Efficient Trading Strategies in the
Presence of Market Frictions

Elyes Jouini
Centre de Recherche en Mathématiques de la Décision,
Université de Paris 9 Dauphine

Hédi Kallal
Citadel Investment Group

We provide a price characterization of efficient contingent claims—that is, chosen by at
least a rational agent—in multiperiod economies with market frictions. Frictions include
market incompleteness, transaction costs, short-selling, and borrowing costs. We char-
acterize the inefficiency cost of a trading strategy—its required investment minus the
largest amount necessary to obtain the same utility level—and we propose a measure of
portfolio performance. We show that arbitrage bounds cannot be tightened based on effi-
ciency without restricting preferences or endowments. We observe common investment
strategies becoming inefficient with market frictions and others rationalized by them.

In this article we characterize efficient contingent claims to future consump-
tion (consumption bundles) in multiperiod economies with uncertainty, tak-
ing a wide range of market frictions into account,' such as dynamic market
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There is already a substantial related literature that studies optimal portfolio and consumption problems with
market frictions. Among others, Constantinides (1986), Davis and Norman (1990), Duffie and Sun (1990),
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incompleteness, proportional transaction costs, short sales costs and restric-
tions, borrowing costs and constraints, taxes, and potentially other imperfec-
tions. An efficient consumption bundle is defined as an optimal choice for at
least one agent with von Neumann-Morgenstern preferences and a concave,
strictly increasing utility function. If a consumption bundle is inefficient, we
compute the lower bound on its efficiency loss across agents with different
preferences but given future endowment; This gives a measure of inefficiency
that does not rely on a specific utility function. It also allows us to define a
measure of portfolio performance. We also show that the arbitrage bounds on
a contingent claim cannot be tightened based on efficiency arguments without
restricting preferences or endowments. We apply these results to commonly
used trading and hedging strategies, and we provide examples of efficient
strategies that become inefficient in the presence of market frictions, as well
as examples of inefficient strategies that are rationalized by market frictions.
Indeed, market frictions generally change and typically shrink the set of effi-
cient strategies, shifting investors away from well-diversified strategies into
low-cost strategies and, when frictions are large enough, into no trading at all.

In economies without any market imperfections, Dybvig (1988a) pro-
vides a useful characterization of efficient consumption bundles, based on
the unique positive linear pricing rule (i.e., Arrow-Debreu price vector) that
prices traded securities in the absence of arbitrage.> A consumption bundle
is efficient if and only if it provides at least as much consumption in cheaper
states of the world, that is, in states of the world with lower Arrow-Debreu
prices. A new model is then developed, the payoff distribution pricing model
(PDPM), and the size of the inefficiency of a consumption bundle is mea-
sured by the difference between its market price (or the investment required
to replicate it) and the price of the cheapest consumption bundle with the
same distribution, called its “distributional price.” Therefore a consumption
bundle is efficient if and only if its market price is equal to its “distribu-
tional price.” This leads to a measure of portfolio performance based on
the PDPM, which, unlike previous performance measures based on mean-
variance analysis, avoids making unrealistic assumptions about preferences
and/or the distribution of returns. In Dybvig (1988b) the PDPM is used to
analyze trading strategies that are commonly used by practitioners, such as
stop-loss or lock-in strategies and rolled-over portfolio insurance. It is found,
under a reasonable parametrization of securities returns, that these strategies
have an inefficiency cost of the order of 0.5% per year, a substantial amount.

To obtain a price characterization of efficient consumption bundles, we
first characterize the opportunity set of available returns in arbitrage-free
economies with market frictions in terms of linear pricing rules. It is well
known that in arbitrage-free frictionless economies with complete markets
there exists a unique positive linear pricing rule that prices any contingent

2 Dybvig and Ross (1982) and Peleg and Yaari (1975) also treat the incomplete market case.
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claim and the opportunity set of available consumption is a hyperplane [see
for instance Cox and Ross (1976), Harrison and Kreps (1979), Harrison and
Pliska (1979), Duffie and Huang (1986), and Back and Pliska (1990)]. In this
case, the shadow prices at the optimum—the intertemporal marginal rates of
substitution—are the same for all agents. On the other hand, in economies
with market frictions the pricing rule is generally not linear. However, for a
wide range of market imperfections, including dynamic market incomplete-
ness, short selling costs and constraints, borrowing costs and constraints, and
proportional transaction costs it can be shown that the pricing rule is sublin-
ear’ (i.e., positively homogeneous and subadditive) and that the opportunity
set of available consumption is a convex cone [see Jouini and Kallal (1995a,
1995b, 1999)]. This means that in such economies the pricing rule is the max-
imum of a family of underlying linear pricing rules, which can be interpreted
as the different implicit shadow prices—the intertemporal marginal rates of
substitution—for different potential agents. For instance, in incomplete mar-
kets each underlying linear pricing rule corresponds to a martingale* measure
of the price processes of traded securities normalized by a numeraire, and
is associated to a possible “fictitious” completion of the initial market [as
defined by Karatzas et al. (1991)]. In economies with bid-ask spreads, the
set of underlying linear pricing rules is the set of martingale measures of all
the processes that lie between the normalized bid and ask price processes of
traded securities and that can be transformed into a martingale [see Jouini
and Kallal (1995a)]. In economies with short sales constraints, it is the set of
probability measures that transform the normalized price processes of traded
securities into supermartingales. Economies where short selling and borrow-
ing are possible but costly can be analyzed in similar terms and are consis-
tent with our approach [see Jouini and Kallal (1995b)]. However, economies
where there are higher charges for odd lots or other fixed transaction costs
do not fall in this framework (indeed, the positive homogeneity of the pricing
rule is violated).

This description of the opportunity set of available returns in economies
with market frictions enables us to characterize efficient consumption bun-
dles. If we denote by 7 the sublinear pricing rule and by K the set of under-
lying pricing rules E, we have 7w (c) = max{E(c) : E € K}, and a contingent
claim c is efficient if and only if it provides at least as much net consump-
tion in “cheaper” states of the world. However “cheaper” is not defined with
respect to the sublinear pricing rule r but with respect to one of the positive
underlying linear pricing rules E in K that “prices” c, that is, that satisfies
w(c) = E(c). It also allows us to compute the size of the inefficiency of a

A pricing rule 7 is sublinear if 7 (Ax) = Axw(x) and 7(x + y) < 7 (x) + 7 (y), for all consumption vectors x
and y and all positive real number A.

* A martingale is a process that is constant on average. A supermartingale is a process that is nonincreasing on
average. A submartingale is a process that is nondecreasing on average.
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contingent claim, that is, the difference between the investment it requires
and the largest amount needed by any rational agent, with a given future
endowment, to get the same utility level. We show that it is equal to the
difference between the investment it requires and the minimum investment
necessary to obtain a claim with the same distribution or a convex combi-
nation of such claims (the “utility price”). Even though the “utility price”
coincides with the “distributional price” in the frictionless case, in general it
is strictly smaller; this is because, due to the frictions, some distributions of
consumption are inefficient. However, we show that the “utility price” of a
consumption bundle is the largest of its “distributional prices” in the underly-
ing frictionless economies. We also show that the largest amount needed by
any rational agent with any future endowment to get the same utility level as
with ¢ is equal to the arbitrage bound 7 (c). Hence arbitrage bounds cannot
be tightened based on efficiency arguments without restricting preferences or
endowments. Also, in frictionless complete markets, hedging and investment
decisions can be separated into two distinct stages: duplicate the liability
to be hedged and optimally invest the remaining funds. In the presence of
market frictions, however, hedging and investment decisions are intimately
related and cannot be separated. Although perfect hedging (duplication) is
not always optimal, we find that strategies that minimize the cost of obtain-
ing a payoff at least equal to a given liability have a zero inefficiency cost.
These results allow us to define a measure of portfolio performance that does
not rely on mean-variance analysis [and avoids the problems associated with
it; see Dybvig (1988a) and Dybvig and Ross (1985)], taking market fric-
tions into account. A correct measure of portfolio performance must trade
off the additional frictional costs of alternative investment strategies against
their incremental benefit from diversification. We also apply these results
to economies with market frictions, such as different borrowing and lend-
ing rates due to asymmetries of information, short selling costs, and bid-ask
spreads, and we evaluate the inefficiency of investment strategies commonly
followed by practitioners. We observe trading strategies that become ineffi-
cient as bid-ask spreads are introduced. We also show that high borrowing
costs, especially if they increase with leverage, can rationalize such strategies
as stop-loss that are inefficient in frictionless markets.

The remainder of the article is organized as follows. In Section 2 we pro-
vide a price characterization of efficient consumption bundles and a
preference-free characterization of their inefficiency cost (which leads to a
measure of portfolio performance), and we investigate tightening the arbi-
trage bounds. In Section 3 we apply the results of Section 2 to evaluate
numerically the impact of some market imperfections on the efficiency of
commonly used trading strategies. All proofs are in the Appendix.
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. Efficient Trading Strategies

1.1 The economy

We consider a multiperiod economy with a finite number of dates and n
equiprobable states of the world where investors have some initial wealth w,
and some uncertain future endowment x in R" and maximize their expected
utility of future consumption that occurs at the final date 7. We denote by
7 the pricing rule, that is, agents have to pay 7 (c) units of initial wealth in
order to obtain a consumption bundle ¢ = (cy, ..., c,) that gives the right
to ¢; units of consumption at the final date 7 in each state of the world
i =1,...,n. We shall make the following assumption.

Assumption 1. (i) The pricing rule m is sublinear, i.e., T(Ax) = Am(x)
and t(x +y) <m(x)+7m(y), for all x,y € R" and all nonnegative real

number .

(ii) The pricing rule w is arbitrage free, i.e., w(c) > 0 for any nonzero
consumption bundle ¢ = (cy, ...,c,) such that ¢; > 0 for all states of
the worldi =1, ..., n.

(iii) The pricing rule m satisfies n(1) = —n(—1) = L.
(iv) The pricing rule w is nondecreasing, i.e., w(x) < w(y), for all (x,y) €
R" such that x < y.

Part (i) means that the price of a consumption bundle is proportional to
the quantity purchased and that it is less expensive to purchase a portfolio of
consumption bundles than to purchase each consumption bundle separately.
Note that this implies that w(c) > —m(—c) for any consumption bundle ¢
[indeed 7(0) = 7(c — ¢) < w(c) + w(—c) and 7 (0) = 0], that is, the price
at which ¢ can be bought is larger than or equal to the price at which it
can be sold. Part (ii) means that there are no arbitrage opportunities, that
is, no free consumption bundles that are nonnegative in every state of the
world and strictly positive in at least one. This is a minimum requirement
for any model. Part (iii) means that the riskless asset can be bought and
sold without any frictions and that the riskless rate is equal to zero. This
assumption can be made with little loss of generality; indeed, it amounts to
the normalization of all consumption bundles and their prices by a numeraire,
for example, a consumption bundle that is strictly positive in every state of
the world and that can be bought and sold without any frictions. Note that
in an economy with riskless and risky assets, it is not necessary to take the
riskless asset as a numeraire and we can normalize by a risky asset as far
as it is strictly positive in all the states of the world. If that risky asset can
be bought and sold without any frictions, assumption (iii) is then satisfied,
and different borrowing and lending rates can be taken into account in this
framework [see Jouini and Kallal (1995b)]. Part (iv) is, for instance, satisfied
by an equilibrium pricing rule. Indeed, no rational agent will accept paying
more for less.
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In multiperiod economies where in order to transfer wealth from the initial
date to the future agents can trade a finite number of securities, then 7 (c) is
the minimum cost of obtaining a payoff equal to (or larger than) the contin-
gent claim c in all states of the world. Note that in this case —m(—c) and
m(c) can also be interpreted as arbitrage bounds on the price of c; indeed,
investors would not pay more than 7 (c) for ¢ and would not sell it for less
than —m (—c), because in both cases a better outcome can be reached through
securities trading. If markets are complete and frictionless, then r is linear.
On the other hand, if markets are dynamically incomplete, if borrowing is
restricted or the borrowing rate is larger than the lending rate, if short selling
securities is restricted or costly, or if there are bid-ask spreads (i.e., propor-
tional transaction costs) then m is sublinear as in Assumption 1.1 [see Jouini
and Kallal (1995a, 1995b)]. This sublinear representation of the pricing rule
is in fact the reduced form of multiperiod models encompassing a larger
class of market frictions that includes taxes [see Chen (1995)] and various
portfolio constraints but excludes higher charges for odd lots or other fixed
transaction costs. We also have

Proposition 1. For any pricing rule satisfying Assumption 1.1 there exists
a closed convex set K of “underlying” linear pricing rules or “risk-neutral”

probability measures E = (e, ...,e,), with e, + --- + e, = 1, that are
nonnegative, i.e. ¢, > 0 for i = 1,...,n, and where at least one element
E* of K is strictly positive,® i.e. e; >0 fori=1,...,n, such that 7(c) =

max{E(c) : E € K} for all c € R". A linear pricing rule E € K “prices” ¢
if it satisfies w(c) = E(c).

If markets are complete and frictionless then the set of underlying linear
pricing rule K contains a unique element, and hence the set of feasible con-
sumption {c € R" : w(c) < w,} is a hyperplane and the shadow price vector
at the optimum—the vector of intertemporal marginal rates of substitution—
is the same for all potential agents. On the other hand, if the markets are
incomplete and/or there are frictions such that the pricing rule 7 is only
sublinear as in Assumption 1.1, then the set of underlying linear pricing
rule K contains more than one element, and the set of feasible consumption
{c € R" : w(c) < w,} is only a convex cone.® In this case, there are differ-
ent implicit shadow prices—the underlying linear pricing rules—for different
potential agents. We now review four cases of multiperiod economies with
frictions such that the pricing rule is sublinear and satisfies Assumption 1.

Case 1 (incomplete markets). If markets are dynamically incomplete then
the set of underlying linear pricing rules K is the set of martingale measures
of the traded securities normalized price processes [see Jouini and Kallal

> It also means that K is the closure of the set of its strictly positive elements.

® A set C is a convex cone if x +y € C and Ax € C for all x, y € C and all nonnegative number A.
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(1995a), as well as Karatzas et al. (1991) and He and Pearson (1991) for the
concept of “least favorable fictitious completion”]. |

Case 2 (bid-ask spreads, i.e., proportional transaction costs). If the traded
securities can be bought at a price (the ask) that is potentially higher than
the price (the bid) at which they can be sold, then the set of underlying
linear pricing rules K is the set of martingale measures of any price process
between the normalized bid and ask price processes [see Jouini and Kallal
(1995a)]. |

Case 3 (short sales constraints and short selling costs). If agents are sub-
ject to short sales constraints, i.e. if securities cannot be held in negative
quantities, then the set of underlying linear pricing rules K is the set of
supermartingale measures of the traded securities normalized price processes.
The case where short sales are not completely restricted but costly can be
treated analogously by introducing shadow securities that cannot be held in
positive quantities and have a higher expected return [see Jouini and Kallal
(1995b), as well as Dybvig and Ross (1986) for the two-period case]. |

Case 4 (different borrowing and lending rates). 1If agents can borrow and
lend at possibly different rates, net of default risk (e.g., if asymmetries of
information prevent good borrowers from differentiating themselves from bad
ones), then the set of underlying linear pricing rules K is equal to the set
of martingale measures of the traded securities normalized price processes,
where the normalizing numeraire is any instantaneously riskless asset with
a rate of return between the borrowing and the lending rate [see Jouini and
Kallal (1995b)]. |

Note that in Cases 2, 3, and 4, markets might be dynamically complete and
we still have more than one underlying linear pricing rule, that is, different
implicit shadow prices for different potential agents. Moreover, we shall make

Assumption 2. All the states of the world are equiprobable’ and agents
have preferences of the von Neumann-Morgenstern type: They maximize
expected utility and have a concave strictly increasing utility function. This
means that agents prefer more to less, are risk-averse, and only care about
the distribution of consumption.®

1.2 Efficient consumption bundles

A contingent claim (and hence the minimum cost trading strategy that leads to
it) is efficient if there exists a rational agent for which it is an optimal choice,
given his uncertain future endowment. This future endowment—which can

7 Most results go through unchanged if states of the world are not assumed to be equiprobable, except that
state prices must be normalized by actual probabilities in all statements. Also, if we view the finite model as
an approximation for continuous distributions, this assumption can be made without loss of generality.

8 We exclude state-dependent preferences (although we allow uncertain future endowments).
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be the result of the investor having written a contract contingent on the state
of the world or the result of earnings derived from human capital—is taken
as given in this analysis. More formally, we propose

Definition 1. A contingent claim c* € R" is (resp. strictly) efficient, given
an uncertain future endowment x € R", if there exists an initial wealth w,
and a utility function u € U (resp. U,.), where U (resp. U,.) denotes the
set of weakly (resp. strictly) concave and strictly increasing von Neumann—
Morgenstern preferences, such that c* solves max{u(c + x) : w(c) < wy}.

This is the same definition as in the frictionless case except that the budget
constraint is in terms of the sublinear pricing rule r, which is the maximum
of a family of nonnegative linear pricing rules. Hence, the budget constraint
7 (c) < w, is a collection of linear budget constraints E(c) < w,, for all E
in K. Also, because agents have strictly increasing preferences, an efficient
contingent claim ¢* makes the budget constraint binding and the initial wealth
w, for which it is an optimal choice must be equal to 7 (c*).

Also, in frictionless complete markets the optimal consumption problem
max{u(c + x) : w(c) < w,} can be separated in two steps’: First, hedge the
uncertain future endowment x, which provides an amount 7 (x), and then
solve for the optimal net consumption bundle ¢ subject to the budget con-
straint 7 (¢) < wy+m(x). Hence, changing the uncertain future endowment is
equivalent to changing the initial wealth. This means that the set of optimal
net consumption bundles is unaffected by the presence of an uncertain future
endowment and that any trading strategy can be rationalized by assuming a
particular uncertain future endowment. This is no longer true in the presence
of market frictions, where we have

Theorem 1. Given an uncertain future endowment x = (x,...,x,) € R",

a contingent claim c* = (c},...,c)) € R" is (resp. strictly) efficient if and

only if there exists a strictly positive E* = (ef,...,e;) € K, the set of

underlying linear pricing rules, such that

(i) E* prices c*, i.e., E*(c*) = n(c¥),

(ii) ¢* + x is in (resp. strict) reverse order of E*, i.e., ¢/ + x; > c}f + x;
implies ef < e forall i, j =1,...,n (resp. ¢; +x; > ¢ + x; implies
e; <e_’;foralli,j =1,...,n)

This says that a contingent claim is efficient if and only if it gives the right to
at least as much net consumption in “cheaper”—according to a positive linear
pricing rule that prices it—states of the world. If there are no market frictions
there exists a unique linear pricing rule and we find that a consumption bun-
dle is efficient if and only if it entitles to at least as much net consumption in
“cheaper”—according to the unique linear pricing rule—states of the world,

Indeed, the problem max{u(c + x) : w(c) < w,} can be written max{u(c) : 7 (¢ — x) < w,}, where ¢ denotes
net consumption, and because 7 is linear in this case it is equivalent to max{u(¢) : 7(¢) < w, + 7(x)}.
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that is, if it is the cheapest consumption bundle with its distribution [Dybvig
(1988a)].

Roughly speaking, this characterization follows from the first-order con-
ditions: Marginal utilities of consumption must be proportional to the linear
pricing rule corresponding to one of the binding linear budget constraints.
From the assumption that agents are risk-averse, marginal utilities are decreas-
ing, which implies that net consumption must be higher in cheaper (according
to the binding linear pricing rule) states of the world. The difficulty, however,
is that we are dealing with a continuum of constraints. This theorem gener-
alizes the price characterizations obtained by Peleg and Yaari (1975) and by
Dybvig and Ross (1982) in the incomplete markets case.'

At this point we are able to appreciate the impact of market frictions on
the efficiency of a contingent claim c¢*. Market frictions enlarge the set of
underlying linear pricing rules from a single one to a continuum. This makes
it easier to satisfy part (ii), that is, find a linear pricing rule that is in reverse
order of the net consumption bundle c* + x. However, it makes it harder to
satisfy part (i), specifically, this linear pricing rule must price c*. Therefore,
market frictions do not always make inefficient strategies become efficient
or efficient strategies become inefficient: Both situations can happen. Indeed,
as market frictions increase investors move away from trading strategies that
are optimally diversified over time (but have higher costs) toward strategies
that have lower costs but are less than optimally diversified, and if costs are
higher than any potential diversification benefits the set of efficient trading
strategies shrinks to not trading at all (see Section 3).

For instance, from Theorem 1 we see that the strategy that consists in
hedging the uncertain future endowment x by duplicating the contingent
claim —x is not necessarily efficient. Indeed, there might not even be any
strictly positive measure in K that prices it."'" However, we have

Remark 1. Given an uncertain future endowment x € R", duplicating the
contingent claim —x is an efficient strategy if and only if there exists at least
one linear pricing rule E € K, the set of underlying linear pricing rules,
that is strictly positive and prices —x, i.e., is such that 1(—x) = E(—x). In
particular, this will be the case when frictions are sufficiently small so that
all the underlying linear pricing rules in K are strictly positive.

A proof of this result is given in the Appendix.

' Even though the formulation of Peleg and Yaari (1975) is more general than the incomplete markets case, it
does not explicitly or implicitly include our framework with market frictions.

"'This is the case, for instance, whenever there exists a contingent claim —X that strictly dominates —x but is
cheaper to duplicate than —x [see Bensaid et al. (1992) for examples of this situation with options]. In this
case, it is clear that duplicating the claim —x is not optimal and that if a pricing rule E prices —x, and if
—X minimizes the cost of dominating —x, we have E(—x) = 7w (—x) = 7 (—X) and hence E(—X) = E(—x),
which implies that E cannot be strictly positive since —X strictly dominates —x.
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1.3 Inefficiency size

If a contingent claim is found to be inefficient we would like to evaluate the
size of its inefficiency, that is, have a measure of how far it is from being
optimal. We propose the following definition.

Definition 2. The “inefficiency cost” of a contingent claim c¢* € R", given
an uncertain future endowment x € R", is the difference m(c*) — V. .(c"),
where V. (c*) = sup,{min{m(c) : u(c + x) > u(c* + x)}} denotes the
“utility price” of c*.

Indeed, V,(c*) is the largest amount that is required by rational agents with
an uncertain future endowment x to get the same utility level as with the con-
sumption bundle c¢*. Hence, 7 (c*) — V,(c*), which is equal to inf, {7 (c*) —
min {7 (c) : u(c + x) > u(c* + x)}}, is the smallest discrepancy, across
all rational agents with future endowment x, between the cost of obtaining
c¢* and the price at which it would be an optimal choice. Also, we have
w(c*) > V,.(c*), that is, our measure of inefficiency is always nonnegative.
Moreover, if c¢* is efficient then V. (c*) = m(c*) and our measure of ineffi-
ciency is equal to zero. Also note that this measure of inefficiency does not
depend on the choice of a specific utility function.

In dynamically complete frictionless markets the utility price of a contin-
gent claim coincides with the minimum cost of achieving the same distribu-
tion of consumption [see Dybvig (1988a)], and efficiency is equivalent to cost
minimization of achieving a distribution of consumption. Even though effi-
ciency always implies cost minimization, the converse in not true in imper-
fect markets (see the example in the Appendix). Hence, in looking for a cost
characterization of our measure of inefficiency we shall consider the set of
consumption bundles that are equal to (or larger than) a convex combination
of consumption bundles with a given distribution. We then have

Lemma. For every consumption bundle ¢ € R" we have {c¢ : u(c) >
u(c), Yu € U(resp. Uy,)} = {convex hull of the bundles distributed as c}+ R’

Note that this is a new alternative characterization of second-order stochas-
tic dominance [see Rothschild and Stiglitz (1970) for other characterizations].
This allows us to prove

Theorem 2. Given an uncertain future endowment x € R", for every con-
tingent claim c* € R", the utility price of c* satisfies"
(i) V.(c*) = min{m (¢ — x) : ¢ is a conv. comb. of bundles distributed as
¢’ + x}
= min{w(c) : u(c + x) > u(c* + x) for all u € U( resp. U,.)}
12 Note that it implies that our utility price coincides with the utility price defined with respect to the smaller

class of strictly increasing and strictly concave von Neumann-Morgenstern preferences U,,.. This means that
the utility price is somewhat robust to changes in the class of preferences that is considered.
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(ii) V.(c*) =max{P.(c*",E): E € K},
where

P.(c*, E) = min{E(¢ — x) : C is distributed as c* + x}

= Py(c"+x,E) — E(x)

is the utility price of c¢* in the frictionless economy defined by the lin-
ear pricing rule E, and K is the set of underlying linear pricing rules
associated to w. Hence, maxg g Py(c* + x, E) — w(x) < V. (c*) <
maxg.x Po(c* +x, E) + 7 (—x)

(iii) V.(c*) = max{fol F;lﬂ(y)FE_l(l —y)dy—E(x): E € K}, where K is
the set of underlying linear pricing rules associated to m, F;(z) is the
probability that the random variable ¢ is less than or equal to z (and
similarly for Fy), and F~'(y) = min{z : F(z) > y} for all y € (0, 1)
is the inverse of the cumulative distribution function F.

Part (i) says that the utility price V, (c*) of the contingent claim c* is equal
to the cost of the cheapest claim that leads to a net consumption bundle dis-
tributed as ¢* + x or that is a convex combination of consumption bundles
distributed as ¢* + x. Note that this implies that given a future endowment
x, V.(c*) only depends on the distribution of net consumption c* + x. It also
says that V,.(c*) is equal to the cost of the cheapest contingent claim that
makes every rational agent at least as happy as with the net consumption
bundle ¢* 4 x. Note that in the frictionless case, because the pricing rule
7 is linear, the minimum min{w (¢ — x): ¢ is a convex combination of bun-
dles distributed as c* + x} is attained for a consumption bundle that has the
same distribution as ¢* 4 x. Hence, the utility price coincides with the mini-
mum cost of achieving a given distribution of net consumption. In imperfect
markets, though, this minimum is only attained for convex combinations of
consumption bundles that have the same distribution as ¢* + x.

Part (ii) is analogous to Proposition 1, which says that 7 (c*) is the largest
of the prices of ¢* for the underlying linear pricing rules in K; V,(c*) is the
largest of the utility prices of ¢* in the underlying frictionless economies.
Moreover, if there is no uncertain future endowment (i.e., if x = 0), V,(c*)
is the largest of the distributional prices of ¢* in the underlying frictionless
economies. This implies' that if we can find a consumption bundle ¢ with
the same distribution as ¢* +x and that is in reverse order of a linear pricing
rule E in K that prices ¢ —x, then the utility price of ¢* is equal to V,(c*) =
(¢ —x)=E( —x).

1% Indeed, by Theorem 1.2 (ii) we have V,(c*) > P.(c*, E) = Py(c* + x,E) — E(x) = E@®) — E(x) =
E(¢ —x) = m(¢ — x) and by Theorem 1.2 (i) we have V (c*) < 7 (¢ — x).
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Note that unlike in frictionless markets, in the presence of market frictions
it can happen that even though a claim is not efficient, its inefficiency cost is
nonetheless equal to zero. However, as can readily be seen from the defini-
tion, the fact that a contingent claim has a zero inefficiency cost implies that
it is arbitrarily close from being an optimal choice for some rational agents.
Moreover, we have the following price characterization:

Theorem 3. Given an uncertain future endowment x € R", the inefficiency
cost w(c*) — V. (c*) of a contingent claim ¢* = (c{, ..., c;) € R" is equal to
zero if and only if there exists E* = (ef, ..., e}) € K, such that

(i) E* prices c*, i.e., E*(c*) = n(c*),
(i) c*+x is in reverse order of E*, i.e., ¢f +x; > ¢ +x; implies ef < €]
foralli,j=1,...,n

Note that this is almost the characterization of efficient contingent claims
obtained in Theorem 1, except that the linear pricing rule E* does not need
to be strictly positive.'* For instance, we have

Remark 2. Given an uncertain future endowment x € R", the minimum
cost strategies that dominate —x have a zero inefficiency cost.

A proof of this result is given in the Appendix. When there are market
frictions, the minimum cost strategies that dominate —x are not necessar-
ily replicating ones,' but they always are efficient (or, more precisely, they
always have a zero inefficiency cost).

1.4 Arbitrage bounds and utility bounds
As a consequence of Theorem 1.3 we also have

Corollary 1. For every contingent claim c* € R", we have max{V (c*) :
x € R"} = n(c*).

This means that even though for a given uncertain future endowment x
the “utility upper bound” V. (c*) might be strictly lower than the arbitrage
upper bound 7 (c*) and the “utility lower bound” —V, (—c*) might be strictly
higher than the arbitrage lower bound —m (—c*), the widest range of “utility

' If the set of underlying linear pricing rules K has a finite number of extreme points (which is the case in
most models with a finite number of periods and states of the world and all the examples in this article),
we also have that a contingent claim ¢* € R" is strictly efficient if and only if it is the unique solution of
min{r(c) : ¢ + x is at least equal to a convex combination of claims distributed as ¢* + x}. The assumption
is needed to avoid situations in which marginal rates of substitution are required to be unbounded at the
optimum. One could expand the set of utility functions to lexicographic or hyperreal-valued utility functions,
as in Blume et al. (1991a, 1991b), which allow infinite marginal rates of substitution. We are grateful to an
anonymous referee for this point.

'3 For instance, if a risky asset follows a geometric Brownian motion with a positive bid-ask spread, a minimum
cost strategy that dominates a call option consists in buying and holding the risky asset [see Soner et al.
(1995); also see Section 2.1].
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bounds” across all possible uncertain future endowments coincides with the
interval of arbitrage bounds. Hence, if neither preferences nor endowments
are observable, efficiency arguments do not lead to tighter bounds on the
price of a contingent claim ¢* than the simple arbitrage bounds 7 (c*) and
—m(—c*). In order to achieve tighter bounds, further restrictions on prefer-
ences and/or endowments are necessary.

1.5 Portfolio performance

In this section, we apply the results of the previous sections to the measure of
portfolio performance. As in Dybvig (1988a), in measuring performance we
follow the tradition of comparing some investment strategy—and its distri-
bution of payoffs—to the alternative of trading in a given securities market:
the benchmark market. However, we do not assume that it is frictionless, and
because of this we have to take the uncertain future endowment into account
because investment and hedging decisions can no longer be separated. Ignor-
ing these frictions would make the benchmark market available to investors
more attractive than it actually is. This effect is mitigated by the fact that
the investment strategy itself is subject to the same frictions. The previous
results will allow us to evaluate the net effect.

Given an uncertain future endowment x, an investment strategy is eval-
uated on the basis of the distribution F, , of its net payoff ¢ + x, where
¢ might depend on information not available to the agents (but only to the
portfolio manager), allowing for information-trading and private investments
outside the benchmark market. The benchmark market is described by the set
K of underlying linear pricing rules that summarize the investment opportu-
nities that are available. For utility pricing, by Theorem 1.2 (iii) the relevant
characteristic of the benchmark market is the set of cumulative distribution
functions of the underlying linear pricing rules {F; : E € K}. The fol-
lowing theorem is the counterpart of Theorem 4 in Dybvig (1988a) for the
frictionless case and is a consequence of our Theorem 1.2.

Corollary 2. Suppose that an investment strategy leads from an initial
wealth w, to a cumulative net distribution of payoffs F,, ., where x is the
uncertain future endowment. Let V. (c) = max{fol F(;rlx(y)Fgl(l —y)ydy —
E(x): E € K}. Then,

(i) If wy < V,.(c), we have superior performance, i.e., there exists a rational
agent with concave and strictly increasing von Neumann-Morgenstern
preferences who prefers receiving the net distribution of payoffs F,,, to
trading in the benchmark market. Moreover, the largest amount such a
rational agent would pay to switch is V (c) — w, > 0.

(ii) If wy = V.(c), we have ordinary performance, i.e., every rational agent
with concave and strictly increasing von Neumann-Morgenstern prefer-
ences weakly prefers trading in the benchmark market to receiving the
distribution of payoffs F, .. However, the lowest amount such a rational
agent would pay to switch is equal to zero.

355



The Review of Financial Studies /v 14 n 2 2001

(iii) If wy, > V.(c), we have inferior performance, i.e., every rational agent
with concave and strictly increasing von Neumann-Morgenstern prefer-
ences strictly prefers trading in the benchmark market to receiving the
distribution of payolffs F,_ .. Moreover, the lowest amount such a rational
agent would pay to switch is wy — V (c) > 0.'

Hence, by comparing the initial investment required by an investment strat-
egy to the utility price of the distribution of its payoff we can evaluate its
performance. If the utility price is lower than the initial investment, the port-
folio is not well diversified and is underperforming. If the utility price is
equal to the initial investment, the portfolio is well diversified and it is per-
forming as it should. If the utility price is larger than the initial investment,
the manager has superior ability and/or information and/or is subject to lower
transaction costs, and the portfolio is overperforming.

As argued in Dybvig (1988a) this provides an alternative to the Security
Market Line (SML) in measuring portfolio performance. As opposed to the
SML analysis, this alternative gives a correct evaluation even when supe-
rior performance is due to private information. Indeed, the SML is based on
mean-variance analysis,'”” and even if securities returns are assumed to be
jointly normally distributed, they will typically not be normal once condi-
tioned on information [see Dybvig and Ross (1985)].

. Examples and Numerical Results

In this section we examine examples of a multiperiod economy (the binomial
economy) where agents can trade a riskless asset, paying a continuously
compounded interest rate r, and a risky asset that follows a multiplicative
binomial process with an initial value S(0) and an actual probability of % of
going “up” by u = exp(uT/n + o+/T/n) or “down” by d = exp(uT/n —
o+/T/n) each period and at each node, where T denotes the length of the
investment horizon and n the number of periods. We shall assume that o >
|1 — r|/T/n to ensure the absence of arbitrage. In this example all states
of the world are equiprobable and the results of Section 2 apply. It is well
known that this binomial process converges (as the number of periods n goes
to infinity) to a geometric Brownian motion process with drift (instantaneous
expected return) u + %62 and volatility o [see Cox, et al. (1979)].

1 These are in fact the infimum or the supremum over all the concave strictly increasing von Neumann-
Morgenstern preferences, which are not necessarily attained for a specific utility function.

17 Mean-variance analysis can be justified either by assuming normally distributed returns or by assuming
quadratic utility. However, the latter assumption implies undesirable properties, such as nonmonotonic pref-
erences and increasing absolute risk aversion.
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2.1 Bid-ask spreads: proportional transaction costs

In this example, transacting in the risky asset is costly, and the transaction
cost is proportional to the quantity transacted. If one share of the risky asset
is worth S at a given time and state of the world, we assume that it can be
bought for (1 4+ «)S and can be sold for (1 — «)S: the bid-ask spread (per
share) is equal to 2« S, where « is a nonnegative constant. We assume that
the risky asset has a nonnegative expected excess return [i.e., (u + d)/2 >
exp(rT/n)], that is, the risk-neutral probability p, of going “up” from each
node is less than or equal to 0.5.

Even for very small (but strictly positive) «, the strategy that consists in
dynamically duplicating a call option on the risky asset (for any strike price
P) is inefficient when n is large. In the frictionless economy (where x = 0)
by Theorem 1 the efficient consumption bundles are those that are in the same
order as the price of the risky asset (because p, < 0.5). This means that if
the price of the risky asset is higher in one state of the world than in another,
so is the payoff of any efficient consumption bundle. Because the payoff of
a call option with strike price P (and physical delivery) is equal to ¢* =
max{(1 — «)S(T) — P, 0} at its expiration date, it satisfies this requirement.
However, the trading strategy that duplicates this payoff requires frequent
portfolio rebalancing: If ¥ > 0 it can be shown [see Soner et al. (1995)] that
as the number of periods n grows to infinity the total cost incurred is at least
equal to the cost (14«)S(0) of purchasing one share of the risky asset at the
initial date. Because the payoff of this investment strategy is (1 — «)S(T) at
the final date 7', it strictly dominates the payoff of the call option. This shows
that duplicating the call option is inefficient, regardless of its strike price,
as long as k > (. Note that by Theorem 2 the “utility price” V,(c*) of any
consumption bundle c* is at most equal to exp(—rT)E 1(c"), the present value
of its expectation with respect to the actual probability measure.'® Hence, the
inefficiency cost of ¢* satisfies w(c*) — V,(c*) > m(c*) — exp(—rT)E%(c*),
where 7 (c*) denotes the minimum cost of achieving or dominating c*. In our
example (when n goes to infinity), this means 7w (c*) — V,(c*) > (14+«)S(0)—
exp(—rT)E% (max{S(T) — P, 0}). For example, if x = 0.1%, r = 6%, 0 =
20%, n+ %02 = 12%, P = S(0), and T = 1 year, then the inefficiency cost
of hedging an at-the-money call option is at least equal to 83.99% of the
value of the underlying risky asset, an enormous amount. Nevertheless, the
cheapest hedging strategy for that call option costs (1 4+ «)S(0) [see Soner
et al. (1995)] but has a zero inefficiency cost by Theorem 3 and Remark 2.
By Theorem 1 and Theorem 2 we also have (a proof of this result is given
in the Appendix)

Indeed, since after normalizing by exp(rT) we have V,(c*) = min{r(c) : ¢ € Z(c*)}, where X(c*) is the
set of convex combination of contingent claims distributed as c¢*, and since (E 1 (), ..., E il (c*)) belongs
to X(c*) this implies V,(c*) < max{E(E% (S0 N E% (c*):E€K}= E% (c*).
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Remark 3. If Log((14«)/(1—«)) > max{|(u—r)T +nLog((exp(c~/T/n)+
exp(—o/T/n)/2)|, lu—r|T}, e.g., if Log((1+«)/(1—k)) > |u+30>—r|T
when n is large enough, then the only efficient trading strategies consist in
investing in the riskless asset. The “utility price” V,(c*) of any consumption
bundle c* is then equal to V,(c*) = exp(—r T)E% (c*), the present value of its
expectation with respect to the actual probability measure with equiprobable
states of the world.

For instance, consider the parameters above where (u + %O’z —r)T = 6%.
In this case, if « is equal to 3% or more this condition is satisfied and the
only strategy that is efficient consists in investing in the riskless asset. To put
this number into perspective, Amihud and Mendelson (1991) report that the
typical bid-ask spread on Treasury notes and bonds is roughly equal to 0.03%
of face value, that is, k = 0.015%. On the other hand, Sharpe (1987) reports
an average bid-ask spread of 0.52% for large capitalization stocks (larger than
$1.5 billion), up to 6.55% for small capitalization stocks (smaller than $10
million). When the typical commission rate of 1% charged by retail brokers
is taken into account, this means that « averages from 1.25% to 4.25% for
stocks, depending on their size.

2.2 Short selling costs/different borrowing and lending rates

In this example the risky asset has no bid-ask spread and it can be sold short,
but it costs an annualized percentage ¢ of the asset value to do so over any
period of time [see Tuckman and Vila (1992)]. To model this situation we
assume that the risky asset cannot be held in negative quantities, and we intro-
duce a shadow risky asset S that cannot be held in positive quantities and that
has a higher expected return: S(0) = $(0), it = exp((u+c)T/n+o+/T/n)
and d = exp((u + ¢)T/n — o+/T/n). We shall analyze the efficiency of a
stop-loss trading strategy by an investor who expects the risky asset to have a
negative excess return (i.e., u —r + %02 < 0) and sells it short but liquidates
the position if unexpected'® losses exceed a given threshold percentage € of
the initial investment. This is plausible if investors disagree on the actual
probability distribution of returns of the risky asset. Note that the short inter-
est on the NYSE averaged about 3.5 billion shares in 1997, almost 2% of the
total number of shares listed, more than 6 times the average daily volume,?
and according to Engel and Boyd (1983, chap. 22) short selling normally
accounts for 6% to 8% of transactions.”’ We have by Theorem 2,

Remark 4. The utility price of any contingent claim c* is equal to V,(c*) =
E4(C) where ¢ is distributed as c* and is in reverse order of Eg, the prob-
ability measure such that the conditional probability of going “up” at each

! This is a slight difference with the strategy in Dybvig (1988b) where the threshold applies to actual losses.
2 See Wall Street Journal, June 22, 1998, page C12.

2! Arguably, a good portion of the short positions have hedging motives in such situations as mergers and
acquisitions, the purchase of options or convertible securities, and tax management.
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node is B = max{([et;, ,] U [1 —ap, 1 — ;1) N[0, 11}, with a; = (exp((r —
c)T/n)—d)/(u —d) and o, = (exp(rT/n) —d)/(u — d).

A proof of this result is given in the Appendix. This provides us with
a simple algorithm [together with Feller (1950, vol. 1, chap. 14) for the
distribution of payoffs of the trading strategies] for computing the utility
price of any contingent claim ¢* and evaluating the inefficiency cost of any
trading strategy [the computation of 7(c*) can be carried out by backward
induction as shown in Jouini and Kallal (1995b)]. If T = 1 year, r = 8%,
m+ %oz —r = —4%, 0 = 20%, and € = 10%, when short selling is costless
we find that the inefficiency cost of the stop-loss strategy is equal to 0.28%
[see Dybvig (1988b)], but if the short selling cost ¢ is equal to 1% it is
reduced to 0.2%, and it is totally eliminated if the short selling cost c is as
high as 4%. More generally, we have by Theorem 1,

Remark 5. The stop-loss strategy is efficient if and only if the cost ¢ of short
selling the risky asset is equal to —(u —r + %(72), i.e., to the negative of
its expected excess return over the riskless rate. This means that if the short
selling costs are high enough, they rationalize strategies, such as stop-loss,
that are inefficient in frictionless markets.”

A proof of this result is given in the Appendix. To put these costs into
perspective, note that short selling a specific stock requires posting a 50%
initial margin, and that the proceeds from the short sale are typically not
available to the investor (although large institutional investors are generally
able to negotiate a much lower rental fee, it tends to increase sharply with
the desirability of the short sale).?® In this case, ¢ = r, which is equal to
8% in our example. In the bond market, short sales are performed through
repurchase agreements in which the short seller lends money at the repo rate
and takes the bond as collateral. If the bond is “special,” meaning that it is
particularly hard to borrow (which is typically the case for the most liquid
benchmark bonds), its repo rate can be sharply lower than the repo rate on
general collateral. The short selling cost ¢ is then the sum of the bid-ask
spread on the repo rate, and the difference between the repo rate and the
repo on general collateral. Stigum (1983) reports typical values of ¢ between
0.25% and 0.65%, but we can have ¢ = r if the bond is impossible to borrow
and the short seller is forced to fail on its delivery. Because this is likely to
happen when the bond has outperformed, stop-loss strategies are plausibly
rationalized by such short selling costs.

We can similarly analyze the case where the borrowing rate is higher than
the riskless lending rate (net of the ex ante probability of default). This can

2 We would obtain exactly the same result for other strategies studied in Dybvig (1988b), such as lock-in
strategies and rolled-over portfolio insurance.

3 See Cox et al. (1985, p. 50) and Sharpe (1987, p. 34).
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occur because of asymmetric information between borrowers and lenders,
and the inability of good borrowers to differentiate themselves from bad ones.
We examine a stop-loss strategy that consists in borrowing some amount at
the initial date and investing it in the risky asset, liquidating the position
whenever unexpected losses exceed a given threshold fraction € of the initial
investment. If 7 = 1 year, r = 8%, u + 10> —r = 10%, 0 = 20%, and
€ = 10%, when there are no borrowing costs we find that the inefficiency
cost of the stop-loss strategy is equal to 0.79%, but if the borrowing cost is
equal to 3% it is reduced to 0.49%, and it is totally eliminated if the cost is
as high as 10%. Again, we find that this strategy is rationalized by borrowing
costs equal to the expected excess return of the risky asset u + %02 —r.

To put these borrowing costs in perspective, note that individual investors
can borrow with their home as collateral at a spread of roughly 1%, that they
typically pay a spread of 2.5% to borrow against their stock holdings and
a spread of the order of 10% on their credit card balance (uncollateralized
borrowing). As far as corporations are concerned, the spread at which they
can borrow typically depends on their leverage. For instance, the average
spread at which AAA companies can borrow is roughly 0.4%, whereas it
is roughly 5.5% for B companies.** According to Standard & Poor’s Credit
Week (November 8, 1993, p. 41-2) the median total debt as a percentage of
capitalization was 21.9% for AAA companies and 65.9% for B companies
during the three-year period 1990-1992. To take these stylized facts into
account we assume that leverage is observable and that it enables borrowers
to partially differentiate themselves. Suppose that the borrowing cost is equal
to a + bR with a = 0.5% and b = 3%, where R is the debt-to-equity ratio.
In this case, the stop-loss strategy is rationalized by such borrowing costs if
the liquidation threshold is equal to 50% or higher.

3. Conclusion

In this article, we have provided a general price characterization of effi-
cient (i.e., optimal for at least one rational agent with concave and strictly
increasing von Neumann-Morgenstern preferences) consumption bundles in
arbitrage-free multiperiod economies with market frictions. The opportunity
set in such economies can be characterized in terms of a sublinear pricing
rule that is the maximum of a convex set of underlying frictionless nonnega-
tive linear pricing rules. We have shown that a contingent claim is efficient if
and only if it gives the right to at least as much net consumption in “cheaper”
states of the world, where “cheaper” is meant with respect to an underlying
linear pricing rule that “prices” the contingent claim. We have then defined a
conservative measure of the potential inefficiency of a contingent claim as the

* Although it is difficult to estimate ex ante probabilities of default, the available evidence suggests that these
spreads go well beyond this component.
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difference between its minimum cost to achieve and the maximum amount it
would cost any rational agent to get at least the same utility level (the “util-
ity price,” which does not depend on any specific utility function). We have
shown that the utility price coincides with the “distributional price” (i.e., the
minimum amount it costs to obtain the same distribution of consumption)
in frictionless economies but that it is in general smaller in economies with
market frictions and that it is equal to the minimum amount it costs to obtain
the same distribution of consumption or a convex combination of consump-
tion Bundles with the same distribution. Furthermore, we have proved that
it is not possible to tighten the arbitrage bounds on a contingent claim to
consumption based on efficiency arguments without restricting preferences
or endowments. Also, we have exploited these results to propose a mea-
sure of portfolio performance in imperfect markets without relying on strong
assumptions on preferences, such as the SML analysis. We have then applied
these results to commonly used trading and hedging strategies in the pres-
ence of different borrowing and lending rates due to asymmetries of infor-
mation, short selling costs, and bid-ask spreads. We have given examples
of efficient trading strategies that become inefficient with market frictions,
as well as examples of inefficient strategies that are rationalized by market
frictions.

Appendix

First, recall that for a convex function F : Q — R, where Q is an open subset of R", the
subgradient of F' at x € Q is defined by dF(x) ={p € R" : p-(y —x) < F(y) — F(x) for
all y € Q}. Furthermore, following Clarke (1983, Theorem 2.5.1) we have that 9 F(x) is the
convex hull of {lim,_, ., F'(x,) : (x,) converges to x and F is differentiable at x,}. For a concave
function G we define dG as —3(—G).

Example: Inefficient Distributions of Returns

This example illustrates the fact noted in Section 1.3 that even though efficiency always implies
cost minimization, the converse is not true in imperfect markets.

Consider a two-period economy with two equiprobable states of the world, “up” and “down.”
We shall assume that the riskless rate is equal to zero (this is merely a normalization) and that
investors can buy and sell a risky asset that pays off S, in state “up” and S, in state “down,”
with S, > S, at an ask price S* = bS, + (1 — b)S, and a bid price S = aS, + (1 —a)S$,, with
1 > b > a > 0. We have already found that the set of risk-neutral measures (or underlying linear
pricing rules) is equal to K, , = {(p*, 1 —p*) : p* € [a, b]}, hence the minimum cost to obtain a
consumption bundle (c,, ¢,) is equal to ac, + (1 —a)c, if ¢, < ¢, and is equal to bc, + (1 —b)c,
otherwise. Suppose without loss of generality that ¢, < c,. The distributional price of (c,, ¢,),
that is, the minimum cost to get a consumption claim distributed as (c,, ¢,), is then equal to
minf{ac, + (1 — a)c,, be, + (1 — b)c,}. It is then easy to check that if a < 1/2 < b then
min{ac, + (1 —a)c,, bc;+(1—b)c,} > (¢, +c,)/2. Because any rational agent with preferences
satisfying Assumption 1.2 weakly prefers the consumption bundle ((c, + ¢,)/2, (¢, + ¢;)/2)
to (c,,c,) and to (c,, c,), and since the consumption bundle ((c, + ¢,)/2, (¢, + ¢;)/2) only
costs (¢, + ¢,;)/2 to obtain, this shows that the distribution of payoffs of (c,, c¢,) as a whole is
inefficient: Neither (c,, ¢,) or (c,, ¢,) Will ever be chosen by a rational agent, no matter what
his utility function is.

>
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Note that this example is not degenerate. Both consumption bundles (c,, ¢,) and (c,, ¢,) are
in the opportunity set and neither of them is dominated by a consumption bundle that costs the
same amount to obtain.>> Moreover, for any given set of payoffs S, and S, for the risky asset
we can find a transaction cost large enough to make any distribution of consumption other than
the riskless one (i.e. ¢, = ¢,) inefficient. And if there is any positive bid-ask spread around an
initial price of (S, +S,)/2 for the risky asset, then the only efficient distribution of consumption
is the riskless one. |

Proof of Proposition 1. See Jouini (1999). | |

Proof of Theorem 1. We shall treat here the case where the uncertain future endowment x is
equal to zero. The case where x # 0 is an immediate extension. First, note that by Proposition 1
and following Clarke (1983, Theorem 2.8.6) 977 (x) is defined for all x € R" and 97 (x) C {E €
K : E(x) = m(x)}. Moreover, if ¢* is efficient (resp. strictly efficient), there exists u € U (resp.
u € U,,) such that c¢* solves max{u(c) : w(c) < m(c*)}, and by Rockafellar (1970, Theorems 28.2
and 28.3) there exists a nonnegative real number A such that 0 € —du(c*) + Adw(c*). Also, by
definition of U (resp. U,,) there exists a concave (resp. strictly concave) and strictly increasing
function U : R — R such that for all ¢ = (¢y,...,c,) € R",u(c) = %[U(cl) +... + U]
and we have that du(c*) = []/_,[U(c;), U  (c;)] where U’ (x) and U/ (x) are the left and the
right derivatives of U at x, respectively. Consequently, there exists E* € K and A > 0 such
that AE* € []/_,[U.(c)), U (c})]. Because U is concave (resp. strictly concave) and strictly
increasing, if ¢; > ¢} we have 0 < U, (c]) < U (c}) < U (c]) < U’ (c)) [resp. 0 < U/ (c]) <
U'(c) < U;(cj) < U’ (cj)]. This implies that 2 > 0 and that E* is strictly positive and in
reverse order (resp. strict reverse order) of c*.

Conversely, let E* = (e}, ...,e;) € K be strictly positive and such that E*(c*) = n(c*)
and c* is in reverse order of E*. Consider the function g : R — R, which is right-continuous,
piecewise linear with potential discontinuity and change of slope at c7, ..., c;. The function g
is then entirely defined by its values and left limits at each point ¢} : g(c}) = inf{e} : ¢ = ¢}
and g(c)~ = sup{e; : ¢ = c}}, and by the equations g(c) = g(cj;,) + (¢, —¢) for ¢ < ¢, and
g(c) = g(er)expleh, —co) for ¢ > ¢ (where ¢, and ¢ are, respectively, the smallest and
the largest values taken by the c;’s). It is clear that g is positive nonincreasing (resp. decreasing)
and if we define U* : R — R by U*(x) = f(; g(t)dt, then U* is concave (resp. strictly concave)

and strictly increasing. Furthermore, for every i = 1,...,n we have e/ € [g(c]), g(c})7] =
[U* (c}), U*_(c})] = dU*(c}), which implies (for a convex program) that c* solves max{u(c) :
E*(c) < E*(c*)}, where u is defined on R" by u(c,...,c,) = %[U*(cl) + ... + Ul
Consequently ¢* solves max{u(c) : w(c) < w(c*)}. | |

Proof of Remark 1. If there exists E € K that is strictly positive and prices —x then, by
Theorem 1, duplicating —x (with a zero net payoff) is efficient because the null vector is in
reverse order of any linear pricing rule and, hence, of E. Conversely, if there is no such E € K
then duplicating —x is not efficient because part (i) of Theorem 1 is not satisfied. |

Proof of the Lemma. Let P(c*) = {c : u(c) > u(c*), for all u € U}, and X (c*) be the convex
hull of the permutations of the vector ¢* (i.e., the convex hull of the consumption bundles that
are distributed as ¢*). It is clear that if a consumption bundle is distributed as c*, it is giving the
same utility as ¢* to every agent with preferences in &/. Hence, by concavity of the preferences
in U, any convex combination of consumption bundles distributed as c* provides at least the
same utility as ¢* to every agent with preferences in &/. And by monotonicity of the preferences
in U, any bundle that dominates such a convex combination provides at least the same utility as

” In the presence of market frictions this would not violate the absence of arbitrage. See Bensaid et al. (1992)

for an example and a discussion of this point.
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c* to every agent with preferences in /. Hence, we must have X(c*) + R} C P(c*). Note that
because {c : u(c) > u(c*), for all u € U} C {c : u(c) > u(c*), for all u € U,,.}, we would reach
the same conclusion if we defined P(c*) as P(c*) = {c : u(c) > u(c*), for all u € U,.}.
Conversely, let ¢ € P(c*) and suppose that ¢ ¢ X(c*) + R’,. Consider ¢* (resp. ¢), the
permutation of c¢* (resp. ¢) that satisfies ¢f < ¢; < ... < Cf (resp. ¢, < ¢, < ... < ¢,).
We have that ¢ € P(c*) and ¢ ¢ X(c*) + R’ [indeed, P(c*) and X(c*) + R, are stable by
permutation of coordinates]. Because X (c*) + R’ is closed and {c} is compact, by a standard
strict separation theorem [see Luenberger (1969)], there exists a nonzero vector p € R" such
that p-¢ < inf{p - x : x € X(c*) + R’}. It is easy to see that p must be nonnegative and
that we have p - ¢ < p - x for all permutations x of c¢*. Consider p, the permutation of p
satisfying p, > p, > ... > p,. We then have p-¢ < p-¢ and since p-¢ < p - x for all
permutations x of ¢*, we also have that p - ¢ < p - x for all permutations x of ¢*. In particular,
we have that p - ¢ < p - ¢*. Let us now consider a concave, strictly increasing real function
U : R — R such that U'(¢}) = p; forall i = 1,...,n, and let us define the utility function
uelbyu()= %(U(c,) +...4+U(c,)) for all ¢ € R". We have that u'(¢*) - (¢ — ¢*) < 0 and
consequently, by concavity of u, u(¢) < u(c*) or equivalently u(c) < u(c*). This contradicts the
fact that ¢ € P(c*) and shows that P(c*) C X(c*) + R, which concludes the proof. If instead
we define P(c*) by P(c*) = {c : u(c) > u(c*), for all u € U}, let U, : R — R be defined
by U,(x) =U(x) — é exp(—x), for every positive integer q. Because U is concave and strictly
increasing U, is strictly concave and strictly increasing for every positive integer g. Hence, the
utility function u,(c) = %(Uq(cl) +... +U,(c,)), for all c € R" belongs to U, for every
positive integer g. Moreover, because u(¢) < u(c*) we have u,(¢) < u,(c*) for g sufficiently
large, which contradicts the fact that ¢ € P(c*) and concludes the proof. ]

Proof of Theorem 2.  We shall treat here the case where the uncertain future endowment x
is equal to zero. The case where x # 0 is an immediate extension. Let us show that for
every ¢* € R" we have sup, ., {min{m(c) : u(c) > u(c*)}} = min{z(c) : ¢ € P(c*)}, where
P(c*) = {c : u(c) = u(c*), for all u € U}. It is obvious that we have min{z(c) : ¢ € P(c*)} >
sup,, o, {min{m(c) : u(c) > u(c*)}}. Recall that we have assumed that there exists a probability
measure E € K that is strictly positive (i.e., ¢; > O foralli = 1,...,n), and let m = 1/21inf; ¢;,
and M = sup; |cf| + 1 — log(m). Consider U, the class of utility functions u that belong to U/
and that satisfy u(c) = 1/n(U(c;) +... + U(c,)) with U(x) < M +m(x — M) for x > M
and U(x) < x + M for x < —M (by monotonicity of U this implies that U(x) < M for all
x € [-M, M]). Clearly, we have SUP,, ey min{m(c) : u(c) > u(c*)} < sup,y, min{r(c) : u(c) >
u(c*)} <min{r(c) : for all u € U, u(c) > u(c*)}.

Suppose for now that K is a singleton {E} (the frictionless market case) and consider an
efficient permutation ¢ of c¢* (i.e., a permutation of ¢* that is in reverse order of E). Then
derive the function U : R — R from E and ¢ as U* was derived from E* and c¢* in the
proof of Theorem 1. Let the utility function u# be defined by u(c) = %(l_] (e)+... + U (c,)).
By construction we have i(c) = max{u(c) : w(c) < m(c)}, and hence it is easy to see that
m(¢) = min{r(c) : u(c) > u(c)}. This implies that 7(¢) = min{rw(c) : for all u € U, u(c) >
u(c)}, and as u(c) = u(c*) for all u € U, combining the previous two equalities we obtain
min{rz(c) : u(c) > u(c*)} = min{xw(c) : for all u € U, u(c) > u(c*)}. Moreover, it is easy to
verify?® that i belongs to U, (where U, is defined above in relation to E, which is fixed in
the whole proof), and this implies that sup,,, min{r(c) : u(c) > u(c*)} > min{z(c) : for all
u €U, u(c) > u(c*)}; combining this inequality with the inequalities already obtained we have
Sup, ¢, min{mw(c) : u(c) > u(c*)} = min{r(c) : for all u € U, u(c) > u(c*)}.

Indeed, recall that U (x) = f; g(t)dt where g(M) = g(c},,.)exp(cy,. —sup; c;| —1+log(m)) < exp(—1+
log(m)) < m, which implies that U(x) < M + m(x — M) whenever x > M > ¢ .- Moreover, if x < —M

then x < ¢}, and g(x) = g(c},,) + ci., — x. In addition, in this case we have ¢}, —x > c}. + sup; [c/]| +
1 —log(m) > 1, which implies 0 > U(=M) > U(x) + (—M — x).
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Let us now turn to the more general case, where K is not reduced to a singleton (the case
with market frictions). Let W(c*) = sup, 4, min{r(c) : u(c) > u(c*)}, which is also equal to
W(c*) = SUP, ¢y, min{r(c) : u(c) > u(c*), and n(c) < m(c*)}. Consider some u € U, and
let ¢ € R" such that u(c) > u(c*). We then have that 3- ., [M + m(c; — M) + 3, -_ylc; +
M)+ peeem M > nu(c*), which implies m 3°. .y ¢;+3-, .y ¢;+nM > nu(c*), and hence
Yom €t X eom € = (nu(c*) —nM)/m. Moreover, if w(c) < 7(c*) we have E(c) < 7(c?),
which means 3/, &;¢c; < m(c*), and this implies o} .y ¢; + B¢ < 7(c*) +nM
where @ = inf,e;, = 2m > 0 and 0 < B = sup;¢; < | — m. Subtracting the previ-
ous inequalities we obtain (@ —m) Y ..y ¢; + (B — D3 .y < 7(c*) + 2nM — nu(c*)
and hence m > .y c; +m3 . y(—¢;) < w(c*) +2nM — nu(c*), which implies that ¢; <
sup{M, (m(c*) +2nM — nu(c*))/m}. Let B,(c*) = {c : u(c) > u(c*) and w(c) < mw(c*)}, which
is then bounded (by the previous inequalities) and hence compact. This gives us min{m(c) :
u(c) > u(c*)} = minp -y max{E(c) : E € K} = max{min.  E(c) : E € K} by the
min-max theorem [see Luenberger (1969, Theorem 1, p. 208)]. Hence, we have W(c*) =
Sup, ¢, max{min.g . E(c) : E € K} = max{sup,y, min. g  E(c) : E € K}, and this
implies that W(c*) > max{sup,q,, min., . E(c) : E € K}. We have already seen that
if E € K is strictly positive then sup,g, min{E(c) : u(c) > u(c")} = min{E(c) : ¢ €
P(c*)}, and hence?’ we obtain W(c*) > max{min,.p+ E(c) : E € K}. Combining this in-
equality with the proof of part (ii), where we show that max{min .+ E(c) : E € K} =
min{r(c) : ¢ € P(c*)}, we obtain that W(c*) > min{n(c) : ¢ € P(c*)} and hence W(c*)
= min{r(c) : ¢ € P(c*)}. As we have that U, C U,. C U, this gives us the result: V(c*) =
min{m(c) : c € P(c*)} and V(c*) = SUP, ey, min{r(c) : u(c) > u(c*)}. This concludes the proof
of part (7).

We are now going to show that for all ¢* € R", min{r(c) : ¢ € P(c*)} = max{min,px,
E(c) : E € K} where P(c*) = {c : u(c) > u(c*), forall u € U}. By the lemma we have
P(c*) = Z(c*) + R}, where X(c*) is the convex hull of the permutations of ¢* (i.e., of the
bundles distributed as c¢*). Because 7 is nondecreasing we have min{r(c) : ¢ € P(c*)} =
min{r(c) : ¢ € X(c*)} = min, 5+ max{E(c) : E € K}, and because X(c*) and K are convex
and compact we have min{r(c) : ¢ € P(c*)} = max{min .+ E(c) : E € K} by the min-
max theorem [see Luenberger (1969, Theorem 1, p. 208)]. Moreover, because each E € K is
a linear functional, we have min{E(c) : ¢ € X(c*)} = min{E(c) : c¢ is a permutation of ¢*}
and hence min{r(c) : ¢ € P(c*)} = max{P(c*, E) : E € K}. This concludes the proof of
part (if).

Part (iii) is a direct consequence of part (ii) and of Theorem 3 in Dybvig (1988a).

Proofs of Theorem 3 (and note 14). We shall treat here the case where the uncertain future
endowment x is equal to zero. The case where x # 0 is an immediate extension. If ¢* is
strictly efficient, by Theorem 1 it is in strict reverse order of a strictly positive linear pricing
rule E* that prices it, which implies that E(c*) < E*(c¢*) < E*(c), for all E € K and for
all ¢ € X(c*) + R, where X(c*) is the convex hull of the permutations of c¢* (i.e., of the
consumption bundles that are distributed as ¢*). Hence, the pair (E*, ¢*) is a saddle point, and
it solves mincez((_*HRi{max{E(c) : E € K}} and max{{mincez((_*)“ﬂ E(c)} : E € K}. Moreover,
suppose that there exists ¢’ # ¢* that also solves min(.ez(m”i {max{E(c) : E € K}}. Then
(c" + ¢*)/2 is strictly preferred to ¢* by every strictly risk averse agent (because ¢’ is weakly
preferred to ¢*) and costs at most min,.s .« {max{E(c) : E € K}} = n(c*) = n(c’), which
contradicts the strict efficiency of c¢*.

Conversely, suppose that ¢* is the unique solution of min, 5~ LR {max {E(c) : E € K}},
then it also solves min, .y« {max{E(c) : E € K}}. This is equivalent, by the min-max theorem
[see Rockafellar (1970)], to the existence of E* € K such that (E*, ¢*) is a saddle point, that

Recall that K is the closure of its strictly positive elements.
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is, such that E(c*) < E*(c*) < E*(c), for all E € K and for all ¢ € X(c*). This means that
there exists E* € K that prices ¢* and is in reverse order of c¢*. This proves Theorem 3.

To conclude the proof of note 14 we also need E* to be positive and in strict reverse order
of ¢*. Suppose first that E* is in fact in strict reverse order of ¢*. We are going to show that in
this case we can construct E that is also in strict reverse order of ¢* and that is strictly positive.
Indeed, suppose that (assuming, without loss of generality, that E* is in nondecreasing order)

we have ef = --- =¢; =0and 0 < ¢, < --- < ¢e; for some n > k > 1. Because ¢* is in
strict reverse order of E*, we then have ¢f =---=c¢; and ¢; > ¢, > --- > ci. Let € > 0 and
consider the consumption bundle ¢’ = (¢ +€,...,¢; +€, ¢y, ..., ). If ¢ > ¢, we then

have that 7 (c*) = E*(c¢*) = E*(¢') and E*(¢") = m(c") because if there were a measure E € K
such that E(c¢’) > E*(c*) it would also satisfy E(c*) > E*(c*), which is impossible because
E*(c*) = m(c*). This contradicts the uniqueness of the solution of min{r(c) : ¢ € P(c*)}
because ¢’ # c*. If ¢ = ¢, then we either have that 7(c*) = E*(¢*) = E*(c') = n(c)
(and again a contradiction) or we obtain a strictly positive measure E € K that is in strict
reverse order of ¢* and prices it. Indeed, if E*(¢’) < m(c’) then there is a measure in K that
is identical to E* but puts more weight on ¢f = --- = ¢; and less Weight~on the ¢}’s such
that ¢; = ¢, and j > k + 1. We can then construct (by convexity of K) E € K that prices
c*, is still in strict reverse order of ¢*, and is such that e,,¢,,..., or ¢, is strictly positive
and ¢; > 0 for j > k. Repeating this reasoning (k times at most) we obtain E that is strictly
positive, in strict reverse order of c¢*, and prices it. To conclude the proof, we only need to
show that there exists a measure E* € K that prices ¢* and is in strict reverse order of c¢*. Let
A={x:n(c"+x) <n(c*)} and B = {x : ¢* +x € X(c*)} (note that 0 is an extreme point
of B). Because K has a finite number of extreme points, 7 is polyhedral and A is polyhedral.
Because 0 belongs to A, the convex cone A’ generated by A is then closed [see Rockafellar
(1970, Theorem 19-7)]. Let B’ be the convex cone generated by B, since 0 belongs to B, which
is polyhedral B’ is closed. It is also easy to show that B’ N (—B’) = {0}, and this implies that
there exists an affine hyperplane H such that 0 ¢ H, B=HNB is compact and B’ is the
convex cone generated by B [see Bourbaki (1981, chapter II-7-3)]. Moreover, it is easy to show
that A’ B’ = ¢ and, hence, that A’ N B=0. Moreover, because A’ is closed and Bis compact
there exists € > 0 such that (B + B(0, €)) N A’ = @ [where B(0, €) is the closed ball of center
0 and radius €]. Note l}e =B+ B(0,¢€) and let B, be the cone generated by l}e. Because
}i is convex and compact and does not contain 0, then B, is a closed convex cone and it is
easy to show that A’ N B, = {0}. Moreover, by construction B, has a nonempty interior and
we have O ¢ int(B.) and, hence, int(B.) N A" = (. Hence, by Eidelheit separation theorem,
there exists a nonzero linear map f such that for all (a,b) € A" x B, f(a) <0 < f(b) [see
Luenberger (1969)]. This means that if E,(c* + x) < m(c*) for every extreme point E; of K
then f(x) < 0. In other words, if E;(c* + x — m(c*)e) < O for every extreme point E; of
K then f(c* 4+ x —m(c*)e) < f(c¢*) — m(c*) f(e) (where e is the vector with all components
equal to one). Because f is bounded above on a cone it is necessarily bounded by 0, and,
by Farkas’s lemma, we have that f is a nonnegative linear combination of the (finite) extreme
points of K and f(c*) — mw(c*)f(e) > 0. Renormalizing f if necessary, f then belongs to
K and f(c*) > m(c*), which implies f(c*) = m(c*) (this means that f prices ¢*). Now let
b a nonzero vector of B; because B’ is the cone generated by B, there exists b € B and a
real number A > O such that b = Ab and B(l;, €) C B.. Hence, f is nonnegative on B(l;, €)
and since f # 0 we must have f(b) > 0 and therefore f(b) > 0. Because f(0) = 0, f
attains its minimum on B’ at O only. This shows that f attains its minimum on X(c*) at the
point ¢* only, which implies that f is in strict reverse order of ¢* and concludes the proof of
note 14. ]

Proof of Remark 2. Let the payoff —X > —x of a minimum cost strategy that dominates —x.
This means 7(—x) = 7 (—x). If E* € K prices —x we have n(—x) = E*(—x) < E*(—X) <
7w (—x), which implies n(—x) = n(—X) = E*(—X) = E*(—x), that is, E* prices —X as
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well. Hence, E* assigns a zero price to the states of the world where —X strictly dominates
—x. Because —% + x equals zero in the other states, E* is in reverse order of —X% + x.
By Theorem 3 this shows that the minimum cost dominating strategy has no inefficiency
cost. |

Proof of Corollary 1. We have V (c¢*) < m(c*) by Definition 2. Moreover, V__.(c*) = m(c*).
Indeed, any pricing rule in K that prices ¢* is in reverse order of the net contingent claim
equal to zero and, hence, by Theorem 3, ¢* has a zero inefficient cost given an uncertain future
endowment —c*. | |

Proof of Corollary 2. This is a direct consequence of Theorem 2. | |

Proof of Remark 3. We shall assume that all prices and payoffs at time 7 have been normalized
by exp(rt). Denote by E1 the expectatlon with respect to the actual probability measure with
conditional probability 0. 5 of going “up” from each node in the tree. Using the inequalities
satisfied by x we have, for every date ¢ and every node w(t), (1 —«)S(t) < E% (1 —=k)S(T) |
w() <(1+x)St) or (1 —k)S(t) < E% (L +x)S(T) | @(t)) < (1 +«)S(t). This proves that
E, belongs to K.

We shall now prove V(c*) = E| (c*) for all ¢*. By Theorem 2 (ii) we have V (c*) =
max{P,(c*, E) : E € K}, hence Vo(c*) > Py(c*, E]) Moreover Py(c*, EI) = E; (c*) because
all states of the world are equiprobable under E e Thls implies V,(c*) > E ! (c*). By Theorem
2 (i) we have Vj(c*) = min{n(c) : ¢ € E(c )}. Because (Ez(c ) E| (c*)) € X(c"),
this implies V,(c*) < max{E(E% (), ..., E%(c*)) . E € K} and hence Vo(c*) <
Ei(c).

“Suppose that ¢ is not riskless, then there exist i and j such that ¢; > ¢ ;- Because the
inequalities satisfied by « are strict, E1 belongs to the relative interior of K. Define the linear
pricing rule E = E| +,...,0,6,0,...,0, —€,0,...,0), where € is the ith element and —e
is the jth element (w1thout loss of generahty) Ife > 0 is sufficiently small E belongs to K. As
E(c) > E|(c), this implies 7 (c) > E% (c) and hence m(c) > V,(c). This shows that the only
efficient consumption bundles are the riskless ones. |

Proof of Remark 4. Define K = [«;, a,]" and K* = [K U (1 — K)] N[0, 1/2]¥, with o, =
(exp((r —c)T/n) —d)/(u —d) and a, = (exp(rT/n) — d)/(u — d), where N is the total
number of nodes in the tree (except the terminal ones). K* is the set of probability measures
defined by conditional probabilities (of the “up” state) that are not larger than % and belong to
oy, 0, ]U[1 —,, 1 —;]. By Theorem 2 (ii) we have V(c¢*) = max{P(c*, E) : E € K}, where
P(c*, E) = min{E(c) : c is distributed as ¢*}. We then have V(c*) = max{P(c*, E) : E € K*},
because we can reorder ¢* to match the switch in conditional probabilities from the “up” state
to the “down” state, without changing its distribution. We are now going to prove that (Eg, ¢)
is a saddle point, where ¢ is a permutation of c¢* that (i) is in reverse order of E,, and (ii)
whenever two states of the world have the same number of “ups” (and hence the same weights
for the probability measure Ej) ¢ has a (weakly) higher payoff in the state that is “higher up”
in the tree. This means that we shall prove that (Ej, ¢) satisfies E(C) < Ez(¢) < Eg4(c) for
every c distributed as ¢* and every E € K*, and this will prove V(c*) = E;4(C). Note that as
far as computing V(c*) is concerned, we can use any ¢ that is in reverse order of E; because
they all give the same value for E4(¢). Also, E,4(¢) < E;(c) follows immediately from (i). To
prove E(¢) < E4(¢) for all E € K*, we shall proceed by backward induction and prove it for
the expectations conditioned on each node. Let E € K*, then the inequality on the conditional
expectations obviously holds at the final date. Assuming that it holds for an arbitrary date ¢, let
us prove that it holds for date # — 1 as well, that is, E(¢ | @(t —1)) < E4(¢ | w(t—1)), for every
date t — 1, every node w(f — 1), and every E € K*. Let the successors of a  — 1 node w(r — 1)
be w( — 1,up) and w(t — 1, down), and let ¢ and 1 — « be their conditional probabilities
under E. We have E(¢ | w(t — 1)) = ¢E(¢ | o(t — l,up)) + (1 —a)E(C | w(t — 1, down)).
We shall now distinguish two cases: either E(¢ | w(t — 1,up)) > E(C | w(t — 1,down))
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or E(¢ | ot — 1,up)) < E(¢ | w(t — 1,down)). In the first case, because E belongs to
K* we have @« < B, we obtain E(¢ | w(t — 1)) < BE(¢ | w( — L,up)) + (1 — B)E(C |
o(t — 1, down)); by our induction hypothesis this leads to E(¢ | w(t — 1)) < BE4(C | w(t —
Lup)) + (1 = B)E4(C | o(t — 1, down)), that is, E(¢ | w(t — 1)) < E4(C | w(t — 1)). In the
second case we have E(¢ | w(t —1,up)) < E(C | w(t —1,down)) < E4(C | o(t —1,down)) <
E4(C | o(t — 1, up)). The first inequality is by assumption, the second by induction hypothesis,
and the third by the properties (i) and (ii) satisfied by ¢. This implies E(¢ | w(r — 1)) <
Eg(C (- 1). ]

Proof of Remark 5. 1t is easy to see that when ¢ = —(u—r+ %02) the linear pricing rule with
equal prices for all states of the world is in K, and is equal to E; of Remark 4. Because the
stop-loss strategy only involves short selling the risky asset (and investing in the riskless asset),
it is easy to show that this linear pricing rule prices its payoff. It then follows from Remark 4
and Theorem 1 that the stop-loss strategy is efficient. ]
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