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Abstract

In Jouini and Kallal [Jouini, E., Kallal, H., 1995. Martinagles and arbitrage in securities markets
with transaction costs. Journal of Economic Theory 66 (1) 178-197], the authors characterized
the absence of arbitrage opportunities for contingent claims with cash delivery in the presence of
bid—ask spreads. Other authors obtained similar results for amore general definition of the contingent
claims but assuming some specific price processes and transaction costs rather than bid—ask spreads
in general (see for instance, Cvitanic and Karatzas [Cvitanic, J., Karatzas, ., 1996. Hedging and
portfolio optimization under transaction costs: a martinangle approach. Mathematical Finance 6,
133-166]). The main difference consists of the fact that the bid—ask ratio is constant in this last
reference. This assumption does not permit to encompass situations where the prices are determined
by the buying and selling limit orders or by a (resp. competitive) specialist (resp. market-makers). We
derive in this paper some implications from the no-arbitrage assumption on the price functionals
that generalizes all the previous results in a very general setting. Indeed, under some minimal
assumptions on the price functional, we prove that the prices of the contingent claims are necessarily
in some minimal interval. This result opens the way to many empirical analyses. © 2000 Elsevier
Science S.A. All rights reserved.
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1. Introduction

There an important literature on the contingent claims pricing problem under transaction
costs on the primitive assets. For instance, Leland (1985) studied the replication price for a
contingent claim in a discrete time setting. In this paper, when the horizon is kept fixed and
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the numbeN of time periods goes to infinity, the price of the primitive asset is assumed to
converge to a diffusion process. If we further assume that the transaction costs go to zero as
the square root df, Leland (1985) claims then that the replication price for a call option
converges to the Black and Scholes price of this option in a model without transaction
costs but with a correctly modified volatility for the primitive asset. For a correct proof of
Leland’s result see Kabanov (1997). In Boyle and Vorst (1992), the authors do not assume
that the transaction costs go to zero and characterize the replication cost as an integral of the
future prices relatively to a signed measure which is not, in general, a probability measure
as in the frictionless model.

Bensaid et al. (1992) in the same year revolutionized the transaction costs literature
considering dominating strategies instead of replicating ones. Indeed, the authors note that
the replication cost is not necessarily, as in the transaction costless framework, the minimum
cost necessary to obtain at least the same payoffs as those of the considered contingent claim.
They propose then, in a discrete time setting, an algorithm in order to compute the so-called
domination price: the minimum cost necessary to obtain at least the same payoffs as those
of the considered contingent claim. Furthermore, they characterize the situation where the
replication price is equal to the domination price and where the replication strategy is in
some sense optimal.

In the same year and after the seminal work of Bensaid et al. (1992), Jouini and Kallal
characterized, in a paper published in 1995, this domination price in a general setting. They
prove that this price is equal for a given contingent claim to the supremum of the future
payoffs expected value. This supremum is taken over all the equivalent martingale mea-
sures associated to one of the processes lying between the bid and the ask price processes.
Furthermore, they characterize the absence of arbitrage opportunities in the model by the
existence of a process lying between the bid and the ask price processes and of an equivalent
probability measure for which the considered process is a martingale.

More recently, Shirakawa and Konno (1995) in a stationary binomial framework, Kusuoka
(1995) in a discrete time and finite number of states of the world framework and Cvitanic
and Karatzas (1996) in a diffusion setting, obtained results similar to some of Jouini and
Kallal (1995a¥ in a different setting. Indeed, in Jouini and Kallal (1995a), the authors only
consider contingent claims with cash delivery. Note that this restriction is innocuous in the
transaction costless framework but this is not at all the case in our framework.

Nevertheless, it is important to remark that in all these papers, the authors assume the
existence of some price proce®satisfying some classical conditions implying the absence
of arbitrage opportunities in a frictionless framework (diffusion, binomial pracegsThe
bid and the ask price processes are obtained multiplgibg (1+1) and (). In this
setting, the transaction costs are proportional to the fiead the bid and ask price
processes have the same behaviour. The Jouini and Kallal (1995a) paper is the only one
with two independent price processes: a bid price process and an ask price process. The
bid—ask spread can be interpreted as transaction costs but can be explained by the buying and
selling limit orders on the markets. These prices are the prices for which a buyer or a selleris
sure to find an immediate counterpart. From this point of view the bid—ask spread includes

2 For instance, Cvitanic and Karatzas do not characterize the absence of arbitrage opportunities but only the
domination price. Indeed, the choice of a diffusion framework implies the absence of arbitrage opportunities.
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the possible transaction costs but is not reduced to these costs. With this interpretation we
cannot assume that the relative bid—ask spread is constant. Indeed, Hamon and Jacquillat
(1992) established in an empirical study that the relative bid—ask spread can typically be
multiplied by three on the same year and by two during the same day. Furthermore, itappears
that the relative bid—ask spread is positively correlated to the volatility of the security with

a coefficient near to 0.5. These results are not compatible with the previous references.

Jouini and Kallal (1995a) proved that the absence of arbitrage opportunities is equivalent
to the existence of a frictionless arbitrage free process (i.e., a process which could be
transformed into a martingale under a well-chosen probability measure) lying between the
bid and the ask price processes. Consequently, all the models with constant proportional
transaction costs applied to some frictionless arbitrage-free price process S, are obviously
arbitrage-free. The converse is false and if a model with constant proportional transaction
costs applied to some price proc&ss arbitrage-free the8is not necessarily a frictionless
arbitrage-free process.

In arecent paper, Koehl et al. (1996) consider, in a discrete time framework, such a model
with proportional transaction costs but without any specific assumpti@gavertheless,
they assume that the absence of arbitrage opportunities assumption is satisfied even with a
little bit smaller bid—ask spread. But if this bid—ask spread is the result of all the buying and
selling limit orders in a market with competitive market-makers (as on the MONEP, Paris)
and not by a monopolistic specialist (as on the NYSE), then it seems natural to assume that
the bid—ask spread is in some sense minimal. The only reason for which the bid—ask spread
is not smaller appears then as the existence of arbitrage opportunities for little bit smaller
bid—ask spreads. The condition imposed by Koehl et al. (1996) is then not so innocuous.

In the present paper, we consider a model according to Jouini and Kallal (1995a) for
the description of the primitive assets. We prove in this setting, that the valuation formula
obtained by Jouini and Kallal (1995a) for derivative assets with cash delivery extends for
general derivative assets. This extension is important because on the markets, the traded
contracts can impose cash delivery but also asset delivery or can let the choice to the
derivative’s holder and the domination price in these three situations is not the same at all as
shown on some examples by Bensaid et al. (1992). This result is obtained as a corollary of
the result of Jouini and Kallal (1995a) and generalizes the result of Cvitanic and Karatzas
(1996). Indeed, our resultis obtained under an absence of arbitrage opportunities assumption
(obviously satisfied in Cvitanic and Karatzas (1996)) weaker than the classical analogous
assumption in the continuous time models since we only consider simple strategies rather
than general continuous time strategies. Our set of strategies is then smaller and the absence
of strategies leading to an arbitrage a weaker assumption.

Ourapproachis an axiomatic one and constitutes a methodological innovation. Indeed, we
shall firstintroduce the minimal assumptions for a price functional in order to be admissible.
Then, we will prove that such an admissible price functional necessarily lies between the
supremum and the infimum of the previously defined expected values. Furthermore, these
maximum and minimum appear as admissible bid—ask prices. Our approach is now used in
some posterior papers like in Koehl and Pham (2000).

From an economic point of view our result has many different interpretations.

First, our result can be seen as a necessary relation satisfied at the equilibrium (and then
under the absence of arbitrage opportunities condition) by the primitive assets prices and
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the derivative assets prices. Our result is then particularly useful for econometricians who
typically restrict their attention to a small number of traded securities (either because of
data availability or for tractability reasons) and work out the implications of the data they
have collected on them. Assuming the absence of arbitrage opportunities, a set of state price
densities compatible with the data (in our framework, a set of martingale measures) can be
derived. From there, it is possible to compute, for instance, the bounds on the mean and
variance of the state prices, as in Hansen and Jagannathan (1991) (in a frictionless setup)
and provide common diagnostic for a whole class of models. How to take into account
the transaction costs in such an analysis is up to now a discussed question and we can
refer to Rubinstein (1994) and Jackwerth and Rubinstein (1996) for a discussion of this
point.

Second, if we consider a model in which we introduce regularly new standardized assets
(forinstance, 3-month calls atthe money each trimester), we can assume that the introduction
of these new assets is completely anticipated by the market and then that the introduction
of these new assets will not modify significantly the trend or the volatility of the primitive
assets price processes. The no-arbitrage condition implies then that the price of the new
asset has to be between our bounds.

Third, if we keep in mind that an important part of the transactions on the derivative
assets are over the counter, it seems reasonable in that case to think that the introduction
of a new asset discussed between only two individuals and designed by one of them in
order to satisfy particular needs of the other one will not modify the fundamentals of the
economy. The unique rule for the seller is then to fix a price below the buyer’s manufacturing
cost.

Fourth, assuming that we are at the equilibrium before the introduction of the new assets,
Jouini and Kallal (1996) proved that our bounds define the tightest bid—ask interval for the
new asset for which a new equilibrium can be found without any modification of the other
asset prices.

2. The model

Let (2, F, P) be a probability spacel = L? (£2, F, P) the space of square integrable
random variables on(%, F, P), that we assume to be separable. In fXcis the space of
classes of random variables that coincide almost everywha®ez IfF, we denote by 2 the
element ofX equal to 1 orB and to 0 elsewhere. L&2 be the space equal @2 x {0, . .., K}
endowed with &, P) the natural probability structure defined %,(P). Let X be the set
defined byX =, L2(2F, P). The setX can be identified wittkkK +1. Let X be the set of
random variables € X such thatP(x > 0) = 1 andP(x > 0). A linear functional on/r
is X said to be positive ify (x) > 0 for all x € X such thatP(x > 0) = 1 andy/(x) > 0
forallx € X,.

We consider a multiperiod economy where agents can trade a finite number of securities
at all dateg € 7, with 7 C [0, T]. Although we impose a finite horizon there is no other
restriction on market timing: our framework includes discrete as well as continuous time
models. Without loss of generality we shall assume that agents can trade at the initial and
the final date, i.€{0, T} C 7. Each securitk, withk =0, ..., K, can be bought for its ask
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price Zx(t) and can be sold for its bid pricg, () at any timer € T. A right-continuous
filtration {F; };,c7 models the information structure of our economy, wherectkredgebra
F: represents the information available to agents at tafée also make the following
assumption.

Assumption (P). (i) Z; andZ; are right-continuous and adapted{{&};c7, for all k =
0,...,K. (i) E(Z)%() < oo andE((Z})%(t)) < oo forallt € T andk = 0,..., K.
(iii) Zx = Z; > Oforall t and for almost allo. (iv) Zo and Z; are constant equal to 1.

Assumption () says that the bid and the ask prices of traded securities belong to the
information set available to agents. For convenience, we shall also assunf& tisathe
trivial o-algebra, and thaty = F. Assumption i) is technical. Assumptioni{) means
that all the prices remain positive and that the buying price is greater than or equal to the
selling price. This last condition is obviously satisfied under the no-arbitrage condition and
can then be dropped without any loss. The last assumption means that there is no transaction
costs on the cash. It is easy to relax the equality to one dividing all the pricas by

A contingent claim is then defined by the contingent traded securities quantities delivered
at the final date.

Definition 1. A contingent claimC is defined by(Co, ..., Cx) € XX+ the contingent
portfolio guaranteed bg.

This definition of a contingent claim permits us to consider, for instance, call options with
asset delivery. In this last caég = 15~ x andCo = —K 15, > if the primitive asset is the
i-th one. Furthermore, it is easy to see that one contingent unit of a given asset has not the
same effect on the agent’s portfolio than the “equivalent” amount (in fact, we cannot define
the equivalent amount at all since the buying and the selling prices differ). There is many
other situations, where the derivative asset cannot be described by a contingent amount
but by a contingent portfolio like in the national loan where we have to deliver at the due
date the less costly bond in some given basket. Furthermore, since the considered filtration
is, in general, the filtration generated by the price processes, all contingent claims can be
expressed as random functions of assets and our definition permits then to encompass the
most general situations.

A price functional in this setting is a functigndefined on the contingent claims space
XK+1 and which takes its values iR U {oo} wherep(C) represents the price at which the
contingent claimC can be bought. The following conditions characterize the admissible
price functionals.

Axiom 1. The price functional p is a sublinear form (i.e., for all pair (C)©f elements
of XK+1 and for all non-negative real numbérwe havep(C + C’) < p(C) + p(C’) and

p(C) = p(C)).

3l.e., forallr € [0, T], F; is the intersection of the -algebras, wheres > ¢. This assumption, as well as the
right-continuity of the bid—ask price processes, are not necessary if there are no transaction costs at the final date
(i.e.,if Z(T) = Z'(T) a.e.).
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This means that it is less expensive to buy the glisk C’ of two contingent claims
than to buy the claim€ andC’ separately and add up the prices. It is easy to see why
if we think in terms of hedging costs: the sum of two strategies that hedge the caims
andC’ hedges the clain® + C’ but some orders to buy and sell the same security at the
same date might cancel out. Some of the transaction costs might be saved this way. But
even if the price differs from the hedging cost our assumption seems to be satisfied in
the real world and it is well-known, for instance, that the theoretical call-put parity (ob-
tained under a linearity assumption on the price functionals) is not satisfied in general.
In particular our condition implies that the buying prip€C) is greater than or equal to
the selling price p(—C). The multiplicative condition seems to be less natural but is as-
sumed in all the classical financial market models. Furthermore, the multiplicative effect
is not clear since the price is influenced by two diametrically opposed effects: increasing
returns to scale (possibility to obtain better prices from the broker for large quantities) and
exhaustion of the best bid and ask offers which implies a greater bid—ask spread and de-
creasing returns to scale. Without further informations on the relative size of these effects,
the assumptiop(AC) = Ap(C) seems to be acceptable. This assumption is compatible
with the sublinearity one and seems to be satisfied in the real world for reasonable values
of A.

Axiom 2. The price functional pis lower semi-continuous (i.e., if a sequenge@verges
to C in XK+1 and if p(G,) converges ta. thenp(C) < 1).

This assumption is not only a technical one but is also a natural one. Indeed if some
payoffs arbitrarily close to the paydifcan be obtained at a price lower to some given price, it
seems to be obvious that no one will accept to pay more than this given price to©bthie
lower semi-continuity op is then a classical consequence of this property.

Axiom 3. The pricing functional p induces no-arbitrage (i.e., f € X, then
p(C) > 0).

This assumption is a classical one and we can remark that this formulation is the weaker
one. Indeed, our assumption concerns the absence of arbitrage opportunities under the price
p in a static setting and not the absence of free lunches in a dynamic setting. Further-
more, in general, free lunches are defined as limits and here we have no such complicated
construction.

In order to introduce our last condition gnwe have to describe more precisely the
strategy space of the agents. In fact and even in a model with a continuous resolution of
uncertainty, it seems to be more realistic to assume that the agents do not trade at each date
but only on a finite set of dates as in Harrison and Kreps (1979). This set is chosen by the
agents and depends on the strategy choice.

The set of admissible strategies in our framework is then smaller than the admissible
strategies set in Harrison and Pliska (1979), Dybvig and Huang (1988) in a frictionless
setting and in Cvitanic and Karatzas (1996) with transaction costs. The absence of arbitrage
opportunitiesassumptionvhich imposes the non-existence of strategies leading to positive
payoffs at a non-positive cost is themakerin our framework.
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Definition 2. A simple strategy is a pai(¢’) of K + 1 processes such that) (9,6’)

is adapted tqF;},e7, (i) 61 and6; are non-negative and non-decreasing processes for
k=0,... K, (i) E(BZk)?(t) < oo, E(6Z})2(1)) < 00, E((0rZ})?(1)) < oo, and
E((Q,QZk)Z(t)) < oo, forallt € Tandk =0, ..., K, (iv) there exists an integét and a

set of dategrg, ..., 1y} C T, WithO =19 < ... <ty = T, such thatd(t, w), 0'(t, w)) is
constant, for everw, over the intervalt, _1,t,), forn =1,..., N.

Since the bid and the ask prices possibly differ, we separate strategies in along cumulative
componend and in a short cumulative compon@hti.e. 0, (t) is the total quantity of thie-th
security bought up to timeandg, (1) is the total quantity sold up to timeHenceg (1) —6, (r)
is the amount of thé&-th security owned at time Assumption i) says that consumers can
trade only on current and past information. Assumptidnt{anslates the fact thatand
0’ are cumulative long and short positions. Assumptian is technical. Assumptioniy)
says that any given strategy must have a finite (but arbitrarily large) number of trading dates
decided in advance (at date 0). We assume here that trading dates are decided in advance.
Itis possible, however, to let trading dates be stopping times and impose only their number
to be decided in advance. Note that when we are concerned by the characterization of the
absence of arbitrage opportunities, the assumpiignréstricts the set of strategies and
for a same conclusion, a result obtained undey i6 stronger than a result obtained
without (v).

Agents are assumed not to have external sources of financing, and since they consume
only at dates 0 and they must sell (or short) some securities in order to purchase others
at intermediary dates. Hence, we define self-financing strategies as the admissible (in the
sense of the budget constraints) strategies.

Definition 3. A simple strategy{, 9’) is self-financing if form = 1, ..., N we have

O(t) = 0(tn—1)) - Z(tn) < (' (tn) = 0'(tn—1)) - Z' (1)

This means that at every trading date (after the initial date) the value of the securities
that are bought is less than or equal to the value of the securities that are sold: in other
words sales must finance purchases. The set of simple self-financing strategies is denoted
by . It turns out that the set of simple self-financing trading strategies is stable by addition
and multiplication by a non-negative scalar, i.e., it is a convex cone of the space of simple
strategies.

A strategy (9,0") € © costsf(0)-Z(0)-0’(0)-Z(0) units of date O consumption, and
provides(6; — 6;)(T) units of securityk at dateT.

We have already seen that when there are transaction costs, it is not true that the cheapest
way to obtain a given minimal contingent payoff at datés to duplicate it by dynamic
trading. This fact has been pointed out by Bensaid et al. (1992) in a discrete time and states
framework. A simple example can illustrate it. Assume that a call option on a stock is to
be hedged using a riskless bond and the underlying stock only. Also suppose that there are
transaction costs in trading the stock at intermediate dates (between now and maturity). Itis
then easy to see that if transaction costs are prohibitively high it is cheaper to buy the stock
and hold it until maturity (which leads to a payoff that is strictly larger than the payoff of
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the call) than to try to duplicate the call. In fact, the same conclusion is obtained in 1995
by Levental and Skorohod (1995), Soner et al. (1995) and Dubourg (1997), in continuous
time models even with small transaction cost. Hence, we shall consider the price functional
7 defined for every clain® € XX+ by

7(C) =inf{#(0)- Z(0) — 0’ (0)- Z'(0)} : (#,0") € ©® and (9 —O')(T) > C}.

In words, (C) represents the infimum cost necessary to get at least the final contingent
portfolio C at dateT. Note that a contingent claif@ is not necessarily attainable or at least
dominatable by a strategy belongingitaln this case, we have(C) = oco. Note thatr is
not defined as in Jouini and Kallal (1995a) taking limits and inf-limits but directly from the
dominating strategies set.

We can now introduce our last condition.

Axiom 4. For all C € XX+1 we havep(C) < 7(C).

This assumption is only a monotonicity assumption. We impose that if it is possible to
obtain a better payoff tha@ at a costr (C) then no one will accept to pay more thafC)
in order to obtainC. Remark that even i€ is duplicable and if its duplication cost is the
minimum cost necessary to obtain at least the same payoff we do not impose- 7 (C).
In particular, ifC is thek-th traded security we have(C) = Z(T)* and we do notimpose
p(C) = 7(C). Indeed,7(C) and s (-C) can be interpreted as the best prices proposed by
the market-makers. Itis obvious then that transactions can occur at both prices. Furthermore,
no agent will accept to pay more thar{C) in order to receiveC or to receive less than
- (—C) if he sellsC. Nevertheless, a buyer and a seller can accept any intermediary price.
Consequently, the price at which a transaction will occur is not necessarily one of the bounds
imposed by the market-makers but can be any price between these bounds. Furthermore,
it is easy to see that if the new asset is introduced on the market at a buying price greater
thanx (C) and a selling price smaller thamr{—C) then no one will buy or sell this asset
and the equilibrium prices and allocation will not be modified. Consequently, if we want
to introduce this new asset and if we want to see it traded by some agent, it seems to be
reasonable to look for a buying or a selling price in our interval.

We are now in a position to state our main result.

Theorem 1. (i) There exists at least one admissible price functional p if and only if there
exists at least a probability measuré Bquivalent to P (i.e., P and*Phave exactly the
same zero measure sets) witli(dP*/dP)2) < oo and a process Zsatisfying, for all t
7'(t) < Z*(t) < Z(t), a.e., such thaE ((dP*/dP)Z*(T))?) < oo and Z is a martingale
with respect to the filtratio.F, } and the probability measure(ii) If p satisfies conditions
(A-1) to (A-4) then for all contingent claim C we hawé&’) € [inf E*(C-Z*(T)), SUpt*(C-
Z*(T))] = [-p*(—C), p*(C)] where the infimum and the supremum are taken over all
the expectation operators‘Essociated to a probability measuré Bnd all the processes

4Infact, in order to have (C) = Z;(T) we have to impose also that the considered security cannot be dominated
by a combination of the others. This is, in particular, true under some independence conditions on the traded assets.
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Z* such that (P,Z*) satisfy the conditions of (i). Furthermore, the functionaldefined as
above satisfies conditions (A-1) to (A-4) and is then an admissible price functional

In order to prove the main result we have to introduce the functidefined as follows
and to establish the following lemma,

7(C) =inf{liminf,,{6,(0)Z(0) — 6,(0)Z'(0)} : (6,,6),) € O,
(9,, - 9;,)(T) = Cnv (Cn) - C}

In words 7 (C) represents the infimum cost necessary to get at least a final contingent
portfolio arbitrarily close taC at dateT.

Lemma 2. The functionalsr ands are sublinear anck is the largest |.s.c. functional that
lies belows.

Proof of the lemma. If we remark that® is a convex cone, it is relatively easy to prove
thats is a sublinear functional and by a limit argument thas also a sublinear functional.
Let M be the set defined by € X : 7(x) < o0}. O

Leta € RandC" be asequence M convergingta” € M suchthatz (C") < A,foralln.
Then, by a diagonal extraction process, there exist a seqdgroel a sequendé, 0)) €O
suchthat|C,—C,l| < 1/n, (,—6,)(T) > C, andd,(0)-Z(0)—6,(0)-Z'(0) < A-+(1/n).
SinceC, converges t& we must then have, by definition &f 77 (C) < . Hence, the set
{CeM:a(C)<Ar}isclosed andr is |.s.c.

Let C, be a sequence of elements}f+1 converging to a clainC and let(6,, 6,) be
a sequence of strategiesénsuch that9, — 6,)(T) > C,. Itis clear tha®,(0) - Z(0) —
6,(0) - Z'(0) > = (C,) and consequently; (C) > inf{liminf,=(C,) : C, — C}. More-
over, it is clear thatt (C) < = (C) for all C € XX+1, Sinces is |.s.c. we must have
7 (C) > inf{liminf,7(C,) : C, — C} which implies that7 (C) < inf{liminf,z(C,) :
C, — C}. Consequentlyz (C) = inf{liminf,z(C,) : C, — C}. An analogous argu-
ment gives, for every l.s.c. functiongl: XX+1 — R such thatf < =, that f(C) <
inf{liminf,7(C,): C, — C}and henceF < 7.

Proof of the theorem. First, letP* be a probability measure equivalenftand letZ*, with
Z' < Z* < Z, be a martingale with respect B and{F,}. Define the linear functional
pby p(C) = E*(Z*(T) - C) for all C € XX+, SincepZ*(T) = (dP*/dP)Z*(T) € X
we have thap(C) = E*(Z*(T) - C) = E(pZ*(T) - C) is continuous. SincE andP* are
equivalent, itis easy to see thps positive. The price functionglsatisfies then assumptions
(A-1) to (A-3).

Let C € XxX+1 and let(9, 0') € ® with trading dates =19 < 11 < ...ty = T, such
that(9 —6')(T) > C. SinceZ’ < Z* < Z and ¢, 9’) is non-decreasing and self-financing,
we have, fom =1,..., N,

E*((0(tn) — 0(ta—1)) - Z"(ty) — (0'(tn) — 0" (ta—1)) - Z" ()| F4,_4)
< E*(0(tn) = 0(ta=1)) - Z(t) — (0 (tn) — 0'(ta—1)) - Z'(tn)| F1,_, < O.
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Using the fact thaZ* is a martingale with respect {oF, } andP*, we have

E*((0 =0 (tn) - Z* ()| F4, o)
< E*((0 = 0)(tn-1) - Z*(t)|Fi, ) < (0 = 0)(tn—1) - Z*(ta—1).

By iteration, E*((8 — 6')(T) - Z*(T)) < (6 — 6')(0) - Z*(0) < 6(0) - Z(0) — 6'(0) -
7'(0). O

Furthermore, by definition gb we havep(C) = E*(Z*(T) - C) < E*((6 — 6')(T) -
Z*(T)).Hencep(C) < 0(0)-Z(0)—0’'(0)- Z'(0) and taking the infimum over the strategies
(0,0’) € ® such that® — 6')(T) > C, we obtain thatp(C) = E*(C) < = (C) for all
C e XX+ andp satisfies also the condition (A-4).

Assume now that there exists at least one admissible price functional. Following Jouini
and Kallal (1995a) (Definition 2.1), we will call a free lunch¥ma sequence of real numbers
r, that converges to somé > 0, a sequencex{) in X that converges to some > such
thatr* +x* € f(+, and a sequence of clair®® such thaC” > x, andr, + 7 (C") < 0°,
for all n. We have then the following result.

Lemma 3. If there exists at least one admissible price functional then there is no free lunch

Proof. Consider a free lunch as defined above. We hgve X andr, + #(x,) < O. If
r* > 0 and sincer is l.s.c., we have thefa(x*) < 0. Recalling thap < = isl.s.c. and that
7 is the largest |.s.c. functional that lies belawwe havep(x*) < 0 with x* € X, which
constitutes an arbitrage. Then, by assumption (A-3) there is no free lunch. O

Remark. If there is no free lunches thén= p*. This is a direct result ofJouini and Kallal
(19954a,b) but can also be proved directly using Theorem and Lemma 1. Indeed, it is easy
to see thatr satisfies assumptions (A-1), (A-2) and (A-4) and if there is no free lunches
then (A-3) is also satisfied. We have the(C) < supp*(C) and sincer is the largest|.s.c.
functional that lies belowr the converse inequality holds. When there are free lunches,
then following Jouini and Kallal (1995a), there does not exist “martingale-measures” and
p* is not defined.

Assume now that there is no-arbitrage and consequently that there is no free lunch defined
as above. Let us considbt be the subset of defined byM = {m € X| : #(m) < 00}
and let us denote by the set of positive linear forms oki. Considery € ¥ such that
¥|m < 7, as guaranteed by Jouini and Kallal (1995a, Theorem 2.1) under the no free
lunch condition. Since) is continuous, by the Riesz representation theorem there exists
a random variable € X such thaty (x) = E(p, x), for all x € X or equivalently there
exists(po, . . ., px) iIn XK+l such thayy (C) = E(p- C), forallC € XX+1, DefineP* from
¥ by P*(B) = E(polp) for all B € F. By linearity and strict positivity of/ it is clear
thatP* is a measure equivalent By Using the fact thaZo = Z; = 1y (1g,... ,0) <1
andy (1¢, ...,0) < —1 which implies thatP*(1;) = 1 and dP*/dP = pp is square
integrable.

5 Note that our functions ands are denoted, respectively, iyandx in the mentioned reference.
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It remains to show that there exists a procgsswith Z,Q < Z} < Zi, and such thaZ;

is a martingale with respect #&* and{F,}, fork = 1,..., K. In fact, we will prove that
the martingale relatively t&* and{¥,} defined byZ; (1) = E*(pox/polF;) lies between
Z, andZ;.

Letk e {1,...,K},t € T andB € F;. LetC the contingent claim defined ki, = 13,

Co = —Zy(t)1p andC, = O forh #£ 0, k. The contingent clain€ is duplicable. It suffices
to buy att, if w € B, one unit of the securitigand to pay with security O units. This strategy
costs nothing and we have théit (—Z;(t) + pxeo)lp) = E((—poZi(t) + px)lp =
Y(C) < #(C) < (C) < 0. Then, we havé™*(pr/polp) < E*(Zi(t)1p), for all t and

all B € F;. This implies thatZ; < Z;. By a symmetric argument we obtaiff > Z;.
Furthermore, by construction, Rd/dP)Z*(T) is square integrable which achieves to prove
the point (i) of the theorem.

In fact, we have also proved that evapye ¥ such that) |y < x is equal toE*(C-Z*)
for some procesg* betweenZ’ andZ and some probability measulRé such thaiZz* is a
martingale relatively t&* and conversely.

Following Jouini and Kallal (1995a, Theorem 2.2),C) = supy (C) where the supre-
mum is taken over all the functionals € ¥ such thaty |y, < 7. Consequently, ip is an
admissible price functional, by (A-1), (A-2) and (A-4) we have that 7 and applying
this result taC and -C for a givenC in X, we obtainp(C) € [inf E*(C - Z*(T), SupE*(C-
Z*(T)] where the infimum and the supremum are taken over all the expectation operators
E* associated to a probability meas®eand all the processe® such thatP*, Z*) satisfy
the conditions of (i).

Sincep* satisfies conditions (A-1) to (A-4), this achieves the proof of the theorem.
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