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In this paper we consider a family of investment projects defined by their deterministic cash flows.
We assume stationarity—that is, projects available today are the same as those available in the past.
In this framework, we prove that the absence of arbitrage opportunities is equivalent to the existence
of a discount rate such that the net present value of all projects is nonpositive if the projects cannot
be sold short and is equal to zero otherwise. Our result allows for an infinite number of projects and
for continuous as well as discrete cash flows, generalizing similar results established by Cantor and
Lippman (1983, 1995) and Adler and Gale (1997) in a discrete time framework and for a finite number
of projects.
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{. INTRODUCTION

In this paper, we consider a model in which agents face investments opportunities (or
investments) described by their cash flows as in Gale (1965), Cantor and Lippman (1983,
1995), Adler and Gale (1997), and Dermody and Rockafellar (1991, 1995). These cash
flows can be at each time positive as well as negative. It is casy to show that such a model
is a generalization of the classical one with financial assets. As in Cantor and Lippman and
Adler and Gale, we will show that the absence of arbitrage opportunities is equivalent to
the existence of a discount rate such that the net present value of all projects is nonpositive.
We will extend this result in two directions: (i) allowing our model to contain an infinite
number of investments and (ii) allowing the cash flows to be continuous as well as discrete,
which is never the case for all the mentioned references.

The model we consider assumes absence of risk, stationarity, and short sales constraints.
In the general theory of arbitrage formalized by Harrison and Kreps (1979), Harrison and
Pliska (1981), and Kreps (1981), securities markets are assumed to be frictionless, and the
main result is that the absence of arbitrage opportunities (or no arbitrage) is equivalent to
the existence of an equivalent martingale measure. The existence of state prices follows. In
our framework, we prove that there exist some state prices with the particular form: ¢™"'.
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170 LAURENCE CARASSUS AND ELYES JOUINI

In our model we allow short sales constraints, but only in order to give an intuition of our
result. Let us consider a simple frictionless setup. The absence of arbitrage opportunities
implies the existence at any time ¢ of a positive discount function D;, where D, (s) is the
market value at time ¢ of one dollar paid at time ¢ + s (in discrete settings this is just an
implication of the separating hyperplane theorem). No arbitrage means no arbitrage even
for contracts that may not be present, including forward contracts and zero coupon bonds.
Following Cox, Ingersoll, and Ross (1981), the consequence of the no arbitrage condition in
a deterministic setting is that the spot bond price is equal to the forward bond price. So the
forward price at time ¢ of a bond delivered at time ¢ + s and paying one dollar at time ¢ + T
fors < T (thatis, D,(T)/D,(s}) is equal to the price at time ¢ + s of one dollar paid at time
t+ 7T, D (T — s). Roughly speaking, stationarity in the model would imply stationarity
tor D; i.e. D, = D,y for all t and s. Hence we get D(T)/D(s) = D(T — s), and the
solution to this equation is D(t) = e~ for some constant r. In fact, the stationarity for D
is not straightforward and we prove that there exist a set of discount functions containing
an exponential.

In this paper, we assume that every investment is available in every period of the invest-
ment horizon. This means that we can begin the investment at each date—this is called
stationarity. We will also assume that an investor can only hold a positive number of in-
vestments in each time period. This is an economic constraint. Otherwise, according to
Cantor and Lippman (1983), it would be possible “to build a negative number of bridges or
harvest a negative number of forests.” So we will impose here that no investment can be
sold. Note that this short-selling constraint could be a restriction for some financial assets.
But, in fact, our model also includes the case without constraints (see Corollary 3.1). In our
model, the time horizon is not finite. The investor goal is to become rich in a finite time, but
this one is not specified at the beginning. So we will ask the investments and the strategies
to end in a finite time.

2. THE MODEL

In the discrete case, an investment project m is characterized by (my, ..., mr) where the
real number m, represents the cash received from the project in the sth period. A negative
m, means that the investor must pay for the project. Similarly, for a positive m,, the investor
receives payment from the project. In this formalization, it does not matter if assets have
a price or not. [f my is negative it could represent the price to pay in order to ensure later
the cash flows m, ..., my. Here, we choose to include the price in the cash flow sequence.
So. we will consider that this sequence has price zcro: an investor subscribes or not to the
sequence at no cost.

In this paper, an investment is represented as a Radon measure (for example, see Bourbaki
(1965) or Rudin (1966)).

Recall that if we denote by E, the space of continuous functions mapping R into R
and with support included in [—#n, r] and if we attribute to E, the topology 7, of the
uniform convergence on [—n, n| (E, is a classical Banach space) then we can attribute
to £ = U,enE, the strict inductive limit topology 7 (because in this case the topology
induced by 7, on E,, is the same as 7,). This strict inductive limit topology 7 is defined
such that for all » the topology induced by 7 on E, is the same as 7,,. The completeness
of £ is shown in Bourbaki (1987), and we recall that with this topology on E, the space
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INVESTMENT AND ARBITRAGE OPPORTUNITIES 171

E* of continuous linear forms on E is the Radon measure space. The weak-* topology on
the space £* of the Radon measures is called the vague topology, and a sequence (,) of
Radon measures converges vaguely to r if forall function ¢ € E, 7, (@) converges to m (¢).
Notice that, using one of the Riesz representation theorems, a positive Radon measure is
uniquely associated with a Borel-Radon measure, and we will use the same notation for
both of them.

Roughly, for an investment represented by a Radon measure p, fl ) du represents the
investment payment between times #; and ;. The description via Radon measures allows
us to describe investments with discrete as well as continuous cash flows in a unified way.
Under this terminology, the preceding discrete payment m = (my. ..., my) is represented
by the discrete measure j = Y"/_,m,8,, where § is the Dirac measure in r. But it also
allows us to treat investments having continuous payoff—that is, investments represented
by a function m. In this case, m(t)dt should be interpreted as the investment payment in
the short period d¢. The Radon measure 1 associated with this investment is given by the
following measure defined by a density dju(t) = m(t)dt.

We allow our model to contain an infinite number of investments. For example, to model
an interest rate in a continuous setup, we need an infinite number of investments: one
should consider all the possible repayment dates. The set of investment income streams is
modeled by a family of Radon measure (u;);¢; with [ infinite. Each investment i has a finite
horizon 7; and we assume that the support of measure 1; lies in [0, T;]. This assumption
is necessary because if we assume the existence of an investment with an infinite horizon,
it will always be possible to suspend repayment of the debt to infinity. This is not an
arbitrage opportunity because the investor wants to become rich in a finite time. In this
model, the investor is only allowed to choose a finite number of investments. Among an
infinite number of possibilities, there are only a finite number of choices. To make the
model clear, let us consider the case of a single discrete investment m. At each time ¢,
we must choose the number of subscriptions A, to investment m. At time 0, we buy Ag
investments, which assures a payoff of Agmg. At time 1 the total payoft is Agm + Aymy,
and attime r < T itwill be Agm; + A ym, 1 +-- -+ A,_1m + A,my, which can be described
by the convolution product A * m(t). In the general case, after selecting a finite subset J
of the set / of investments, the investor chooses the number of subscriptions from each
clement of /. For the same reasons as before, these numbers will be modeled by a family
(%;)jes of Radon measures. Roughly, f[“.lz) d).; represents the number of investments i
bought between times #; and f,. We also require that the support of all measures A; is in a
fixed compact set. Moreover, the no-sell assumption requires all the A; to be positive. The
previous payoff calculus is easily generalized and the choice of a finite subset J of I and a
strategy {A;);e, leads to the payoff Zjel Aj® .

The following example, from Adler and Gale (1997), shows that it is possible to make
an arbitrarily large profit in a finite time. Consider an investment that pays $1 today. The
investor must pay $2 tomorrow and finally receives $1.01 the day after. We denote this
investment by m = (1, -2, 1.01). As previously, the investor has no money to begin with,
so the only way to pay the second day’s installment on a unit of investment is by initiating
a second investment at level two. It is straightforward to show that in order to get a zero
payoff, the investor must subscribe at time # to A, = ~(X,_om» + A,.;m) investments.
A simple calculus leads to a positive payoff after 32 periods. So with this investment it is
possible to become arbitrarily rich after 32 periods (assuming one can buy an arbitrarily
large number of investments m).

Copyright ©2000. All Rights Reserved.



172 LAURENCE CARASSUS AND ELYES JOUINI

3. CHARACTERIZATION OF THE EXISTENCE
OF AN ARBITRAGE OPPORTUNITY

3.1. Definitions and Main Results

As we saw before, a strategy is defined as follows:
DEFINITION 3.1. A strategy is defined by the choice of:

a finite subset J of 1,

e aninvestment horizon n > max;c, T},
a buying strategy for the set of investments J modeled by a family of nonnegative
Radon measure (%;);c; such that the support of A; is included in [0, n — T;], for all
jed.

Next, we define the absence of arbitrage opportunities.

DEFINITION 3.2.  There is an arbitrage if and only if there exists a strategy (;);c; such
that the corresponding payoff 3 ., A; * 4; is a nonnegative and nonzero measure 7.

We want to show that the absence of arbitrage opportunities is equivalent to the existence
of a discount rate, such that the net present value of all projects is nonpositive. To prove
this, we will assume that there exists at least one investment that is positive at the beginning,
and another at the end. Note that if we consider a discrete time model or even a continuous
time model, this condition seems to be quite natural. If all the investments are negative
at the beginning, it is straightforward to see that the payoff associated with a nonnegative
strategy is necessarily negative at the beginning and then there is no arbitrage possibility.
The same can be applied at the end and our condition seems therefore to be redundant. In
fact, some particular situations are excluded by such a reasoning: the case of investments
with oscillations in the neighborhood of the initial or final date such that we cannot define
a sign to the investment at these dates. Nevertheless, our condition is justified if we admit
that such situations are pathological.

We say that a measure g, (resp. () is positive in zero (resp. Ty ) if there exists a positive
real g, (resp. &) such that for all continuous and nonnegative function ¢ with support
contained in [—&;, ;] (resp. [Ty — &, Te + £¢]), positive in zero (resp. in T;), the integral
[ @du (resp. [ @duy) is positive.

ASSUMPTION 3.1. There exist at least two investments k and £ with Ty < T, such that
the measure (i is positive in zero and the measure [, is positive in Ty.

In the following, if Assumption 3.1 holds, we will call ¢ the infimum of &; and &,.
We will see that if the model contains a borrowing and a lending rate, Assumption 3.1 is
always satisfied (see Corollary 3.2). We will also see that Assumption 3.1 is useless in the
case of a discrete setup.

Under Assumption 3.1, our main result is stated as follows.

THEOREM 3.1.  Under Assumption 3.1, the absence of arbitrage opportunities is equiv-
alent to the existence of a discount rate r such that for all i in I, the net present value
J e du; (t) is nonpositive.
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In the sequel, we will see that we need only Assumption 3.1 to show the first implication.

We will see in step 5 that Theorem 3.1 means that there is an arbitrage opportunity if and
only if there exists a finite subset J of /, such that sup,, f e " du;j(r) is positive for all
rates r. Furthermore, if we add for all investments p; the investment —g; in the model, we
obtain the situation where all investiments can be sold, and the proof of the following result
becomes straightforward.

COROLLARY 3.1. Ifall investments can be either bought or sold, under Assumption 3.1
the absence of arbitrage opportunities is equivalent to the existence of a discount rate r,
such that for all i in I, the net present value [ e du;(r) is equal to zero.

We recall that the lending rate ry (resp. the borrowing rate ry) is the rate at which the
investor is allowed to save (resp. to borrow). A lending rate is modeled by the following
family of investments y, = —8q + €8, (you lend one dollar at time zero and you will
get back ¢ at all the possible repayment dates 7). Similarly, a borrowing rate can be
represented as the family ©', = §o — €"'8,. Note that for all t > 0, @/, is positive in 0 and
1y 18 positive in ¢, and both have support included in [0, 7]. Assumption 3.1 is satisfied with
the investments st7, and p'y, , where Ty and T; are some reals with 7, > 7,.

COROLLARY 3.2. If there exists a lending rate ry and a borrowing rate ry, the absence
of arbitrage opportunities is equivalent to the existence of a discount rate r included in
[ro. 1] such that for all i in I, the net present value f e ""du; (1) is nonpositive.

Proof of the Theorem. 'We begin the proof showing that the absence of arbitrage oppor-
tunities implies the existence of a discount rate r, such that for all i in /, the net present value
f e " du; (1) is nonpositive. So we will assume that the family (u;);<; does not constitute
an arbitrage opportunity.

Step 1: From measures to continuous functions.

In order to work in a space that displays good properties, we want to use functions instead
of measures, so we are going to “transform” our financial world in order to have only
functions. In fact, we will work in the space E of continuous functions with compact
support. For this purpose, we will use a function g mapping R* into R with support equal
to [0, £], positive on [0, £) and continuous on RT. We will denote by (f,);;, the family
of convolution product f; = w; * g. It is straightforward to show that the support of f; is
now [0, T; + €], and we will note T: = T; + &, the horizon of the “transform” investment.
Let J be a finite subset of 7 and #n be an integer; we denote by F’ the set defined by
F! = {Zjej A; % fi/A; > 0 with support in [0, n — fj]} and P ={ge E/g = 0}). Itis
clear then that the absence of arbitrage opportunities implies that P N FnJ = {0}.

It is straightforward to show that the function f} is positive on 10, [, and that the function
f¢ is positive on 1T;, T;[. The proof of this result is left to the reader.

Step 2: Use of a separating hyperplane theorem.

In order to separate P and F;, we will consider the set E, of continuous functions mapping
[0, n] into R and endowed with the uniform convergence topology. Note that E,, is different
from the set of restrictions to Rt of functions of £, because E, is a set of continuous
functions with support in [—n, n]. This implies that f(n) = 0 for all f € E, restricted to
R*, which is not the case in E,,.

Let us define P, = {g € E,, : g > 0). It is easy to see that F"’ can be seen as a subset
of E, and that F.! and P, are convex sets. Furthermore, we know that P N Fnj = {0}. Itis
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174 LAURENCE CARASSUS AND ELYES JOUINI

then sufficient to remark that P, has a nonempty interior, which does not contain O (these
points are left to the reader) in order to apply the separation theorem given by Dunford and
Schwartz (1958, p. 417). This theorem is relative to two disjoint convex sets (here, FnJ and
the interior of P,), one of which has a nonempty interior. By continuity of the separation
functional, the separation result will hold for Fnj and P,.

We obtain then a nonzero measure vnj on [0, n] which can be identified to a measure on R
equal to the initial one on [0, n] and equal to zero elsewhere. We will also call v’ this new
measure. It is easy to see that v} € E* and separates, in fact, P and F’. More precisely,
we have

V(f.g) e F! x P, v/ (f) <0</ (g).

Step 3: Normalization of the measures v’ .

Let t be defined by v = sup{u/ f[o o v, = 0]. Because v/ is nonnegative and nonzero
with support in [0, ] it follows that T < n.

Assume that n > T( and that 7 is in [Té, n[ It is straightforward to show that there exists
awuin|e, n — T,] such that 7 isin [T} + u, T, + ul. Let (Aj)jes be the strategy defined by
Ay = 8, (the Dirac measure at ), and A; = 0 for j € J and j # /. The payoff associated
with this strategy is clearly in [0, n] and consequently v (8, * f¢) is nonpositive. Noting
that v/ (8, * fi) = [ fe(x — u)dv(x) and using the definition of 7 and of the support of
f¢, we obtain that u,{((ﬁ,, * fp) = f[t T +ul felx — u)duf(x) Ifxisin[z, Ty +u], then x — u

isin [t — u, T,], which is included by definition of u in [7, T,]. We know that J¢ 18 positive
on the interior of this last interval. So the nonpositivity of the considered integral implies
that the support of v/ does not intersect [, Ty + u), which contradicts the definition of 7.
We can conclude then that T < T;. Let b be a nonnegative continuous function equal to 1
on [0, T; + £/2] and with support equal to [0, T;]. It is clear that we can impose v (b) = |
or, equivalently, [ b(x)dv;](x) = L.

We will prove now that there exists a constant p, depending only on the investments,
such that for all finite subset J of 7 and forall¢ € [0, n —¢], fw.” dvnj < p'. As previously
done, applying the separation result to the strategy using only the investment fe, in quantity
Ay = 8, foruin [0, n — Ty]. we obtain f Sfelx —u) dunj (x) < 0. We know that f; is positive
on |7, T, and consequently there exists a positive real number A such that f;(t) > A for

allt € [T, +¢/3, Ty +2¢/3]. The quantity [ f,(x —u) dv! (x) = j:’+T’ fe(x —uydv! (x)is

nonpositive, using the definition of A, and the fact that f; is nonnegative on [Ty +2¢/3, T; +
¢]. It follows that

A

u+Te+26/3 u+T,+e u+Ti+e/3
A/ dv! 5/ felx —wydv! (x) < —f Felx —uw)dv! (x)
i u u

+Ti+e/3 +T+e/3
u+Ti+e/3
J
”fe”oof dv,.
u

IA

Thus, we get

u+Ty+2¢e/3 ”ff” u+Ty+e/3
/ dv! < OO/ dv;!
u A u

+Te+e/3
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Applying the previous inequality to u = (N — 1)g/3, we find that

T+(N+1e/3 H f( “ T;+Ne/3
/ dv! < (1 + —ﬁ)f dv’.
0 A 0

RangingfromN = 1to(N~1)e/3 < n—T}, we obtain forall s in [0, n—e], fot dv,{(x) <p',
with p = (1 + (| fello)/A)".

We will denote by v,’ the following Radon measure, v’ (p) = [ @lig,—e;dv;, for all
functions ¢ in E. If ¢ is a continuous function with support in [a, b] then it is easy to see that
v,’lj (@) < pPll¢lls. Following Bourbaki (1965), a sufficient condition is to show that for all
finite subsets J of [/, {v,'l’ /n € N} is a vaguely relatively compact set. Consequently, we
can assume that the sequence (v,;’ ) converges vaguely to some measure v/, and it follows
immediately that the sequence () converges to the same limit. From the definition of
the weak-* topology and from the fact that u,'f (b) = 1, we obtain that v’/ (b} = 1, and
therefore v/ is nonzero. Following the same approach, it is straightforward to show that v/
is nonnegative.

Finally, for all nonnegative Radon measures A with compact support included in R*,
[ f; = ».dv” is nonpositive. After simple transformations, it follows that [ f; * v/ dA < 0,
where f,- is the function defined by fj(x) = fi(—x). As the previous inequality is valid
over all nonnegative Radon measure A with support in R, fj * v’ is nonpositive on R™.

Step 4: The Laplace transform.

Let r € R", and consider the integral [ ¢~ dv’(¢) if it exists. This integral is called the
Laplace transform of v’ at r and is denoted by L (v’ )(r). It is well known (see, for instance,
Widder 1946, Chap. 2, p. 37) that if this integral converges for some « then there exists an
r; < o (may be equal t0 —o0) such that the integral converges for r > r; and diverges
for r < r;. Such an r; is called the abscissa of convergence of L(v), Furthermore, if the
Radon measure is nonnegative and nonzero, and if r; is finite, then the limit of the Laplace
transform when » converges to r, from above is equal to infinity.

We begin this step by proving that the abscissa of convergence of v’ exists, is finite,
and is in fact contained in a given bounded interval independent of J. The existence of the
abscissa of convergence is a direct consequence of the inequality f(; dv’(x) < p’, which
can be proven as in the previous step, but it is now true for all # because the support of v is
now equal to all R*. Now considering ¥ = 3lnp/¢ (i depends only on the investments), jt
is easy to show that the Laplace transform of v’ admits an abscissa of convergence called
r;, where r; is lower or equal to 7, for all finite subsets J of [ containing [. Next, we want
to show that there exists r such that, tor all finite subsets J of 7, r, is greater or equal to
r. Using the Fubini theorem and simple transformations, it follows immediately that for all
finite subsets J of I, for all j in J, and for all p > ry,

0o . +00 T;
3. / e fi v (tydt = / e_”“va(Lt)/ e’ fi(u)dv
0 0 0
T U
—f e"”‘dvj(u)/ e’ fi(v)dv.
0 u

Recalling that f; is positive on 10, ], it is straightforward to see that there exists a real
nomber r, such that, for all p lower than or equal to r, for all ¥ in [e, T} ], the integral
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j;' e™ fi.(v) dv is positive. Now, suppose that there exists a finite subset J of /, such that r

is greater than r;. Following the previous step, we get that the function ﬁ *v” is nonpositive
on R* and consequently the integral fom e~ fi * v/ (t) dt is nonpositive. Since v’ is a

nonnegative measure such that supp( vy N o, fg] is not empty, and f} < 7:;(, we get that,

2o 7 i u
/ e_i“dv’(u)/ e fr(v)dv > / ewtd”j(u) ecv.fk(v)d”
0 0 0

T, T,
+/ dy (u)/ e’ fi(v)dv
)

(

7 7
> / I dy (u)/ et fiu(v) dv.
0

Then, if we apply equation (3.1) to the rate p = r, and the investment j = k, we get a
contradiction. Finally, for all finite subsets J of I, r; isin [r, 7].

We have already seen that the left-hand side of equation (3.1) is nonpositive. In the
right-hand side, the first term is the product of L(f;)(—p) and L(v”)(p). Then, if we take
the limit in this term when p converges to ry, L(f;)(—p) converges to L{f;)(—r,) (recall
that f; has a compact support and then L{ f;) is a continuous function on R) and LOv)(p)
converges to +oo (recall that v’ is a nonnegative and nonzero measure and that r; is the
abscissa of convergence of its Laplace transform). It is straightforward that the last term of
the right-hand side of equation (3.1) remains bounded when p goes to r,. Consequently, we
have necessarily that L( f;)(—r,) is nonpositive. If we recall that f; = ., * g, by a classical
property of the Laplace transform, we find that L(u;)(—r;)L(g)(—r;) = L(fj)(—=ry) is
nonpositive, which implies that L(u;)(—r) is nonpositive for all j in J.

Step 5: End of the proof of the first implication.

In the previous step, we proved that for all finite subsets J in I containing investments
k and {, there exists a real number r, contained in [r, r] such that for all investments j
in J, L(u;)(—r;) is nonpositive. For i in /, let us consider the set M; = {r € [r,7] :
L(pi)(—r) > 0}. Because L(u;) is continuous, M; is an open set. If [r, 7] = U,/ M;
then there exists a finite subset J of [, such that [r, 7] = U,;c;M;. If J does not contain
investments k or [ we can add them. For this subset J of [ and for all » in [r, 7], there
exists j in J such that 7 is in M;. This contradicts the existence of r; in [r, 7] (recall that
L{u;)(—ry) 1s nonpositive for all j in J). Consequently, [r, 7] is not equal to U;¢; M; and
there exists r in [—r, —r] such that for all i in / we have fe‘”du,- (1) nonpositive.

Step 6: Proof of the converse implication.

Assume that there exists arate r such that, foralli in 7, [ ™' du;(t) is nonpositive and such
that the family of investments (u4;);<; admits an arbitrage. Then, there exists a finite subset J
of I and a strategy (&;);e, with investment horizon n, such that the payoffr = 3, ; &% ;
is a nonnegative and nonzero measure. Let ¢ be a nonnegative continuous function with
compact support, equal to ¢™"* on [0, r]; we havezjej Aj * (@) = m(p) = L(m)(r).
Since 7 is a nonnegative and nonzero Radon measure, L(r) is positive. Furthermore,
ZjEJ L(x; = pup)(r) = ZJEJ L{p; Y {(rYL(A;)(r) and each term of this sum is the product
of a nonpositive term with a nonnegative one. This contradiction proves the absence of
arbitrage opportunities. O
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4. APPLICATIONS AND EXAMPLES
4.1, The Discrete Case

In this section, we assume that the cash flows are discrete and that the set of investments
I is finite. We will prove that Assumption 3.1 is meaningless.

Aninvestmentis denoted by m; = (mjy,, ..., m’T) andastratpgyby A =(AL, ..., )\;_T’),
where n is the investment horizon. For each investment m', we define the polynomial
Pi(w) :mb—k---—l—m’TIaT‘.

THEOREM 4.1 (Cantor and Lippman 1983; Adler and Gale, 1997).  The absence of arbi-
trage opportunities is equivalent to the existence of a positive rate « such that, for all
investments i, P'(t) is nonpositive.

Theorem 4.1 is also equivalent to the following assertion: It is possible to become
arbitrarily rich in a finite time if and only if max P is positive on R7; .

Proof.  'We will show that Assumption 3.1 is useless. Indeed, suppose that there are no
arbitrage opportunities, and that for all i in I, m{) is nonpositive. Then, for o small enough
we find that P’ () is nonpositive and so there is nothing to prove in Theorem 4.1. If for all
iinl, mf) is equal to zero then it is sufficient to start at date 1 = 1. Consequently, we can
always assume that there exists an investment & such that m’6 is positive. In the same way,
we could show that it is always possible to find an investment £, such that m% is positive.
Assumption 3.1 is always satisfied.

Using Theorem 3.1, the absence of arbitrage opportunities is equivalent to the existence
of a rate r such that f e~ dy;(t) is nonpositive for all i in I. Here, u; is equal to Z,T‘:O mj(S,,

thus [ e du;(r) = Y.L mie ™", which gives the result with & = ¢~ a

4.2. Examples

First, consider the case of a “plan d’épargne logement.” In this case, and if we simplify
the product, it is divided in two stages. During the first stage, the investor saves at a fixed
rate r. In the second stage, he can obtain a loan at a special rate r' near to r. The bank
receives 17 today. After one period it returns (1 + r)*, and lends 17. Finally, at the last
period the bank receives (1 + r")"". We denote this investment by m = (1, =2 —r, 1 +r').
Our main result is that there is an arbitrage opportunity if, for all positive real numbers x,
[—Q2+rx+Q+r)xtis positive. A simple computation leads to the following condition
r' —r > (r?/4). Considering a rate r of 5.25, it is possible for the bank to construct an
arbitrage opportunity if r’ > 5.32.

Next, consider the case of a borrowing rate and a lending rate which are equal. This
situation can be described by the investments (—1, 1 + r) and (1, —1 — r). Assume that
there exists another investment i, then it is straightforward to see that the absence of arbitrage
opportunities implies that P/ (1/(1 +r)) < 0.

Other examples are provided in Adler and Gale (1997).
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