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Many-body localization (MBL)

MBL materials: ® non-integrable, interacting, ‘generic’...
® NO transport on any time scale

e crgodicity breaking

Example: —$—a-¢—0—¢ o ¢-—9—9-0¢-¢

H = 3oihiof + Ji(o7 oy + o7 0ffy) + Jofoly,

Anderson localized (MBL) ergodic (ETH)

o transition JIW
(W: disorder strength, J, /W <« 1)

OK: Gornyi et al. ‘05, Basko et al. '06, Oganesyan et al. '07, Serbyn et al. 13, Huse et al. '14, Imbrie '16, etc...




Plan of the talk

Mechanism for thermalization:
instability of the MBL phase to the inclusion of thermal spots

N low disorder = thermal spots

1) Response to a single spot (microscopic)

2) (General considerations on the transition

3) Picture of the transition through a multi-scale analysis (RG)



Part I:
Single spot



Anderson insulator coupled to an imperfect bath

D )

Anderson insulator: J=0

f : localization length

JLe_E/ﬁ

L=

Move to the Anderson basis:
S ‘L
< /

Bath: Lp spins with random matrix interaction (Lp fixed)




Risk of avalanche

The bath thermalizes near spins, becomes larger and closer
to ideal... eventually thermalizes the whole chain!

<—Lb = g >

matrix element e—t/€ g=s(T)(Lp+£)/2

J— Y

level spacing e—S(T)(Lo+£)

s(T): entropy density, s(T=c)= log 2 RM assumption



Upper bound on the localization length

Avalanche stops when G(£) < 1, i.e. for

1
0 ~ L
_ log 2
&1 -5

Write gc — 2/ 10g2

£ <& : The avalanche will eventually stop

&> &+ MBLis unstable

The value of & depends on the lattice:
e Spins on both sides of the spot: & = 1/log?2
¢ d > 1 . gc — O

cfr. W. De Roeck and F. H., PRB ‘17
see also M. Znidaric and M. Ljubotina, PNAS ‘18



Numerical check
Lo =3 : Hpath = GOE(8 x 8)

0.54
0.52 y
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(rgoe) = 0,53
(Fpoisson) = 0, 38

(Oganesyan et Huse '06)

cfr. D. Luitz, F. H. et W. De Roeck, PRL 117, 2017



Part Il:

General ‘facts’
about the

transition




spots all over the chain

Griffiths regions:

Simple, microscopically motivated, rules to deal with them?

malin issue: spot-spot interactions
- e @& ®

related issue: What spots to deal with first?

Hard task: Vosk and Altman ’14, V., Huse and A. ’15, Potter, Vasseur and Parameswaran 15,
Imbrie 16, Zhang, Zhao, Devakul, H. ’16, Dumitrescu, V. and P. '17, Goremykina, V. and Serbyn ‘18

Imbrie’s approach: main source of inspiration for our RG



Two basic assumptions

. density of spots initially (inverse disorder strength)

effective diagonalisation l

here upshot = MBL

T(L): thermal region, after diagonalization

Al: = — (|T(L)])s is continuous and non-decreasing

A2: T(L) c T(L") if we enlarge the system from L to L

Note: A2 might not truly hold microscopically (proximity effects)



consequences
Thermal density: p(L) = |T(L)|/L

Cil:Forany ¢, (p(L))s = p*(e) as L —

Follows from A2 by Fekete’s superadditivity lemma

C2: concentration around the mean:
P(lp(L) — p*(e)| > ) — O Vo >0 as L — o

In particular, 2 possibilities at criticality:

1) MBL with probability 1if p*(ec) < 1

2) Thermal with probability 1if p*(ec) = 1



Why C27?

Compare with a systems cut into blocks of size Lg

Lo large enough so that (p(Lo))e ~ p™(¢) (by C1)

C2 holds true for the ‘block’ system, hence by A2,
P(p(L)— p*(e) >—-90) - 0 as L — oo

concentration in the other direction: p*(¢) is the average



MBL fixed point

C3:c — p~(e) is left-continuous and non-decreasing

Follows by standard arguments from A1 and C1

p*(e)f
s MBL | MBL : ETH
\ fixed point / avalanche
Ec €>
p*(e)]
Thermal 1
| , MBL ETH |
fixed point percolation
Ec CC:’

We know also & < & and obviously & -+ 0o as p — 1



Part lll:

Multi-scale

analysis (RG)




The need for RG

e Develop a picture for how the transition happens
e |s & = 1/log?2 still the critical localization length?

Avoid paradoxes: resonances percolate at some & < &

- R
«— Lp — < / > §c — &x
® O ® O @ P
Impossible: pc < 1 WRONG

e Finite size scalings (mostly numerical)



Effective localization length

localization length depends on the scale:

large spot small spot

N \ /
Eeff > &0 Eeff = &0

due to the presence
of smaller spots

e Deal with the smallest spots first, to avoid non-sense.

e Rule of halted decay: no decay through thermal regions

1
—L/&ett — a—(—4n)/Eo _
€ € = Seff = S0 3 ™,

Ui : number of spins thermalized at previous scales : bare spots + collar



Diverging response to thermal inclusions

Define: scale k: bare spot of size k.

&k typical effective localization length at scale k.

collar length: y

fc—fk’
MBL: 4 /k — ¢ as k— o

O ~ e =1/log?2

critical : /k/K — oo as kK —

thermal : /x/k =00 for some k < o

avalanche: at some scale, a large enough spot shows up and the full material becomes thermal.



Simplified scheme

Flow on 3 parameters: &k, Pk, k.

fk:21 — (1 — pk) §k_1 rule of halted decay
Pk — Sk(k + Zk) thermal density from bare spots of size k
K
fk — 5 f collar length for bare spots of size k
cC — Gk

Issues: e fluctuations of &k are ignored

e thermal density pk Is underestimated: ko KN

$ cantor‘like resdnanfstructure
e still needs to be solved numerically



Qualitative diagram

no proper divergent length scale
on the thermal side

: Thermal
Ec E

§c =1/log?2
Cfr. T. Thiery, F. H., M. Mueller, W. De Roeck, arXiv:1706.09338



Finite size scalings

p(e,L): probability that a system of size L is thermal

MBL side: p(e,L) ~F(L/L_), L_~(ec—¢)""~ (L— o0)

thermal side: Ly ~(ec—¢) "

(different mechanisms: we expect v_ # v, )

at criticality: p(eg, L) ~ L™"

Pth rm(Lv E)
0.06/
Non-monotonic behavior in the ggj / . 0.7
thermal phase close to the TE TN 7 0.1705

0.03fF ———=—" 0.171
.+ 0.1715

transition

avalanche 25 a0 35 40 ogn®)



Closer to exact scheme

e Abandon the reduced description with a few parameters
e [ix precise rules to deal with the fusion of resonant spots

e Solve numerically

Upshot:

e confirm the picture from the simplified scheme
e fix some issues (mainly: critical exponents satisty Harris)

cfr. T. Thiery, M. Mualler and W. De Roeck, arXiv:1711.09880



Conclusions
Instability of the MBL phase:

e A single imperfect bath can destabilize MBL
e | ocalized transition point, with finite loc. length

e Discontinuity of the thermal density at the transition
(unlike percolation)

e Physical picture from RG, scale dependent loc. length

e Divergent response to the inclusion of thermal spots



