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Ergodicity breaking: Ping-pong (... Fermi acceleration)

Periodic player Hectic player
VaVaVaN Al
Ergodicity breaking: Ergodicity:
E(t) < Emax, S(t) < Smax E(t) ~t, S(t)— o0

(See e.g. D. Dolgopyat and J. De Simoi)
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Ergodicity breaking: many-body quantum systems

Overall question:

Similar dichotomy in many-body quantum systems?

Outline of the talk
@ Define ‘ergodicity breaking’
@ Linear response
@ Beyond linear response: pre-thermalization in ergodic systems

@ Beyond linear response: true ergodicity breaking in MBL systems
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High frequency driving in many-body physics

Time dependent Hamiltonian:

HO) =H® +gv(), VE+T)=V(@),

where H® and V are sum of local terms

E.g.: Spin chain with V(1) = f(¢)V
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What means “heating up to infinite temperature?”’
Define an effective (= Floquet) Hamiltonian H,z

Ulty, to + T) = e HarT

Two cases in the thermodynamic limit A — oo:
@ H,y is itself a sum of (quasi)-local terms:
Heﬁ‘ = ZHe )
ieA

H . makes sense in the limit A — oo,
Ergodicity breaking: existence of an effective conserved quantity

@ H,y has no structure:
H r makes no sense in the limit A — oo,
Heating up to infinite temperature (= maximal entropy)

L. D’Alessio and A. Polkovnikoy, Ann. of Phys. 333, 2013
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Try to settle the issue via BHC expansion
E.g.: Switch protocol

H; H;

U(0,T) = U, T/2)U(T/2,T) = e hT/2g=itT/2

H, +H T?
= exp { - i(%T - i[Hl,H2]7 + (9(T3))}
This suggests (e local energy scale):

@ Te < 1: one may expand in powers of T ergodicity breaking.

@ Te 2 1: no effective Hamiltonian as A — 0: ergodicity

Is this correct?
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Asside remark: forced pendulum
Time-dependent one-body classical system

2
H(t) = 5— — mQ? cos ¢ — g cos(¢p — wi)
m
[
rotations JEmO

—VZm2

regular motion

ergodic trajectories survives
within
the stochastic layer (figure from D. Basko)
) _ 27
|Stochastic layer| ~ %e W/ W= oo
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Free systems: BHC is OK!
Energy absorption remains bounded if

2
w:—W>W

/ !
frequency

\ single particle bandwidth

Why? Linear response ~ Golden rule (V; on site i)

Tih(w) =g>> e B/ |Viln) S (E,) — Eyy — w)
n,n’

Wi —=
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Interacting systems: BHC is an asymptotic expansion

Why? Linear response again:

I (w Ze 0 (| Vilm) P8 (Ey — Eyy — w)
nn’

Imagine N spins satisfying the Eigenstate Thermalization Hypothesis (ETH):

e—|ET’/—En|/6

(0 |Vilm)|? N

(in the middle of the band). Hence

Fg(w) ~ eTw/e

L S o o o S o e L o

N spins with local interactions
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Remark: exponential decay comes from locality

Why? You need to modify the configuration in O(e/w) sites around i to
modify the energy by an amount of order w:

| Viln) = (' [[H,Villn) —_ (/|H, [H, ... [H,Vi]]n)
l - = g
E, —E, (Ey — Ep)"
|1
T el (optimize over n).

wl’l

We derive analytical bounds in linear response for V(1) = > . Vi(1):
Fw) S |Ale™/

See D. Abanin, W. De Roeck, F. H., W. W. Ho, PRL 115.

Remark: The bound is not always optimal; e.g. Araki analyticity ind = 1
guarantees faster than exponential decay.
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Moving to the rotating frame

We want to go beyond linear response! Floquet representation:

U(to,t) = P(r)e Hear’ | with P(t+T) = P(t), P(t) unitary.

Analogy with diagonalization:

o Diagonalize H(static) : find a base change U such that
UTHU = Hiag.

e Find H,y : find arotating frame P(r) such that

Pt (r) (H(t) - i%)P(r) = Hy.

Very useful: P(t) can be constructed perturbatively/iteratively
(inspiration: Imbrie’s work on MBL)
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The rotating frame in three examples

@ Quasi-conserved quantities in ergodic driven systems:
H,4 is nor perturbative nor interesting (no locality),

Some ‘asymptotic’ fleﬁc(t) is much more useful!

© Quasi-conserved quantities in non-driven systems:

Singlons and doublons in the Fermi-Hubbard model.

© True effective conserved quantity in MBL systems:
ETH is violated (previous reasoning does not apply).
“Locally, MBL system remains finite-dimensional as A — oo™’

True Hor (sum of local terms) if w /e is high enough.
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1. Quasi-conserved quantities in driven systems (I)

We remind the set-up: we take the Hamiltonian

H(t)=HO +gv(w), HO=3"H" V()= Vi(w)
ieA ieA

We assume that the frequency is high

glw << 1, g/w <L 1.

We try to find a periodic unitary P(wt) that preserves locality so that

PT((A}I) (H(w[) — 1%)1‘)(00[) = ﬁeﬁ
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1. Quasi-conserved quantities in driven systems (II)
We look for periodic P(wt) of the form

P(wr) = e AW - Afwr) = Ai(wr).

ieA
o Locality:
PT(wi)OiP(wt) = Y Oa(wt), [Oa(wt)|| < ee /%
AD{i}
@ Choose A(r) properly:
1 .d 0) dA
PHo(H() =i )PU) = HO + gV(wi) + g () + O(g/w) (= + 8)
Choose A to cancel this part / /

OK: g/w < 1
We take

Ai(wt) = /0 Vi)
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1. Quasi-conserved quantities in driven systems (I1I)

Iterate this procedure n times... but not at infinitum! Trade-off:

o Taking n large, the time-dependent part becomes (g/w)" < 1,

o Taking n large, AE") are on n sites, and combinatorial factors n! pop out.

Upshot: 'We have constructed quasi-conserved quantity FIeﬁc such that, for all
stroboscopic times kT,

|UT(KT)HogU(KT) — Hoy|| < C - |A| - KT - ge™/°,

and Fleﬁc is extensive and of the form

o= g,

ieA
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Example of use: Driven system coupled to a bath

H(t) = Hs(t) + Hp + gpsHgs

Pribpiies

Q: Does the system reach a thermal ensemble? Which one?

A: assume that
wfe

gBs > ge /T,

then the system equilibrates to a state close to the Gibbs state

e—ﬂBﬁeﬁ

Z Y

—1

fp = (bath temperature)

Why? Timescale for thermalization is ggsl
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2. Fermi-Hubbard model (I)

Similar phenomenon in non-driven systems, e.g.

H= UZ nphi + T Z (G,Tai+1 + aia;r+1)
i i

Particles come in singlons or doublons:

PN HA 8\

< 2 D s

Very hard to create/destroy a doublon in the strongly interacting regime

U/r>1

because of the big energy mismatch AE = U > 7.
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2. Fermi-Hubbard model (II)

Three exactly conserved quantities:

— T — T
H, Ny = Zaman, N, = Zaiiaw.
i i
We exhibit an extra approximately conserved, extensive, quantity

No =3 Np,

(“dressed” number of doublons) such that

1 . .
KHelet./\/’DelHt _ NDH <C-t Ter/T

Same method: successive transformations to eliminate the terms in the
Hamiltonian responsible for non-conservation of doublons.

See also N. Strohmaier et al., PRL 104, R. Sensarma et al.; PRB82, ...
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3. MBL systems (I)

1-d disorder spin chain as a typical example:
HO — Z (h @) + Jafal(ﬁl + Tial.(x))
i
Described by a full set of local integrals of motion (LIOMs):
H= ZJT(Z + ZJ,JT ) + Z Ji,j,kTi(z)G(z)T/Ez) +
i<j i<j<k

with
|<e” (in—i1) /€

| i1yeeeln
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3. MBL systems (II)

Previous argument for heating up invalidated!

For the local perturbation V;(), only a finite number of levels to match with w.

Upshot: If

gwW<l,  glu<kl,

I_Ieﬁr = ZHe N
i

is well defined as A — oo and is itself MBL.

then
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3. MBL and linear response

For MBL systems, linear response and Floquet regime are different:
Linear response:

o Free systems (Anderson insulator): Mott law for the AC conductivity:
o(w) ~w?>0 as w — 0.
@ Generalization to interacting MBL systems (S. Gopalakrishnan et al., PRB 92)

o(w) ~w*>0 as w— 0.
What happend?
@ o(w) is computed in equilibrium
@ For ergodic systems, equilibrium is preserved upon heating up

@ MBL systems go out of equilibrium after a transient time

Linear response | Floquet regime

Y
~
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Rotating frame for MBL systems (I)

We want more than an asymptotic expansion; we need to improve the scheme

e Ergodic systems: 1/w expansion in disguise:
1w 1w~ 1w? s s 1 W

@ MBL systems: Renormalization Group approach:

g ~ (8/0E)g ~ (8/AE)Y g ~ ..~ (g/AE)Y g s

It turns out that

@ Allows to overcome combinatorial problems (aka KAM scheme,
Imbrie’s schme)

@ Possible thanks to the MBL structure of the eigenstates of H(®).
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Rotating frame for MBL systems (II)
Again try P(wt) of the form

P(wt) = e 840 Awr) = Ay(wd).
i€A
and expand

PI0) (H(e) 15 )P() =HO + V() +glV(0), HO) + g ()

dr
+ O(g/ min{w, W})g.

We can now take A to cancel the whole expression in red:

ol — V@)

B AE;OT)I, + 2mkw

where 1), 1/’ are eigenstates of H(®). This expression is fine since
@ We assumed g < wand g < W.
e (n|Vi|n) is very small unless ) and 7’ differ only on a few LIOMs near
point .
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Numerical results on MBL systems
Consider the protocol where we switch between two Hamiltonians

U(0,T) = e~ HoTog =Ty
with
Hy = Z (h,'al»(z) + Jzal-(z)ai(_& , =Jx Z l(fr)l + U(y)0(+)1)
i
We look at several signatures for MBL

1. Level statistics. Sort the quasi-energy levels ; € [0, 27) by increasing
order and consider

min{éi, 5i+] }
= — 0; = 6i11 — 6;.
r max 5i’ 5i+l ) i i+1 i
@ Poisson statistics (no level repulsion ~ MBL): r ~ 0.38.

@ GOE statistics (level repulsion ~ ergodic phase): r ~ 0.53
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Numerical results on MBL systems
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MBL persists at “high frequency” (small 77).

(from P. Ponte, Z. Papic, F. H. and D. Abanin, PRL 114)
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Numerical results on MBL systems

2. Entanglement entropy:
@ Split the system into two halfs: A = AUB

A B

o Take a eigenstate |1))
@ Trace over half of the space: pp = Tra(|1)(¢])
o Compute the entropy of pp:

Sa = —Tr(pglog pa).
Look then at S4 in function of the system size L:

e Ergodic phase ~ Volume law:  S4(L) ~ L (ind = 1)
@ MBL phase ~ Area law: Sa(L) ~1(ind=1)
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Numerical results on MBL systems
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Area law at small T, volume law at large T

(from P. Ponte, Z. Papic, F. H. and D. Abanin, PRL 114)
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Conclusions

@ Heating up to an infinite temperature state can generically (i.e. for
ergodic systems) not be avoided.

e However, generically there exists a broad interesting transient regime of
pre-thermalization.

@ Many-Body Localized system are exceptional in that respect; ergodicity
breaking at high frequency.
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