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Abstract

We consider in this paper two Markovian proces¥eandY, solutions of a stochastic differential equation with jumps, that
are comonotonic, i.e., that are such that forr allimost surelyX; is greater in one state of the world than in another if and
only if the same is true fo¥;. This notion of comonotonicity can be of great use for finance, insurance and actuarial issues.
We show here that the assumption of comonotonicity imposes strong constraints on the coefficients of the diffusion part of
X andY.
© 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

We want to show that the assumption of comonotonicity for two processes imposes strong constraints on the
coefficients of the diffusion part of the processes. This result is to be used, for instance, in finance, insurance or
actuarial applications where the notion of comonotonicity appears quite naturallydaeg1987)for decision
theory applicationd)ybvig (1988)for finance applications, aridhaene et al. (2002a,i)r a review of the actuarial
literature).

We start by introducing the notion of comonotonicity. We shall first recall its definition for random variables and
we extend it for stochastic processes.

Definition 1. Two real-valued random variablag andx, defined on the same probability space, F, P) are
comonotonic if there existd in F, with probability one, and such that

[x1(w) — x1()][x2(w) — x2()] = 0 forall (w, o) € A x A
or equivalently if the cumulative distribution functidn,, ., of the pair(x1, x2) is given by

Fiy xp (81, §2) = min(Fx, (§1), Fr,(62)).
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Other characterizations of comonotonic random variables can be folehimeberg (1994)n particular, if two
random variables1 andx; are such that there exists a nondecreasing fungtifmn which x; can be written in the
form x1 = ¢(x2) (or if x2 can be written in the form> = ¢(x1)), thenx1 andx2 are comonotonic. In fack; and
xo are comonotonic if and only if they are nondecreasing functions of the same third random vegjalhéch
can be chosen to be equaltp+ x2 (Denneberg, 1994, Proposition 4.5, p).34ence, as underlined bang and
Dhaene (19983omonotonic risks can be considered as “common monotonic”.

This concept of comonotonicity emerges naturally in insurance issues since most risk sharing schemes betweel
insurer and reinsurer or between insured and insurer lead to partial risks that are comonotonic. Furthermore, as prove
by Landsberger and Meilijson (19943l Pareto optimal risk allocations are comonotonic. It is also particularly
useful in actuarial science since, as underlinedbgene et al. (2002athe concept of comonotonicity is closely
related to Fréchet bounds for multivariate distribution functions and permits approximations for sums of random
variables when the distributions of the terms are known, but the stochastic dependence structure between them i
unknown, or too cumbersome to work with. Applications of such approximations to, for instance, the evaluation of
insurance portfolios or cash flows, or to the determination of bounds for the price of an arithmetic Asian option can
be found inDhaene et al. (2002b)

Definition 2. Two real-valued adapted process&’sand X2 defined on the same filtered probability space F,
(F;)r=0, P) are comonotonic if for alt > 0, the random variablek} and X? are comonotonic.

Notice that if two processe! and X2 are such that for all, X! = d (¢, X?) where for allz, d(t,-) : R — R is
some nondecreasing function, th&h and X2 are comonotonic.
Besides, ifd is of classC12 andX = (X1, X?) is a diffusion process of the form

dX[ = bl dr + o dW[

where theR?-valued proces$ = (le, bXZ)*, as well as the matrix-valued process= (aXl, aXZ)*, where
oXt = (01, 02) ando X* = (03, 04), satisfy the usual regularity conditions, then the use@$éliemma enables us

to get that

dXE = {dy(t, X2) + do (t, XDb" + Ldux(t, XD)|o X" 12 dt + i (¢, XD)o X" AW,
Identifying the diffusion parts, we immediately obtain that forzrall

oX =X de(t, X?) (1)
so that for allr:

deto (t) = o1(t)oa(t) — o3(t)o2(t) =0 Pas.

In the general diffusion caseremark that ifX* and X2 are comonotonic, then the law €X', X?) is singular with
respect to the Lebesgue measure. The problem can be treated as follo®s = @tf {z, deto,0,* > a}. The pair
(x1, X,Z) is a non-homogeneous diffusion process with transition kefglsind as soon as deto,” # 0 ando is
continuous, therPs ;(x, -) admits a density with respect to the Lebesgue measure foiredin interval f, s + ¢].
SinceE[ f(X,)] = E[Pr, -1, f (XT1,)LiT,<1] fOr @ny nonnegativef, it follows that the joint law of(x1, th) is
not singular with respect to the Lebesgue measure for spamsoon a® (7, < oo) > 0. Hence, ifX! and X?
are comonotonic, theR(7, = oo) = 1 for alla > 0, that is det,o;* = O for all ¢.
We want to get an analogous result in the general case of two processes which are solutions of a stochastic
differential equation with jumps. Notice that such jump processes are particularly relevant forinsurance applications.

1 We are grateful to an anonymous referee for providing this short proof in the diffusion case.
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Remark that in the case where one of the considered processes can be written as a regular function of the other,
then, as above,dts Lemma concludes.

Let (£2, F, P) be a given probability space aiff;);>o denote a right-continuous, complete filtration. ét=
{(Wll, el W;’)*; t > 0} denote al-dimensional Brownian motion faiF;),>o0. Let M denote the set of real-valued
(2 x d)-matrices.

Let n be a finite measure oR*. Lets : R? - M andb : R> - R? and f : R? x R — R? be Borel
measurable, bounded and uniformly continuous functions such that for some positive constadfs:

lo@) = oI+ 1b@) = by + /B(M) | Geou) = £y w)Pr(du) < Klx = I, @

lo ()12 + 1b() 12+ | f(x, u)|? < A® ®3)

for x, y in R? andu in R* where as usual, fon € M given by
myy - mig
m = ,
mpy - My

we letm| = /3, ;(mij)? and forx € RY given byx = (x1, ..., xy)*, x| = VN 02

Let 1 be the Poisson measure B x R with intensity & ® n(du) andii = u — ds ® n(du) its compensated
measure. We suppose thats independent of the Brownian motid#i. Let p be the(F;)-stationary Poisson point
process associated with the counting meagufsee, e.g.lkeda and Watanabe, 1981, Section )I-8nder our
conditions, we know that the following stochastic differential equation:

t t

f(Xs—, u)p(ds, du) + / f(X—, u)fu(ds, du)
0 Jjul<l
(4)

with given initial conditionXg = (Xé, Xg), whereX is supposed to be a square integratievaluedFy-measurable
random variable, admits a uniqué&;),>o-adapted, cadlag two-dimensional solution process. We shall in the re-
mainder of the paper write indifferentby(X;) (resp.b(X;)) or o; (resp.b;). In such a framework, we shall prove
the following theroem.

t t
X, = Xo+/ b(Xy) ds+/ o(Xy) dWS-i-/
0 0

0 Jul>1

Theorem 1. If the two-dimensional solution process XEy. (4)has comonotonic components and X2, then
for all ¢+ > 0, its dispersion matrix; almost surely does not have full rank

2. Proof of Theorem 1

To proveTheorem 1we shall assume that there exigts= 0 such that the dispersion matrix has full rank with
a positive probability and show that the two procesg&ésand X2 cannot be comonotonic. The rough idea is that
if the dispersion matrix has full rank at date= o, then according to the fact thdt = (W', ..., W9)*is a
d-dimensional Brownian motion, the procesge%! and A X2 do not necessarily have a “parallel” evolutfcand
as long as we taki;> andX2 in a small enough interval, we will be able to find = r — 1o > 0 such that the two
random variables’tloJrAt andX,20+m are not comonotonic.

In Section 2.1we exhibit an evenB;, in F;, on which the dispersion matrix has full rank and each of the random
variablesX,lo, X,20 andaij(ro) fori = 1,2 andj = 1, ..., d is stuck in an interval of given length. Bection 2.2

2 For any proces¥ = {Y;;t > 1o}, let AY denote the stochastic process — Yio:t = to}.
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we show that on some subevents, the problem can be reduced to the one with constant coefficients and a diffusiol
process. IrSection 2.3we prove that these events have a positive probability and we conclude.

2.1. A specific setat=rg

Suppose that at= rg, deto,o,* # 0 with a positive probability. Without loss of generality, we can assume that
o11(fo)o22(t0) — 021(to)o12(t0) # O with a positive probability. We show that there exists an evgnin Fj,, with
positive probability, on which each of the random variab?(éc§ X,2o andojj(ro) fori =1,2andj =1,...,dis
stuck in an interval of given length and on whiety (r0)o22(t0) — 021(t0)o12(f0) # 0.

To do so, consider firsB = {o11(t0)022(t0) — 021(f0)o12(t0) # 0}. By assumption, we havB(B) # 0. Then
there exists a positive real number denoted sych that the ever8y given by

Bo = {|o11(t0)o22(t0) — 021(t0)o12(t0)| = £}

is of positive probability. Moreover, we can assume that the sign of the expressi@)o22(f0) — o21(t0)o12(f0)
remains constant oAg.
Letn denote any given integer. Let for &lin Z, fori = 1,2andj =1,... ,dandl =1, 2:

y kK k+1 . LTk k+1
C]l(j = {O‘ij(lo) € [%, on |:} s Dk = {X[O € |:2_n’ on [}
As
_ i,j I
Bo = ﬂ Bo ﬂ Ck,‘,_,‘ ﬂ D |
ki j€Z i=1,2;j=1,...d =12
kjeZ

there exisk; ; fori = 1,2; j = 1,...,d andk}, k in Z such that the ever,, given by B;; = Bo N;=1,2;j-1,..a
C,’(f] Ni=1,2 DIZ(I, has positive probability. It is immediate th&%, satisfies the conditions mentioned above, the

length of the intervals being equal tg2'. We consider a decreasing sequence of such nested;sét$. Since
(0ij (t0))i=1,2; j=1,....a IS Stuck in a compact set ameh 1(f0)022(t0) — 021(t0)o12(f0)| = £, there exists somey, such
that for alln greater thamg, a11a22 — azia12 # 0 holds true for any;j in [kij /2", kij + 1/2"[. For such amg, we
leto; = (kj + 1/2") andg; = (kjj/2"°).

2.2. Anintermediary lemma

We shall denote by the stochastic proce$&, = (X1, X2)*; 1 > 1o} given by
X[ = XIO +U[OAW[
and byZ the stochastic proce$g, = (Z}, Z?*; t > 1o} given by

t t t t
zi= [ bt [@-apawt [ [ poop@sdan+ [ [ po s o
fo 10 o Ju|>1 to J|ul<l

Thenforallr > 19, X, = X, + Z, andAX = AX + AZ.
Finally, for a givernm € R*, let Z" be given by

t

t t t
zZ) = / by ds + / §"(0 — o) AW, + / Xy w)(ds, du) + / (X, w)i(ds, du)
1 1 1

0 0 o Jul>1 fo Ju|<1

whereg”(x) stands fore 1<y + (x/1x)1jx|>y-
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Using the Lipschitz condition oa, we know that for all givery € R* , there exists a positive real numben)
such that for alk andy in R? satisfying|x — y| < e(n):
lo(x) —o(Ml =7
Forall (1, Az, n,n) € (R%)® x N, we letB} Ay denote the set:

5 1
AX}L > — +A
{|AZZ rad =40 [ sup  |AXs| < 8(17)} N fo+ AL = Pn +

selto, to+At] AXzZO+A1 < —A

2
andBj ,, , , denote the set

1
ARG <2
{(IAZ] Al <20 sup  |AXg| <e(m)¢N
v 2
seltg,to+At] AXiiar = on +A

= B!

I
Forl =1, 2, we letA o AL

2 At N By, (n) and we prove the following lemma.

Lemma 1. If there exis{(r1, n1), (A2, n2)] € (R%)? x (R%)?, At € R, andn e N for which P[Ak Al >0
for I = 1, 2, then the two processeég! and X2 cannot be comonotonic

Proof. Letus seefirstwhathappens,mhm%n;we have sup.(;, o+ AXs| < () henceforalk € [ro, t0+Az]:
|GS - o't(_)| = n

so that for alls € [1o, 0 + At], Zs = Z] and|AZy1a¢| = |AZ,0+N| <
AsAX = AX + AZ,wegetond] ,, - thatAXi , =AXL . + AZt =
Now, using the same method, we get that for@ll Az, n,n) € (R »® x N, we haveAXx?!

AXZ A\ = (/2yonAZ .

> (1/2%) andAXt war <0

iotar = 0 and

to+At —
As X1 andX2 both belong to a (semi-open) interval of given length equa)# bn AA Aty .0 WE et that for

all (, w) € A} X AZ o Xiopar (@) > X 5, (@) whereasXZ |\ (@) < XZ |\, (o)) so that

A1, At,n1,n
[le(J+At () — XtoJrAt(w/)] X [Xto+At(‘U) - Xto+At(w/)] <0

forall (w, ') € AA At X Afz At.np.n» @nd the two random variable’%w andeOJrAt cannot be comonotonic,
which completes the proof of the lemma. O

So the lemma reduces the proof of our theorem to the finding\@f#§,)];=12 € (R% )2 x (R%. )2, n € Nand
At € R, for which the two eventsly i andA)%2 At.p.n NAVE pOsitive probability.
2.3. End of the proof of Theorem 1

We consider first the seﬁ At and we only need to show that there existAz, n, n) € (R )3 x N for which

P{(IAZ]  pl 2N B} + P i( sup  [AX| = 8(n)> N Bzo}

s€lto, to+At]
AXL L
+P '0+2 r= 2 N By ¢ > 2P(Byy). (5)
AX —A

t0+At -
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We first consider the set

- 1
1
AXirar Z 50 4| B,
v2
AXZ < -2

We shall denote by the stochastic proce$&; = (X}, X2)*; ¢ > 1o} given by
X, = Xy + a°AW,

where

agl 6’82 0 -0

agl agl 0O --- 0

for some real numbe@? € [kj/2", (kij +1)/2"[fori, j = 1,2. Then
AXigpar = AXigyar + [ — a®TAWigs ar

On By, (n), ojj (to) € [kjj/2", (kij + 1)/2"], so that|ojj (t0) — ai(j’| < 1/2". It is easy to see that for a given positive
real numbet, if AXL.\, = 20 +& AKZ < 2. &, |AW,{;+9,| < (2" —D/2forj =1,2,|AW] A1 <
(£/(d —2)A)for j =3,...,d, thenAX} . > (1/2")+xrandAX2, , < —x.So

to+At to+At
vl 1 v 2
Pl B N\ AXiginr Z 5 + 4 AXignr = =2
. ; A2 -1
AXE n = 2 +E AW] o/l < 5 =12
> P Bto n R . %-
AXZ o S —20—& |AW] ,j=3,....d

t0+At| = (d— 2)A
- P(By,) P(B?) /
21 At aglx+a22)‘22k+$
aglx+agzy§72)w§
Ix|=(A2"=1/2),]y|=(22"—1/2)

e—(x2+y2)/2At dx dy

where

£ j 3 .
B _{|AW10+At|SM’]_3"“’d}

becausg. andW are independent and independenfgt
Let us now consider the other sets involved in inequdlty i.e., the setB,, N {|AZZ)+N| < A}andBy N
t
/ (pn(oﬁs - Uto) dw;
1

{SURclrg,r0+an 1 A Xs| < e(m)}.
t A 5
/bsds >—:|—P|: >—:|
o 4 0 4
A
>—|—P
-]

As for Z", we have
PUIAZY, ol <32 1— P [
t t
// f(Xg, u)pu(ds, du) /f f(Xs, u)ii(ds, du)
0 Jul>1 to Jlul<1

_p[

i
S
4
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1] _ 16, .
> f— —
4] 7 22 -
4A(AY)

A
> — 1<
i="5

By It0’s isometry, we get

t
/ ¢7I (o5
1o

It is immediate that
t

/ b, ds
1o

t

3272(At)

P 2

t
/ (pn(as - Gto) dWS

fo

P

Now:

|
I
and

t
gl
1

J (X5, u)p(ds, du)

Ju|>1

> %i| P |:A,u([t0, t] x {lz| > 1}) > %]

4A(A 1
= S ElAp(lro, 1] x {121 > 1] = (Annflz| > 1

A
1] _16, t 2
>_ —
417 22 ;

16 (! 5
= _2/ ds/ E[lf(Xs, w)|In(du) <
A fo lul<1
On the other hand:

N
P sup |AXg| <e(m)y=1-P sup / b, du >@
s€[ro,t0+Af] s€[ro,to+Ar] V19 4
N N
/ oy > ﬂ —P sup / f(Xs—, u)u(ds, du)
to 4 s€[ro,to+Ar] Ju|>1

N
—P: sp ([ g wis o > <P
s€lro,to+Ar] 1V Ju|<l

4;

J(Xy, u)ja(ds, du)

lul<1

J (X, w)a(ds, du)

Ju|<1
16A2(Ann{|z| < 1}
)»2

—P sup
s€lto, to+At]

(n)}
_ e

e(n) 128(At)A? 16(A1)2A2

sup

261

S
/ b, du
o

4 [e(m)]?

s€lto,to+Af]

> —
We easily get
o, dW,| > <
/,0 B } [e(m)]?

Pi sup
s€lto, to+At]
{ sup / f f(Xs—, w)pu(ds, du)| > @}
€[to,t0+At] |lu|>1
e(m)
< P1An(to, to + Af] x {|z] > 1}) > 2
4A(ADn({|z| > 1})

>8(n)}<
s

4A
—E[/L([to, fo+ At] x {|z]| > 1})] <

El

e(m)

sup
€[t,t0+At]

f/ f(Xs—, u)ja(ds, du)
lul<1

e(n)

e(n)

> —

3

3

(6)
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P { sup /s f(Xs—, u)ia(ds, du)| > @]
s€lto,to+Ar] |V1g Jul<l 4
16 s N 2
< s [ e opesdol | ™
e(n) se[to, to+AL] [Jig Jul<1
P { sup /S f(Xs—, u)in(ds, du)| > @}
s€lto,to+Ar] |V1g Jul<l 4
fo+At 2
<22 [T [ o wis.do
e(n) to Jul<1
to+At 2
=25 [ e [ B P < PEEDCE D ®)
e(m* Ji lu|<1 e(m)

where(8) is obtained by Doob’s inequality and the fact tlf,%tflulﬂ f(Xs—, u)ii(ds, du) is a martingalelkeda
and Watanabe, 1981, p.62

Then, as mentioned at the beginning of the subsection, if thereréxists () and (1, n, n) € (R4)? x N for
which for all Ar < #* the condition:

3272(At) _4AAD  4A(ADn{lzl > 1) 16A2(Ann{|z| <1} 128 Atr)A?

2P (Biy) = —— X X 32 o [eP?
_16(AN%A2  4AAnn(lzl > 1) 64A%(Ann({lz] < 1))
[e(m]? e(n) e(n)?
P(B%)P(By) 2432200
21 At Aglx+ai’zyzzx+s © ey = 2(80) ©

aglx+a32y§—2k—$
[x]=(A2'=1/2),|y|=(22"-1/2)

holds, then our problem is solved. Inequali®) is equivalent to

P(B?%)

2 At /;?1x+a?2y22k+§
aglx—i-agzyf—Zk—S
Ix|=(2'=1/2),|y|=(22"-1/2)

3272(A1)  4A(AD) N 4A(ADR{|z| > 1}

2,.,2
e Xty /2At dx d
= A2 A A

+16A2(At)n{|z|§1} 128(ANAZ  16(A1N2A2  4A(ADR({|z| > 1)  644%2(ADn({|z] < 1)
22 [e(m)]? [e(m)]? e(n) e(n)?

Lettingé = A, u = x/+/At, v = y// At andu = 1/+/At, the inequality is equivalent to

A
L= P(B*) / e 2w+ 4 dy = L,
2r m()=(3)

3
[u|<((A21—1)/2J/At), [v| <((12" = 1) /27 Ar)
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for
3272 4AV(AD  AAJ(ADn{lz] > 1}  16A%n{|z] <1} 128Ar)A?
Ly=—-+ + + 3 >
w w 0 w [e(m)]
16(A1)2A2  4A(ADn({|z] > 1) 64A2(ANn({|z] < 1))
[e(m]? e(n) &(n)?
where
0
M= ayg ayo
—dp1 —dp

As we have seen in Section 3.1, fer> ng, we know that fori, j = 1, 2, ai? € [gij,Eij] on B, and for all
ae Hiz,jzl[gij , Tijl, a11a20 — aziai2 # 0. Then there exist real numbefg's for which, letting:

M = )jll Jj12 ,
Y21 Y22

M is invertible and

P(B*) /
Ly > )
2 () eM=1([3u:+00[?)
lul<((h21—1)/2J/ A1), |v] < (32" ~1) /2/A1)

e—(1/2)(u2+v2) du dv

SinceM ~1([31; +o0[?) is independent of and since we can chooseas large as we want (greater thas), we
only need to solve

P(BY)

2 (u ) _
eM~1([3u;+o0[?2)
v

As for P(B*), we have

e~ (/2P +v?) dudv > L.

P(B*) =P HAWém

2
<L j=3..4d
“2d-2a70 "% }

d 242 2 o —d—2
4(d — 2)2A L \2 A(d — 2)2A
e e (Ol e

Let

e+ g .

1
p(u) = Z/(u

)EMl([3M;+oo[2)
v
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We fix thenu such that

4A  4AN{|z| > 1} 16A%{|z] <1} 1
—+ + > < Zo(w)
W H w 6

and

2 -

ad—2)242 19?1
[1_¥Ati| 2

we findy such that 382/u2 < 1/6¢(w), then(Ar) < 1 such that
128A1)A%?  16(A1)%A%  4A(ADn({lz| > 1)  644%(Ann({|zl <1) 1

o2 P e(n) M £(n)? =g
andx = u+/At. This enables us to get
1 3272 4A  4A 1} 1642 1
P(B o0 > So(n) > -+ 20 4 PHELZ 2y DA = 3
iz " jZ M
128 A1)A2  16(A1)2A2  4A(ADn({|z| > 1))  644%2(Ann({|z] < 1))
[e(m]? [e(m)]? e(n) e(n)?
3202 4AJ(AD)  4A(ADn{lz| > 1}  16A2n{|z] < 1}
> —+ + + 5
jz iz 2 %
128(A1)A%2  16(A1N2A2  4A(ADHn({|z| > 1)  644%2(Atn({|z] < 1)
[e(m]? [e(m)]? e(n) e(n)? '

We have then the existence @fi, (Af)1, n1, n1) € (Ri)3 x N such that lequation (5holds.
Proceeding in the exact same way for the&%khn,n, we get the existence 0k, (At)2, n2, n2) € (Ri)3 x N

such thatP[Afzy(At)z’nz’nz] > 0; now, takingn = sup(ni, n2) andAr = inf[(Ar)1, (At)2], we obtain that there

exist [(A;, n)]i=1,2 € (R%)? x (R*)%,n € NandAt € R* for which P[Ag\,-,At,n,-,n] > 0 fori = 1, 2, which, using
Lemma 1 completes the proof.

2.4. m-Dimensional processes

We now assume that the proce®ss anm-dimensional Markov process, solution of a stochastic differential
equation with jumps, for possibly greater than 2. As in the preceding subsectioi, let {(W}2, ..., W&)*; ¢ > 0}
denote al/-dimensional Brownian motion foiF;);>¢. Let M™4 denote the set of real-valuggh x d)-matrices.
Leto : R” — M™? andb : R” — R” and f : R" x R¥ — R, be Borel measurable and uniformly continuous
functions such that for some positive constasitand K in Egs. (2) and (3are satisfied. Under these conditions,
we know that the stochastic differentiedjuation (4)with given initial conditionXy = (Xé, ..., Xg), whereXo
is supposed to be a square integraBlé-valued Fp-measurable random variable, admits a unique continuous,
(Ft)t>0-adaptedn-dimensional solution process = (X1, ..., X™)*}. We shall prove the following theorem.

Theorem 2. If the real-valued solution processés' and X2 of Eq. (4) are comonotonicthen for all t their
dispersion coefficients are linked by the following relation

o1j(1)o2j:(t) — 02j(1)o1j(t) =0 Pa.s. forall 1< j, ;' <d.

Proof. The proof is similar to the one made in the case= 2. We consider the same specific #gf at timerg
and the same seﬁim’m and Bf’m’m for all (A, At, n,n) € (R4)® x N. Lemma 1remains valid. Then, we



E. Jouini, C. Napp/ Insurance: Mathematics and Economics 32 (2003) 255-265 265

show exactly like in the preceding section that there eiistAz, n, n) € (Rj)3 x N for which the condition of
Lemma 1holds. O
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