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Abstract. We consider a model in which any investment opportunity is described
in terms of cash flows. We don’t assume that there is a numéraire, enabling
investors to transfer wealth through time; the time horizon is not supposed to be
finite and the investment opportunities are not specifically related to the buying
and selling of securities on a financial market. In this quite general framework,
we show that the assumption of no-arbitrage is essentially equivalent to the
existence of a “discount process” under which the “net present value” of any
available investment is nonpositive. Since most market imperfections, such as
short sale constraints, convex cone constraints, proportional transaction costs, no
borrowing or different borrowing and lending rates, etc., can fit in our model
for a specific set of investments, we then obtain a characterization of the no-
arbitrage condition in these imperfect models, from which it is easy to derive
pricing formulae for contingent claims.
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1 Introduction

In a perfect financial model, the Fundamental Theorem of Asset Pricing (see
Harrison and Kreps 1979 or Harrison and Pliska 1981) asserts that the assumption
of no-arbitrage (which amounts to saying that there is no plan yielding some profit
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without a countervailing threat of loss) is essentially equivalent to the existence
of an equivalent martingale measure. The problem of fair pricing of financial
assets is then reduced to taking their expected value with respect to equivalent
martingale measures.

We want to find in this paper the analog of the Fundamental Theorem of
Asset Pricing for general models of investment opportunities. In a deterministic
setting, such opportunities are described in discrete time by Cantor and Lippman
(1983) and Dermody and Rockafellar (1991, 1995) and by Carassus and Jouini
(1998) in continuous time. More precisely, we adopt a model where all investment
opportunities are described by their cash flows; for instance, in such a model, the
investment opportunity which consists in buying, in a perfect financial model, at
dates1 one unit of a risky asset, whose price process is given by(St )t∈R+

and
selling at dates2 with s1 ≤ s2 the unit bought, is described by a process(Φt )t∈R+

which is null outside{s1, s2} and which satisfiesΦs1 = −Ss1 andΦs2 = Ss2.
Our investment opportunities are assumed to be quite general: they are not specif-
ically related to a market model, like in the just mentioned example. The time
horizon is not supposed to be finite. The framework is the one of continuous
time. We don’t assume that there exists a numéraire, enabling investors to trans-
fer wealth from one date to another and even if such possibilities exist, we do
not assume that the lending rate is equal to the borrowing rate or that we have
possibilities to borrow.

We find in this general model that the assumption of no-free lunch is essen-
tially equivalent to the existence of a normalization process such that the “net
present value” of any available investment opportunity is nonpositive. We em-
phasize that neither interest rate nor net present value are part of our model. As in
Dermody and Rockafellar (1991, 1995), there is no externally given term struc-
ture, which would be needed if one were to apply the classical criterion of net
present value; these notions arise however as a consequence of the assumption
of no-arbitrage.
We then use this general result for specific financial market models: perfect
financial model, for which we obtain the well-known characterization of the as-
sumption of no-arbitrage given by the Fundamental Theorem of Asset Pricing in
finite time, and a slightly different version in infinite time; but mainly financial
models with frictions like imperfections on the numéraire, proportional trans-
action costs, short sale constraints, convex cone constraints, etc., for which we
generalize existing results.

Initial results on the Fundamental Theorem of Asset Pricing in the perfect case
were achieved by Harrison and Kreps (1979), Harrison and Pliska (1981), Kreps
(1981) and Duffie and Huang (1986). Various generalizations are now available
in the literature: in Dalang et al. (1989), the problem is solved in the case of finite
discrete time, by only using the assumption of no-arbitrage. For discrete infinite
or continuous time, the notion of free lunch is needed; Schachermayer (1994)
mainly deals with the case of discrete infinite time. Continuous time models are
studied by (among others) Ansel and Stricker (1990), Delbaen (1992), Delbaen
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and Schachermayer (1994, 1998), Frittelli and Lakner (1994), Stricker (1990). In
all these models, securities markets are assumed to be frictionless.

In the context of imperfect financial markets, Jouini and Kallal (1995a) char-
acterize the assumption of no-free lunch in a model with proportional transaction
costs and give fair pricing intervals for contingent claims in such a model. Cvi-
tanic and Karatzas (1996) study the problem of hedging contingent claims, in
continuous time, for a diffusion model (with one bond and one risky asset) with
proportional transaction costs, and give a dual formula for the so-called super-
replication price of a contingent claim (i.e. the minimum initial wealth needed to
hedge the contingent claim or in other words, to obtain, through the investment
opportunities available on the market, at least the contingent claim). Delbaen et
al. (1998) and Kabanov (1998) generalize this result to the multivariate case, in
discrete as well as in continuous time, and with a semimartingale price process.

As for other imperfections, Jouini and Kallal (1995b) study the case of short
sale constraints or shortselling costs with possibly different borrowing and lend-
ing rates. For convex constraints (and also with possible higher interest rates
for borrowing), the dual formulation for the superreplication price is obtained
in a diffusion framework in Cvitanic and Karatzas (1993). In a more general
framework, the result is obtained in Föllmer and Kramkov (1997). Pham and
Touzi (1996) consider the Fundamental Theorem of Asset Pricing with cone
constraints, in a discrete and finite time setting and by only using the assumption
of no-arbitrage. Brannath (1997) studies the same problem in the more general
setting of convex constraints.

This paper generalizes Carassus and Jouini (1997), that considers discrete
models, i.e. with finite time horizon, discrete time and finite number of states of
the world at each time.

We generalize existing results in the following ways: first, we don’t assume
that there exists a nuḿeraire available to investors and allowing them to transfer
wealth through time; this enables to consider any type of friction on the numéraire
like no borrowing, different borrowing and lending rates, bonds with default risk,
etc., which have been barely studied, or simply to take into account the fact that
all investors are not equal with regard to borrowing and lending, namely some
investors may enjoy special borrowing facilities while others may not; second,
we are lead to introduce a new notion of no-free lunch, which is similar to the
“usual one” (with deterministic times) in finite time but does not exclude a free
lunch at infinity and is therefore maybe more economically meaningful; last, we
characterize the assumption of no-arbitrage (or more precisely of no-free lunch)
for general investments, which enables to consider investment opportunities that
are not necessarily related to a market model and, more interestingly, to generalize
the results obtained for imperfect markets and to obtain them all in a unified way.

The paper is organized as follows: in Sect. 2, we obtain, under a “reason-
able” assumption, the characterization of the absence of free lunch in a general
model with flows. Since we are not allowed to transfer wealth from one date to
another, we cannot consider net gains anymore; in all papers dealing with the
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Fundamental Theorem of Asset Pricing (with simple integrands), the assump-
tion of no-arbitrage or no-free lunch essentially amounts to saying that the set
Lin
{
θs · (S̄t − S̄s

)}
, whereθ describes all feasible strategies andS̄ denotes the

discounted underlying price process, contains no nonnegative nonnull random
variable. Implicit in such an approach is the fact that there is an externally given
term structure, enabling investors to borrow and lend money at the same rate.
In the context with flows, we must use separation techniques in more complex
spaces to obtain the Fundamental Theorem of Asset Pricing. We apply this char-
acterization of the no-free lunch assumption to different market models with
frictions in Sects. 3 and 4.

All the proofs are in the Appendix.

2 The fundamental theorem of asset pricing in a model with flows

As we have seen in the Introduction, since we are not necessarily allowed to
transfer wealth through time, we must consider more general spaces than the
classicalLp spaces. We start by introducing these spaces. Then we describe our
general model with flows. Finally, we obtain, through an analog of Yan’s (1980)
result, the characterization of the no-free lunch assumption in such a model.

2.1 The space L1
P

(
Ω, Mb

)
For details about most notions introduced in this section, see Marle (1974) or
Diestel and Uhl (1977).

We denote byC0 the set of continuous functions fromR to R which converge
to 0 at infinity; endowed with the uniform convergence topology,C0 is a Banach
space. We denote byMb the space of bounded Radon measures, i.e. the space
of continuous linear functionals onC0; the spaceMb , endowed with the usual
dual norm‖·‖

Mb
defined by‖µ‖

Mb
≡ sup{|µ (f )| ; f ∈ C0; ‖f ‖ ≤ 1} for all µ

in Mb , is a Banach space.
Fix a probability space(Ω, F , P ). Let

(
X , ‖·‖X

)
be a Banach space. The set

St (Ω, X ) denotes the set ofX -valued simple random variables, i.e. the set of
random variablesf of the form f =

∑m
i=1 ai 1Ai for somem in N ∗, Ai in F and

ai in X . The setMP (Ω, X ) denotes the set ofP -measurable random variables,
i.e. the set of random variablesf such that there exists a sequence(fn )n∈N in
St (Ω, X ) for which f = limn fn a.s. P . Then L1

P (Ω, X ) denotes the set ofP -
measurable random variablesf such that‖f ‖X belongs toL1 (Ω, R), i.e. such
that ‖f ‖L1

P (Ω,X ) ≡ E P
[‖f ‖X

]
< ∞.

Denote by
(
X ′, ‖·‖X ′

)
the dual space ofX , endowed with the dual norm. We

know that
(
X ′, ‖·‖X ′

)
is itself a Banach space. LetL ∞

∗
(
Ω, P , X ′) denote the

set of random variablesg : Ω → X ′, for which

〈g, e〉 : ω → 〈g (ω) , e〉 is measurable for alle in X and
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‖g‖
L ∞∗ (Ω,P ,X ′) ≡ inf {M ≥ 0, ‖g‖X ′ ≤ M P a.s.} < ∞.

Then the setL∞
∗
(
Ω, P , X ′) is defined to be the set of equivalence classes

g• of elements ofL ∞
∗
(
Ω, P , X ′), where f ∼ g ⇔ 〈f , e〉 = 〈g, e〉 P a.s.

for all e in X . We consider the norm‖·‖L∞∗ (Ω,P ,X ′) given by ‖g‖L∞∗ (Ω,P ,X ′) =

infg∈g• ‖g‖
L ∞∗ (Ω,P ,X ′) for all g ∈ L∞

∗
(
Ω, P , X ′).

It is shown in Schwartz (1974) that the dual space ofL1
P (Ω, X ) is the space

L∞
∗
(
Ω, P , X ′); there is an isomorphism betweenL∞

∗
(
Ω, P , X ′) and

[
L1

P (Ω, X )
]′

that associates with any random variableg in L∞
∗
(
Ω, P , X ′) the continuous linear

functionalΨ on L1
P (Ω, X ) given by

Ψ : f → Ψ (f ) = E
[
〈f , g〉X ,X ′

]
for all f in L1

P (Ω, X ) ,

where 〈f , g〉X ,X ′ : ω �→ 〈f (ω) , g (ω)〉X ,X ′ . Notice then thatL∞
∗
(
Ω, P , X ′) is a

Banach space.

Let Γ denote the set of random variablesγ from Ω to Mb of the form1

γ =
∑m

i=1 γti δti i.e. γ : ω �→ γt1 (ω) δt1 + ... + γtm (ω) δtm with γti in L1 (Ω, R) for
all ti ∈ R. We should writeγ =

∑mγ

i=1 γtγ
i
δtγ

i
but we will omit the indexγ for the

simplicity of the notations.
We have the following immediate

Lemma 2.1 The set Γ is included in L1
P

(
Ω, Mb

)
and for all γ in Γ, γ =∑m

i=1 γti δti , ‖γ‖L1
P (Ω,Mb) =

∑m
i=1 ‖γti ‖L1(Ω,R).

Let Γ+ (resp.Γ−)≡ {
γ ∈ Γ ; γ =

∑m
i=1 γti δti ; γti ≥ 0 (resp. ≤ 0) P a.s.

}
.

2.2 The model

We consider a model in which agents face investment opportunities described
by their cash flows. A probability space(Ω, F , P ) is specified and fixed. The
setΩ represents all possible states of the world. An information structure, which
describes how information is revealed to investors, is given by a filtration(Ft )t∈R+

satisfying the “usual conditions” and such thatF0 is trivial. We model investment
opportunities which are available to investors in the following way.

Definition 2.2 An investment is an (Ft )t∈R+
-adapted process Φ = (Φt )t∈R+

, null
outside a finite number of dates, i.e. there exists

(
tΦ
1 , ..., tΦ

N

)
such that Φt = 0 for

all t /∈ (tΦ
i

)N

i=1
, and such that Φt is in L1 (Ω, Ft , P ) for all t in R+.

We consider a convex coneJ of available investment opportunities: this
amounts to saying that an investor has a right to subscribe to (a finite number
of) different investment plans and that he can decide at the starting date of any
investment opportunity which amount of this particular investment he wants to

1 where, as usual,δt (f ) ≡ f (t) for all f ∈ C0.
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buy. We shall see in Sects. 3 and 4, with specific examples, that we are lead to
consider convex cones in order to take into account the fact that investors are
not necessarily able to sell an investment plan (see for instance the case of short
sale constraints or transaction costs).

We introduce the following assumption.

Assumption A: there exists a sequenced = (dn )n∈N in R+ such that for allt∗ ∈ R+,
for all Bt∗ in Ft∗ of positive probability, there existsΦ in J of the formΦt∗ = 0
outsideBt∗ , Φt = 0 for all t < t∗, Φt ≥ 0 for all t > t∗, and there existsn ∈ N ,
P
[
Φdn > 0

]
> 0.

In words, if a convex coneJ of available investments satisfiesAssumption A,
this means that there exists a sequence of trading dates such that, for all date and
for all event at that date, there exists an investment plan in our admissible set of
investment opportunities that starts at that date and in that event, that can take
any value at that date and in that event but that is nonnegative after that date and
nonnull at one date belonging to the above mentioned sequence of dates. Roughly,
Assumption A corresponds to the possibility of transferring “some wealth” from
any date and event to some particular date. This assumption is not too restrictive:
it is satisfied if we can buy at every date and event a bond with a given maturity
even if this bond is defaultable and even if there is no secondary market for
that bond (i.e. we have to wait until the maturity in order to recover any money
with a positive probability, which may be different from 1); this includes market
models with frictions on the nuḿeraire like no borrowing, different borrowing
and lending rates, bonds with default risk, different borrowing facilities among
investors.

We don’t specify the elements ofJ so far. We consider any investment
Φ = (Φt )t∈R+

as a random variable fromΩ to the set of discrete bounded Radon

measures of the formΦ =
∑

t∈R+
Φtδt , whereΦt = 0 for t /∈ (tΦ

i

)N

i=1
, i.e. as an

element ofΓ .
We now come to the notion of no-arbitrage.

Definition 2.3 There is no arbitrage opportunity for J if and only if J ∩Γ+ = {0}.

Let us check that this definition corresponds to the usual notion of no-arbitrage,
i.e. an impossibility to have access to an investment that yields a positive gain
in some circumstances without a countervailing threat of loss in other circum-
stances. In our framework, an arbitrage opportunity would consist in a non-
negative nonnull available investment inJ . And Φ = (Φt )t∈R+

is a nonnegative
nonnull investment process if and only ifΦ : ω �→ ∑m

i=1 Φti (ω) δti , which is in
L1

P

(
Ω, Mb

)
, belongs toΓ+ and is not null.

It is easy to see that the notion of no-arbitrage introduced in Definition 2.3
can be written in the form(J − Γ+) ∩ Γ+ = {0}. A free lunch denoting the
possibility of getting arbitrarily close to an arbitrage opportunity, we introduce
the following

Definition 2.4 There is no free lunch for J if and only if (J − Γ+) ∩ Γ+ = {0},
where the bar denotes the closure in L1

P

(
Ω, Mb

)
.
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Notice that if there is a nuḿeraire, the assumption(J − Γ+)∩Γ+ = {0}, where
the bar denotes the closure inL1

P

(
Ω, Mb

)
, is less restrictive than the “usual”

assumption of no-free lunch (with deterministic times). The difference between
the two notions lies in the fact that the nonnegative nonnull random variable that
we can “almost reach” with admissible investments “is at a finite date” for the
new notion whereas it can “be at infinity” for the usual notion. The notion of
absence of free lunch adopted in this paper does not exclude a free lunch “at
infinity” and can therefore be considered as more economically meaningful.

2.3 Characterization of the no-arbitrage assumption in a model with flows

By adapting the proof of Yan (1980), we obtain, underAssumption A, the fol-
lowing Fundamental Theorem of Asset Pricing in our general framework with
flows.

Theorem 2.5 Let J denote a convex cone of available investment opportunities
satisfying Assumption A. There is no free lunch for J if and only if there exists a
process g = (gt )t∈R+

such that

1. for all t ∈ R+, gt ∈ L∞ (Ω, F , P ) and M ≡ supt∈R+
‖gt‖L∞ < ∞

2. for all t ∈ R+, gt > 0P a.s.
3. for all Φ = (Φt )t∈R+

∈ J , E
[∑

t∈R+
gtΦt

] ≤ 0

Moreover, the process g can be taken (Ft )t∈R+
-adapted.

In the case where the set of available investment opportunities is related
to a countable set of dates, which is the case in finite (resp. infinite) discrete
time where the setJ consists of(Ft )t∈T-adapted processesΦ = (Φt )t∈T for
T = {1, ..., d} (resp.T = N ), thenAssumption A is not needed to obtain Theorem
2.5.

Corollary 2.6 Let J denote a convex cone of investments. In finite or infinite
discrete time, there is no free lunch for J if and only if there exists a P-essentially
bounded process g = (gt )t∈T such that for all Φ = (Φt )t∈T ∈ J , E

[∑
t∈T gtΦt

] ≤
0.

So, in continuous time, starting from the assumption of no free-lunch in a gen-
eral model with flows, without any assumption on the existence of a numéraire,
but underAssumption A (for which we have given an interpretation and that
will reveal to be suited to our market frictions), we have proved the existence
of a “discount process” such that, using this process as a deflator, all available
investments have non-positive present value; this means that there exists a term
structure such that the market consisting of the primitive investment opportuni-
ties and of the additional borrowing and lending facilities is still “arbitrage-free”.
Besides, the existence of such a discount process prevents from any arbitrage
opportunity. In other words, there is no free lunch for a convex cone of avail-
able investments satisfyingAssumption A if and only if a given convex set of
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“admissible” discount processes is non-void. We recall thatAssumption A is not
needed if we deal with discrete, possibly infinite, time.

We have seen that the “discount process” can be taken adapted to our fil-
tration. We have obtained so far no other regularity conditions (such as right-
continuity or existence of left limits); we shall see in the following section that
under some regularity conditions on the available investments, we obtain regu-
larity properties on the “discount process” itself. Besides, the taking into account
of frictions on the nuḿeraire will enable to better understand the nature of these
admissible discount processes.

Since most market models with frictions can fit in the model with flows for
a specific convex cone of available investments, our model provides a unified
framework for the study of the characterization of the absence of free lunch
in such imperfect market models. Notice however that economies with fixed
transaction costs do not fall in the framework with flows, since the set of all
available investments is not a cone.

3 Application to models with frictions on the numéraire

In this section, we still consider a general framework with flows, but we intro-
duce a nuḿeraire, possibly submitted to constraints. This enables us to give a
better interpretation of the “admissible” discount processes found in the previous
section. Moreover, we obtain a characterization of the no-free lunch assumption
in general models with flows with possible frictions on the numéraire. Since mar-
ket imperfections like convex cone constraints, proportional transaction costs, etc.
can fit in our model with flows, our approach will enable us in the next section
to characterize the absence of free lunch in these imperfect models, when there
are, in addition, imperfections on the numéraire.

We introduce a few notations. LetG denote the set of all (equivalence
classes) of adapted processesg = (gt )t∈R+

, such that for allt ∈ R+, 0 < gt ≤ M g

a.s.P for some scalarM g. For a convex coneK in Γ , let GK denote the convex
set of processesg ∈ G such thatE

[∑
t∈R+

gtΦt
] ≤ 0 for all Φ =

∑
t∈R+

Φtδt in
K .

3.1 With a “perfect” numéraire

We assume that there is a perfect numéraire, i.e. that there are possibilities
to transfer wealth through time, without friction. LetS 0 =

(
S 0

t

)
t∈R+

denote

a positive, adapted (nuḿeraire) process such that for all(t1, t2) ∈ R2
+, for all

θ ∈ L∞ (Ω, Ft1∧t2, P
)
, the process denoted byΦ(0;θ,t1,t2) and given by

Φ(0;θ,t1,t2)
t = θ

[−S 0
t11t=t1 + S 0

t21t=t2

]
for all t ∈ R+

belongs toΓ . Notice that this is equivalent toS 0
t ∈ L1 (Ω, Ft , P ) for all t ∈ R+.

Let J num denote the convex cone generated by a given convex coneJ in Γ and all
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the investmentsΦ(0;θ,t1,t2). The setJ num corresponds to all available investments
in a model with flows, where agents can invest in a perfect numéraire. Notice
that J num satisfiesAssumption A so that, according to Theorem 2.5, there is no
free lunch in a model with a perfect numéraire if and only if the setGJ num is non-
void. We obtain the following characterization of the set of admissible discount
processes.

Corollary 3.1 The set GJ num consists of all processes g ∈ GJ such that gS 0 is a
P-martingale for (Ft )t∈R+

.

This means that if we introduce a term structure given by a numéraireS 0,
then in the absence of free lunch, the processg must be equal to1

S 0 multiplied
by a positive martingale (which is the stochastic analog of a (positive) constant
function). Up to a martingale, the processg gives us the possible term structures,
i.e. which would be compatible with the assumption of no-free lunch. Note that
the processgS 0 admits a right-continuous left-limited (RCLL) modification, so
that if 1/S 0 is RCLL, theng itself admits a RCLL modification.

In finite time, according to Corollary 3.1, the absence of free lunch forJ num

implies that there exists an equivalent probability measure under which the net
present value (usingS 0 as a deflator) of any available investment is nonpositive,

i.e. there exists a probability measureQ ∼ P , such thatE Q
[∑

t∈R+

Φt

S 0
t

]
≤ 0 for

all Φ ∈ J . In infinite time, the situation is somewhat different.

Lemma 3.2 1. If S 0 is uniformly integrable, then there is no free lunch for
J num if and only if there exists a probability measure P̄ on (Ω, F ), absolutely

continuous with respect to P and such that
(

1
S 0

t
E
[

dP̄
dP | Ft

])
t∈R+

∈ G and

E P̄
[∑

t∈R+

Φt

S 0
t

]
≤ 0 for all investment Φ in J .

2. If Ω is the canonical space of all continuous functionals on R+ taking val-
ues in R ∪ {∞}, then there is no free lunch for J num if and only if there

exists a probability measure P̄ on (Ω, F ), such that
(

1
S 0

t

d P̄ |Ft
dP |Ft

)
t∈R+

∈ G and

E P̄
[∑

t∈R+

Φt

S 0
t

]
≤ 0 for all investment Φ in J .

For 1., notice that unlike in the “classical case” with a perfect numéraire
constantly equal to 1 (see e.g. Stricker (1990)), in the infinite time framework, we
only find an absolutely continuous probability measure, whose restricted density
to all Ft is positive, instead of an equivalent probability measure. This is due
to the fact that, as mentioned in Sect. 2, our assumption of no-free lunch is less
restrictive than the “usual” one, since it does not exclude free lunches at infinity.
For 2., instead of considering a specific setΩ, we could also impose conditions on
the filtration(Ft )t∈R+

. Our problem is related to the existence of the exit measure
(or Föllmer measure) of the martingale processgS 0. See F̈ollmer (1972), Meyer
(1970) or Aźema and Jeulin (1976) for more details on this topic.

We now turn to cases where the numéraire is subject to some constraints.
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3.2 With lending and borrowing opportunities

Let S 0 =
(
S 0

t

)
t∈R+

andS 1 =
(
S 1

t

)
t∈R+

denote two positive and adapted processes

with S 0
0 = S 1

0 = 1, such that for all(t1, t2) ∈ R2
+ with t1 ≤ t2, for all θ ∈

L∞
+

(
Ω, Ft1, P

)
, the processes denoted byΦ(0;θ,t1,t2) andΦ(1;θ,t1,t2) and given by

Φ(0;θ,t1,t2)
t = θ

[−S 0
t11t=t1 + S 0

t21t=t2

]
for all t ∈ R+

Φ(1;θ,t1,t2)
t = θ

[
S 1

t11t=t1 − S 1
t21t=t2

]
for all t ∈ R+

belong toΓ . Let J lb denote the convex cone generated by a given convex cone
J in Γ and all the investmentsΦ(0;θ,t1,t2) andΦ(1;θ,t1,t2). The setJ lb corresponds
to all available investments in a model with flows where agents have lending and
borrowing opportunities, but not in the same conditions. Notice thatJ lb satisfies
Assumption A so that, according to Theorem 2.5, there is no free lunch in a
model with such constraints on the lending and borrowing opportunities if and
only if the setGJ lb is non-void. We obtain the following characterization of the
setGJ lb .

Corollary 3.3 The set GJ lb consists of all processes g ∈ GJ such that gS 0 is a
P-supermartingale and gS 1 is a P-submartingale for (Ft )t∈R+

.

We now introduce additional conditions on the processesS 0 andS 1.

(C1) The processesS 0 and S 1 are right-continuous and for all(t , t1, t2) with

t ≤ t1 ≤ t2, for all A ∈ Ft1, the processΦ

(
k ;

1A
S k
t

,t1,t2

)
∈ J lb for k = 0, 1.

(C2) For all s ≤ t , S 0
t /S 0

s ≤ S 1
t /S 1

s a.s.P .
(C3) The processesS 0 andS 1 can be written in the formS 0

· = exp
∫ ·

0 r0
s ds and

S 1
· = exp

∫ ·
0 r1

s ds for some processesr0 andr1 in2 L∞ (R+ × Ω, B (R+) ⊗ F,
λ ⊗ P ).

Condition (C1) is essentially a right-continuity condition; the additional in-
tegrability condition is satisfied if for allt ∈ R+, 1/S 0

t as well as 1/S 1
t are

bounded. Condition (C2) essentially means that the “borrowing rate” is greater
than or equal to the “lending rate”. Condition (C3) means that the processesS 0

and S 1 are associated to interest rates, with a possible spread. Notice that con-
trarily to Jouini and Kallal (1995b), we do not supposer0 ≤ r1, since we get it
as a consequence of the absence of free lunch; besides we shall see that if there
is no-free lunch forJ lb, (C3) implies (C1) and (C2).

We now obtain more specific characterizations of the setGJ lb under the
different conditions.

Lemma 3.4 1. Under (C1), any g ∈ GJ lb admits a right-continuous modification.
2. Under (C1) and (C2), the set GJ lb consists of all processes g ∈ GJ for which

for all s ∈ R+, there exists a process
(
Z s

t

)
t≥s

satisfying S 0
t /S 0

s ≤ Z s
t ≤ S 1

t /S 1
s

for all t ≥ s such that
(
gt Z s

t

)
t≥s

is a (right-continuous) martingale for (Ft )t≥s .

2 We let λ denote the Lebesgue measure onB (R+).
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3.a. Under (C3), if there is no free lunch for J lb, then we can take r0 ≤ r1

and (C1) and (C2) are satisfied.
3.b. Under (C3), the set GJ lb consists of all processes g ∈ GJ for which

there exists a process Z ≡ exp
∫ ·

0 rs ds for some bounded measurable process r
satisfying r0 ≤ r ≤ r1 and such that gZ is a (right-continuous) martingale for
(Ft )t∈R+

.

Part 1 says that the right-continuity of the borrowing and lending processes
induce the right-continuity of the admissible discount processes. Part 2 says that
up to a martingale, the returns of the admissible discount processes lie between
the returns of the lending and borrowing processes; notice that if 1/S 0 is left
limited, then any admissible discount process admits a left limited modification.
Part 3 says that if the lending and borrowing processes are associated to interest
rates, then so are the admissible discount processes.

3.3 With lending opportunities only

With the notations adopted in the previous subsection, letJ b denote the convex
cone generated by a given convex coneJ in Γ and all the investmentsΦ(0;θ,t1,t2).
The setJ b corresponds to all available investments in a market model where
investors have lending opportunities, but not necessarily borrowing opportunities.
Notice thatJ b satisfiesAssumption A so that there is no free lunch in a model
with no borrowing if and only if the setGJ b is non-void.

Corollary 3.5 The set GJ b consists of all processes g ∈ GJ such that gS 0 is a
supermartingale for (Ft )t∈R+

.

We can now turn to frictions not only involving the numéraire.

4 Application to other market models with frictions

We shall consider market models with frictions on the numéraire and “imperfec-
tions” such as models with dividends, short sale constraints (or more generally
convex cone constraints), proportional transaction costs.

4.1 Models with dividends

We consider a model of financial market consisting ofN financial assets, possibly
paying dividends to their holders. We denote by

(
S k
)

1≤k≤N
the adapted price

process of the securities and by
(
Dk
)

1≤k≤N
the associated (possibly null) adapted

dividends process. We assume that the dividends are discrete, i.e. that there is
no dividend paid outside a countable set of dates. The random variableDk

t

corresponds to the dividends paid by the securityk at time t . We treatS k
t by

convention as the post-dividends market value of the securityk at time t . In
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other words, if the dividend process jumps at timet , the market valueS k
t reflects

the jump as already having been paid out, orS k
t is ex-dividend.

For 1 ≤ k ≤ N , for all (t1, t2) ∈ R2
+ with t1 ≤ t2, and for all A ∈ Ft1, we

assume that the processΦ(k ;A,t1,t2) given by

Φ(k ;A,t1,t2)
t = 1A

[−S k
t1 1t=t1 + Dk

t 1t1<t≤t2 + S k
t2 1t=t2

]
for all t ∈ R+

belongs toΓ and we letJDiv denote the linear space generated by all these
investments. We suppose thatAssumption A is satisfied. Using Theorem 2.5, we
get that

Corollary 4.1 There is no free lunch in the model with dividends (or equivalently
for JDiv) if and only if there exists a process g = (gt )t∈R+

∈ G such that for all
t1 ≤ t2

E


gt2


St2 +

∑
t1<t≤t2

gt Dt


 | Ft1


 = gt1St1.

Note that in the perfect case with no dividend, a finite time horizon, and a
“perfect” and bounded nuḿeraire, we obtain the “classical” Fundamental Theo-
rem of Asset Pricing, which asserts that there is no free lunch if and only if there
exists an equivalent probability measure with bounded density, which makes the
discounted price process of the traded securities a martingale.

4.2 Convex cone constraints and application to short sale constraints

We consider now a model of financial market where the quantities of theN
different risky assets held by investors are constrained to lie in a convex coneC
(in RN ). Notice that this situation includes the one with no constraint (C = RN ).
We denote by

(
S k
)

1≤k≤N
the adapted price process of the risky assets. For

1 ≤ k ≤ N , for all (t1, t2) ∈ R2
+, with t1 ≤ t2 and for allA ∈ Ft1, we assume that

the processΦ(k ;A,t1,t2) given by

Φ(k ;A,t1,t2)
t = 1A

[−S k
t1 1t=t1 + S k

t2 1t=t2

]
for all t ∈ R+

belongs toΓ . Let Φ(A,t1,t2) =
(
Φ(k ;A,t1,t2)

)
1≤k≤N

. We denote byJVex the convex
cone generated by{

x · Φ(A,t1,t2); x ∈ C , (t1, t2) ∈ R2
+, A ∈ Ft1

}
.

The setJVex corresponds to all available investments in a model where portfolios
are constrained to lie in a convex cone.
Let C 0 =

{
y ∈ RN ; y · x ≤ 0, for all x ∈ C

}
. In the unconstrained case, we have

C 0 = {0}. We get the following characterization of the setGJVex.

Corollary 4.2 The set GJVex consists of all processes g ∈ G such that for all
t1 ≤ t2, E

[
gt2St2 − gt1St1 | Ft1

]
takes values in C 0.
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We can apply this result to market models with short sale constraints. We
consider a model of financial markets where two sorts of securities can be traded.
Short selling the first type of securities is not allowed, i.e. they can only be held
in nonnegative amounts, whereas the second type of securities can only be held
in nonpositive amounts. The model includes situations where holding negative
amounts of a security is possible but costly as well as situations where some (or
all) securities are not subject to any constraint, since we may include a security
twice in the model, in the first and in the second set of securities. This model
has been studied in Jouini and Kallal (1995b), in finite time, for price processes
which are inL2 (Ω, F , P ) and right-continuous.

This situation falls in our framework with convex cone constraints for a
convex coneCs of the form

Cs =
{

x = (x1, ..., xN ) ∈ RN ; xk ≥ 0 for k ∈ K1 andxk ≤ 0 for k ∈ K2
}

for two disjoint subsetsK1 andK2 of {1, ..., N }. Then

C 0
s =

{
y = (y1, ..., yN ) ∈ RN ; yk ≤ 0 for k ∈ K1 andyk ≥ 0 for k ∈ K2

}
.

We easily obtain the following characterization of the setGJS, whereJS is given
by JVex for C = Cs . The setJS corresponds to all available investments in a
model with short sale constraints.

Corollary 4.3 The set GJS of admissible discount processes in the case with short
sale constraints consists of all processes g ∈ G , such that for any security k that
cannot be sold short, gS k is a supermartingale, and for any security k that can
only be sold short, gS k is a submartingale.

4.3 Proportional transaction costs

We consider a model of financial market where the securities are subject to bid-
ask spreads: at each date, there is not a unique price for a security but an ask
price, at which investors can buy the security and a bid price, at which they
can sell the security. Notice that this model includes situations where there is a
unique price processS and where the transaction cost remains constant overtime,
i.e. situations where at each timet ∈ R+, investors must paySt (1 + c) for some
positive constantc to buy the security and receiveSt (1 − c) when selling it.

Such a model with transaction costs has been studied in Jouini and Kallal
(1995a) using simple trading strategies like in Harrison and Kreps (1979), as-
suming that the time horizon is finite (equal toT ), that there exists a nuḿeraire
process (identically equal to one) and that for allt ∈ R+, the random variables
corresponding to the bid and ask prices at datet are in L2 (Ω, Ft , P ). We in-
tend here to obtain the result of Jouini and Kallal (1995a) by using our general
approach with flows, and to extend it mainly to the case with frictions on the
numéraire and to infinite time.
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More precisely, we consider(N − 1) securities and for 2≤ k ≤ N , we let(
S k

t

)
t∈R+

and
(
S ′k

t

)
t∈R+

denote respectively the adapted ask and bid price process.
We assume that the processesS andS ′ are right-continuous and of classDf , i.e.
that the families{Sτ}τ∈S f and{S ′

τ}τ∈S f are uniformly integrable, whereS f

denotes the collection of stopping times of(Ft )t∈R+
, taking only a finite number

of values in[0, +∞[. Let S
f

t denote the collection of stopping timesτ in S f

such thatτ ≥ t a.s.P .
For eachk , for any stopping timesτ1 andτ2 in S f , we consider the process

Φ(k ;τ1,τ2) given by

Φ(k ;τ1,τ2)
t = −S k

τ1
1t=τ1 + S ′k

τ2
1t=τ2 for all t ∈ R+.

It is easy to see that for eachk , for any stopping timesτ1 and τ2 in S f , the
processΦ(k ;τ1,τ2) is an investment as defined in Definition 2.2 and we define the
setJCosts as the convex cone generated by all these investments.

With the notations adopted in Subsect. 3.2, we make the additional assumption
that there exist two processesS 0 andS 1 satisfying Condition (C1) and we denote
by J lb

Costs the convex cone generated byJCosts and all the investmentsΦ(0;θ,t1,t2)

and Φ(1;θ,t1,t2). We denote byGlb the set of processesg ∈ G such thatgS 0 is
a P -supermartingale andgS 1 is a P -submartingale for(Ft )t∈R+

. According to
Corollary 3.3,Glb is the set of discount processes compatible with the absence
of free lunch for the convex cone generated by all investments related to the
borrowing and lending processes.

Notice that the no-arbitrage assumption implies that the bid price process lies
below the ask price process. We then have the following

Lemma 4.4 There is no free lunch for J lb
Costs if and only if there exist an adapted

process g = (gt )t∈R+
∈ Glb and some adapted price process S̃ lying between the

bid and ask price processes such that gS̃ is a (right-continuous) P-martingale for
(Ft )t∈R+

.

If we now suppose that there is a perfect numéraireS 0 ≡ 1, we get the result
obtained by Jouini and Kallal (1995a) in a finite time setting, i.e. there is no free
lunch with proportional transaction costs if and only if there exists an equivalent
probability measure, with bounded density (with density inL2 (Ω, FT , P ) in the
setting of Jouini and Kallal (1995a)) that transforms some process between the
bid and the ask price processes into a martingale. Lemma 4.4 enables to consider
market models with proportional transaction costs and frictions on the numéraire,
in an infinite time setting.

5 Conclusion

We have characterized the assumption of no-arbitrage in financial markets, where
any investment opportunity is described by the cash flows that it generates; the
absence of free lunch is equivalent to the existence of a normalization process
such that the “net present value” of any available investment is nonpositive, i.e.
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there exists a process such that the “net present value” of the normalized cash
flows is nonpositive. We have then applied this very general result to specific
financial market models and mainly financial models with frictions like imper-
fections on the nuḿeraire, which had been barely studied, but also proportional
transaction costs, short sale constraints, convex cone constraints, for which we
have generalized, in a unified way, existing results.

Appendix

Proof of Lemma 2.1 1) We prove it forγ = γtδt in Γ . If γt is a simple real
random variable, i.e. if it only takes a finite number of real values(ai )

I
i=1, then

we can writeγ in the form γ =
∑I

i=1 1Ai (ai δt ) for a partition(Ai )1≤i≤I of Ω,
andγ ∈ St

(
Ω, Mb

)
. For a generalγt , γt can be written as theP a.s. limit of a

sequence
(
γn

t

)
n∈N

of simple real random variables; thenγ = limn
(
γn

t δt
)

a.s.P ,

andγ ∈ MP
(
Ω, Mb

)
. Now, since‖γ (ω)‖

Mb
= sup‖f ‖≤1,f ∈C0

|γt (ω) f (t)|, we
get E

[‖γ‖
Mb

]
= E

[|γt (ω)|] < ∞.
2) For allγ in Γ, γ =

∑m
i=1 γti δti , we have‖γ (ω)‖

Mb
=
∑m

i=1 |γti (ω)| because
for all (t1, ...tm ) in (R+)m , we can findf in C0, satisfying‖f ‖ ≤ 1 andf (ti ) = 1
(resp.f (ti ) = −1) if γti (ω) ≥ 0 (resp.γti (ω) ≤ 0). �

Proof of Theorem 2.5 Let C ≡ (J − Γ+). Assume first that there exists
a processg satisfying the conditions of the Theorem. Let x ∈ Γ , x =
limL1

P (Ω,Mb) x n , x n ∈ C . Sincex n ∈ C ⊆ Γ , E
[∣∣∑

t∈R+
gt x n

t −∑t∈R+
gt xt

∣∣] ≤
M ‖x − xn‖L1

P (Ω,Mb) (Lemma 2.1), thusE
[∑

t∈R+
gt x n

t

] →n E
[∑

t∈R+
gt xt
]
.

Since for alln, E
[∑

t∈R+
gt x n

t

] ≤ 0, we getE
[∑

t∈R+
gt xt
] ≤ 0 andx /∈ Γ+\ {0}.

Suppose now thatC ∩ Γ+ = {0}. Let µ ∈ Γ+\ {0} . We apply the Hahn-
Banach separation Theorem in the normed vector spaceL1

P

(
Ω, Mb

)
to find(

αµ, βµ

) ∈ R2 andg /= 0 in L ∞
∗
(
Ω,
(
Mb

)′)
, i.e. satisfying

1. 〈g, ν〉(Mb)′
,Mb

: ω → 〈g (ω) , ν〉(Mb)′
,Mb

is measurable for allν in Mb

2. ‖g‖
L ∞∗ (Ω,(Mb)′) ≡ inf

{
M ≥ 0, ‖g‖

(Mb )′
≤ M P a.s.

}
< ∞,

for which, for allc in C , E
[
〈g, c〉(Mb)′

,Mb

]
≤ αµ < βµ ≤ E

[
〈g, µ〉(Mb)′

,Mb

]
,

where〈g, c〉(Mb)′
,Mb

: ω �→ 〈g (ω) , c (ω)〉(Mb)′
,Mb

. SinceC is a convex cone,
we can takeαµ = 0.

Let now for all t ∈ R+, gt ≡ 〈g, δt 〉(Mb)′
,Mb

andg ≡ (gt )t∈R+
. Then, using

1., gt is measurable. Moreover, using 2., since for allt ∈ R+, δt ∈ Mb and
satisfies‖δt‖Mb

≤ 1, we get the existence ofM in R∗
+ such that for allt ∈ R+,

gt ≤ M P a.s.
We claim that for all t ∈ R+, gt is almost surely nonnegative. Suppose

that there existst ∈ R+ such thatVt ≡
{

〈g, δt 〉(Mb)′
,Mb

< 0
}

has pos-

itive P -probability. The random variableφt in L1
P

(
Ω, Mb

)
given by φt :
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ω → −1Vt (ω) δt belongs toΓ−, so according to the separation Theorem

E
[
〈g, φt 〉(Mb)′

,Mb

]
≤ 0. ButE

[
〈g, φt 〉(Mb)′

,Mb

]
= E

[
−1Vt 〈g, δt 〉(Mb)′

,Mb

]
>

0, a contradiction.
We claim that for allΦ ≡∑t∈R+

Φtδt in J , E
[∑

t∈R+
gtΦt

] ≤ 0. This is im-
mediate using 2. and the equality

〈
g (ω) ,

∑
t∈R+

Φtδt
〉
(Mb)′

,Mb
=
∑

t∈R+
Φt (ω)

〈g (ω) , δt 〉(Mb)′
,Mb

.

Denote byG the set of all equivalence classes of processesg = (gt )t∈R+
such

that for all t ∈ R+, 0 ≤ gt ≤ M g a.s.P andE
[∑

t∈R+
gtΦt

] ≤ 0 for all Φ ∈ J .
We claim that for alls ∈ R+, there exists a processgs in G satisfyinggs

s > 0
almost surely. Fix s in R+ and letS be the family of equivalence classes of
subsets ofΩ formed by the supports of thegs for all g in G . We see that the
family S is not reduced to the empty set by consideringµ = δs in the separation
Theorem. The familyS is closed under countable unions: indeed, consider a
sequence(gn )n∈N in G , and let(an )n∈N denote a sequence of positive scalars
such that

∑
n∈N anM gn

< ∞; the processh given byht ≡∑n∈N ang
n
t a.s.P for

all t ∈ R+, belongs toG . Hence there isgs in G such that forS ∗ = {gs
s > 0},

we haveP (S ∗) = sup{P (S ) ; S ∈ S }. We shall now prove thatP (S ∗) = 1.
If P (S ∗) < 1, then we can apply the separation Theorem toµ = 1(Ω\S ∗)δt

which belongs toΓ+\ {0} and proceeding as above, we findg′s ∈ G such that

E
[
1(Ω\S ∗)g

′s
s

]
> 0. Then,gs + g′s would be an element ofG , whose support

hasP -probability strictly greater thanP (S ∗): a contradiction.
In the same way, we get that there existsg in G such thatgdn > 0 almost

surely for alln ∈ N , whered = (dn )n∈N is the sequence introduced inAssumption
A. We consider the processg such that for allt ∈ R+, gt ≡ ∑

n∈N bng
dn
t , where

(bn )n∈N is a sequence of positive scalars such that
∑

n∈N bnM gdn
< ∞.

We have found so far a processg such that for all t ∈ R+, gt is in
L∞

+ (Ω, F , P ; R) and ‖gt‖L∞ ≤ M , gdn > 0 almost surely for alldn ∈ d and
E
[∑

t∈R+
gtΦt

] ≤ 0 for all Φ =
∑

t∈R+
Φtδt in J . Then it is easy to check

that the same holds for the(Ft )t∈R+
-adapted process ˜g = (g̃t )t∈R+

such that
g̃t = E

[
gt | Ft

]
P a.s. for all t . To finish the proof, we only need to show

that for all t ∈ R+, g̃t > 0 a.s.P . Assume that for someT outside the set of
dates{dn ; n ∈ N } we have just considered, the eventBT ≡ {g̃T = 0} has positive
P -probability; we know that there existsΦ =

∑
t∈R+

Φtδt in C such thatΦT = 0
outsideBT , Φt = 0 for all t < T , Φt ≥ 0 for all t > T , ∃n ∈ N , P

[
Φdn > 0

]
> 0.

For this particularΦ, we would haveE
[∑

t∈R+
gtΦt

] ≥ E
[
gdn Φdn

]
> 0, which

is impossible and completes our proof.�

Proof of Corollary 2.6 The proof remains the same as for Theorem 2.5,
replacing the sequence(dn )n∈N by {1, ..., d} or N . �

Proof of Corollary 3.1 The setGJ num consists of all processesg ∈ G such that
for all Φ in J num, E

[∑
t∈R+

gtΦt
] ≤ 0. Applying this inequality toΦ(0;1A,t1,t2) and

Φ(0;−1A,t1,t2) for all t1 ≤ t2, andA ∈ Ft1, we get that for allt1 ≤ t2, E
[
1Agt2S 0

t2

] ≤
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E
[
1Agt1S 0

t1

]
and E

[
1Agt2S 0

t2

] ≥ E
[
1Agt1S 0

t1

]
, thus the process

(
gt S 0

t

)
t∈R+

is a
P -martingale for(Ft )t∈R+

. The converse is immediate.�
Proof of Lemma 3.2 For 1. and 2., one implication is immediate taking

gt ≡
(

1
S 0

t

)
dP̄ |Ft
dP |Ft

and applying Corollary 3.1 and Theorem 2.5. For the con-

verse implication, we know by Corollary 3.1 that for allg ∈ GJ num, gS 0 is a
martingale. The processgS 0 admits a right-continuous modification, that can
be chosen so as to be a martingale with respect to(Ft )t∈R+

(see Dellacherie
and Meyer (1980)). For 1., the process

(
gt S 0

t

)
t∈R+

is uniformly integrable, so
it convergesP a.s. to an integrable random variable that we shall denote by
g∞S 0

∞, such that
{
gt S 0

t ; Ft ; 0 ≤ t ≤ ∞} is a martingale (see Dellacherie and
Meyer (1980)). Since for allt ∈ R+, gt S 0

t is P a.s. positive, we define an abso-
lutely continuous probability measurēP (with respect toP ) on (Ω, F ) by setting
dP̄
dP ≡ g∞S 0

∞
E [g∞S 0∞] . Its density restricted to anyFt , which is equal to gt S

0
t

E [g∞S 0∞] ,

is positive. Then for all investmentΦ in J , Φt

S 0
t

belongs toL1
(
Ω, Ft , P̄

)
for all

t ∈ R+ andE P̄
[∑

t∈R+

Φt

S 0
t

]
= 1

E [g∞S 0∞] E
[∑

t∈R+
gtΦt

] ≤ 0.

For 2., the processgS 0 is a right-continuous nonnegative martingale and
therefore admits an exit measure (see Föllmer (1972), Meyer (1970)). There
exists a probability measurēP on (Ω, F ) such that for all stopping timeT ,
P̄ [T < ∞] = E

[
gT S 0

T 1T<∞
]
. For all A ∈ Ft , taking T = t1A + ∞1Ac gives us

P̄ (A) = E
[
gt S 0

t 1A
]

and the result wanted.�
Proof of Corollary 3.3 Any g ∈ GJ lb satisfiesE

[∑
t∈R+

gtΦ
(0;1A,t1,t2)
t

]
≤ 0

for all t1 ≤ t2, for all A ∈ Ft1. Then for allA ∈ Ft1, E
[
1Agt2S 0

t2

] ≤ E
[
1Agt1S 0

t1

]
and the processgS 0 is a supermartingale. In an analogous way, we find that the
processgS 1 is a submartingale. The converse is immediate.�
Proof of Lemma 3.4 1. Using Condition(C 1) and proceeding like in Corollary

3.3, we get that for alls ∈ R+, X s ≡
(
gt

S 0
t

S 0
s

)
t≥s

is an(Ft )t≥s -supermartingale and

Y s ≡
(
gt

S 1
t

S 1
s

)
t≥s

is an(Ft )t≥s -submartingale. We know thatP a.s., for allt ∈ R+,

the limits X 0
t+ exist, thusP a.s., for all t ∈ R+, the limits gt+ exist. Moreover,

for all s ≥ 0, X s
s ≥ E

[
X s

s+ | Fs
]

and Y s
s ≤ E

[
Y s

s+ | Fs
]
(Dellacherie and Meyer

(1980)). Using the right-continuity of the filtration, we get thatgs = gs+ a.s.P ,
andg admits a right-continuous modification.

2. One implication is immediate noticing that for alls, Z s
s = 1 and apply-

ing Corollary 3.3. We prove the converse implication fors = 0. We know by
Corollary 3.3 and 1. that up to a modification, forg ∈ GJ lb , gS 0 (resp.gS 1) is a
right-continuous super-(resp. sub-)martingale. Moreover, by Condition(C 2), we
havegS 0 ≤ gS 1. Then we use the approach adopted in Jouini and Kallal (1995a,
Lemma 3) or Choulli and Stricker (1997), adapting it to the case of infinite time
to get the existence of a right-continuous martingale process(mt )t∈R+

which sat-
isfies

(
gS 0
)

(t) ≤ mt ≤ (gS 1
)

(t) for all t ∈ R+. Since for allt ∈ R+, gt is almost
surely positive, we may define the process(Zt )t∈R+

by Zt ≡ mt
gt

for all t ∈ R+.
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3.a. Since(C 3) implies (C 1), using 1), there is a right-continuous process

g ∈ G such that for allt1 ≤ t2, E

[
gt2

(
S 0

t2

S 0
t1

− S 1
t2

S 1
t1

)
| Ft1

]
≤ 0. If there is no

free lunch forJ lb, we have for all(t1, t2) ∈ (R+)2, E

[
gt2

(
S 0

t2

S 0
t1

− S 1
t2

S 1
t1

)
| Ft1

]
≤ 0.

Then, letting fori = 0, 1, r i (t , ω) ≡ lim
[(

S i (t+1/n,ω)
S i (t,ω) − 1

)
n
]
, we get

E
[
gt1

(
r0

t1 − r1
t1

)
| Ft1

]
≤ limE

[
gt1+1/n

(
S 0

t1+1/n

S 0
t1

−
S 1

t1+1/n

S 1
t1

)
| Ft1

]

or gt1

(
r0

t1 − r1
t1

)
≤ 0, so that for alls ∈ R+, r0

s ≤ r1
s a.s.P . Since fori = 0, 1, for

all ω, r i
s = r i

s a.s.λ, we can writeS i
· = exp

∫ ·
0 r i

s ds. We now claim that(C 2) is
satisfied. LetA ∈ B (R+)⊗F be given byA ≡ {(s, ω) , r0

s (ω) > r1
s (ω)

}
. We get

thatλ⊗P (A) = 0, so thatλ (Aω) = 0 a.s.P (where as usual,Aω ≡ {s, (s, ω) ∈ A})
and for all t1 ≤ t2,

∫ t2
t1

r0
s ds ≤ ∫ t2

t1
r1

s ds almost surely.
3.b. Consider a finite set of dates(ti )i∈{0,...,N } in [0, T ] such that 0 =t0 <

... < tN = T , whereT is a given positive real number. We deduce from 2. that
there exists a processX 0 =

(
X 0

t

)
t∈(ti )

such that
(
gt X 0

t

)
t∈(ti )

is a P -martingale for
(Ft )t∈(ti ) and for all i ∈ {0, ..., N − 1},

S 0
ti+1

S 0
ti

≤ X 0
ti+1

X 0
ti

≤ S 1
ti+1

S 1
ti

.

We extend the process found this way for each time grid(ti )i∈{0,...,N } into a
continuous time process, defined fort ∈ [0, T ] by letting X 0

· = exp
∫ ·

0 ys ds

with y (s) = yi (s) for every t ∈ [ti , ti+1[ where
X 0

ti+1

X 0
ti

= exp
∫ ti+1

ti
yi (s) ds. Note

that X 0 is absolutely continuous and can be writtenX 0
t = 1 +

∫ t
0 us ds where

us = ys exp
∫ s

0 yvdv. We do this for finer and finer grids of union equal to
some dense subset of[0, T ]. Since |u (s, ω)| ≤ r̄1 where ¯r1 denotes the upper
bound forr1, the sequence of slopesu (s, ω) constructed this way is bounded in
L∞ ([0, T ] × Ω, B [0, T ] ⊗ FT , λ[0,T ] ⊗ P

)
; so it admits a convergent (for the

weak-star topologyσ
(
L∞, L1

)
) subsequence. Let us denote by ˜u its limit, and

consider the processZ = 1+
∫ ·

0 ũs ds, defined fort ∈ [0, T ], which can be written

in the formZt = exp
∫ t

0 rs ds, for some bounded processr .
For all t ∈ [0, T ], the “associated” subsequencegX 0 (t) is convergent for the
weak-star topologyσ

(
L∞ (Ω, Ft , P ) , L1 (Ω, Ft , P )

)
with limit equal to gZ (t).

Using the fact that for all time grid(ti )i∈{0,...,N }, the associated processgX 0

is a P -martingale for(Ft )t∈(ti ), it is easy to see thatgZ is a P -martingale for
(Ft )t∈[0,T ] . We adopt the same approach betweennT and(n + 1) T for n ∈ N ∗,
to find a processZ , defined for t ∈ R+, which can be written in the form
Zt = exp

∫ t
0 rs ds, for some bounded processr and such thatgZ is aP -martingale

for (Ft )t∈R+
. Proceeding like in the proof of 3.a., we get thatr0 ≤ r ≤ r1. �

Proof of Corollary 3.5 Immediate.�
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Proof of Corollary 4.1 Immediate.�
Proof of Corollary 4.2 If g ∈ GJVex, then for x ∈ C , we have for all
A ∈ Ft1, E

[
1Ax · (gt2St2 − gt1St1

)] ≤ 0 thus,x · E
[(

gt2St2 − gt1St1

) | Ft1

] ≤ 0
and E

[
gt2St2 − gt1St1 | Ft1

]
almost surely takes values inC 0. Conversely, if

E
[
gt2St2 − gt1St1 | Ft1

]
takes values inC 0, then for all A ∈ Ft1 and x ∈ C ,

1Ax · E
[
gt2St2 − gt1St1 | Ft1

] ≤ 0 a.s.P , thusE
[∑

t∈R+

(
x · Φ(A,t1,t2)

)
t
gt
] ≤ 0. �

Proof of Corollary 4.3 Immediate applying Corollary 4.2 toC of the form
Cs . �
Proof of Lemma 4.4 One implication is easy noticing that for all stopping times
τ1 andτ2 in S f , we have, using the fact thatS̃ lies between the bid and ask price
processes, the law of iterated expectations and the optional sampling Theorem,

E

[∑
t∈R+

Φ(k ;τ1,τ2)
t gt

]
= E

[
gτ2S ′k

τ2
− gτ1S k

τ1

] ≤ E
[
gτ2S̃ k

τ2
− gτ1S̃ k

τ1

]
= 0.

The result then follows from Theorem 2.5.
For the converse implication, we know by Corollary 3.3 that there exists a

processg = (gt )t∈R+
∈ Glb such that for allk , for all τ1 andτ2 in S

f
t ,

E
[−gτ1S k

τ1
+ gτ2S ′k

τ2
| Ft
] ≤ 0

or
E
[
gτ2S ′k

τ2
| Ft
] ≤ E

[
gτ1S k

τ1
| Ft
]

. (5.1)

We consider the two(N − 2)-dimensional processesZ andZ ′ given by

Z ′
t = ess sup

τ∈S
f

t

E
[
gτ S ′

τ | Ft
]

for all t ∈ R+

Zt = ess inf
τ∈S

f
t

E
[
gτ Sτ | Ft

]
for all t ∈ R+

In words,Z ′k is the supremum of the conditional expected value of the proceeds
from the strategy that consists in going short in one securityk (and investing
the proceeds in security 0) after timet (but not necessarily at the same time in
different events). The processZ is defined symmetrically. We have for allt ∈ R+,
S ′

t gt ≤ Z ′
t as well asZt ≤ Stgt because for allt ∈ R+, the stopping timeτ = t

belongs toS
f

t .
It is a standard result in optimal stopping thatZ ′ is a P -supermartingale for
(Ft )t∈R+

and thatZ is a P -submartingale for(Ft )t∈R+
. Using inequality (5.1),

we haveZ ′ ≤ Z . The processg can be taken right-continuous (Lemma 3.4,
1.). As in Jouini and Kallal (1995a, Lemma 3), we get that there is a processZ̃
lying between

(
S ′g
)

and(S g), which is aP -martingale for(Ft )t∈R+
. Now, letting

S̃ ≡ Z̃
g , we get thatgS̃ is a right-continuousP -martingale and for allt ∈ R+,

S ′
t ≤ S̃t ≤ St P a.s.�
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Föllmer, H., Kramkov, K.: Optional decomposition under constraints. Probab. Theory Relat. Fields

109, 1–25 (1997)
Frittelli, M., Lakner, P.: Arbitrage and free lunch in a general financial market model; the fundamental

theorem of asset pricing. In: Davis, M.H.A., Duffie, D., Fleming, W.H., Shreve, S.E. (eds):
Mathematical Finance, New York: Springer 1994

Harrison, M., Kreps, D.: Martingales and arbitrage in multiperiod security markets. J. Econ. Theory
20, 381–408 (1979)

Harrison, M., Pliska, S.: Martingales and stochastic integrals in the theory of continuous trading.
Stoch. Proc. Appl.11, 215–260 (1981)

Jouini, E., Kallal, H.: Martingales and arbitrage in securities markets with transaction costs. J. Econ.
Theory66, 178–197 (1995a)

Jouini, E., Kallal, H.: Arbitrage in securities markets with short-sales constraints. Math. Fin.5,
197–232 (1995b)

Kabanov, Y.: Hedging and liquidation under transaction costs in currency markets. Finance Stoch.
2 (1999)

Kreps, D.: Arbitrage and equilibrium in economies with infinitely many commodities. J. Math. Econ.
8, 15–35 (1981)



Arbitrage and investment opportunities 325

Marle, C.M.: Mesures et probabilités. Hermann 1974
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