
A mechanism for transport

in nearly MBL systems

François Huveneers

with

Wojciech De Roeck, Markus Müller, Mauro Schiulaz



Plan of the talk

1 MBL in translation invariant systems?
(no quenched disorder, “quantum glass”)

2 Strictly speaking, no:
delocalization through mobile ergodic spots

3 Are there many-body mobility edges
in quenched disordered systems?



Clean Many-Body systems with “frustrations”

Replace quenched disorder by state-dependent disorder

Typical classical configuration in a high temperature T state

Example of Hamiltonian: Bose-Hubbard

H =
∑

x

{
U(a+x ax)

2 + J (a+x ax+1 + h.c.)
}
, J/U� 1, T/U� 1

Could this system be possibly MBL at J 6= 0 ?



MBL in Bose-Hubbard?

First intuition: think all particles but one are frozen

blue particles are frozen, red particle moves

Bose-Hubbard for the red particle becomes

H =
∑

x

{
UNx |x〉〈x| + J

√
(Nx + 1)(Nx+1 + 1) (|x〉〈x + 1|+ h.c.)

}
with Nx: number of blue particles at x.

Anderson localization with discrete disorder for J/U� 1, T/U� 1.



Where do J/U� 1 and T/U� 1 come from?

Gibbs state 1
Z e−H/T implies Nx ∼

√
T/U.

First order transitions in J/U:

Perturbative regime (small hopping): J� U since

J
√

NxNx+1 ∼ J
√

T/U � ∆E0 ∼ U
√

T/U

Rare resonances: T � U since

P(resonance) = P(UNx = UNx+1) ∼ 1/
√

T/U � 1

No resonance: ∆E0 6= 0 Resonance: ∆E0 = 0



The analysis carries over to many-body physics
First order analysis in J/U stays the same:

No resonance:

22 + 22 6= 12 + 32

Resonance:

22 + 32 = 32 + 22

Asymptotic localization for a related model (De Roeck and Huveneers ’13):
(a+x ax)

2 → (a+x ax)
2+ε: temperature becomes the only relevant parameter,

Essentially: κ(U, J,T) ≤ Cn/Tn for all n > 1 as T →∞



Several (recent) works with a similar idea
Kagan and Maksimov (1984): Long range interactions
Rare resonances, frustrating effect on the dynamics

Carleo et al. (2012): Bose-Hubbard, starting with doubly occupied sites

Relaxation to equilibrium is much slowed down as J/U→ 0.

Schiulaz and Müller (2013): “Quantum glass”
Light particles act as a (dynamical) random environment on heavy ones

See also Grover and Fisher (2013)

Papic, Stoudenmire and Abanin (2015, see later),
Pino, Altshuler and Ioffe (2015), ...



The analysis was a bit too crude until now

Several caveats. In particular, resonances may travel along the system

Quenched disorder, deep localized phase: location of the resonances is fixed

H =
∑

i

{
εiσ

(z)
i + J(↑ ↓)i

}
εi−2 εi−1 εi ' εi+1 εi+2

Translation invariant: location of the resonances depends on the state

Resonant spot has changed place



We could play this game further
Strictly in d = 1, mobile resonant spots get eventually stuck

frozen mobile frozen

In d = 2, some spots become truly mobile
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1

The first order analysis depends very much on fine details. This is not robust.



Imperfect bath in quenched disordered systems
E.g.: spin chain for sites s ∈ Z2 with local interactions:

H =
∑
s∈Z2

{
εsσ

(z)
s + J(↑ ↓)s′∼s

}
, J� W.

Rare spot of size V where the disorder is weak: Proba(•) ∼ e−ρW V

Weak disorder:
Metal

Strong disorder:

Intermediate (?)

Strong disorder:

MBL



MBL survives to a fixed imperfect bath (see Imbrie ’14)

– Region of size V with anomalously low disorder: imperfect bath, ETH

Level spacing: ∆E ∼ 2−Vε0, extended eigenstates ψ in V

– Spins close to the bath, distance ` with ` log(W/J) . V: thermalization

〈ψ, ↑ |H|ψ′, ↓〉 ∼ 2−V/2J(J/W)` � 2−Vε0 ∼ ∆E (?)

For intermediate `, intermediate phase shows up (partial thermalization?)

– Spins far from the bath, d log(W/J)� V: MBL survives

� becomes � in (?)



In clean systems, localization is less robust

A resonant spot now appears because of a local fluctuation in the states

Diffusive spot

↓ Translation invariance ↓



“Diffusive spots move by absorbing/expelling bosons”
To visualize better, we consider the Bose-Hubbard Hamiltonian in d = 2:

H =
∑
s∈Z2

{
U(a+s as)

2 + J(a+s as′ + h.c.)
}
, J� U, U� T

Bubbles with very low density are thermal (like hard core bosons in d = 2)

Absorbing/expelling a boson into/from the spot is a resonant process

Similar ideas by Huse/Nandkishore



Hybridization of states with thermal spot at different places
Level spacing in the bubble:

∆E ∼ 1
N
ε0 with N = es(ρ)V

Take two bubble states ψ and Ψ with
ψ: bubble without the extra particle
Ψ: bubble with the extra particle

Assuming ETH in the bubble:

|〈Ψ|H|ψ〉|2 = 〈HΨ
(∣∣ψ〉〈ψ∣∣)HΨ〉 ∼ Trρ(|HΨ〉〈HΨ|) ∼

ε2
0
N

Take ψ whatever and select Ψ to minimize the energy difference:

|〈Ψ|H|ψ〉| ∼ ε0√
N
� ε0

N
∼ ∆E

The bubble can absorb a particle, it acts as a bath.



Could the bubble be just evanescent?
Entropically, the bubble is likely to get stuck quickly:

Good ergodic properties Bad ergodic properties

Gibbs state 1
Z e−H/T is invariant under dynamics.

One keeps finding good thermal bubbles all the time

Micro-reversibility of hamiltonian dynamics: if dynamics outside the
bubbles is localized, bubble eventually go back to initial state

As such, effect also found in stochastic dynamics for glasses (KCM)

This phenomenon should slow down (a lot) thermalization, not suppress it.



Could 〈Ψ|H|ψ〉 be suppressed by orthogonality catastrophe?

Neglecting terms in the Hamiltonian can have a drastic effect.

E.g.: quenched disordered single particle Hamiltonian

H =
∑
trees

Htree + J
∑

i

{
|i, 1〉〈i + 1, 1|+ h.c.

}
A finite tree (N branches) hanging at each node

(i− 1, 1) (i, 1) (i + 1, 1) (i + 2, 1)



Dressing the sites matters
Surprising effect when the energy bandwidthW in each tree is large. Take

Inside the tree (J = 0): ergodic

For nodes not dressed by trees (N = 1): delocalized (J/W > 1, d = 3)

Diagonalize inside each tree: states |i, α〉.
Coupling between states of neighboring trees: 〈i, α|V|i + 1, β〉 ∼ J/N

Level spacing: ∆E ∼ W/N withW bandwidth of each tree

We may now have localization: J/N �W/N for largeW (though J� W!)

Many-body case: intermediate states of the bubble could be like trees.
But it does not seem possible for this mechanism to be at work:

Available energy width: W ∼ Vε0 (V ∼ volume bubble)

Effective coupling/disorder: J/W ∼ ecV , c > 0.

see also From Anderson to Zeno by Huse et al. ‘14.



Do resonant transitions imply delocalization?
Not always: quantum percolation in 1-body physics

Giant percolation cluster C in Zd (p > pc: classical percolation threshold)

H =
∑

x,y∈C,x∼y

|x〉〈y| adjacency matrix on C

−1

0

1

Hψ = 0 “Tuning fork”

Very particular example (no mobility edges), also delocalized states (p > pc)



Some numerical results by Papic̀, Stoudenmire and Abanin

Nice, but to be frank, hard to invoke bubbles to understand this



Mobility edges in quenched disordered MBL systems
Single body Anderson localization: d ≥ 3, intermediate J/W or continuum

Many-body physics: transition in function of the temperature/energy density

Basko, Aleiner, Althsuler Huse et al.



Thermal bubbles could destroy Many-Body mobility edges
Quenched disorder spin chain with mobility edges:

ε < εc: localized, ε > εc: delocalized

Prepare the system in a localized state ψ:

overall E(ψ)/V < εc : negligible overlap with thermal states in the limit

locally: thermal islands

ε > εc ε > εc

Location of the islands is not determined by the disorder: they do travel

In the true thermodynamic limit, we would expect

ε

W

Thermal Localized V →∞
ε

W

Thermal Localized

Bubble issue not covered by Imbrie, not addressed in BAA.



Baby version: Shepelyansky’s two particles ‘94

Just two interacting particles on a 1-d disordered lattice:

H =
∑

i

εini + U
∑

i

ni(ni − 1) + J
∑

i

{
aia+i+1 + h.c.

}

Coherent propagation of the bound state:

l1 > 1: localization length of free particles (U = 0)

lc: localization length of the bound state (U 6= 0)

lc
l1
∼ l1(U/J)2

Interaction strongly enhances localization length (still localized since d = 1)



Recent numerics do not support our view
Disordered spin chains:

Left: from Kjäll, Bardarson and Pollmann,
H = −

∑
i Jiσ

z
iσ

z
i+1 + J2

∑
i σ

z
iσ

z
i+2 + h

∑
i σ

x
i , 〈Ji〉 = 1, h/2 = J2 = 0.3

Right: from Mondragon-Shem, Pal, Hughes and Laumann,
H =

∑
i t(S+i S−i+1 + S−i S+i+1) + USz

i S
z
i+1 + WwiSz

i , (U,W, Sz) = (7, 6, 0)



How could we solve the conflict? (work in progress)
Some possible issues:

Thermalization by thermal bubbles is due to rare fluctuations: finite size
effects may be huge

Coexistence of localized and delocalized states possible at finite volume

Thermal phase at finite volume may not yet be “thermal enough” for
bubbles to appear

Coexistence of states at finite volume L? Yes: Shepelyansky in 3-d

Bound states are delocalized

Particles farther appart than log L are localized

Statistically, localized states dominate, but we expect the opposite when
2 particles −→ density of particles

We the Hamiltonian by Kjäll et al. and prepared the system in a product state

thermal state on the left, ground state on the right

overall below mobility edge



Very hard to see a clean effect
Two unfortunate facts:

Very narrow δJ-region where the mobility edge could be seen (δJ ∼ 3)
Still a lot of signatures of localization in that region

Participation Ratio (PR): Pick a realization of the disorder and and eigenstate
ψ at random with 0.9 < εψ < 1 (high energy). Pick a site i at random. Define

PRi = log
∑
ψ′

|〈ψ′|σz
i |ψ〉|

4

Localization: PR ∼ 0, Delocalization: PR ∼ −L

δJ = 0.1 δJ = 1 δJ = 3


