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Abstract

This work consists of two parts. In the first one, we study a model where the assets are
investment opportunities, which are completely described by their cash-flows. Those
cash-flows follow some binomial processes and have the following property called station-
arity: it is possible to initiate them at any time and in any state of the world at the same
condition. In such a model, we prove that the absence of arbitrage condition implies the
existence of a discount rate and a particular probability measure such that the expected
value of the net present value of each investment is non-positive if there are short-sales
constraints and equal to zero otherwise. This extends the works of Cantor–Lippman
wCantor, D.G., Lippman, S.A., 1983. Investment selection with imperfect capital markets.
Econometrica 51, 1121–1144; Cantor, D.G., Lippman, S.A., 1995. Optimal investment

Ž . xselection with a multitude of projects. Econometrica 63 5 1231–1241. , Adler–Gale
wAlder, I., Gale, D., 1997. Arbitrage and growth rate for riskless investments in a stationary

x weconomy. Mathematical Finance 2, 73–81. and Carassus–Jouini Carassus, L., Jouini, E.,
1998. Arbitrage and investment opportunities with short sales constraints. Mathematical

Ž . xFinance 8 3 169–178. , who studied a deterministic setup. In the second part, we apply
wthis result to a financial model in the spirit of Cox–Ross–Rubinstein Cox, J.C., Ross, S.A.,

Rubinstein, M., 1979. Option pricing: a simplified approach. Journal of Financial Eco-
xnomics 7, 229–264. but where there are transaction costs on the assets. This model appears

to be stationary. At the equilibrium, the Cox–Ross–Rubinstein’s price of a European option
is always included between its buying and its selling price. Moreover, if there is transaction
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cost only on the underlying asset, the option price will be equal to the Cox–Ross–Rubin-
wstein’s price. Those results give more information than the results of Jouini–Kallal Jouini,

E., Kallal, H., 1995. Martingales and arbitrage in securities markets with transaction costs.
Ž . xJournal of Economic Theory 66 1 178–197. , which where working in a finite horizon

model. q 2000 Elsevier Science S.A. All rights reserved.
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1. Introduction

We study a model where investments are completely defined through their
generated cash-flows. We assume that the model is stationary, that is, each project
is available at every date and in every state of the world at the same conditions.
The horizon of the model is then necessarily infinite. This kind of models has been

Ž .studied in the deterministic case by Cantor and Lippman 1983; 1995 , Adler and
Ž . Ž .Gale 1997 and Carassus and Jouini 1998 . In the present work, the cash-flows

are modeled with stochastic processes, with dynamics described by a binomial
tree. First, we generalize the notion of stationarity in a stochastic framework.
Then, we prove a no-arbitrage theorem. Recall that, loosely speaking, an arbitrage
opportunity is a way of getting something for nothing. The arbitrage assumption is
defined thanks to the existence of a strategy leading to a non-negative and
non-zero payoff. Under a technical condition, the assumption no-arbitrage implies
the existence of an interest rate and a particular probability measure which make
the sum of the investments’ expected value non-positive if there are short-selling
constraints and equal to zero otherwise.

In the second part of this work, we present an economic model with an
underlying asset, the price of which follows a binomial process, and a family of
options written on this asset. We suppose that there are some buying and selling

Ž .transaction costs possibly different on the options and on the underlying asset.
As a matter of fact, we suppose that there exists a bid–ask spread on the option
price. We prove that the technical assumption made in the first part of the paper is
satisfied in this setting. Recall that in a market without transaction costs, the

Ž .option price is given by the Black–Scholes’ formula Black and Scholes, 1973 in
a continuous framework and similarly by the Cox–Ross–Rubinstein’s formula
Ž .Cox et al., 1979 in the binomial framework. In our imperfect market, we prove
that at the equilibrium the Cox–Ross–Rubinstein’s price is always between the
buying price and the selling price. Moreover, if the bid–ask spread on the options
comes from a constant proportional transaction cost, we give explicit bounds for
the option price. Notice that if there are only transaction costs on the underlying
asset and not on the options, then the options’ price is equal the Cox–Ross–
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Rubinstein’s price. This is a new result about transaction costs. Recall that in the
Ž .paper of Jouini and Kallal 1995 , it is proved that the absence of arbitrage

condition is equivalent to the existence of an equivalent martingale measure,
which turns a particular process lying between the bid and the ask price into a
martingale. The no-arbitrage condition allows only to situate the option bid–ask

Ž .prices in some interval. The lower bound respectively upper bound of this
Ž .interval is obtained as the minimum respectively maximum of the expected value

of the option future values, under all the equivalent martingale measures. Every
sub-interval appears then as an interval compatible with the no-arbitrage condition.

Ž .This means that the lower respectively upper bound of every sub-interval
Ž .corresponds to a selling respectively buying price, which is compatible with the

no-arbitrage condition. Of course, the Cox–Ross–Rubinstein’s price belongs to
the maximal interval but there is no reason why it should belong to every
sub-interval. In our model, we prove that the only intervals of equilibrium price
are the ones containing the Cox–Ross–Rubinstein’s price. This can be explained
by the infinite horizon of the model and by the interactions between the different

Ž .assets at different dates stationarity .

2. The model

2.1. Uncertainty and information structure

We consider a discrete model with infinite horizon. The evolution of the system
is given by a binomial tree over discrete periods. Note that the result holds if we
consider a multinomial tree but for sake of simplicity we choose the binomial
representation. At time zero, there is only one state of the world. Then, at each
date the system has two possibilities: in the propitious case, it will move up, that is
follows u, and else down, that is follows d, where u and d are two real numbers.

�Ž . � 44 � 4NThe infinite set of states of the world is Vs v ,v , . . . rv g u,d s u,d .1 2 i
n Ž .For vgV , we denote by v s v , . . . ,v the n first states of the path. We call1 n

� 4nV the set u,d of this n first states of the path. We work in the discreten
Ž . Ž .probability space V , FF, P , endowed with the filtration FF , i.e., ann ng N

increasing sequence of s-algebra included in FF. The s-algebra FF is the one
Ž . Ž .Ugenerated by the coordinate mappings X defined by X n,v sv wheren ng N n

Ž . � 4vs v ,v , . . . . As usually done, we choose FF s B, V . From an economic1 2 0

point of view, FF represents the available information at time n. The s-algebran
Ž .FF is generated by the coordinate mappings X and can be identifiedn p pg �1, . . . ,n4

Ž .to PP V . We choose for P the unique probability which turns the mappings Xn n
Ž . Žto be independent and identically distributed, and such that P X su sP X sn n

. Ž .d s1r2. This probability displays the following property: v , . . . ,v gV ,1 n n
Ž . Ž . Ž . n < <P X s v , . . . , X s v s P X s v = . . . = P X s v s 1r2 s 1r V .1 1 n n 1 1 n n n

The projection of P to V is the uniform probability on V .n n
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2.2. InÕestments’ set, definitions and properties

2.2.1. The basic inÕestments
The investments are assumed to be completely represented by their cash-flows.

Our set of investment, indexed by I, is supposed to be infinite. A cash-flow,
denoted by F , is represented thanks to a binomial stochastic process. Thus,i

Ž .F n,v represents the payment of investment ig I at time n and in state v. Thei
Ž .processes are supposed to be adapted, i.e., for all date n, the function F n,P :v

Ž .™F n,v is FF -measurable. We denote by AA the set of such FF-adaptedn

processes. We also define the set AA of FF-adapted processes such that for alln
Ž . Ž .vgV , the support of F P,v :n™F n,v , mapping N into R, is included in

w x0,n .
We suppose that every investment has a finite time horizon. Otherwise,

assuming the existence of an investment with an infinite horizon, it will always be
possible to suspend repayment of the debt to infinity.

Definition 2.1. The process F is an investment if there exists a finite horizon Ti i

such that F gAA .i Ti

We assume that our model contains a lending rate called r with r G0. Thep p

lending of $1 at time t if the event BgFF occurs and its withdrawal at time t ,0 t 10

still if B occurs, generates the following associated cash-flows:

ty t0t , t , B0 1TP t ,v syI v I t q 1qr I v I t ,Ž . Ž . Ž . Ž . Ž .Ž .B tst p B tst0 1

Ž . Ž .where I v s1 if vgB and zero otherwise and I t s1 if ts t and zeroB tst 00

otherwise. We will use the following notation:

t0 , t1 , B � 4TP s TP rt ,t g 0, . . . n , t F t , BgFF .� 4n 0 1 0 1 t0

Notice that TP belongs to AA . Moreover, if we denote by TPsj TP thenn n n n

TP;AA.
2 2 n � 4 � 4 2 nq 1y1Let RR sR=R = . . . =R = 0 = 0 = . . . , then RR ,R and letn n

RRsj RR . First, we show that the set of adapted processes AA and the set RR aren n

isomorphic. To do that, we remark that each cash-flow FgAA, observed in state v

and at time n only depends on the information available at time n. Let F be then
V n 2 n Ž . V nfunction mapping AA into R ,R and associating F F gR to everyn

Ž .Ž n. Ž .FgAA, where F F v sF n,v . This function is uniquely defined, becausen
Ž . Ž X. X n nF is FF-adapted. Indeed we have F n,v sF n,v if v sv . We also

Ž . Ž .denote by F , the mapping from AA into RR defined by F F sF F , forn n

FgAA. It is straightforward to see that F is one-to-one and then the set of linear
mappings from AA into AA is in one-to-one correspondence with the set of linear
mappings from RR into RR. An investment i will be represented by an element F i
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Ž . Ž .of AA or equivalently by F F gRR ;RR, where F F is the countableT i T ii i

Ž Ž . Ž . Ž . .sequence F F ,F F , . . . ,F F ,0, . . . where only the first T q1th are0 i 1 i T i ii

non-zero. We call the length of an investment its last non-zero index. For sake of
Ž .Ž n. Ž n.simplicity, we use the notation F F v sF v .n

We specify the topological structure on AA and RR. If we denote by E the
expected value under P, set

2 n 2L s FgAAr 2 E F n ,P -` .Ž .ÝAA ½ 5
ngN

The set L2 is then an Hilbert space endowed with the following scalar product:AA

X Xn² :F ,F s 2 E F n ,P F n ,PŽ . Ž .ÝAA

ngN

s 2 n F n ,v F
X n ,v d P v .Ž . Ž . Ž .Ý H

vgVngN

If we also define

L2 s F F gRRr F 2 v n -` ,Ž . Ž .Ý ÝRR ½ 5
nngNv gV n

we get that L2 is an Hilbert’s space endowed with the following scalar productRR

² X : n X nF F ,F F s F v F v .Ž . Ž . Ž . Ž .Ý ÝRR
nngNv gV n

Furthermore, it is easily checked that

² X: ² X :F ,F s F F ,F F .Ž . Ž .AA RR

This proves that L2 and L2 are isometric for the distances associated with theAA RR

scalar products.

Notice that the set of linear mappings from AA into AA is also isometric to the set
of linear mappings from RR into RR.

Next, notice that if FgAA ,n

n
2 t 2 t² : ² :F ,F s F F ,F F s F v s F v .Ž . Ž . Ž . Ž .Ý Ý Ý ÝAA RR

t ttgN ts0v gV v gVt t

This sum is finite and therefore every element of AA , and in particular everyn

investment, belongs to L2 and we will work in this space or in its isometric L2 .AA RR

We now introduce the following notations. A process FgL2 is non-negativeAA

Ž . Ž . Ž Ž . .respectively positive if for all n and v, F n,v G0 respectively F n,v )0 .
2 Ž 2 . ŽWe denote by L respectively L the set of adapted non-negative respec-AA AAq qq

. 2 2tively positive processes. We will also use the following notation: L , L ,AA AAnq nqq

L2 , L2 , RR and RR , which definitions are straightforward.RR RR n nq qq q qq
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2.2.2. Translated inÕestments: stationarity
� 4Let us consider a set F rig I of basic investments indexed by some set I.i

We assume that this set contains a lending rate r or following our notationp
� 4TP; F rig I . In the second part of the paper, we will propose different kindsi

of investment sets. We assume that the investments display the stationarity
property. In the stochastic setup, this assumption implies that an investor can
initiate every cash-flow at every date and in every state of the world. To formalize
this assumption, we use the following function T u. This function associates to the
tree defining the investment the sub-tree conditioned by the realization of u

Ž . Ž Ž ..between time zero and time one. We denote by u,v respectively d,v , the
X X1 Ž X1 . X k ky1state v such that v su respectively v sd and v sv for all kG2.

With this notation the function T u maps L2 into L2 and is defined for all FgAA,AA AA

by:

T u F 0 s0Ž . Ž .

T u F n , d ,v s0Ž . Ž .Ž .

T u F n , u ,v sF ny1,v .Ž . Ž . Ž .Ž .

We define similarly the function T d by,

T d F 0 s0Ž . Ž .

T d F n , u ,v s0Ž . Ž .Ž .

T d F n , d ,v sF ny1,v .Ž . Ž . Ž .Ž .
n Ž . v n v n v1If v s v , . . . ,v gV , we will denote by T the map T ( . . . (T .1 n n

Notice that T v n

is a linear function.
Now, we define the notion of stationarity.

Definition 2.2. A set of investment II;L2 is stationary if for all CgII, ngN,AA
n v nŽ .v gV , T C belongs to II.n

� v nŽ . n 4Let II s T F rngN,v gV . The set II represents the set of invest-i i n i

ments generated by translations from the asset i. It is easy to see that II isi
� 4stationary. More generally, the stationary set of investments generated by F i ig II

is IIsj II .i g I i

In particular, the set of cash-flows generated by the lending rate, TP, is a
stationary set. Indeed for all ngN, v n gV , t , t gN with t F t andn 0 1 0 1

v nŽ t0 , t1, B . t0qn , t1qn , Bv n �Ž n . 4nBgFF , T TP sTP with B s v ,v rvgB gFF .t v t qn0 0
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2.3. Strategies and payoffs

First, we define the set of admissible strategies. We assume that the invest-
ments cannot be sold. This is not really a restriction since it suffices to add yF i

to our investment model in order to have a possibility to sell F . An investor musti

choose a finite number of investments, indexed by J in the infinite set of
investment indexed by I. We introduce the following notations, T ssup T andJ j g J j

for NGT :J

J v n � 4 nII s T F rng 0, . . . , NyT , v gV , jgJ .Ž .� 4N j J n

v nŽ .Ž . w xNotice that the support of T F P,v is a subset of 0,T qn . In fact, N is thej j

last date when the investor receives a non-zero cash-flow and we call it the
investment horizon. Then the set II J represents the set of investments generatedN

by translations from the investments indexed by J and having an investment
horizon less than or equal to N. We call L J set of admissible strategies generatedN

by II J. The investor should choose an investment in the set II J for NGT . WeN N J

call l the non-negative number of investment C gII J chosen by the investor.ı ı N

Definition 2.3. A strategy lgL J is defined by:N

–a finite subset of investments J,
–an investment horizon NGT ,J

Ž . J–a non-negative and adapted buying strategy, ls l .ı c g IIı N

The set of payoffs associated to the strategy L J is called S J . Thus, p belongsN N
J ŽŽ . . J

Jto S if there exists ls l ;L , such thatN ı C g II Nı N

ps l C .Ý ı ı
J

C gIIı N

Recalling that C gII J, the set S J represents the payoffs generated by J andı N N

ending before N. This set belongs to L2 . Moreover, there exists jgJ, pgAAN

� 4 p v pŽ . Ž p.0, . . . , NyT and v gV such that C sT F . Writing l sl v , wej p ı j ı j

find that

NyTj
pp vps l v T F .Ž . Ž .Ý Ý Ý j j

pjgJ ps0 v gV p

These sums are finite so p is well defined.
Furthermore, notice that S J is a convex cone.N
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2.4. No-arbitrage condition

Definition 2.4. An arbitrage opportunity consists in a finite subset J of I, a
horizon investment NGT and a strategy in L J leading to a non-negative andJ N

non-zero payoff.

Notice that we can assume without loss of generality that the subset J contains
the lending rate r and, thus, we can consider that the set of investment II J

p N

contains TP . Indeed, if the arbitrage opportunity implies the existence of a finiteN
Žsubset indexed by J that does not contain TP , we just have to add it if thereN

exists an arbitrage opportunity with II J, then there will also exist one withN
J .II jTP .N N

2.5. Main results

We present our main theorem under the following postulate: there is no
arbitrage opportunity and, if there is a positive element in the negative polar of the
payoff set then it will also contains a positive element which is independent of the
path. Notice that using a hyperplane separating result, the no-arbitrage condition
implies that the negative polar of the payoff set contains a positive element. Our
assumption is obviously satisfied if every element of the negative polar of the
payoff set is independent of the path. We will see in the next section that this
condition is satisfied under some conditions in a model taking into account
transaction costs.

Let us state precisely the assumption about the negative polar of the payoff set.
To do that, we use the following notation. Let H J be the negative polar of theN

payoff set S J :N

0J J 2 J² :H s S s hgL r h , p F0, ;pgS .� 4Ž . AAN N AA N

Note that

0J 2 J J² :H s hgL r h ,C F0, ;CgII s II .� 4 Ž .AAN AA N N

Now, we distinguish the elements of H J which are independent of the path. ToN

do that, we define new processes, which are independent of the path and called
them harmonized processes. Thus, a harmonized process is such that for each date

Ž .n and each state of the world v, F n,v only depends on the product v . . . v .1 n

Let X n sŁ n X , then the definition of the harmonized process is stated asis1 i

follows:

Definition 2.5. The harmonized process associated to F is defined by:

n˜ <F n ,P sE F X .Ž . n
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J ˜ JThe element H which are independent of the path are called H and are definedN N

by:

˜ J J ˜H [ hgH rhsh .� 4N N

Assumption 2.1. For eÕery finite subset J of I and for eÕery inÕestment horizon N,
J ˜ Jif the set H contains a positiÕe element up to date N, then H also contains suchN N

an element:

J 2 ˜ J 2H lL /B´H lL /B.N AA N AANqq Nqq

The main theorem states as follows:

Theorem 2.1. Suppose that the model contains a lending rate r G0. Underp

Assumption 2.1, the absence of arbitrage opportunity implies the existence of two
real numbers r and p

U , with rGr and 0Fp
U F1, such that for eÕeryp

inÕestment ig I,

Ti 1
UE F n ,P F0,Ž .Ý n i1qrŽ .ns0

where EU is the expectation under PU , which is the unique probability making
the coordinate mappings independent and identically distributed and such that

U ( ) U U ( ) UP X su sp and P X sd s1yp .n n

Theorem 2.1 can be explained as follows: the discounted sum at the rate r of the
investments expected value under PU is non-positive.

< < n UIf we denote by v the number of up in v , the preceding expectation under Pn

is computed as follows,

U UnE F n ,P s F v P X sv , . . . , X svŽ . Ž . Ž .Ýi i 1 1 n n
n Ž .v s v , . . . ,v gV1 n n

U Uns F v P X sv . . . P X svŽ . Ž . Ž .Ý i 1 1 n n
n Ž .v s v , . . . ,v gV1 n n

< <ny vU < v < U n nns p 1yp F v .Ž . Ž .Ý i
nv gV n
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Notice that if there is short selling constraints we can apply the preceding
results to the cash-flows F and yF , and we obtain that the discounted sum ofi i

the expected value is equal to zero.
U x wUnder some additional assumption, we are able to prove that p g 0,1 .

] [Assumption 2.2. There exists two inÕestments k and l, such that for all xg 0,1 ,

T Tk l

n n n nx F u )0 and x F d )0.Ž . Ž .Ý Ýk ı
ns0 ns0

n Ž n.We have denoted by u respectively d the path with length n and which
1Ž .contains only u respectively d . We will use this Assumption only for xF .1q rp

Under this additional assumption, we can prove the following:

Theorem 2.2. Suppose that the model contains a lending rate r G0. Underp

Assumptions 2.1 and 2.2, the absence of arbitrage opportunity is equiÕalent the
existence of two real numbers r and p

U , with rGr and 0-p
U -1, such thatp

for eÕery inÕestment ig I,

Ti 1
UE F n ,P F0,Ž .Ý n i1qrŽ .ns0

where EU is the expectation under PU , which is the unique probability making
the coordinate mappings independent and identically distributed and such that

U ( ) U U ( ) UP X su sp and P X sd s1yp .n n

We present an example under which Assumption 2.2 is satisfied. Assume that
our model contains an asset following a binomial price process called S and
consider a call and a put with exercise date equal to T and exercise date equal to

Ž . T Ž . T ŽK , such that S 0 d -K-S 0 u . Recall that a call option respectively a put
. Ž .option is the right to buy respectively to sell the underlying at the exercise time

Ž . T Ž . TT for the exercise price K. The condition S 0 d -K-S 0 u is in particular
Ž Ž ..satisfied for options at the money KsS 0 . Note that if this condition is not

satisfied, the option is obviously redundant since it can be duplicated by a simple
Ž Ž . T .q Žbuy and hold strategy. Remarking that S 0 d y K s 0 respectively

Ž Ž . T .q .KyS 0 d s0 , the cash-flow generated by the selling of the call option
Ž . Ž .respectively the put option is an example of asset l respectively k .
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2.6. Proof of the main results

2.6.1. Proof of Theorem 2.1
We first prove the implication of the absence of arbitrage opportunity.

Step 1: use of a hyperplane separating result.
First, we recall the following proposition, which is proved for example in

Ž .Carassus and Jouini 1997 :

Proposition 2.1. If ZZ is a set of Õectors in R a then exactly one of the following
two alternatiÕes must occur.
1. There is a linear combination of Õectors of ZZ with non-negatiÕe coefficients,

which belongs to R a and is not equal to zero.q
2. There exists a Õector of R a which makes a non-positiÕe scalar product withqq

all elements of ZZ.

Notice that property 2 is equivalent to ZZ 0 lR a /B.qq

For every NgN, every J included in I, we apply Proposition 2.1 with
Ž J . � Ž . J 4ZZsF S s F p rpgS ;RR . The no-arbitrage condition implies that thereN N N

does not exist a non-negative and non-zero linear combination, with non-negative
coefficients, of elements of S J . By isometry, there does not exist any non-negativeN

and non-zero linear combination, with non-negative coefficients of elements of
Ž J . Ž Ž J ..0ZsF S . Thus, we get that F S lRR /B. From the isometry betweenN N Nqq

Ž J .0 2AA and RR, this is equivalent to S lL /B and applying Assumption 2.1,N AANqq˜ J 2 ˜ J 2 Ž .H lL /B. Let kgH lL , we normalize it by the condition k 0 s1.N AA N AAN Nqq qq

Consider now the following subset of L2 :AA

˜ 2 ˜ ² :Ks hgL rhsh , h 0 s1 and h ,C F0, ;CgII .Ž . AA½ 5AAq

˜2 2 ˜ ˜ ˜2 0� 4 � Ž . 4Let L [ hgL rhsh , we get that Ks hgL rh 0 s1 lII .AA AA AAq

˜ 2 2Ž .First, we prove that K is a non-empty compact set for the topology s L , L .AA AA

To do that, we define the following subset of L2 :AA

˜ J 2 ˜ J² :K s hgL rhsh , h 0 s1 and h ,C F0, ;CgIIŽ . AA½ 5N AA Nq

02 J˜s hgL rh 0 s1 l II .Ž . Ž .½ 5AA Nq

˜ J 2 ˜ J� Ž . 4Notice that K s hgL rh 0 s1 lH . Recalling that for every J and N,N AA Nq
J J ˜ ˜ J ˜ ˜ JII ;II and that IIsj II , we find that K;K and Ksl K . First,N J,N N N J,N N

˜ J ˜we show that K and thus K are included in some weak-compact subspace ofN

L2 .AA
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Recall that without loss of generality we can assume that II J contains each TPN N
˜ J 0, t,V J 0, t,V² :and that for every hgK , and every ts0, . . . , N, T gII , and h,T AAN N

² 0, t,V :s h,T F0. Now,RR

t0, t ,V t² :h ,T syh 0 q h v 1qr .Ž . Ž . Ž .ÝRR p
tv gV t

Ž t. Ž .yt t Ž t.tThus, Ý h v F 1qr . As for all tgN and for all v gV , h v G0,v g V p tt

we get that,

2
y2 t2 t th v F h v F 1qr .Ž . Ž . Ž .Ý Ý pž /

t tv gV v gVt t

Furthermore,

2N N 1qrŽ .py2 t2 2 2 t5 5 5 5h s h s h v F 1qr F .Ž . Ž .Ý Ý ÝAA RR p 2r q2 rt p pts0 ts0v gV t

2 2 2� 5 5 4Let Ms 1qr r r q2 r and BBs hgL r h FM . Recalling that(Ž . Ž . AAp p p AAq
2 ŽL is a reflexive set, the Theorem of Kakutani applies see, for example, Brezis,´AA

.1983, p. 44 , and BB is a weakly compact set.

X J J X ˜ J X ˜ JLet J;J , and Ng IN, as II ;II , we find that K ;K . We next showN Nq1 Nq1 N
˜ J ˜ Jthat for every J and N, K is a non-empty and weakly closed set. First, K is aN N

˜ J 2 Ž .non-empty set because there exists k in H lL such that k 0 s1. Next, weN AA qqN˜ Jprove that K is a weakly closed set.N

˜ JŽ .Let h ;K be a sequence converging weakly to h. First, we fix some tgNp p N
2 Žand vgV , and let c be a function mapping L into itself and defined by c t,AA

. Ž .v s1 and zero otherwise. From the weak convergence, we get that h t,v goesp
Ž . 2simply to h t,v . It is easy to see that hgL . Now, if we fixed again some t,AAq˜ t ˜ tŽ . w < x Ž . w < xwe get that h t,P sE h X goes to h t,P sE h X as p goes to infinity.p p

˜ ˜ ˜Ž . Ž .Recalling that h sh , we get that h t,P sh t,P and hence hsh. Then, wep p
Ž .choose for c the function defined by c 0 s1 and c equal to zero elsewhere, this

2 ² : Ž . ² :function belongs to L and so h ,c sh 0 s1 converges simply to h,cAA AAAA p p
Ž . J 2 ² : ² :sh 0 s1. Finally, let CgII ;L , h ,C F0 converges simply to h,CAA AAN AA p

˜ J² :and h,C F0. We conclude that hgK .AA N
˜ JŽ .The sequence K of BB, which is a weakly compact set, is a decreasingN J,N

sequence of non-empty, weakly closed set. From a compactness argument, their
˜ ˜intersection K is a non-empty set, furthermore K does not reduced to zero.

˜ J ˜Remarking that each K is a convex and weakly closed set, K is also a convexN
˜ ˜and weakly closed set. As K is subset in the weakly compact set BB, K is also

weakly compact.
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Step 2: use of a fixed point theorem.
Let us denote by TU u the adjoint of T u. Using the adjoint property, that is for

2 ² uŽ . : ² U uŽ .:all F and h included in L , T F ,h s F ,T h , it is easily checked thatAAAA

TU u h n ,v sh nq1, u ,v .Ž . Ž . Ž .Ž .
In the same way, we prove that the adjoint of T d, denoted by TU d, is defined by

TU d h n ,v sh nq1, d ,v .Ž . Ž . Ž .Ž .
u ˜ ˜ u U uŽ . Ž Ž .Let c be the mapping from K into K and associating to h, c h s T h
U u ˜ u. Ž Ž .Ž . Ž .. Ž .qh r T h 0 qh 0 . First, we justify that if h belongs to K then c h also

˜ u 2 uŽ . Ž .Ž .belongs to K. We see immediately that c h gL and c h 0 s1. ItAAq
u ˜ JŽ .remains to show that for every NgN, for every finite subset J of I, c h gHN

U u ˜ J ˜ ˜ J ˜ J JŽ .or equivalently T h gH . As h belongs to K , hgK ;H . Let pgS ,N Nq1 Nq1 N
uŽ . J ² uŽ . :then T p gS . Hence, we find that T p ,h F0, and from the adjointAANq1
² U uŽ .: U uŽ . Jproperty p,T h F0. This prove that T h gH . From the linearity ofAA N

TU u and of the conditional expectation, we get that
&

U u U u U un n< <T h n ,P sE T h n ,P X sT E h n ,P XŽ . Ž . Ž . Ž . Ž .Ž .
U u ˜sT h n ,P .Ž .Ž .

&
U u U u U uJ˜ ˜ ˜Ž . Ž . Ž .Recalling that hgH , and thus hsh, T h sT h sT h . Accord-Nq1

U u ˜ JŽ .ingly, we proved that T h gH for all N and for all finite subset J of I.N

Next, we prove that c u or equivalently TU u is weakly continuous. Let
Ž . 2 2 ² U uŽ . : ² uŽ .:h ;L converging weakly to h. Let cgL , T h ,c s h ,T c ,AA AAp p AA AA p p

uŽ . 2 ² uŽ .: ² uŽ .: ² U uŽ . :as T c gL , h ,T c converges simply to h,T c s T h ,c .AA AA AAAA p
u ˜The mapping c is weakly continuous from K , which is a convex, weakly

Žcompact set into itself and Theorem of Schauder–Tychonoff see Dugundji and
. u Ž .Granas, 1982 applies: there exists a fixed point l for c . Notice that l 0 s1 and

thus l is not equal to zero. Moreover, we have that,

TU u l q lŽ .
ls .U uT l 0 q1Ž . Ž .

U uŽ .Ž . U uŽ .Denoting by a sT l 0 , we get that T l sa l.u u
d ˜ ˜ 2 U u ˜� Ž . 4Let c be the function mapping LsKl hgL rT h sa h into L,AA u

dŽ . Ž U dŽ . . Ž U dŽ .Ž . Ž ..defined by c h s T h qh r T h 0 qh 0 . First, we justify that if
˜ d ˜ d ˜Ž . Ž .hgL, then c h gL. As previously done, we prove that c h gK , it remains

dŽ . � 2 U uŽ . 4to prove that c h g hgL rT h sa h . To do that, we first prove that forAA u
˜ U u U d U d U uŽ . Ž .all hgL, T (T h sT (T h .

TU u
(TU d h n ,v sTU u

v™h nq1, d ,v n ,vŽ . Ž . Ž . Ž .Ž .Ž .
sh nq2, u ,d ,vŽ .Ž .
sh nq2, d ,u ,vŽ .Ž .

U dsT v™h nq1, u ,v n ,vŽ . Ž .Ž .Ž .
U d U usT (T h n ,v .Ž . Ž .
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˜We used that h belongs to K , and therefore is independent of the path.
2 Ž .If we denote by id the function mapping L into itself and such that id F sF ,AA

˜we get that for all hgL,

TU d h qh TU d
(TU u h q id(TU u hŽ . Ž . Ž .

U u U udT c h sT sŽ .Ž . U d U dž /T h 0 qh 0 T h 0 qh 0Ž . Ž . Ž . Ž . Ž . Ž .
U d U u U dT q id (T h T q id a hŽ . Ž . Ž . Ž .u

s s
U d U dT h 0 qh 0 T h 0 qh 0Ž . Ž . Ž . Ž . Ž . Ž .

U dT h qhŽ .
dsa sa c h .Ž .u uU dT h 0 qh 0Ž . Ž . Ž .

As previously done, we prove that c d is a weakly continuous function
˜mapping L, which is a convex and weakly compact set, into itself. The theorem of

Schauder–Tychonoff applies and we get that there exists a fixed point f for c d.
Ž .Notice that f 0 s1 and thus the fixed point is not equal to zero. Let a sd

U d U d ˜ U uŽ .Ž . Ž . Ž .T f 0 , we get that T f sa f. Recalling that fgL: we get that T f sd
< < na f. Recalling that v is the number of up in v and using the fixed pointnu

properties, we prove by induction that

f n ,v sa < v < na ny < v < n .Ž . u d

U uŽ .Ž . Ž . U uŽ .Ž .Notice that T f 0 sa f 0 sa and hence a qa sT f 0 qu u u d
U d ˜ 0,1,VŽ .Ž .T f 0 . Recalling that fgK , and that II contains T , we get that
Ž . w Ž .Ž . Ž .Ž .xŽ . Ž .Ž . U uŽ .Ž .yf 0 q F f u q F f d 1 q r F 0. As F f u s T f 0 andp
Ž .Ž . U dŽ .Ž . Ž .F f d sT f 0 , we find that a qa F1r 1qr . Remark also thatu d p

2 Ž . w Ž .x2fgL and therefore a ,a g 0,1r 1qr .AA u d pq
Ž .Suppose that a sa s0 then for all investments i, F 0 F0. If everyu d i

investment is equal to zero at time zero, it is sufficient to shift the zero of the time
origin. Now, if every investment is negative, recalling that the investor has no
money to begin with, sherhe cannot begin any strategy, and it is obvious that
there is no-arbitrage opportunity. We conclude that a and a cannot beu d

simultaneously equal to zero, in a model where trade occurs even without an initial
amount of money.

w Ž .x U w Ž .xLet rs 1r a qa y1, and p s a r a qa , it is straightforward tou d u u d
U 1 U < v < U ny < v <n nŽ . Ž .nprove that 0Fp F1, rGr , and that f n,v s p 1yp , weŽ .p 1q r

get that
Ti 1

UE F n ,P F0.Ž .Ý n i1qrŽ .ns0

Remark. We use Assumption 2.1 and harmonized investments in order to prove
that TU u

(TU d sTU d
(TU u and thus to find a common fixed point to c u and c d.
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2.6.2. Proof of Theorem 2.2
To prove the first implication, it remains to show that under Assumption 2.2

U x w U
p g 0,1 . Suppose that p s0, then there exists rGr such that for everyp

Ti w Ž .n x Ž n.investment i, Ý F0 1r 1qr F d F0. Indeed, we remark that the uniquens0 i
n < < nv gV such that v s0 is d . This contradicts Assumption 2.2 for investmentnn

Ž . x Ž .w x w Ul, with xs1r 1qr g 0,1r 1qr ; 0,1 . Now if p s1, there exists rGrp p
Ti w Ž .n x Ž n.such that for every investment i, we have Ý 1r 1qr F u F0. Thisns0 i

Ž . x Žcontradicts Assumption 2.2 for investment k, with xs1r 1qr g 0,1r 1q
.w x wr ; 0,1 .p

Conversely, suppose that there exists two real numbers r and p
U , with

0-p
U -1, such that for all ig I, we have

Ti 1
UE F n ,P F0.Ž .Ý n i1qrŽ .ns0

Thus
nTi 2 < <ny vU < v < U nn ² :p 1yp F n ,v d P v s f ,F F0,Ž . Ž . Ž .Ý H AAi iž /1qr vgVns0

2.1Ž .
1 U < v < U ny < v <n nŽ . Ž .nwhere we use the notation, f n,v s p 1yp .Ž .1 q r

Suppose that there exists an arbitrage in the sense of Definition 2.4. Then there
exist an investment horizon N, a finite subset J of I and a strategy lgL J

N
Ž .leading to a non-negative and non-zero payoff p . If we multiply Eq. 2.1 appliedl

v pŽ . Ž p.to the assets T F , by l v which is non-negative, and if we sum on everyj j
p ² :v and for all jgJ, we get that f , p F0. But the previous inequality is theAAl

scalar product between the positive function f and the non-negative and non-zero
function p . This lefthand-side should be positive and we get a contradiction. Bl

3. Application to the transaction cost case

3.1. The model

We study a very simple model, which displays the following properties.
The model contains an underlying asset, which price process follows a binomial

Ž . Ž . < v < t ty < v < tprocess denoted by Ss S . This means that S t,v sS u d . Thist t g N 0

asset represents the productive power of the economy. We assume that the price S
is a strictly increasing function of the produced quantity. We assume that there are
some proportional transaction costs on the underlying asset. We denote by c the
buying transaction cost, where cG0 and by cX the selling transaction cost, where
0FcX

-1.
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Ž .We use the same probability space V , FF, P as in the previous section, and
also the same filtration. Notice that in this model the filtration can also be defined

Ž .by FF ss S , . . . ,S . The horizon of dates is infinite and we choose for P thet 1 t

unique probability which turns the coordinate mapping X to be independent andn
Ž . Ž .identically distributed, and such that P X su sP X sd s1r2.n n

The model contains an infinite number of consumers i, which are assumed to
be infinitely small. Each consumer i has a finite life time equal to T . Notice thati

the horizon of dates is infinite. The consumers have preferences over their
consumption all over the time. More precisely, we assume that at each date t, the
consumer i specifies herrhis preferences thanks to the function u . We assumei, t

that each function u is strictly increasing and strictly concave. The utility of ani, t
� Ž . 4 2adapted consumption process c s c t,v rts0, . . . ,T ,vgV gL is giveni i i AA

by:

T Ti i

t tU c s b u c t ,v d P v s b E u c t ,P .Ž . Ž . Ž . Ž .Ž . Ž .Ý ÝHi i i i , t i i i , t i
vgVts0 ts0

This utility is in fact the discounted sum of the expected value of the consump-
tions’ utility. The discounted rate b r2 is called the psychological rate and it isi

positive. Notice that we have included the 2 n of the scalar product in the
psychological rate.

The model includes a lending rate equal to r and a borrowing rate equal to r .p e
Ž .We consider a family of options call and put options written on the underlying

asset They are indexed by their common exercise date T and a real number k,
which allows to compute the exercise price. We assume that at each date t, there
exists an option with exercise time equal to tqT and exercise price equal to kS .t

Ž . Ž .Recall that a call respectively put option is the right to buy sell at the exercise
date, the option at the exercise price We say that an option is not trivial if

T T T T Žd FkFu . Otherwise, assume that k)u , kS )S u GS , then S yt t tqT tqT
.qkS s0, and the call option is not an interesting asset. Moreover, the put optiont

Ž .qwill have a payoff equal to kS yS , which is strictly positive and the putt tqT

option is a static combination of the underlying asset and of an obligation. In the
same way, if dT )k, S GS dT )kS , the call option will be such a combina-tqT t t

tion and the put option will have a zero payoff. We assume that there exists a
bid–ask spread on the option price. This includes the transaction costs case. The

Ž .buying price for a call option at time t will be denoted by C T ,k,S , and itst
XŽ .selling price at time t by C T ,k,S . We assume that the prices are homogeneous,t

Ž . Ž . Ž XŽ . XŽ ..that is to say C T ,k,lS slC T ,k,S , respectively C T ,k,lS slC T ,k,S .t t t t

This means that if there is a change of scale on the asset price, the same one will
apply on the options price. We can also think this property as an invariance against
the monetary unit.

Finally, we assume that there exist some assets called exchange assets which
allow to transfer money from two particular states against an initial cost. For every
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X < X < < <date t, and every states v, v gV such that v s v , if the consumer pays att t

Ž . v t ,v X t

time ts0 initial state p , then sherhe can exchange at time t $1 from state0

v to state v
X. This asset is denoted by Ev t ,v X t

. This possibility is given not only0

from the initial state but from every state of the world having v t and v
X t as

successor. We also allow some transaction costs on the exchange assets. Notice
Ž . v

X t ,v t

that the consumer receives algebraically at time zero yp in order to0

exchange at time t, $1 from state v
X to state v. Thus, ypv

X t ,v t

is the selling price0

of Ev t ,v X t

and from the transaction costs this number is in general different from0

its buying price pv t ,v X t

.0

Each consumer i maximizes herrhis individual utility U , and has a demandi

function called D . The total demand of the model is the sum of the individuali

demands, which makes sense because the consumers are assumed to be infinitely
small. As the single production possibility is the underlying asset, the supply is
defined by the production in this asset. We will say that the model is at
equilibrium when every consumer maximizes its individual utility function and
when the demand is equal to the supply.

3.2. Main results

Suppose that the lending rate is equal to the buying rate and denote by
rsr sr this common value. When there is no transaction costs, the price atp e

time t of an option with exercise time equal to tqT , and exercise price equal to
kS , ist

T1 qTyjU j Uj j TyjCRR T ,k ,S s C p 1yp S u d ykS ,Ž . Ž . Ž .Ýt T t tT1qrŽ . js0

U Ž U . Ž .where up qd 1yp s 1qr .

Ž .This is the main result of the model of Cox et al. 1979 . Recall that the limit of
this formula in continuous time is the well-known formula of Black and Scholes
Ž .1973 . The option price is the expected value under the probability, defined by
the transition probability p

U , of the terminal value of the option discounted at the
rate r. We mention that when there are transaction costs, the no-arbitrage
condition allows only to situate the option price in an interval. The lower
Ž . Žrespectively upper bound of this interval corresponds to the lower respectively

.upper option price that does not allow arbitrage. Moreover, as showed by Jouini
Ž .and Kallal 1995 , the bounds of every sub-interval also define no arbitrage bid

and ask prices. Of course, the Black–Scholes’ price, or the Cox–Ross–Rubinstein’s
price in discrete time setting, belong to the maximal interval, but they do not
belong to every sub-interval of the maximal one. We show that with an infinite
time horizon, the Cox–Ross–Rubinstein’s price is always between the selling and
buying price.
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Theorem 3.1. At the equilibrium, there exists an equilibrium rate r, between rp
U ] [ U ( U )and r , and a real number p g 0,1 , such that up qd 1yp s1qr, ande

for eÕery date t,

CX T ,k ,S FCRR T ,k ,S FC T ,k ,S .Ž . Ž . Ž .t t t

Ž .If we consider the case of a buying respectively selling transaction cost on the
Ž X.option equals to m respectively m . We denote by C the option price process,m

Ž . Ž . Ž . XŽ . Ž X. Ž .that is C T ,k,S s 1qm C T ,k,S and C T ,k,S s 1ym C T ,k,S . Int m t t m t

this case, we find explicit bounds on the option price.

Corollary 3.1. At the equilibrium, there exists an equilibrium rate r, between rp
U ] [ U ( U )and r , and a real p g 0,1 , such that up qd 1yp s1qr, and for eÕerye

date t,

1 1
CRR T ,k ,S FC T ,k ,S F CRR T ,k ,S .Ž . Ž . Ž .Xt m t t1qm 1ym

If there are transaction costs on the underlying asset but not on the options, we
find that the option price is the Cox–Ross–Rubinstein’s one.

Corollary 3.2. At the equilibrium, there exists an equilibrium rate r, between rp
U ] [ U ( U )and r , and a real number p g 0,1 , such that up qd 1yp s1qr, ande

for eÕery date t,

C T ,k ,S sCRR T ,k ,S .Ž . Ž .t t

3.3. Proof of Theorem 3.1

We first prove that our model satisfies the stationarity property.

3.3.1. Stationarity
The first step is to give the representation of the considered assets in term of

cash-flows. We first express the cash-flow AV t0 , t1, B, which corresponds to the
buying at time t and the selling at time t of one unit of underlying asset if event0 1

the BgFF occurs:t0

AV t0 , t1 , B t ,v syS u < v < t d ty < v < t 1qc I t I vŽ . Ž . Ž . Ž .0 tst v g B0

qS u < v < t d ty < v < t 1ycX I t I v .Ž . Ž . Ž .0 tst v g B1
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Next, we express the cash-flow VAt0 , t1, B, which corresponds to the selling at
time t and the buying at time t of one unit of underlying asset still if the event0 1

the BgFF occurs:.t0

VAt0 , t1 , B t ,v sS u < v < t d ty < v < t 1ycX I t I vŽ . Ž . Ž . Ž .0 tst v g B0

yS u < v < t d ty < v < t 1qc I t I v .Ž . Ž . Ž .0 tst v g B1

Next, we represent the cash-flows generated by the lending and the borrowing
rates. The cash-flow TP t0 , t1, B represents the lending of $1 at time t if the event0

BgFF occurs and its withdrawal at time t , still if the event B occurs,t 10

ty t0t , t , B0 1TP t ,P syI I q 1qr I I .Ž . Ž .B tst p B tst0 1

The borrowing of $1 at time t if the event BgFF occurs and its refunding at0 t0

time t , still if the event B occurs generate the following cash-flow, called1

TEt0 , t1, B:

ty tt , t , B 00 1TE t ,P s I I y 1qr I I .Ž . Ž .B tst e B tst0 1

Now, we express the cash-flow generated by the options. Let AOt0 ,T ,k , B be the
cash-flow associated to the buying at time t of a call option of exercise date0

t qT and of exercise price kS , if the event BgFF occurs.0 t t0 0

qt ,T ,k , B0AO t ,P syC T ,k ,S I I q S ykS I I .Ž . Ž . Ž .t tst B t t tst qT B0 0 0

Now, if we consider the selling of a call option of exercise date t qT and of0

exercise price kS , if the event BgFF occurs and denote by VOt0 ,T ,k , B thet t0 0

associated cash-flow, we get that:
qXt ,T ,k , B0VO t ,P sC T ,k ,S I I y S ykS I I .Ž . Ž . Ž .t tst B t t tst qT B0 0 0

In order to prove that the stationarity assumption holds, we can check by
induction that for every n and every v n gV :n

T v n

AV t0 , t1 , B suy< v < n d < v < nynAV t0qn , t1qn , Bv n , 3.1Ž . Ž .
�Ž n . 4 t0 , t1, B

nwhere B s v ,v rvgB gFF . The same formula holds for VA . Wev t qn0

can also check that

T v n

AOt0 ,T ,k , B suy< v < n d < v < nynAOt0 ,T ,k , B , 3.2Ž . Ž .
and again the same formula holds for VOt0 ,T ,k , B.

This prove that the cone generated by the cash-flows AV t0 , t1, B, VAt0 , t1, B,
AOt0 ,T ,k , B and VOt0 ,T ,k , B is a stationary set of investments. Notice that the same
results also apply for the put option, and therefore the cone generated by the put
option cash-flows is also stationary.

v nŽ t0 , t1, B . t0qn , t1qn , Bv nMoreover, it is straightforward to see that T TP sTP , and
as well for TEt0 , t1, B.
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Finally, the exchange assets are stationary by definition, because we have
assumed that we can transfer at each date and in each state of the world. Thus,

a nŽ v n ,v X n. Ža n ,v n.,Ža n ,v X n.
nT E sE , and this one exists by assumption.0 a

In order to prove Theorem 3.1, we want to use the results of the second part. To
do that, we prove that Assumptions 2.1 and 2.2 are satisfied.

3.3.2. Assumptions 2.1 and 2.2
We have already seen that Assumption 2.2 is satisfied if the model contains a

non-trivial call and put option, which is assumed to be true by construction of this
Ž .model. For example, consider the case of a call respectively put option at the

XŽ . Žmoney. As the selling price of call option C T ,1,S respectively the put option0
XŽ .. Ž T .q Ž Ž T .q .P T ,1,S , is positive and S d yS s0 respectively S yS u s0 ,0 0 0 0 0

Assumption 2.2 is trivially satisfied. We have already seen that the considered
model is stationary.

First, we prove that at the equilibrium, there is no arbitrage opportunity.
Otherwise, assume that there exists an arbitrage opportunity in the sense of
Definition 2.4. Then there exists a finite subset J of I, an investment horizon
NGT and a strategy lgL J leading to a non-negative and non-zero payoff p .J N l

Without any excess cost, the consumer i can add ´l to herrhis portfolio and
therefore consumes ´ p more. Let c be the initial consumption of consumer i.l i

Herrhis utility at time t and in the state of the world v varies of
Ž . X Ž Ž .. Ž .´ p t,v u c t,v qo ´ . Recalling that all the sums are finite, the variationl i ,t i

of herrhis global utility is equal to

Ti
Xt´ b d P v p t ,v u c t ,v qo ´ .Ž . Ž . Ž . Ž .Ž .Ý Hi l i , t i

vgVts0

Notice that the utility u is a strictly increasing function and the function uX isi, t i, t

strictly positive. Moreover, the payoff p is a non-negative and non-zero function.l

The total variation of the utility is then positive. The individual optimization
problem of agent i has no solution and there is no possible equilibrium.

At the equilibrium, there is no arbitrage opportunity and from Section 2.6.1,
step 1, we conclude that for every finite subset J of I, for every investment
horizon NGT , the setJ

0J J 2 J² :H s S s hgL r h , p F0, ;pgS ,� 4Ž . AAN N AA N

Ž .of separating forms often called numeraire contains a positive element denoted´
Ž . J J �by k and normalized to k 0 s1. We put K sH lO, where O[ hgN N

2 Ž . 4L rh 0 s1 . This set is non-empty and also weakly closed. Recall that consid-AAq
J J �ering TP jII , the set K is included in the weakly compact set BBs hgN N N

2 5 5 4 JL r h FM . Thus, the set K is weakly compact.AAAA Nq

The next step consists in showing that every investment of H J is independentN
˜ J Jof the path, that is H sH . To do that, we fix an investment horizon N, and aN N
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finite subset J of I containing the exchange assets occurring before N. Let us
X < X < < <consider two states of the world v and v , such that v s v . First, we proveN N

U J U Ž . U Ž X.that there exists h gK such that h N,v sh N,v .N
Ž .To see this point, we first show that the mapping h™h N,v is weakly

2 Žcontinuous on L , where v is fixed in V . Let c be the function equal to 1 in N,AA

. 2 Ž .v and zero otherwise, c belongs obviously to L . Let h be a sequenceAA p p
² : N Ž . ² :converging weakly to some h, then h ,c s2 h N,v converges to h,cAA AAp p

N Ž . Js2 h N,v . Recalling that the set K is weakly compact and non-empty,N
J Ž . Jh N ,v

Jq s inf exists and is reached. We will prove that q s1. Otherwise,N hg K NN XŽ .h N ,v

suppose that q J )1. We denote by w J the asset paying at time N, q J in state v
X

N N N

and y1 in state v, and nothing else. We do not assume that such an asset is
feasible and belongs to the investment set.

J ² J: NŽ Ž X. J Ž .. JLet hgK , h,w s2 h N,v q yh N,v F0, by definition of q ; thus,AN N N N
J Ž J .0we get that w g K . In order to work in the finite dimension space RR , weN N N

consider the isometrics by F of our sets. Applying well-known results on negative
polar sets, we find that,

0 00 0 0 0J J JF K s F S lF O s F S q F OŽ . Ž .Ž .Ž . Ž . Ž .Ž . Ž . Ž .ž / ž /N N N

0JsF S q F O .Ž .Ž .Ž .N

Ž . Ž Ž ..0 J JHence, there exists x such that F x g F O satisfies w yx gS , thatN N N N N

is to say w J yx belongs to the set of investments build from J ending before N.N N

We consider a consumer i with life time T greater than N, and equilibriumi
U Ž J .consumption equal to c . Suppose that sherhe adds ´ w yx to herrhisi N N

equilibrium portfolio.

J U Ž .Thanks to ´w , the consumer i consumes at time tsN, c N,v y´ in state v,N i
U Ž X. Jc N,v q´ q and herrhis consumption does not change in the other state ofi N

the world. Thus, the utility of consumer i at time N will vary of
X Ž U Ž .. Ž . J X Ž U Ž X.. Ž .y´ u c N,v qo ´ in state v, and of q´ q u c N,v qo ´ ini, N i N i, N i

state v
X, and zero otherwise. The global variation of the utility is then equal to:

N
b

X X XU UJ´ yu c N ,v qq u c N ,v qo ´ .Ž . Ž . Ž .Ž . Ž .i , N i N i , N iž /4

Now, thanks to y´ x the utility of consumer i varies at time t and in state vN
Ž . X Ž U Ž .. Ž .from y´ x t,v u c t,v qo ´ . The global variation from the utility isN i, t i

then equal to:

Ti
X Uty´ b d P v x t ,v u c t ,v qo ´Ž . Ž . Ž . Ž .Ž .Ý Hi N i , t i

vgVts0

² :sy´ z , x qo ´ ,Ž .AAN
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Ž . Ž . t X Ž U Ž ..where z t,v s b r2 u c t,v . Notice that the utility u is strictly increas-i i, t i i,0

ing and concave, so that the function uX is positive. Hence, we get thati,0
X Ž U Ž .. w X Ž U Ž ..x ² :z ru c 0 s1, and thus zru c 0 gO. We deduce that z, x sAA0 i,0 i i,0 i N

² Ž . Ž .:F z ,F x F0.RRN

As cU is the optimal consumption, the total variation of the utility should bei

non-positive. Thus,
N

b
X X XU UJ´ yu c N ,v qq u c N ,vŽ . Ž .Ž . Ž .i , N i N i , N iž /4

² :y´ z , x qo ´ F0.Ž .AAN

J ² :As q is strictly greater than 1 and z, x is non-positive, we obtain that,AAN N

uX cU N ,vX
-uX cU N ,v .Ž . Ž .Ž . Ž .i , N i i , N i

Moreover, the function u is strictly concave andi, N

cU N ,vX
)cU N ,v .Ž . Ž .i i

This last inequality is true for every agent i, so that summing over all consumers
Žliving at this date this makes sense because the consumers are assumed to be

.infinitely small , we find that the total consumption at date N and in state v is
strictly greater than the demand at time N and in state v. Thus, the economy
should produce at time N, strictly more in state v

X than in state v, that is
Ž X. Ž .S v )S v . This contradicts the binomial evolution of the underlying assetN N

Ž .h N ,v
Jand proves that inf F1. Using the same line of arguments, we showhg K N XŽ .h N ,v

Ž .h N ,v
Jthe converse inequality and finally, inf s1. Hence, with J, N, v, suchhg K N XŽ .h N ,v

< X < < < U J U Ž . U Ž X.that v s v , fixed, there exists h gK , such that h N,v sh N,v .N N N
J ˜ JNext, we prove that the equality H sH holds.N N

Recalling that hU gK J , we get that hU gH J . Moreover, the exchange securi-N N

ties EvN ,v N
X

and EvN
X ,v N belong to S J . We obtain that,0 0 N

ypvN ,v N
X

hU 0 y2 N hU N ,v q2 N hU N ,vX F0Ž . Ž . Ž .0

and

ypvN
X ,v N hU 0 q2 N hU N ,v y2 N hU N ,vX F0.Ž . Ž . Ž .0

U Ž . U Ž X. U Ž . vN ,v N
X

vN
X ,v NAs h N,v sh N,v , and h 0 s1, we get that p and p are0 0

Ž X . Ž .non-negative. We call c respectively c the buying respectively selling1 1

transaction costs on the exchange assets. Hence, there exists x such that paying
wŽ . Ž .x Xx 1qc r 1yc , we can exchange $1 at time N from state v to state v and1 1
vN ,v N

X

wŽ . Ž .x wŽ X . Ž .xp sx 1qc r 1yc . Now, receiving x 1yc r 1qc at time zero,0 1 1 1 1

the consumer exchanges $1 at time N from state v
X to state v, and thus

vN
X ,v N wŽ X . Ž .x vN ,v N

X

wŽ . Žyp s x 1 y c r 1 q c . We obtain that p s y 1 q c r 1 y0 1 1 0 1
.x2 v N

X ,v N vN ,v N
X

vN
X ,v N vN ,v N

X

c p . As p and p are non-negative numbers, we get that p1 0 0 0 0

and pvN
X ,v N are equal to zero.0
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Let hgH J , recalling that EvN ,v N
X

and EvN
X ,v N belongs to S J , we get that,N 0 0 N

y2 N h N ,v q2 N h N ,vX F0 and 2 N h N ,v y2 N h N ,vX F0.Ž . Ž . Ž . Ž .
< X < < < JThus, for every J, N, v, such that v s v and hgH , we obtain thatN N N

Ž . Ž X.h N,v sh N,v . We proved then that for every finite subset J containing the
J ˜ Jexchange assets and for every investment horizon N, the equality H sH holds.N N

˜ JRecalling that the set H is non-empty, we get that Assumption 2.1 is satisfied.N

3.3.3. End of proof of Theorem 3.1
We now can apply the result of Theorem 2.2 to our model and there exists two

real numbers r and p
U , with rGr p and 0-p

U -1, such that for every
investment ig I,

Ti 1
UE F n ,P F0Ž .Ý n i1qrŽ .ns0

where EU is the expectation under PU , which is the unique probability making
the coordinate mappings independent and identically distributed and such that

U Ž . U U Ž . UP X su sp and P X sd s1yp . Applying this result to the under-n n

lying asset, and more precisely to AV 0, t,V t and VA0, t,V t, we get that,
X t1yc 1 1qcty jjU UjF C up d 1yp F .Ž . Ž .Ž .Ý Xtt1qc 1yc1qrŽ . js0

Thus, we obtain that,

tX U U1yc up qd 1yp 1qcŽ .
F F .Xž /1qc 1qr 1yc

1 U UŽ Ž ..We deduce that, up q d 1 y p s 1. Otherwise, if 0 F 1r1 q r

Ž .Ž U Ž U .. X1qr up qd 1yp -1, taking the limit, we will get that c G1, which is
impossible by assumption. The probability defined by the transition probability p

U

is the Cox–Ross–Rubinstein’s probability.
Applying Theorem 2.1 to the interest rate r , and more precisely to TE0,1,V 1,e

1 U UŽ Ž ..Ž .we get that 1y p q 1yp 1qr F0. Finally, we obtain that r FrFe p1q r

r .e

Now applying Theorem 2.2 to the options AOt,T ,k ,V t and VOt,T ,k ,V t, we get
that,

1 1 < <tqTy vU < v < U tq TtqTy C T ,k ,S q p 1ypŽ . Ž .Ýtt tqT1qr 1qr tqTŽ . Ž . v gV tqT

q
t= S ykS I F0,Ž .tqT t v g V t
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1 1 < <tqTy vX U < v < U tq TtqTC T ,k ,S y p 1ypŽ . Ž .Ýtt tqT1qr 1qr tqTŽ . Ž . v gV tqT

q
t= S ykS I F0.Ž .tqT t v g V t

U < v < tŽ U . ty < v < t t j U jŽ U . ty j Ž U
tRemarking that, Ý p 1yp sÝ C p 1yp s p qv g V js0 tt

Ž U .. t1yp s1, we obtain that,
q< <tqTy vU < v < U tq TtqT

tp 1yp S ykS IŽ . Ž .Ý tqT t v g V t
tqTv gV tqT

T
qTyjU j U j j Tyjs p 1yp C S u d ykS .Ž . Ž .Ý T t t

js0

Thus, denoting by:
T1 qTyjU j Uj j TyjCRR T ,k ,S s C p 1yp S u d ykS ,Ž . Ž . Ž .Ýt T t tT1qrŽ . js0

we get that,

CX T ,k ,S FCRR T ,k ,S FC T ,k ,S .Ž . Ž . Ž .t t t
B
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