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This paper constructs a closed set Y in R’ such that for all y in the boundary of Y Clarke’s 
normal cone to Y at y is equal to R’+. If Y is the production set of a tirm, then the marginal 
cost pricing rule imposes no restriction. The existence of Y is shown to be equivalent to the 
existence of a Lipschitzian function f from R’-’ to R such that the generalized gradient of / is 
everywhere equal to the convex hull of 0 and the simplex of R’-‘. 

1. Introduction 

A marginal (cost) pricing equilibrium is a state which consists of a price 
vector, a list of consumption vectors, a list of production plans, which satisfy 
the conditions of a competitive equilibrium except for the behavior rule of 
the firms which are instructed to full3 the ‘first-order necessary conditions’ 
for profit maximization (also called the marginal rule of the firm). 

Following Cornet (1982), in the case where the production sets are neither 
assumed to be convex nor to have a smooth boundary, the marginal rule is 
formalized by saying that each firm j, with production set 5, sets the price 
vector p in N,,(y) the normal cone to Y$ at y, in the sense of Clarke (1975). 

In this paper, we show that in certain cases Clarke’s normal cone may be 
too large and the marginal rule, as formalized above, may impose no 
restriction on the price vector which is set by the firm. More precisely, we 
shall construct a closed (production) set Y c R' such that Y-R’+ c Y (free 
disposal) and, for every y in the boundary 8Y of I: Clarke’s normal cone to 
Y at y is equal to R'+. We shall prove a slightly more general result, which 
we now state. 

Theorem 1. Let VI, . . . . vk be a family of independent vectors of R', let 
C={Ct=,AiViIJ.i~O,i=l,..., k} and let CO={pER'Ip.viiO, for i=l,...,k} 
be the negative polar cone of C. Then there exists a non-empty closed set 
Y c R' such that Y + Co c Y and, for every y E 8 X one has N,(y) = C. 
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We shall deduce Theorem 1 from the following result, also of interest for 
itself, which generalizes a previous result of Rockafellar (1981) in dimension 
one. 

Theorem 1 bis. Let K be a d-dimensional polytope of R” with exactly (d + 1) 
vertices or equivalently let K =co{u,,, ul,. . . , ud) where u,-,, ul,. . . , ud (d 11) is a 
family of vectors in R” such that u1 -uO,. . . , u,,-II,, are independent. Then 
there exists a Lipschitzian function F, such that, for all z E R”, K = BF,(x), the 
generalized gradient of F, at x in the sense of Clarke. 

The paper is organized as follows. In the next section we shall show that 
the Theorems 1 and 1 bis are equivalent and we shall also provide a 
constructive proof of Theorem 1 bis in dimension one (n= 1) different from 
the one in Rockafellar. In section 3, we shall give the proof of Theorem 1 bis. 
At the end of this introduction we recall the definitions of the tangent 
(normal) cone and the generalized gradient in the sense of Clarke (1975) [see 
also Clarke (1983)]. Let Y be a closed subset of R’ then, for every YE Y the 
tangent cone T,(y) in the sense of Clarke consists of all vectors v E R’ such 
that, for all sequences { tkj c (0, + CD) and {y”} c Y converging, respectively to 
0 and y, there exists a sequence {vk} c R’ converging to v, with yk + tkvk E I: 
for all k. Clarke’s normal cone is then defined by polarity as follows: 

N,(y)=T,(y)“={p~R’Ip.v~O, for al VET,(~)}. 

Let f: R’+R be a Lipschitz function, i.e., for for some k>O and for all 
xi, x2 in R’, one has 1 f(xz)- f(xl)l gkllxz-xlll. Then, from Rademacher’s 
theorem f is differentiable almost everywhere on r/: i.e., at every element of 
V\O, where 0, is a subset of V of Lebesgue measure zero. Then the 
generalized gradient off at x, denoted by af(x) is defined by 

af(x)=CO lim Ff(Xi)IXi-*X,Xi~SZj 
ii I 

, 

where Vf(xi) denotes the gradient vector of f at xi and co C denotes the 
convex hull of a subset C of R’. 

2. Production sets and associated functions 

We first construct a closed (production) set Y, c R2 such that YZ - Rt c Yz 
and, for every y~aY,, N,,(y)=R$. We let Y,={(x,y)~R’IySf(x-E(x))- 
E(X)}, where E(x) is the integer part of the real number x and the 
function f :[O, 11-R is defined as the limit of a sequence of continuous 
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Fig. 1 

functions &CO, l]--+R. Before defining the sequence f, we first need to 
introduce some definitions. For every integer n, we let 

A= fi A,,, A’= 6 A; (one hascl(A)=cl(A’)=[O, l]), 
n=O n=O 

where cl(A) denotes the closure of A. 

The sequence of continuous functions f,: [0, l]-+R is then defined by 
induction as follows (see fig. 1). We let fo(x) = -x and we let f,+ 1 be defined 

by 

(a) _L+t is afine on [a n+l,p~~n+l.p+ll~ for all ~<3 “+I, 
(b) f,+~(~,+,,,)=f,(~..,)+$cp(~-3q)(f,(~,,,+,)--f,(~,,,)), where P(X) = 

$x(x + 1) for all x, and q = E(p/3). 

The properties of Y2 are then a direct consequence of the following steps, 
the proof of which is left to the reader. 
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Step 1. f, is decreasing, and for all p < 3”, for all x E]Q,,,,, an,r+ I[, f, is 
differentiable at x. 

Step 2. Let XE A .,,u A&, for all n>no, f.(x)=&(x). 

Step 3. The sequence {f.} converges uniformly to f and f is continuous 
and decreasing. 

Step 4. If x-E(x) E A, then (O,l)~Nr~(x,f(x)), and if x-E(x)~dh, 

(1,O) E ~&xf(X)). 

We now define the function A,: R-+R by 

A,(x)=inf(AERI(x, -x)-A(l, 1)E Y,}, 

for x E R, and we claim that A, is Lipschitz and that 

%(x)=[-1, +l] for every XER. 

This assertion is in fact a consequence of more general considerations 
which allow us to show that Theorems 1 and 1 bis are, in fact, equivalent. 
For this, we shall associate to every set Y c R’ a function f:R’-‘+R, and 
conversely. We first recall the following result of Bonnisseau and Cornet 
(1985, 1988). 

Lemma 1. Let Y be a non-empty closed subset of R’ such that Y #R’ and 
Y + QC I: where Q is a closed convex cone of R’ with vertex 0 and with a 
non-empty interior. We let e E int Q such that llell= 1 and 

A(x)=inf{I~R/x+le~Y} and A(x)=x+l(x)e for xEe’. 

(a) The mapping A:el-+aY is a homeomorphism with inverse the restriction of 
proj,* to ay: 

(b) The function 2 is Lipschitzian and an(x) = (p E e’ I p - e E N,(x + I(x)e}. 

We note that Lemma 1 implies the above property of 1, after a change of 
variables. We now show that it also allows us to deduce Theorem 1 bis from 
Theorem 1. Indeed, let uo, ur,. . ., ud be vectors in R” such that u1 - 
uO,...,u,,-u,-J are independent. Let I= n+ 1, let Y c R’ be the closed set 
associated with the vectors vi=(ui, 1) E R’, for i=O, . . . , d, let Q = Co where 
C={C4=oniV,Ini~O, i=O ,..., d) and let e=(O, - 1). Then one sees that the 
Lipschitz function I:e’+R associated with Y by Lemma 1 satisfies, for every 
xEe*, ~~(x)={~~=o~i(ui,O)~~i~O,i=O,...,d and ~:=oAi=l} (which, up to a 
change of variables, is the conclusion of Theorem 1 bis). 

Conversely we shall now deduce Theorem 1 bis. Let vi,. . . , vk (kz 1) be a 
family of independent vectors of R’ and let C = {If= r &vi/ Ai 20, i = 1,. . . , k}. 
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Then there clearly exists eE R’, such that llell= 1 and e* Oi<O, for i= 1,. . . , k 
(which implies that eE Co). We let Ui=proj,‘[cJ-e* Vi], i= 1,. . . , k and, from 
Theorem 1 bis there exists a Lipschitz function f :e’+R such that, for every 
xEe’, f3f(x)=co(ui,..., Us}. We now define the set YcR’ by Y={x+teI 
x~e’, t zf(x)}, i.e., the epigraph of f in e’ x Re identified with R’. Conse- 
quently by Clarke (1983, Propositions 2.9.6 and 2.9.7) one then deduces that, 
for y = x + f(x)e, 

N,(y)= U A[af(x)-{e}]= i ~i(Ui/-e.U,)Iili>=O,i=l,...,k =C. 
A20 i=l 

3. Proof of Theorem 1 bis 

We first prove Theorem 1 bis in a particular case, i.e., we assume that 
d=n, uo=O, and ui=yl=,ei (i=l,...,n) where el,...,ei denotes the canoni- 
cal basis of R” (el has all its coordinates equal to zero but the ith one which 
is equal to one). We shall then deduce the general case in a second step. 

Step I. We assume that d=n,uz=O and u~=~f=ie; (i=l,...,n). Then 

T,=co{u”, ,..., u:}={x=(x, ,..., x,)ER”IO~X~~....~X~~~}. 

We define, for nz 1, the function I,, as follows. We choose an arbitrary 
Lipschitzian function ;l,:R+R such that, for all XE R, al,(x) = [0, l] = Ti. 
This is posible from section 2 or Rockafellar (1981). Then the sequence of 
functions A,, is uniquely defined by 

Each function An is Lipschitzian (by induction) since I, is Lipschitzian and 
the two following claims will prove that, for every n 2 1, and every XE R”, 
i%,(x) = T,. 

Claim 1. For every n 2 1, for every XE R”, T,c an,(x). 

Indeed, let nl 1, it s&ices to show that, for every XE R”, and every 
iE{O, l,..., n} the vector ul belongs to a,?,(x). From the definition of the 
generalized gradient a&(x) it clearly suffices to show that, for E >O small 
enough, and every i E (0, 1, . . . , n> the following set: 

Hf..= {x E R”I VA,(x) exists and VA,(x) E B(u;, E)) 

is dense in R”, i.e., R “=cl Hf,., the closure of H f,,. 
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We shall prove this assertion on n. If n= 1, we prove that, for every E >O, 
the set H;,, is dense in R (and the proof is similar for H:, 1). Suppose on the 
contrary that, for some .s>O and some X,,E R, there is a neighborhood V of 
x0 such that, whenever XE I/ and Xi(x) exists one has I~;(x)[~Iz, hence 
A;(x) 2.s since A1 is clearly non-decreasing. Then, from the definition of 
8&(x0), one has ~A,(x,)c [E, + co) which contradicts the fact that aA,(x,) = 
co, 11. 

Let us now suppose that the assertion is true for dimension n and we shall 
now show that the set K.. , is dense in R”+l. Indeed, we notice that 
1 a+i=An~lI,06,+, where 
for x=(xi,...,x.+i) by 

ll,:R”“+R” and 0,+,:R”+‘-+R”+’ are defined, 

n,(x)=(X1,...,X,l and e,+,(x)=(~~,...,x,-~,x,+~~(x.+~),x,+~), 

and we point out that 8,+ I is a homeomorphism. We let E’ = .s/J2 and we 
define i, E (0, 1, . . . , II} and i, E (0, l} as follows. If i 5 n, we let in= i and il = 0 
and if i=n+ 1, we let i,=n and ii = 1. From the induction assumption the set 
Hfisn x Hfi,, is dense in RN+‘, hence tl,-,‘,(H~~,. x Hfi, 1) is also dense in R”+ ‘. 
The proof of Claim 1 will then be complete if we show that 

We now show that the above inclusion holds. Let XE O,-,‘,(Hf~,. x Hfi,,) 
then k=17n,(i,+,(x))=(x1 ,..., x,_l,x,+~l(x,+l))EH~~,, and x,+~EH;,,~. 
Hence A, is differentiable at i’, I, is differentiable at x,+i, VA,(_%)EB(U%,E’) 
and A;(x,, + i) E B( il, 6’). Consequently, I, + 1 = A, o II, o 8, + 1 is differentiable at x 
and one easily sees that VA “+ 1(x) = AV,l,( “) x w h ere A is the following matrix: 

lo... 0 

Ol... 0 

Then Vl,+,(x)~B(u~+‘, E). This ends the proof of Claim 1. 

Claim 2 For every n2 1, for every XE R”, an.(x)-= Tn. 

We shall prove the claim by induction on n. If n= 1 the claim is clearly 
true from our choice of the function I,. Let us now suppose that the claim is 
true up to dimension n and, let XE R”+l, we now show that dA,+,(x)c T,,,. 
We recall that An+i = A,, o h where h=l7,00,+,, i.e., h(x) = 
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(x l,...,x,-l,x,+~l(x,+l) and we let hi(x) be the ith coordinate of h(x). 
Then, from the Chain Rule for Lipschitzian mappings [Clarke (1983, 
Theorem 2.3.9)] one gets 

aL,+t(X)CClCO i ~iri15iEahi(X),C(=(CLi)Ed~,(h(X)) . 

i i=l I 

But, from the induction assumption, al,(h(x)) = T, and clearly ahi =el+‘, 
for iE{l,...,n-1) and ~h,(x)c{e~+’ +Be::=:IBEan,(x,+,)=CO, 111. 
Consequently, 

Step 2. 

~~,+l(~)~~l~~{(~l,...,~n,Ba,)lP~CO,ll and 

OSa;.. ~al~l}=T,+,. 

We nhow give the proof of Theorem 1 in the general case and let 
u,,, . . . , ud be vectors in R” such that u1 - uO,. . . , II,,- u. are independent. We 
first assume that u,, =O. Then there exists a unique one-to-one linear 
mapping L: Rd+ R” such that L(uf) = Ui, for i E (0,. . . , d} where uf is defined as 
in Step 1. We define the function f:R” +R by f(x)=&(x)), where L* denotes 
the adjoint mapping of L. We notice that L* is onto, since L is one-to-one. 
Consequently, from the Chain Rule for Lipschitzian mappings [Clarke (1983, 
Theorem 2.3.10)] and from Step 1, one gets, for every x, 

df(x)=L**(d&,(L*(x)))=L(T,) =~O{&J, . . . , ud}. 

Let us now suppose that u, is arbitrary. From above, there exists f:R”+R 
such that, for every XE R”, df(x)=co{O, u1 -u,,, . . ., ud-uo} and we let 
g: R” + R be defined by g(x) = f(x) + x. u,,. Then from Clarke (1983, Corollary 
1 of 2.3.3), for every x E R”, dg(x) = i3f(x) + {uo} = co { uo, ul,. . . , ud}. This ends 
the proof of Theorem 1 bis. 
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