eta \rangle = \frac{\langle \eta' | \hat{V}(k) | \eta \rangle}{\Delta E_{\eta,\eta'}^{(0)} + 2\pi k \omega}$$

where η , η' are eigenstates of $H^{(0)}$. This expression is fine since

- We assumed $g \ll \omega$ and $g \ll W$.
- $\langle \eta' | V_i | \eta \rangle$ is very small unless η and η' differ only on a few LIOMs near point i.

Consider the protocol where we switch between two Hamiltonians

$$U(0,T) = e^{-iH_0T_0}e^{-iH_1T_1}$$

with

$$H_0 = \sum_{i} \left(h_i \sigma_i^{(z)} + J_z \sigma_i^{(z)} \sigma_{i+1}^{(z)} \right), \quad H_1 = J_x \sum_{i} \left(\sigma_i^{(x)} \sigma_{i+1}^{(x)} + \sigma_i^{(y)} \sigma_{i+1}^{(y)} \right)$$

We look at several signatures for MBL

1. Level statistics. Sort the quasi-energy levels $\theta_i \in [0, 2\pi)$ by increasing order and consider

$$r = \frac{\min\{\delta_i, \delta_{i+1}\}}{\max \delta_i, \delta_{i+1}}, \qquad \delta_i = \theta_{i+1} - \theta_i.$$

- Poisson statistics (no level repulsion \sim MBL): $r \simeq 0.38$.
- GOE statistics (level repulsion \sim ergodic phase): $r \simeq 0.53$

MBL persists at "high frequency" (small T_1).

(from P. Ponte, Z. Papic, F. H. and D. Abanin, PRL 114)

2. Entanglement entropy:

• Split the system into two halfs: $\Lambda = A \cup B$

- Take a eigenstate $|\psi\rangle$
- Trace over half of the space: $\rho_B = \text{Tr}_A(|\psi\rangle\langle\psi|)$
- Compute the entropy of ρ_B :

$$S_A = -\mathrm{Tr}(\rho_B \log \rho_B).$$

Look then at S_A in function of the system size L:

- Ergodic phase \sim Volume law: $S_A(L) \sim L$ (in d=1)
- MBL phase \sim Area law: $S_A(L) \sim 1 \text{ (in } d = 1)$

Area law at small T_1 , volume law at large T_1

(from P. Ponte, Z. Papic, F. H. and D. Abanin, PRL 114)

Conclusions

- Heating up to an infinite temperature state can generically (i.e. for ergodic systems) not be avoided.
- However, generically there exists a broad interesting transient regime of pre-thermalization.
- Many-Body Localized system are exceptional in that respect; ergodicity breaking at high frequency.