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Ergodicity breaking: Ping-pong (... Fermi acceleration)
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Periodic player

Ergodicity breaking:

E(t) < Emax, S(t) < Smax

(See e.g. D. Dolgopyat and J. De Simoi)

Hectic player

Ergodicity:

E(t) ∼ t, S(t)→∞



Ergodicity breaking: many-body quantum systems

Overall question:

Similar dichotomy in many-body quantum systems?

Outline of the talk

Define ‘ergodicity breaking’

Linear response

Beyond linear response: pre-thermalization in ergodic systems

Beyond linear response: true ergodicity breaking in MBL systems
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High frequency driving in many-body physics
Time dependent Hamiltonian:

H(t) = H(0) + gV(t), V(t + T) = V(t),

where H(0) and V are sum of local terms

E.g.: Spin chain with V(t) = f (t)V

f (t)

tT 2T

H(0) =
∑
i∈Λ

hiσ
(z)
i + Jiσ

(z)
i σ

(z)
i+1, V =

∑
i∈Λ

σ
(x)
i σ

(x)
i+1
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What means “heating up to infinite temperature?”
Define an effective (= Floquet) Hamiltonian Heff

U(t0, t0 + T) = e−iHeff T

Two cases in the thermodynamic limit Λ→∞:

Heff is itself a sum of (quasi)-local terms:

Heff =
∑
i∈Λ

Heff ,i

Heff makes sense in the limit λ→∞,
Ergodicity breaking: existence of an effective conserved quantity

Heff has no structure:
Heff makes no sense in the limit Λ→∞,
Heating up to infinite temperature (= maximal entropy)

L. D’Alessio and A. Polkovnikov, Ann. of Phys. 333, 2013
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Try to settle the issue via BHC expansion
E.g.: Switch protocol

H1

H2

H1

H2

t

U(0,T) = U(0,T/2)U(T/2,T) = e−iH1T/2e−iH2T/2

= exp
{
− i
(H1 + H2

2
T − i[H1,H2]

T2

2
+O(T3)

)}
This suggests (ε local energy scale):

Tε� 1: one may expand in powers of T: ergodicity breaking.

Tε & 1: no effective Hamiltonian as Λ→ 0: ergodicity

Is this correct?
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Asside remark: forced pendulum
Time-dependent one-body classical system

H(t) =
p2

2m
− mΩ2 cosφ− g cos(φ− ωt)

(figure from D. Basko)

|Stochastic layer| ∼ g
Ω

e−ω/Ω, ω =
2π
T
→∞
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Free systems: BHC is OK!

Energy absorption remains bounded if

ω =
2π
T
> W

frequency single particle bandwidth

Why? Linear response ∼ Golden rule (Vi on site i)

Γii
β(ω) = g2

∑
η,η′

e−βEη |〈η′|Vi|η〉|2δ(Eη − Eη′ − ω)

W
ω

François Huveneers (CEREMADE) Baltimore, APS March meeting 2016 9 / 29



Interacting systems: BHC is an asymptotic expansion
Why? Linear response again:

Γii
β(ω) =

∑
η,η′

e−βEη |〈η′|Vi|η〉|2δ(Eη − Eη′ − ω)

Imagine N spins satisfying the Eigenstate Thermalization Hypothesis (ETH):

|〈η′|Vi|η〉|2 ∼
e−|Eη′−Eη |/ε

2N

(in the middle of the band). Hence

Γii
β(ω) ∼ e−ω/ε

N spins with local interactions
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Remark: exponential decay comes from locality

Why? You need to modify the configuration in O(ε/ω) sites around i to
modify the energy by an amount of order ω:

〈η′|Vi|η〉 =
〈η′|[H,Vi]|η〉

Eη′ − Eη
= · · · = 〈η

′|[H, [H, . . . , [H,Vi]]|η〉
(Eη′ − Eη)n

∼ n!εn

ωn ∼ e−ω/ε (optimize over n).

We derive analytical bounds in linear response for V(t) =
∑

i Vi(t):

Γ(ω) . |Λ|e−ω/ε

See D. Abanin, W. De Roeck, F. H., W. W. Ho, PRL 115.

Remark: The bound is not always optimal; e.g. Araki analyticity in d = 1
guarantees faster than exponential decay.
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Moving to the rotating frame
We want to go beyond linear response! Floquet representation:

U(t0, t) = P(t)e−iHeff t, with P(t + T) = P(t), P(t) unitary.

Analogy with diagonalization:

Diagonalize H(static) : find a base change U such that

U†HU = Hdiag.

Find Heff : find a rotating frame P(t) such that

P†(t)
(

H(t)− i
d
dt

)
P(t) = Heff .

Very useful: P(t) can be constructed perturbatively/iteratively
(inspiration: Imbrie’s work on MBL)
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The rotating frame in three examples

1 Quasi-conserved quantities in ergodic driven systems:
Heff is nor perturbative nor interesting (no locality),

Some ‘asymptotic’ H̃eff (t) is much more useful!

2 Quasi-conserved quantities in non-driven systems:
Singlons and doublons in the Fermi-Hubbard model.

3 True effective conserved quantity in MBL systems:
ETH is violated (previous reasoning does not apply).
“Locally, MBL system remains finite-dimensional as Λ→∞”.
True Heff (sum of local terms) if ω/ε is high enough.
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1. Quasi-conserved quantities in driven systems (I)

We remind the set-up: we take the Hamiltonian

H(t) = H(0) + gV(ωt), H(0) =
∑
i∈Λ

H(0)
i , V(ωt) =

∑
i∈Λ

Vi(ωt)

We assume that the frequency is high

g/ω � 1, ε/ω � 1.

We try to find a periodic unitary P(ωt) that preserves locality so that

P†(ωt)
(

H(ωt)− i
d
dt

)
P(ωt) = H̃eff (ωt).
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1. Quasi-conserved quantities in driven systems (II)
We look for periodic P(ωt) of the form

P(ωt) = e−i g
ω

A(ωt), A(ωt) =
∑
i∈Λ

Ai(ωt).

Locality:

P†(ωt)OiP(ωt) =
∑

A⊃{i}

OA(ωt), ‖OA(ωt)‖ ≤ εe−|A|/`0

Choose A(t) properly:

P†(t)
(

H(t)− i
d
dt

)
P(t) = H(0) + gV(ωt) + g

dA
dt

(ωt) +O(g/ω)(ε+ g)

Choose A to cancel this part
OK: g/ω � 1

We take

Ai(ωt) =

∫ ωt

0
ds Vi(s)
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1. Quasi-conserved quantities in driven systems (III)

Iterate this procedure n times... but not at infinitum! Trade-off:

Taking n large, the time-dependent part becomes (g/ω)n � 1,

Taking n large, A(n)
i are on n sites, and combinatorial factors n! pop out.

Upshot: We have constructed quasi-conserved quantity H̃eff such that, for all
stroboscopic times kT ,∥∥U†(kT)H̃eff U(kT)− H̃eff

∥∥ ≤ C · |Λ| · kT · ge−ω/ε,

and H̃eff is extensive and of the form

H̃eff =
∑
i∈Λ

H̃eff ,i.
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Example of use: Driven system coupled to a bath

H(t) = HS(t) + HB + gBSHBS

Q: Does the system reach a thermal ensemble? Which one?

A: assume that
gBS � ge−ω/ε,

then the system equilibrates to a state close to the Gibbs state

e−βBH̃eff

Z
, βB = (bath temperature)−1

Why? Timescale for thermalization is g−1
BS
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2. Fermi-Hubbard model (I)

Similar phenomenon in non-driven systems, e.g.

H = U
∑

i

ni↑ni↓ + τ
∑

i

(
a†i ai+1 + aia

†
i+1

)
Particles come in singlons or doublons:

Very hard to create/destroy a doublon in the strongly interacting regime

U/τ � 1

because of the big energy mismatch ∆E = U � τ.
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2. Fermi-Hubbard model (II)
Three exactly conserved quantities:

H, N↑ =
∑

i

a†i↑ai↑, N↓ =
∑

i

a†i↓ai↓.

We exhibit an extra approximately conserved, extensive, quantity

ND =
∑

i

ND,i

(“dressed” number of doublons) such that

1
Λ
‖e−iHtNDeiHt −ND‖ ≤ C · t · τe−U/τ

Same method: successive transformations to eliminate the terms in the
Hamiltonian responsible for non-conservation of doublons.

See also N. Strohmaier et al., PRL 104, R. Sensarma et al., PRB 82, . . .
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3. MBL systems (I)

1-d disorder spin chain as a typical example:

H(0) =
∑

i

(
hiσ

(z)
i + Jσz

iσ
(z)
i+1 + τiσ

(x)
i

)
Described by a full set of local integrals of motion (LIOMs):

H =
∑

i

Jiτ
(z)
i +

∑
i<j

Ji,jτ
(z)
i τ

(z)
j +

∑
i<j<k

Ji,j,kτ
(z)
i τ

(z)
j τ

(z)
k + . . .

with
[τ

(z)
i , τ

(z)
j ] = 0, |Ji1,...,in | . e−(in−i1)/ξ.
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3. MBL systems (II)

Previous argument for heating up invalidated!

ω

For the local perturbation Vi(t), only a finite number of levels to match with ω.

Upshot: If
g/W � 1, g/ω � 1,

then
Heff =

∑
i

Heff ,i

is well defined as Λ→∞ and is itself MBL.
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3. MBL and linear response
For MBL systems, linear response and Floquet regime are different:

Linear response:
Free systems (Anderson insulator): Mott law for the AC conductivity:

σ(ω) ∼ ω2 > 0 as ω → 0.

Generalization to interacting MBL systems (S. Gopalakrishnan et al., PRB 92):

σ(ω) ∼ ωα > 0 as ω → 0.

What happend?
σ(ω) is computed in equilibrium
For ergodic systems, equilibrium is preserved upon heating up
MBL systems go out of equilibrium after a transient time

Linear response Floquet regime
t
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Rotating frame for MBL systems (I)

We want more than an asymptotic expansion; we need to improve the scheme

Ergodic systems: 1/ω expansion in disguise:

1  1/ω  1/ω2  . . .  1/ωn.

MBL systems: Renormalization Group approach:

g  (g/δE)g  (g/∆E)22−1g  . . .  (g/∆E)2n−1g  . . .

It turns out that

Allows to overcome combinatorial problems (aka KAM scheme,
Imbrie’s schme)

Possible thanks to the MBL structure of the eigenstates of H(0).
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Rotating frame for MBL systems (II)
Again try P(ωt) of the form

P(ωt) = e−gA(ωt), A(ωt) =
∑
i∈Λ

Ai(ωt).

and expand

P†(t)
(

H(t)− i
d
dt

)
P(t) =H(0) + gV(ωt) + g[V(t),H(0)] + gω

dA
dt

(ωt)

+O(g/min{ω,W})g.

We can now take A to cancel the whole expression in red:

〈η′|Â(k)|η〉 =
〈η′|V̂(k)|η〉

∆E(0)
η,η′ + 2πkω

where η, η′ are eigenstates of H(0). This expression is fine since
We assumed g� ω and g� W.
〈η′|Vi|η〉 is very small unless η and η′ differ only on a few LIOMs near
point i.

François Huveneers (CEREMADE) Baltimore, APS March meeting 2016 24 / 29



Numerical results on MBL systems
Consider the protocol where we switch between two Hamiltonians

U(0,T) = e−iH0T0e−iH1T1

with

H0 =
∑

i

(
hiσ

(z)
i + Jzσ

(z)
i σ

(z)
i+1

)
, H1 = Jx

∑
i

(
σ

(x)
i σ

(x)
i+1 + σ

(y)
i σ

(y)
i+1

)
We look at several signatures for MBL

1. Level statistics. Sort the quasi-energy levels θi ∈ [0, 2π) by increasing
order and consider

r =
min{δi, δi+1}
max δi, δi+1

, δi = θi+1 − θi.

Poisson statistics (no level repulsion ∼MBL): r ' 0.38.
GOE statistics (level repulsion ∼ ergodic phase): r ' 0.53
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Numerical results on MBL systems

MBL persists at “high frequency” (small T1).

(from P. Ponte, Z. Papic, F. H. and D. Abanin, PRL 114)
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Numerical results on MBL systems

2. Entanglement entropy:

Split the system into two halfs: Λ = A ∪ B

A B
Λ

Take a eigenstate |ψ〉
Trace over half of the space: ρB = TrA(|ψ〉〈ψ|)
Compute the entropy of ρB:

SA = −Tr(ρB log ρB).

Look then at SA in function of the system size L:

Ergodic phase ∼ Volume law: SA(L) ∼ L (in d = 1)

MBL phase ∼ Area law: SA(L) ∼ 1 (in d = 1)
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Numerical results on MBL systems

Area law at small T1, volume law at large T1

(from P. Ponte, Z. Papic, F. H. and D. Abanin, PRL 114)
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Conclusions

Heating up to an infinite temperature state can generically (i.e. for
ergodic systems) not be avoided.

However, generically there exists a broad interesting transient regime of
pre-thermalization.

Many-Body Localized system are exceptional in that respect; ergodicity
breaking at high frequency.
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