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Abstract. We consider a model in which any investment opportunity is described
in terms of cash flows. We don’t assume that there is aéraire, enabling
investors to transfer wealth through time; the time horizon is not supposed to be
finite and the investment opportunities are not specifically related to the buying
and selling of securities on a financial market. In this quite general framework,
we show that the assumption of no-arbitrage is essentially equivalent to the
existence of a “discount process” under which the “net present value” of any
available investment is nonpositive. Since most market imperfections, such as
short sale constraints, convex cone constraints, proportional transaction costs, no
borrowing or different borrowing and lending rates, etc., can fit in our model
for a specific set of investments, we then obtain a characterization of the no-
arbitrage condition in these imperfect models, from which it is easy to derive
pricing formulae for contingent claims.
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1 Introduction

In a perfect financial model, the Fundamental Theorem of Asset Pricing (see
Harrison and Kreps 1979 or Harrison and Pliska 1981) asserts that the assumption
of no-arbitrage (which amounts to saying that there is no plan yielding some profit
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without a countervailing threat of loss) is essentially equivalent to the existence
of an equivalent martingale measure. The problem of fair pricing of financial
assets is then reduced to taking their expected value with respect to equivalent
martingale measures.

We want to find in this paper the analog of the Fundamental Theorem of
Asset Pricing for general models of investment opportunities. In a deterministic
setting, such opportunities are described in discrete time by Cantor and Lippman
(1983) and Dermody and Rockafellar (1991, 1995) and by Carassus and Jouini
(1998) in continuous time. More precisely, we adopt a model where all investment
opportunities are described by their cash flows; for instance, in such a model, the
investment opportunity which consists in buying, in a perfect financial model, at
dates; one unit of a risky asset, whose price process is giverf®y.g, and
selling at dates, with s; < s, the unit bought, is described by a procé®s); g,
which is null outside{s;, s;} and which satisfieds = —S;, andds, = S,,.

Our investment opportunities are assumed to be quite general: they are not specif-
ically related to a market model, like in the just mentioned example. The time
horizon is not supposed to be finite. The framework is the one of continuous
time. We don’t assume that there exists a @uaire, enabling investors to trans-

fer wealth from one date to another and even if such possibilities exist, we do
not assume that the lending rate is equal to the borrowing rate or that we have
possibilities to borrow.

We find in this general model that the assumption of no-free lunch is essen-
tially equivalent to the existence of a normalization process such that the “net
present value” of any available investment opportunity is honpositive. We em-
phasize that neither interest rate nor net present value are part of our model. As in
Dermody and Rockafellar (1991, 1995), there is no externally given term struc-
ture, which would be needed if one were to apply the classical criterion of net
present value; these notions arise however as a consequence of the assumption
of no-arbitrage.

We then use this general result for specific financial market models: perfect
financial model, for which we obtain the well-known characterization of the as-
sumption of no-arbitrage given by the Fundamental Theorem of Asset Pricing in
finite time, and a slightly different version in infinite time; but mainly financial
models with frictions like imperfections on the némaire, proportional trans-
action costs, short sale constraints, convex cone constraints, etc., for which we
generalize existing results.

Initial results on the Fundamental Theorem of Asset Pricing in the perfect case
were achieved by Harrison and Kreps (1979), Harrison and Pliska (1981), Kreps
(1981) and Duffie and Huang (1986). Various generalizations are now available
in the literature: in Dalang et al. (1989), the problem is solved in the case of finite
discrete time, by only using the assumption of no-arbitrage. For discrete infinite
or continuous time, the notion of free lunch is needed; Schachermayer (1994)
mainly deals with the case of discrete infinite time. Continuous time models are
studied by (among others) Ansel and Stricker (1990), Delbaen (1992), Delbaen
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and Schachermayer (1994, 1998), Frittelli and Lakner (1994), Stricker (1990). In
all these models, securities markets are assumed to be frictionless.

In the context of imperfect financial markets, Jouini and Kallal (1995a) char-
acterize the assumption of no-free lunch in a model with proportional transaction
costs and give fair pricing intervals for contingent claims in such a model. Cvi-
tanic and Karatzas (1996) study the problem of hedging contingent claims, in
continuous time, for a diffusion model (with one bond and one risky asset) with
proportional transaction costs, and give a dual formula for the so-called super-
replication price of a contingent claim (i.e. the minimum initial wealth needed to
hedge the contingent claim or in other words, to obtain, through the investment
opportunities available on the market, at least the contingent claim). Delbaen et
al. (1998) and Kabanov (1998) generalize this result to the multivariate case, in
discrete as well as in continuous time, and with a semimartingale price process.

As for other imperfections, Jouini and Kallal (1995b) study the case of short
sale constraints or shortselling costs with possibly different borrowing and lend-
ing rates. For convex constraints (and also with possible higher interest rates
for borrowing), the dual formulation for the superreplication price is obtained
in a diffusion framework in Cvitanic and Karatzas (1993). In a more general
framework, the result is obtained inbkmer and Kramkov (1997). Pham and
Touzi (1996) consider the Fundamental Theorem of Asset Pricing with cone
constraints, in a discrete and finite time setting and by only using the assumption
of no-arbitrage. Brannath (1997) studies the same problem in the more general
setting of convex constraints.

This paper generalizes Carassus and Jouini (1997), that considers discrete
models, i.e. with finite time horizon, discrete time and finite number of states of
the world at each time.

We generalize existing results in the following ways: first, we don’t assume
that there exists a nuenaire available to investors and allowing them to transfer
wealth through time; this enables to consider any type of friction on theeraine
like no borrowing, different borrowing and lending rates, bonds with default risk,
etc., which have been barely studied, or simply to take into account the fact that
all investors are not equal with regard to borrowing and lending, namely some
investors may enjoy special borrowing facilities while others may not; second,
we are lead to introduce a new notion of no-free lunch, which is similar to the
“usual one” (with deterministic times) in finite time but does not exclude a free
lunch at infinity and is therefore maybe more economically meaningful; last, we
characterize the assumption of no-arbitrage (or more precisely of no-free lunch)
for general investments, which enables to consider investment opportunities that
are not necessarily related to a market model and, more interestingly, to generalize
the results obtained for imperfect markets and to obtain them all in a unified way.

The paper is organized as follows: in Sect. 2, we obtain, under a “reason-
able” assumption, the characterization of the absence of free lunch in a general
model with flows. Since we are not allowed to transfer wealth from one date to
another, we cannot consider net gains anymore; in all papers dealing with the
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Fundamental Theorem of Asset Pricing (with simple integrands), the assump-
tion of no-arbitrage or no-free lunch essentially amounts to saying that the set
Lin{6s- (S — )}, whered describes all feasible strategies adienotes the
discounted underlying price process, contains no nonnegative nonnull random
variable. Implicit in such an approach is the fact that there is an externally given
term structure, enabling investors to borrow and lend money at the same rate.
In the context with flows, we must use separation technigues in more complex
spaces to obtain the Fundamental Theorem of Asset Pricing. We apply this char-
acterization of the no-free lunch assumption to different market models with
frictions in Sects. 3 and 4.

All the proofs are in the Appendix.

2 The fundamental theorem of asset pricing in a model with flows

As we have seen in the Introduction, since we are not necessarily allowed to
transfer wealth through time, we must consider more general spaces than the
classicalL” spaces. We start by introducing these spaces. Then we describe our
general model with flows. Finally, we obtain, through an analog of Yan’s (1980)
result, the characterization of the no-free lunch assumption in such a model.

2.1 The space L} (12, 74)

For details about most notions introduced in this section, see Marle (1974) or
Diestel and Uhl (1977)

We denote byZg the set of continuous functions froRito R which converge
to 0 at infinity; endowed with the uniform convergence topologdyis a Banach
space. We denote hy#, the space of bounded Radon measures, i.e. the space
of continuous linear functionals otiy; the space #,, endowed with the usual
dual norm|-||_,, defined by||ul|_, = sup{|u(f)l;f € Zo;|f|| < 1} for all
in .74y, is a Banach space.

Fix a probability spacéf2, F,P). Let (X, ||-|y) be a Banach space. The set
S (12, X) denotes the set ak-valued simple random variables, i.e. the set of
random variable$ of the formf = Zi“llale, for somemin N*, A in F and
a in X. The setMp (12, X) denotes the set dP-measurable random variables,
i.e. the set of random variabldssuch that there exists a sequerftg,cy in
S (£2,X) for which f = lim,f, a.s.P. ThenL} (£2,X) denotes the set dP-
measurable random variabléssuch that||f ||, belongs toL!(£2,R), i.e. such
that [|f HL;(Q,X) =EP [lIfllx] < oo
Denote by (X', ||-|ly,) the dual space oK, endowed with the dual norm. We
know that (X', |||lx,) is itself a Banach space. Let > (£2,P,X’) denote the
set of random variableg : 2 — X', for which

(g,€) :w — (g (w),e) is measurable for ak in X and
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llg |%§(Q,P7X,) =inf{M >0, lg|lyx, <M P as} < oc0.

Then the setl(® (Q,P,X’) is defined to be the set of equivalence classes
g* of elements of £ (2,P,X’), wheref ~ g < (f.e) = (g,e) P as.
for all e in X. We consider the normy-[| =g p x/y 9iVeNn by [[gll w0 p x,y =
infgege 191l ,p x fOr all g € L (2,P,X).

It is shown in Schwartz (1974) that the dual spacé.{(2, X) is the space
L3 (£2,P,X’); there is an isomorphism betwekff (£2,P,X’) and L} (£2, X)]'
that associates with any random variafpia L2° (Q, P, X’) the continuous linear
functional ¥ on L} (12, X) given by

wif Sw(E)=E {(f,g)xyx,} for all f in LY (12,X),

where (f, g)y x, : w = (f (w),9(w))x x- Notice then that.2* (22,P,X’) is a
Banach space.

Let I" denote the set of random variablgsfrom 2 to .#%, of the fornt
v = Zinll’Yt. O eyt w i (W) 6y + .o+, (W) 6, With v, in LY (2, R) for
all tj € R. We should writey = Zi”bl ~7 0y but we will omit the indexy for the
simplicity of the notations. o
We have the following immediate

Lemma 2.1 The set I" is included in L} (£2,.74y) and for all v in I, v =
S0 7l e, ) = 2t 1o ry:

Let Iy (resp.I-)= {y € I';v = >{2 %,64;7 = O (resp. < 0) P a.s}.

2.2 The model

We consider a model in which agents face investment opportunities described
by their cash flows. A probability spadg?, F,P) is specified and fixed. The
sets? represents all possible states of the world. An information structure, which
describes how information is revealed to investors, is given by a filtréfiQn.g,
satisfying the “usual conditions” and such tlitis trivial. We model investment
opportunities which are available to investors in the following way.

Definition 2.2 An investment is an (Ft);cg, -adapted process & = (Pt),cg,, Ul
outside a finite number of dates, i.e. there exists (t, ..., t%) such that &; = 0O for

alt ¢ (tfp)iN:l, and such that @, isin L (2, Fy, P) for all t in R,.
We consider a convex cong of available investment opportunities: this
amounts to saying that an investor has a right to subscribe to (a finite number

of) different investment plans and that he can decide at the starting date of any
investment opportunity which amount of this particular investment he wants to

1 where, as usual (f) = f (t) for all f € %.
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buy. We shall see in Sects. 3 and 4, with specific examples, that we are lead to
consider convex cones in order to take into account the fact that investors are
not necessarily able to sell an investment plan (see for instance the case of short
sale constraints or transaction costs).

We introduce the following assumption.

Assumption A: there exists a sequende= (dn),¢y iN R+ such that for alt* € R,
for all B+ in Fi- of positive probability, there exist® in J of the form&;- =0
outsideB;«, &y =0 for allt < t*, & > 0 for allt > t*, and there exista € N,
P [#4, > 0] > 0.
In words, if a convex cond of available investments satisfiéssumption A,
this means that there exists a sequence of trading dates such that, for all date and
for all event at that date, there exists an investment plan in our admissible set of
investment opportunities that starts at that date and in that event, that can take
any value at that date and in that event but that is nonnegative after that date and
nonnull at one date belonging to the above mentioned sequence of dates. Roughly,
Assumption A corresponds to the possibility of transferring “some wealth” from
any date and event to some particular date. This assumption is not too restrictive:
it is satisfied if we can buy at every date and event a bond with a given maturity
even if this bond is defaultable and even if there is no secondary market for
that bond (i.e. we have to wait until the maturity in order to recover any money
with a positive probability, which may be different from 1); this includes market
models with frictions on the nu@maire like no borrowing, different borrowing
and lending rates, bonds with default risk, different borrowing facilities among
investors.

We don't specify the elements of so far. We consider any investment
D = (P);cr, @s a random variable frorf? to the set of discrete bounded Radon

measures of the fornd = 3~ &6, whered; = 0 for t ¢ (tiq})iN:l, i.e. as an
element ofl".
We now come to the notion of no-arbitrage.

Definition 2.3 Thereisno arbitrage opportunity for J if and only if JN I = {0}.

Let us check that this definition corresponds to the usual notion of no-arbitrage,
i.e. an impossibility to have access to an investment that yields a positive gain
in some circumstances without a countervailing threat of loss in other circum-
stances. In our framework, an arbitrage opportunity would consist in a non-
negative nonnull available investmentdn And @ = (t),cg, iS @ nonnegative
nonnull investment process if and onlydf: w — Z{ilq')ti (w) &, which is in

L% (£2,.74p), belongs tol; and is not null

It is easy to see that the notion of no-arbitrage introduced in Definition 2.3
can be written in the formd — I';) N I+ = {0}. A free lunch denoting the
possibility of getting arbitrarily close to an arbitrage opportunity, we introduce
the following

Definition 2.4 There is no free lunch for J if and only if (J — I}) N I'x = {0},
where the bar denotes the closurein L} (£2,.72;) .
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Notice that if there is a nuéraire, the assumptiqd — Ix)NI%: = {0}, where
the bar denotes the closure i3 (12,.#,), is less restrictive than the “usual”
assumption of no-free lunch (with deterministic times). The difference between
the two notions lies in the fact that the nonnegative nonnull random variable that
we can “almost reach” with admissible investments “is at a finite date” for the
new notion whereas it can “be at infinity” for the usual notion. The notion of
absence of free lunch adopted in this paper does not exclude a free lunch “at
infinity” and can therefore be considered as more economically meaningful.

2.3 Characterization of the no-arbitrage assumption in a model with flows

By adapting the proof of Yan (1980), we obtain, undesumption A, the fol-
lowing Fundamental Theorem of Asset Pricing in our general framework with
flows.

Theorem 2.5 Let J denote a convex cone of available investment opportunities
satisfying Assumption A. There is no free lunch for J if and only if there exists a
process g = (gt )icr, Such that

1 forallt € Ry, g € L™ (2,F,P)and M = supg [lgtll - < o0
2. forallt e Ry, gt >0P as
3. forall = (QSI)IER €J,E [Zte& gtdst] <0

Moreover, the process g can be taken (Ft),cr, -adapted.

In the case where the set of available investment opportunities is related
to a countable set of dates, which is the case in finite (resp. infinite) discrete
time where the sel consists of(F),.r-adapted processeB = (&), for
T={1,...,d} (resp.T = N), thenAssumption A is not needed to obtain Theorem
2.5.

Corollary 2.6 Let J denote a convex cone of investments. In finite or infinite
discrete time, there is no free lunch for J if and only if there exists a P-essentially
bounded process g = (gt),c such that for all & = (®i)icr € J, E [Y o1 1Pt <
0.

So, in continuous time, starting from the assumption of no free-lunch in a gen-
eral model with flows, without any assumption on the existence of a&naine,
but underAssumption A (for which we have given an interpretation and that
will reveal to be suited to our market frictions), we have proved the existence
of a “discount process” such that, using this process as a deflator, all available
investments have non-positive present value; this means that there exists a term
structure such that the market consisting of the primitive investment opportuni-
ties and of the additional borrowing and lending facilities is still “arbitrage-free”.
Besides, the existence of such a discount process prevents from any arbitrage
opportunity. In other words, there is no free lunch for a convex cone of avail-
able investments satisfyingssumption A if and only if a given convex set of
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“admissible” discount processes is non-void. We recall A&sstimption A is not
needed if we deal with discrete, possibly infinite, time.

We have seen that the “discount process” can be taken adapted to our fil-
tration. We have obtained so far no other regularity conditions (such as right-
continuity or existence of left limits); we shall see in the following section that
under some regularity conditions on the available investments, we obtain regu-
larity properties on the “discount process” itself. Besides, the taking into account
of frictions on the nuréraire will enable to better understand the nature of these
admissible discount processes.

Since most market models with frictions can fit in the model with flows for
a specific convex cone of available investments, our model provides a unified
framework for the study of the characterization of the absence of free lunch
in such imperfect market models. Notice however that economies with fixed
transaction costs do not fall in the framework with flows, since the set of all
available investments is not a cone.

3 Application to models with frictions on the numéraire

In this section, we still consider a general framework with flows, but we intro-
duce a nuraraire, possibly submitted to constraints. This enables us to give a
better interpretation of the “admissible” discount processes found in the previous
section. Moreover, we obtain a characterization of the no-free lunch assumption
in general models with flows with possible frictions on the @uaire. Since mar-
ket imperfections like convex cone constraints, proportional transaction costs, etc.
can fit in our model with flows, our approach will enable us in the next section
to characterize the absence of free lunch in these imperfect models, when there
are, in addition, imperfections on the naraire.

We introduce a few notations. Lét” denote the set of all (equivalence
classes) of adapted procesges (gt),cr,, Such that for alt € R, 0 < gt < MY
a.s.P for some scalaM 9. For a convex con& in I, let % denote the convex
set of processeg € & such thatE [ g @] <O forall® =3 o Pé in
K.

3.1 With a “ perfect” numéraire

We assume that there is a perfect ravaire, i.e. that there are possibilities
to transfer wealth through time, without friction. L&’ = (§°),_, denote

a positive, adapted (numaire) process such that for 4th,t;) € R?, for all
0 € L (£2,Fyt,, P), the process denoted %941 and given by

@EO;GJLIZ) =0 [—S(l)lt:tl + Sglt:tz} forallt R

belongs tol". Notice that this is equivalent t§° € L* (2, F,P) for all t € R..
Let J"™ denote the convex cone generated by a given convextamé’ and all
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the investment®(@?.4.2) The set)"'™ corresponds to all available investments
in a model with flows, where agents can invest in a perfectéraire. Notice
that J"™ satisfiesAssumption A so that, according to Theorem 2.5, there is no
free lunch in a model with a perfect n@maire if and only if the se¥jmm is non-
void. We obtain the following characterization of the set of admissible discount
processes.

Corollary 3.1 The set %3 consists of all processes g € %; such that ¢S isa
P-martingale for (Fi)icr, -

This means that if we introduce a term structure given by aéraire S°,
then in the absence of free lunch, the procgssust be equal tcgl—0 multiplied
by a positive martingale (which is the stochastic analog of a (positive) constant
function). Up to a martingale, the proceggives us the possible term structures,
i.e. which would be compatible with the assumption of no-free lunch. Note that
the procesg/S® admits a right-continuous left-limited (RCLL) modification, so
that if 1/S% is RCLL, theng itself admits a RCLL modification.

In finite time, according to Corollary 3.1, the absence of free lunchl fgf
implies that there exists an equivalent probability measure under which the net
present value (using° as a deflator) of any available investment is nonpositive,
i.e. there exists a probability measu@e~ P, such thatE®? [Zte& %] <0 for

all @ € J. In infinite time, the situation is somewhat different.

Lemma 3.2 1. If S° is uniformly integrable, then there is no free lunch for
Jnumif and only if there exists a probability measure P on (§2, F), absolutely

continuous with respect to P and such that ( = [d—ﬁ | FtD € ¢ and
S dp ter,

EP {Zte& %] < 0 for all investment ¢ in J.

2. If £2 is the canonical space of all continuous functionals on R, taking val-
ues in R U {oo}, then there is no free lunch for J"™™ if and only if there

exists a probability measure P on (2, F), such that (% ) R € % and
te

dP{r,

{Zte& } < Ofor all investment @ inJ.

For 1., notice that unlike in the “classical case” with a perfect etaine
constantly equal to 1 (see e.g. Stricker (1990)), in the infinite time framework, we
only find an absolutely continuous probability measure, whose restricted density
to all F; is positive, instead of an equivalent probability measure. This is due
to the fact that, as mentioned in Sect. 2, our assumption of no-free lunch is less
restrictive than the “usual” one, since it does not exclude free lunches at infinity.
For 2., instead of considering a specific Sgtwe could also impose conditions on
the filtration(F¢),cg,. Our problem is related to the existence of the exit measure
(or Follmer measure) of the martingale proceS’. See Blimer (1972), Meyer
(1970) or AZma and Jeulin (1976) for more details on this topic.

We now turn to cases where the naraire is subject to some constraints.
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3.2 With lending and borrowing opportunities

Let S° = (), R andS' = (§'), <. denote two positive and adapted processes

with § = § = 1, such that for all(ty,t;) € R? with t; < tp, for all § €
L (£2,Fy,P), the processes denoted &' and $(1¥-1:%) and given by

PP = g [Py + P, forallt e R,
Lot = g [SMi=t, — Sty forallt € R

belong tol". Let J™ denote the convex cone generated by a given convex cone
J in I" and all the investment©?.t2) and 1912 The set)® corresponds

to all available investments in a model with flows where agents have lending and
borrowing opportunities, but not in the same conditions. Notice ifasatisfies
Assumption A so that, according to Theorem 2.5, there is no free lunch in a
model with such constraints on the lending and borrowing opportunities if and
only if the set is non-void. We obtain the following characterization of the
set G,

Corollary 3.3 The set % consists of all processes g € %; such that ¢S° is a
P-supermartingale and ¢S is a P-submartingale for (F¢)cr, -

We now introduce additional conditions on the process®and S*.

(C1) The processes® and S are right-continuous and for aft, t;,t;) with

(k;lfﬁhh)

t <t <ty forall Ac Fy, the proces®\ * eJbfork=0,1.

(C2) Foralls <t, §%/0 < §t/s! a.s.P.

(C3) The processeS? andS* can be written in the forng® = exp f; r2ds and
S* = exp [, rads for some processes$ andr!in? L (R, x 2,.%2 (R,) ® F

A® P).

Condition (C1) is essentially a right-continuity condition; the additional in-
tegrability condition is satisfied if for alt € R., 1/S° as well as 1S! are
bounded. Condition (C2) essentially means that the “borrowing rate” is greater
than or equal to the “lending rate”. Condition (C3) means that the proc&Sses
and S* are associated to interest rates, with a possible spread. Notice that con-
trarily to Jouini and Kallal (1995b), we do not suppage< r?, since we get it
as a consequence of the absence of free lunch; besides we shall see that if there
is no-free lunch ford", (C3) implies 1) and C2).

We now obtain more specific characterizations of the ‘§gt under the
different conditions.

Lemma 3.4 1. Under (C1), any g € Z3» admits a right-continuous modification.
2. Under (C1) and (C2), the set %31 consists of all processes g € ; for which

for all s € R,, there exists a process (Z¢), . . satisfying §°/S0 < z¢ < §t/s!

for all t > s such that (¢:Z®), . is a (right-continuous) martingale for (Ft);s.

2 We let X denote the Lebesgue measure. @h(R.).
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3.a. Under (C3), if there is no free lunch for J'®, then we can take r® < r?
and (C1) and (C2) are satisfied.

3.b. Under (C3), the set &y consists of all processes g € & for which
there exists a process Z = exp [, rsds for some bounded measurable process r
satisfying r® < r < r?! and such that ¢Z is a (right-continuous) martingale for
(Fier.-

Part 1 says that the right-continuity of the borrowing and lending processes
induce the right-continuity of the admissible discount processes. Part 2 says that
up to a martingale, the returns of the admissible discount processes lie between
the returns of the lending and borrowing processes; notice thatSf is left
limited, then any admissible discount process admits a left limited modification.
Part 3 says that if the lending and borrowing processes are associated to interest
rates, then so are the admissible discount processes.

3.3 With lending opportunities only

With the notations adopted in the previous subsection)edenote the convex
cone generated by a given convex cdnia I" and all the investmenig©¢-t.t2),

The setJ® corresponds to all available investments in a market model where
investors have lending opportunities, but not necessarily borrowing opportunities.
Notice thatJ® satisfiesAssumption A so that there is no free lunch in a model
with no borrowing if and only if the se¥;» is non-void.

Corollary 3.5 The set %;» consists of all processes g € %; such that ¢S° is a
supermartingale for (Fi)cr, .

We can now turn to frictions not only involving the nénaire.

4 Application to other market models with frictions

We shall consider market models with frictions on the @uaire and “imperfec-
tions” such as models with dividends, short sale constraints (or more generally
convex cone constraints), proportional transaction costs.

4.1 Models with dividends

We consider a model of financial market consistingNdfinancial assets, possibly
paying dividends to their holders. We denote ([Sk)l<k<N the adapted price

process of the securities and @k)1<k<N the associated (possibly null) adapted
dividends process. We assume that the dividends are discrete, i.e. that there is
no dividend paid outside a countable set of dates. The random vaiigble
corresponds to the dividends paid by the secukitgt timet. We treatS¥ by
convention as the post-dividends market value of the seclrigy timet. In
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other words, if the dividend process jumps at titnéhe market valug* reflects
the jump as already having been paid outSbris ex-dividend.

For 1< k < N, for all (t3,t;) € R? with t; < tp, and for allA € F,, we
assume that the proce@&-At-%) given by

A = 1, [~y + Df Ly crar, + L] forallt R

belongs toI" and we letJp;, denote the linear space generated by all these
investments. We suppose thgsumption A is satisfied. Using Theorem 2.5, we
get that

Corollary 4.1 Thereisno free lunch in the model with dividends (or equivalently
for Jpiy) if and only if there exists a process g = (gt);cr, € ¢ such that for all
1<t

Elog |+ Z gDt | | Fy| =9uS,.

ti<t<tp

Note that in the perfect case with no dividend, a finite time horizon, and a
“perfect” and bounded nuamaire, we obtain the “classical” Fundamental Theo-
rem of Asset Pricing, which asserts that there is no free lunch if and only if there
exists an equivalent probability measure with bounded density, which makes the
discounted price process of the traded securities a martingale.

4.2 Convex cone constraints and application to short sale constraints

We consider now a model of financial market where the quantities ofNthe
different risky assets held by investors are constrained to lie in a convex@one
(in RN). Notice that this situation includes the one with no constraiht(RN).

We denote by(Sk)l<k<N the adapted price process of the risky assets. For
1<k <N, forall (ti,t,) € R?, with t; < t, and for allA € F,, we assume that
the procesp®&Alk) given by

At = 1, 51y, + S 1,]  forallt e R

belongs tol". Let p(Atut) = (qﬁ(kiAvthtz))l <ven- We denote bydvex the convex
cone generated by T

{x oA x e C,(t1,t) € R2RAEF,}.

The setlyex corresponds to all available investments in a model where portfolios
are constrained to lie in a convex cone.

LetC%={y e RV;y-x <0, for all x € C}. Inthe unconstrained case, we have
C%={0}. We get the following characterization of the s&t,,.

Corollary 4.2 The set 73, consists of all processes g € ¢ such that for all
ty <t5, E [0S, — 9. S, | Fy,] takes valuesin C°.
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We can apply this result to market models with short sale constraints. We
consider a model of financial markets where two sorts of securities can be traded.
Short selling the first type of securities is not allowed, i.e. they can only be held
in nonnegative amounts, whereas the second type of securities can only be held
in nonpositive amounts. The model includes situations where holding negative
amounts of a security is possible but costly as well as situations where some (or
all) securities are not subject to any constraint, since we may include a security
twice in the model, in the first and in the second set of securities. This model
has been studied in Jouini and Kallal (1995b), in finite time, for price processes
which are inL? (2, F, P) and right-continuous.

This situation falls in our framework with convex cone constraints for a
convex coneCs of the form

Cs = {X=(Xs,....Xn) € R¥; X > 0 for k € Ky andx < 0 fork € K,}
for two disjoint subset¥; andK; of {1,...,N}. Then
Co={y =1, W) € RY;yk <0 fork € Ky andyy > 0 fork € K} .

We easily obtain the following characterization of the gt, whereJs is given
by Jvex for C = Cs. The setJs corresponds to all available investments in a
model with short sale constraints.

Corollary 4.3 The set &3 of admissible discount processesin the case with short
sale constraints consists of all processes g € &, such that for any security k that
cannot be sold short, gS¥ is a supermartingale, and for any security k that can
only be sold short, ¢S¥ is a submartingale.

4.3 Proportional transaction costs

We consider a model of financial market where the securities are subject to bid-
ask spreads: at each date, there is not a unique price for a security but an ask
price, at which investors can buy the security and a bid price, at which they
can sell the security. Notice that this model includes situations where there is a
unique price procesS and where the transaction cost remains constant overtime,
i.e. situations where at each tinec R., investors must pag (1 +c) for some
positive constant to buy the security and recei& (1 — ¢) when selling it.

Such a model with transaction costs has been studied in Jouini and Kallal
(1995a) using simple trading strategies like in Harrison and Kreps (1979), as-
suming that the time horizon is finite (equal T9, that there exists a nugmaire
process (identically equal to one) and that forta#t R,, the random variables
corresponding to the bid and ask prices at date in L2 (12, Fi, P). We in-
tend here to obtain the result of Jouini and Kallal (1995a) by using our general
approach with flows, and to extend it mainly to the case with frictions on the
numéraire and to infinite time.
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More precisely, we considdN — 1) securities and for X k < N, we let
() icr, @nd(§*), . denote respectively the adapted ask and bid price process.
We assume that the proces&andS’ are right-continuous and of clas%, i.e.
that the families{S.} ..« and{S/} .. are uniformly integrable, wher&’
denotes the collection of stopping times(6t),cr,, taking only a finite number
of values in[0, +oo[. Let.%" denote the collection of stopping timesin .~
such thatr >t a.s.P.

For eachk, for any stopping times; andr, in .", we consider the process
okTu7) given by

) = gk, +Sk1.,  forallteR.

It is easy to see that for eadt) for any stopping times; and» in ., the
procesgp&m:72) js an investment as defined in Definition 2.2 and we define the
setJcosts @s the convex cone generated by all these investments.

With the notations adopted in Subsect. 3.2, we make the additional assumption
that there exist two process88 andS? satisfying Condition (C1) and we denote
by J& the convex cone generated By,sis and all the investmentg©-t.t2)
and o9-1.t)  We denote by, the set of processes € & such thatgS° is
a P-supermartingale angS?! is a P-submartingale for(Fi),cg,. According to
Corollary 3.3,%, is the set of discount processes compatible with the absence
of free lunch for the convex cone generated by all investments related to the
borrowing and lending processes.

Notice that the no-arbitrage assumption implies that the bid price process lies
below the ask price process. We then have the following

Lemma 4.4 Thereis no free lunch for J&if and only if there exist an adapted
process g = (gi)ier, € “Fp and some adapted price process S lying between the
bid and ask price processes such that ¢S is a (right-continuous) P-martingale for
(Fier.-

If we now suppose that there is a perfect rauaire S° = 1, we get the result
obtained by Jouini and Kallal (1995a) in a finite time setting, i.e. there is no free
lunch with proportional transaction costs if and only if there exists an equivalent
probability measure, with bounded density (with densityf{(f2, Fr,P) in the

setting of Jouini and Kallal (1995a)) that transforms some process between the
bid and the ask price processes into a martingale. Lemma 4.4 enables to consider
market models with proportional transaction costs and frictions on thé&rairg,

in an infinite time setting.

5 Conclusion

We have characterized the assumption of no-arbitrage in financial markets, where
any investment opportunity is described by the cash flows that it generates; the
absence of free lunch is equivalent to the existence of a normalization process
such that the “net present value” of any available investment is nonpositive, i.e.
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there exists a process such that the “net present value” of the normalized cash
flows is nonpositive. We have then applied this very general result to specific
financial market models and mainly financial models with frictions like imper-
fections on the nugraire, which had been barely studied, but also proportional
transaction costs, short sale constraints, convex cone constraints, for which we
have generalized, in a unified way, existing results.

Appendix

Proof of Lemma 2.1 1) We prove it fory = 46 in I'. If v is a simple real
random variable, i.e. if it only takes a finite number of real val(@}-,, then
we can writey in the form~ = Zi':l 1p (& dt) for a partition (A)1<j<, Of £2,
andy € S (12, #4,). For a generady, 4 can be written as the a.s. limit of a
sequence{y{‘)neN of simple real random variables; ther= lim, (7{‘&) a.s.P,
andy € Mp (£2,.74,). Now, since||y (W) _, = SURf|<1rer 1t @) ()], we
getE [l ] =E [l @)I] < oc.

2) Forallyin I, y = >i0; 6, we havel|y ()|, = >_it; [ (w)| because
for all (ty, ...tm) in (R)™, we can findf in %, satisfying||/f|| < 1 andf () =1
(resp.f (&) = —1) if 3 (w) > O (respy, (w) < 0). O

Proof of Theorem 25 Let C = (J — I}). Assume first that there exists

a processg satisfying the conditions of the Theoremet x € I, x =

im0, ) x", x" € C. Sincex” € C C I', E [|Y1cr 94X — Yier, 9t%|] <

M X = XallLs (e, 1) (Lemma 2.1), thusE 35 q giX] —n E [Yicp o).

Since foralln, E [ g, 9] <0, we getE [>,.r giX] < Oandx ¢ I%\ {0}.
Suppose now tha€ N I, = {0}. Let u € I\ {0}. We apply the Hahn-

Banach separation Theorem in the normed vector shéo(e(L.//é@ to find

(0, B,) € R2 andg # 0 in £ (n, (.//zb)’), i.e. satisfying

1. (g, u)cﬂh)l,vm tw— (gw), y>(,/,db)/7',/éb is measurable for al in .,

2 8l (myy =it {M > 0]ig , <M Pas}<o,
for which, forallcin C, E [(g,c)cﬂb)/wﬂjb} <a,<pB,<E [(g,m('//éb)/w,éb ,
where (g, c)(umj)/rﬂb tw = (g (W), c(w)>('ﬂb)/w,éb. SinceC is a convex cone,
we can takey, = 0.

Let now for allt € R, g = <g,6t>(,//4b)/7_//éb andg = (gt)icr, - Then, using
1., g; is measurable. Moreover, using 2., since fortak R., §; € .#, and
satisfies| ét|| ,, < 1, we get the existence & in R; such that for alt € R,
g <M Pas.

We claim that for allt € R., ¢ is almost surely nonnegative. Suppose

that there existd < R. such thatV; = {(g,5t>('ﬂb)/v//éb <0} has pos-
itive P-probability. The random variabley in L} (£2,.74,) given by ¢ :
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w — —1y, (w)d: belongs tolI, so according to the separation Theorem

E [<97¢t>(.//¢b)’,.//4b} < 0.Butt [<97¢t>(.//4b)’,/4b} =E [_1% <9a5t>(‘//nb)’,,,/4b >
0, a contradiction.
We claim that for allé = 3", g @16 in J, E [> g 6:®t] < 0. This is im-

mediate using 2. and the equalify (w), > g, ¢t5‘>(.//éb)’,.//ab =Y ter Pt (W)

(g (W), 5t>(,,/4b)',.,m,-

Denote byG the set of all equivalence classes of procegsedg:)cg, Such
that for allt € R,, 0< g <MY a.s.P andE [}, .z 9P| < 0 for all & € J.
We claim that for alls € R, there exists a procegg in G satisfyinggs > 0
almost surely Fix s in R, and let.¥” be the family of equivalence classes of
subsets off? formed by the supports of the for all g in G. We see that the
family . is not reduced to the empty set by considering és in the separation
Theorem. The family¥” is closed under countable unions: indeed, consider a
sequencdg”),cn N G, and let(an),cn denote a sequence of positive scalars
such thaty",, . @M 9" < oo; the proces# given byh = 3, ag! a.s.P for
all t € R,, belongs toG. Hence there ig® in G such that forS* = {¢3 > 0},
we haveP (S*) = sup{P (S);S € ."}. We shall now prove thaP (S*) = 1.
If P(S*) < 1, then we can apply the separation Theorenute 1(9\5*)&
which belongs tol'}\ {0} and proceeding as above, we fipi € G such that
E [1(9\3*)9;5} > 0. Then,¢® + ¢’ would be an element o, whose support
hasP-probability strictly greater tha® (S*): a contradiction.

In the same way, we get that there exigtih G such thatgy, > 0 almost
surely for alin € N, whered = (d,),cy is the sequence introducedAssumption
A. We consider the procegssuch that for allt € Ri, gt = >\ bng®, where

(bn)nen is @ sequence of positive scalars such that., baM 9" < 0.

We have found so far a procegs such that for allt € R,, g is in
L (£2,F,P;R) and ||t~ < M, g4, > O almost surely for ald, € d and
E[Y ier 9t®t] < 0 forall ® =3, o &b in J. Then it is easy to check
that the same holds for th@F),cg, -adapted procesg = (Gi);cg, Such that
G = Elgt |F] P as. for allt. To finish the proof, we only need to show
that for allt € R:, g > 0 a.s.P. Assume that for som& outside the set of
dates{d,; n € N} we have just considered, the ev@st= {gr = 0} has positive
P-probability; we know that there exists = Zte& &;6; in C such thatdr =0
outsideBr, &; =0 forallt < T,® >0forallt >T,3n €N, P [®q, > 0] > 0.
For this particulard, we would haveE [ g 9:Pt| > E [g4,Pq4,] > O, which
is impossible and completes our pro@f.

Proof of Corollary 2.6 The proof remains the same as for Theorem 2.5,
replacing the sequendén),cn by {1,...,d} or N. O

Proof of Corollary 3.1 ~ The set¢3nm consists of all processegsc & such that
forall @in J™™ E [, g @] < 0. Applying this inequality tap®*+ %) and
PO—1atut) for all t; < tp, andA € Fy,, we get that for all; < tp, E [1ag;,S?] <
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E [19, S]] and E [1a9,S)] > E [1ag, 7], thus the proces$q ), is @
P-martingale for(Fi);cg, . The converse is immediatél

Proof of Lemma 3.2  For 1. and 2., one implication is immediate taking

G = (é) 3;‘2 and applying Corollary 3.1 and Theorem 2.5. For the con-

verse implication, we know by Corollary 3.1 that for glle “um, ¢gS° is a
martingale. The procesgS® admits a right-continuous modification, that can
be chosen so as to be a martingale with respedFiy.r, (see Dellacherie
and Meyer (1980)). For 1., the procetss’), , is uniformly integrable, so
it convergesP a.s. to an integrable random variable that we shall denote by
S%, such that{¢:S% F;0 <t < oo} is a martingale (see Dellacherie and
Meyer (1980)). Since for all € R., ¢S° is P a.s. positive, we define an abso-
lutely continuous probability measuRe (with respect td?) on (£2,F) by settmg

0
& — ngw%l Its density restricted to an§, which is equal toﬁ%]

is positive. Then for all investmer® in J, & & belongs toL* (2, F,P) for all
t € R, andEP [Zte& %} = fas]E [Dier 0®) <0

For 2., the procesgSP is a right-continuous nonnegative martingale and
therefore admits an exit measure (sedlfer (1972), Meyer (1970)). There
exists a probability measur@ on (£2,F) such that for all stopping timd,
P[T < oc] = E [grSP1r<0|. For all A € Fy, taking T = t1a + colas gives us
P (A) = E [¢:S"1a] and the result wanted

Proof of Corollary 33 Any g € % satisfiesE [Scp @™ %] < 0

for all t; < tp, for all A € Fy,. Then for allA € Fy, E [100,S?| < E [1a9, S|
and the procesgS° is a supermartingale. In an analogous way, we find that the
processySt is a submartingale. The converse is immediéte.

Proof of Lemma3.4 1. Using Condition(C 1) and proceeding like in Corollary
0
3.3 we get that for alk € R,, X® = (gt%> N is an(Ft);~s-supermartingale and
t>s =

YS = (gt%)t>s is an(Ft);>s-submartingale. We know th& a.s., for allt € R.,

the limits XS exist, thusP a.s., for allt € R, the limits g.. exist. Moreover,
for all s > 0, X§ > E [X$ | Fs] andY$ < E [Y$ | Fs](Dellacherie and Meyer
(1980)). Using the right-continuity of the filtration, we get thgt= g5, a.s.P,
and g admits a right-continuous modification.

2. One implication is immediate noticing that for all Z$ = 1 and apply-
ing Corollary 3.3. We prove the converse implication for 0. We know by
Corollary 3.3 and 1. that up to a modification, fpE <36, gS° (resp.gS?) is a
right-continuous super-(resp. sub-)martingale. Moreover, by Condi@@), we
havegS® < ¢S'. Then we use the approach adopted in Jouini and Kallal (1995a,
Lemma 3) or Choulli and Stricker (1997), adapting it to the case of infinite time
to get the existence of a right-continuous martingale profegs.g, which sat-
isfies (9S°) (t) < m < (¢S?) (t) for all t € R.. Since for allt € R,, g; is almost
surely positive, we may define the procggg),cr, by Z: = % forallt € R..
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3.a. Since(C3) implies (C1), using 1), there is a right-continuous process

0 1
g € % such that for allt; < t;, E [gtz (23 — Z‘f) | Ftl] < 0. If there is no
1 1
0 1
free lunch ford™®, we have for all(ty, t;) € (R:)?, E {gtz (25 - Z}) \ FH} <0.
1 1

Then, letting fori =0, 1, ri (t,w) = lim Kﬂgé/—w”)“’l - 1) n}, we get

0 9 T S[O 1 ! 1
E |:gt1 (l’g — ré) | Ft1:| S limE lgt1+1/n < go/n . gl/ﬂ | Ft1
1 1

or gy, (@ - @) <0, so that for als € R, 9 < rl a.s.P. Since fori = 0,1, for

all w, rl =ri a.s.)\, we can writeS' = exp [, rids. We now claim tha(C?2) is
satisfied. LetA € .22 (R.) ®F be given byA = {(s,w),rd (w) > rd (w)}. We get
that A®@P (A) = 0, so that\ (A,) = 0 a.s.P (where as usuah,, = {s, (s,w) € A})
and for allt; < t,, j;f rdds < ftiz rlds almost surely.

3.b. Consider a finite set of dat€§)co,... Ny in [0, T] such that 0 =ty <
... <ty =T, whereT is a given positive real number. We deduce from 2. that
there exists a proces¢’ = (Xto)tem such that(gXP) is aP-martingale for
(Freq) and for alli € {0,...,N — 1},
0 0 1
i+l Xt\+1 < SHI.

SHED C

We extend the process found this way for each time @i . Ny into a
continuous time process, defined forc [0,T] by letting X° = expfo' ysds

0
Xq - tiv1

with y (s) = y; (s) for everyt € [t;,tj+1] where X0 expfti yi (s)ds. Note

te()

that X° is absolutely continuous and can be writt¥f = 1 +f$ usds where
Us = Vs expf(fyvdv. We do this for finer and finer grids of union equal to
some dense subset {§, T]. Since|u(s,w)| < 1 wherer; denotes the upper
bound forry, the sequence of slopeqs, w) constructed this way is bounded in
L> ([0, T] x £2,.2[0,T] ® Fr, \jo1) ® P); so it admits a convergent (for the
weak-star topology (L>°,L')) subsequence. Let us denote iyts limit, and
consider the process = 1+ |, Usds, defined fort € [0, T], which can be written
in the formz; = expfé rsds, for some bounded process

For allt € [0, T], the “associated” subsequeng¥® (t) is convergent for the
weak-star topologyr (L> (£2, F¢, P), L* (2, F, P)) with limit equal to gZ (t).
Using the fact that for all time gridti)c(o,....ny, the associated procegX°

is a P-martingale for(Ft).c(,), it is easy to see thajZ is a P-martingale for
(Ft)tefo,r;- We adopt the same approach betwegnand(n+1)T for n € N*,

to find a proces«, defined fort € R., which can be written in the form
Z; = expfé rsds, for some bounded processand such thayZ is aP-martingale
for (Ft)icr,. Proceeding like in the proof of 3.a., we get thét<r <rl. O

Proof of Corollary 3.5  Immediate.[]
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Proof of Corollary 4.1  Immediate.]

Proof of Corollary 42 If g € &, then forx € C, we have for all
Ac Ftl’ E [1AX ' (gtzsz 79&81)] < 0 thUS,X -E [(gtzsz 7gt131) | Ft1] < 0
and E [¢,S, — 9, S, | Fi,] almost surely takes values i6°. Conversely, if
E [0S, — 9uS. | F| takes values inC? then for allA € F, andx € C,
1ax - E [9,S, — 94, | Fy] <0 as.P, thusE [Ycq, (x - 9A8R) g] <0.0

Proof of Corollary 4.3  Immediate applying Corollary 4.2 t€ of the form
Cs. O

Proof of Lemma 4.4 One implication is easy noticing that for all stopping times
71 andr, in.", we have, using the fact th&tlies between the bid and ask price
processes, the law of iterated expectations and the optional sampling Theorem,

lz R ] E [9,S7% — 98] < E [98), —9..5K] =0.
teR.

The result then follows from Theorem 2.5.
For the converse implication, we know by Corollary 3.3 that there exists a
processy = (gt)er, € “b such that for alk, for all 7, andr in .,%f,

E [_gnsvl—(l +g‘rzsv/—lz( | FI] <0

or
[gTz | Ft] < E [971 ‘ Ft] (51)

We consider the tw@gN — 2)-dimensional processes andZ’ given by

Z/ = esssupE [¢,S/|F] foral teR.
TE. V"f

Z = essinfE (9:S: |F] forall teR.
TE‘/

In words,Z’¥ is the supremum of the conditional expected value of the proceeds
from the strategy that consists in going short in one seclrifgnd investing
the proceeds in security 0) after timgbut not necessarily at the same time in
different events). The proce&sis defined symmetrically. We have for ale R,,
Sg < Z/ as well asZ; < Sg; because for alt € R,, the stopping timer =t
belongs to%’f.

It is a standard result in optimal stopping that is a P-supermartingale for
(Ft)ier, and thatZ is a P-submartingale for(Fi)cg,. Using inequality (5.1),
we haveZ’ < Z. The procesy can be taken right-continuous (Lemma 3.4,
1.). As in Jouini and Kallal (1995a, Lemma 3), we get that there is a pratess
lying between(S’ ) and(Sg), which is aP-martingale for(F;), g, . Now, letting

= £, we get thatgS is a right-continuoug®>-martingale and for alt € R;,
§<S<SPasl

m
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