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Abstract

This work consists of two parts. In the first one, we study a model where the assets are
investment opportunities, which are completely described by their cash-flows. Those
cash-flows follow some binomial processes and have the following property called station-
arity: it is possible to initiate them at any time and in any state of the world at the same
condition. In such a model, we prove that the absence of arbitrage condition implies the
existence of a discount rate and a particular probability measure such that the expected
vaue of the net present value of each investment is non-positive if there are short-sales
constraints and equal to zero otherwise. This extends the works of Cantor—Lippman
[Cantor, D.G., Lippman, S.A., 1983. Investment selection with imperfect capital markets.
Econometrica 51, 1121-1144; Cantor, D.G., Lippman, S.AA., 1995. Optimal investment
selection with a multitude of projects. Econometrica 63 (5) 1231-1241.], Adler—Gale
[Alder, 1., Gale, D., 1997. Arbitrage and growth rate for riskless investments in a stationary
economy. Mathematical Finance 2, 73—81.] and Carassus—Jouini [Carassus, L., Jouini, E.,
1998. Arbitrage and investment opportunities with short sales constraints. Mathematical
Finance 8 (3) 169-178.], who studied a deterministic setup. In the second part, we apply
this result to a financial mode! in the spirit of Cox—Ross—Rubinstein [Cox, J.C., Ross, SA.,
Rubinstein, M., 1979. Option pricing: a simplified approach. Journal of Financia Eco-
nomics 7, 229-264.] but where there are transaction costs on the assets. This model appears
to be stationary. At the equilibrium, the Cox—Ross—Rubinstein’s price of a European option
is always included between its buying and its selling price. Moreover, if there is transaction
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cost only on the underlying asset, the option price will be equal to the Cox—Ross—Rubin-
stein’s price. Those results give more information than the results of Jouini—Kallal [Jouini,
E., Kalal, H., 1995. Martingales and arbitrage in securities markets with transaction costs.
Journal of Economic Theory 66 (1) 178-197.], which where working in a finite horizon
model. © 2000 Elsevier Science S.A. All rights reserved.
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1. Introduction

We study a model where investments are completely defined through their
generated cash-flows. We assume that the model is stationary, that is, each project
is available at every date and in every state of the world at the same conditions.
The horizon of the model is then necessarily infinite. This kind of models has been
studied in the deterministic case by Cantor and Lippman (1983; 1995), Adler and
Gadle (1997) and Carassus and Jouini (1998). In the present work, the cash-flows
are modeled with stochastic processes, with dynamics described by a binomial
tree. First, we generalize the notion of stationarity in a stochastic framework.
Then, we prove a no-arbitrage theorem. Recall that, loosely speaking, an arbitrage
opportunity is away of getting something for nothing. The arbitrage assumption is
defined thanks to the existence of a strategy leading to a non-negative and
non-zero payoff. Under a technical condition, the assumption no-arbitrage implies
the existence of an interest rate and a particular probability measure which make
the sum of the investments expected value non-positive if there are short-selling
constraints and equal to zero otherwise.

In the second part of this work, we present an economic model with an
underlying asset, the price of which follows a binomial process, and a family of
options written on this asset. We suppose that there are some buying and selling
transaction costs (possibly different) on the options and on the underlying asset.
As a matter of fact, we suppose that there exists a bid—ask spread on the option
price. We prove that the technical assumption made in the first part of the paper is
satisfied in this setting. Recall that in a market without transaction costs, the
option price is given by the Black—Scholes' formula (Black and Scholes, 1973) in
a continuous framework and similarly by the Cox—Ross—Rubinstein’s formula
(Cox et a., 1979) in the binomial framework. In our imperfect market, we prove
that at the equilibrium the Cox—Ross—Rubinstein’s price is always between the
buying price and the selling price. Moreover, if the bid—ask spread on the options
comes from a constant proportional transaction cost, we give explicit bounds for
the option price. Notice that if there are only transaction costs on the underlying
asset and not on the options, then the options' price is equal the Cox—Ross—
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Rubinstein’s price. This is a new result about transaction costs. Recall that in the
paper of Jouini and Kallal (1995), it is proved that the absence of arbitrage
condition is equivalent to the existence of an equivalent martingale measure,
which turns a particular process lying between the bid and the ask price into a
martingale. The no-arbitrage condition allows only to situate the option bid—ask
prices in some interval. The lower bound (respectively upper bound) of this
interval is obtained as the minimum (respectively maximum) of the expected value
of the option future values, under all the equivalent martingale measures. Every
sub-interval appears then as an interval compatible with the no-arbitrage condition.
This means that the lower (respectively upper) bound of every sub-interval
corresponds to a selling (respectively buying) price, which is compatible with the
no-arbitrage condition. Of course, the Cox—Ross—Rubinstein’s price belongs to
the maximal interval but there is no reason why it should belong to every
sub-interval. In our model, we prove that the only intervals of equilibrium price
are the ones containing the Cox—Ross—Rubinstein’s price. This can be explained
by the infinite horizon of the model and by the interactions between the different
assets at different dates (stationarity).

2. The mode
2.1. Uncertainty and information structure

We consider a discrete model with infinite horizon. The evolution of the system
is given by a binomial tree over discrete periods. Note that the result holds if we
consider a multinomial tree but for sake of simplicity we choose the binomial
representation. At time zero, there is only one state of the world. Then, at each
date the system has two possibilities: in the propitious case, it will move up, that is
follows u, and else down, that is follows d, where u and d are two real numbers.
The infinite set of states of the world is 2 = {(w,,®,,...)/o, € {u,d}} = {u,d}".
For v € 2, we denoteby »" = (w;,...,w,) the n first states of the path. We call
0, the set {u,d}" of this n first states of the path. We work in the discrete
probability space (2, &, P), endowed with the filtration (%), cn, i-€, an
increasing sequence of o-algebra included in &#. The o-algebra & is the one
generated by the coordinate mappings ( X,)), < n+ defined by X(n,w) = w, where
o= (wy,w,,...). As usualy done, we choose 7, ={J, 2}. From an economic
point of view, #, represents the available information at time n. The o-algebra
F, 1s generated by the coordinate mappings (X,),c . ad can be identified
to %(£,). We choose for P the unique probability which turns the mappings X,
to be independent and identically distributed, and such that P(X, =u)=P(X, =
d) =1/2. This probability displays the following property: (w,,...,0,) € Q,,
P(X,=y,...,. X, =0,)=P(X, = w) X ... X P(X, = 0,)=1/2"=1/|0,).
The projection of P to (2, is the uniform probability on (2.
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2.2. Investments’ set, definitions and properties

2.2.1. The basic investments

The investments are assumed to be completely represented by their cash-flows.
Our set of investment, indexed by I, is supposed to be infinite. A cash-flow,
denoted by @,;, is represented thanks to a binomial stochastic process. Thus,
@,(n,w) represents the payment of investment i | at time n and in state w. The
processes are supposed to be adapted, i.e., for dl date n, the function &(n,- ): w
— &(n,w) is F,-measurable. We denote by .« the set of such .7-adapted
processes. We aso define the set ., of 7-adapted processes such that for all
w € (2, the support of &(-,w):n— &(n,w), mapping N into R, is included in
[0,n].

We suppose that every investment has a finite time horizon. Otherwise,
assuming the existence of an investment with an infinite horizon, it will always be
possible to suspend repayment of the debt to infinity.

Definition 2.1. The process @; is an investment if there exists a finite horizon T,
such that &; € o/ .

We assume that our model contains a lending rate called r, with r, > 0. The
lending of $1 at time t, if the event B € &, occurs and its withdrawal at time t;,
still if B occurs, generates the following associated cash-flows:

TPYUB(tw) = —lg(w) lt:to(t) + (1 t rp)tito le(®) It:tl(t)’

where Ig(w) =1if » € B and zero otherwise and 1,_,(t) = 1 if t=t, and zero
otherwise. We will use the following notation:

TP, = {TP8 /1, ,t, €{0,...n}, ty<t,, BEF, }.

Notice that TP, belongs to .«/,. Moreover, if we denote by TP = U, TP, then
TP Cyw.

Let Z,=RXR>X...xR?"x{0}x{0}x ..., then &, =R?""~* and let
F = U, Z%,. First, we show that the set of adapted processes « and the set % are
isomorphic. To do that, we remark that each cash-flow @ €.«7, observed in state o
and at time n only depends on the information available at time n. Let 7;, be the
function mapping .« into R = R?" and associating 7(®) € R to every
& e o/, where (@) w") = &(n,w). This function is uniquely defined, because
& is F-adapted. Indeed we have ®(n,w) = ®d(n,0') if o'"=w". We adso
denote by T, the mapping from « into % defined by T(P),= T,(P), for
@ .. It is draightforward to see that 1" is one-to-one and then the set of linear
mappings from 7 into &7 is in one-to-one correspondence with the set of linear
mappings from .%Z into %. An investment i will be represented by an element &,
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of «; or equivaently by T(®,) €%, c%, where T(d;) is the countable
sequence (7o(®P), T(P)), ..., Tr(P)0,...) where only the first T, + 1th are
non-zero. We call the Iength of an investment its last non-zero index. For sake of
simplicity, we use the notation 7(®X ") = ®(w").

We specify the topological structure on 7 and %. If we denote by E the
expected value under P, set

= {(DEM/ Y 2"E[@?(n,")] <00}.

neN

The set L?, is then an Hilbert space endowed with the following scalar product:
(0,07, =) 2"E[@(n,)P'(n,")]

neN
ZNz [w D(n,0)P (nw)dP().

If we aso define

{r@yeas £ £ oron <),

neNo"€ N,

we get that L2, is an Hilbert's space endowed with the following scalar product
(T(D),T(P )=, Y P(0")P(0").

neNw"e N,
Furthermore, it is easily checked that
(D, D)y =(T(P),T(P))z.

This proves that L2, and L2, are isometric for the distances associated with the
scalar products.

Notice that the set of linear mappings from ./ into ./ is aso isometric to the set
of linear mappings from &% into %.
Next, notice that if @ € .47,

(DD =(T(P),T(P)z= ) ) P (w)=) ) P (o).

teNyte 0, t=0n'e 0,

This sum is finite and therefore every element of ., and in particular every
investment, belongs to L2, and we will work in this space or in its isometric LZ,.

We now introduce the following notations. A process @ € L2, is non-negative
(respectively positive) if for all n and w, @(n,w) > 0 (respectively &(n,w) > 0).
We denote by L2, (respectively L%, ) the set of adapted non-negative (respec-
tively positive) processes. We will also use the following notation: L, , L%,
L% L%, %, and £, , which definitions are straightforward.

++!
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2.2.2. Trandated investments. stationarity

Let us consider a set {®,/i €1} of basic investments indexed by some set I.
We assume that this set contains a lending rate r, or following our notation
TP c{®,/i €1}. In the second part of the paper, we will propose different kinds
of investment sets. We assume that the investments display the stationarity
property. In the stochastic setup, this assumption implies that an investor can
initiate every cash-flow at every date and in every state of the world. To formalize
this assumption, we use the following function T". This function associates to the
tree defining the investment the sub-tree conditioned by the realization of u
between time zero and time one. We denote by (u, ) (respectively (d,w)), the
state ' such that '* = u (respectively > =d) and o' = w*~! for al k> 2.
With this notation the function T" maps L2, into L%, and is defined for al @ € .,
by:

TY(@)(0)=0

TY(@)(n,(d,w)) =0

T(®)(n(u,0)) =P(n-10).
We define similarly the function T¢ by,

TY(@)(0)=0

TY(@)(n,(u,w)) =0

TY@)(n(dw)) =2(n-1,0).

If o"=(w,...,0,) €2, we will denote by T*" the map T<ro... 0T,
Notice that T“" is a linear function.
Now, we define the notion of stationarity.

Definition 2.2. A set of investment .7 C L2, is stationary if for al ¥ €.#, ne N,
w"€ N, T (V) belongs to .~.

Let .7 ={T*"(®)/neN,0"€ ). The set .7 represents the set of invest-
ments generated by trandations from the asset i. It is easy to see that . is
stationary. More generally, the stationary set of investments generated by {®}, .
is S=U,c | A

In particular, the set of cash-flows generated by the lending rate, TP, is a
stationary set. Indeed for al neN, "€, t;, t;€N with t;<t, and
BeF, , T (TPwB) = TRL MUt Bl with B, = {(0",0)/wEB} €F, .
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2.3. Strategies and payoffs

First, we define the set of admissible strategies. We assume that the invest-
ments cannot be sold. This is not really a restriction since it suffices to add — @,
to our investment model in order to have a possibility to sell @;. An investor must
choose a finite number of investments, indexed by J in the infinite set of
investment indexed by 1. We introduce the following notations, T, = sup, . ;T; and
for N> T;:

A =T (@)/NE(0... N=T)}, "€ 0, ).

Notice that the support of T‘”"(CDJ-)(-,w) is asubset of [0,T, + n]. In fact, N is the
last date when the investor receives a non-zero cash-flow and we cal it the
investment horizon. Then the set .7 represents the set of investments generated
by trandations from the investments indexed by J and having an investment
horizon less than or equal to N. We call A, set of admissible strategies generated
by .#J. The investor should choose an investment in the set .7 for N> T,. We
call A, the non-negative number of investment ¥ €.#] chosen by the investor.

Definition 2.3. A strategy A € Ay, is defined by:
—a finite subset of investments J,
—an investment horizon N > T,,
—a non-negative and adapted buying strategy, A =(A,), < -

The set of payoffs associated to the strategy A7, is called SJ. Thus, p belongs
to & if there exists A = ((A,)y, < ,») © Ay, such that

XA

ves

Recalling that ¥ €., the set S represents the payoffs generated by J and
ending before N. This set belongs to L2 Moreover, there exists j€J, pe
{0,...,N=T} and 0P €, suchthatiIf T“’(d)) Writing A, = A;(wP), we
find that

N-T;
p=X X X N(o")T(P).
j€edp=0wPeq,

These sums are finite so p is well defined.
Furthermore, notice that S is a convex cone.
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2.4. No-arhitrage condition

Definition 2.4. An arbitrage opportunity consists in a finite subset J of I, a
horizon investment N> T, and a strategy in Ay, leading to a non-negative and
non-zero payoff.

Notice that we can assume without loss of generality that the subset J contains
the lending rate r, and, thus, we can consider that the set of investment A
contains TPy. Indeed, if the arbitrage opportunity implies the existence of a finite
subset indexed by J that does not contain TP, we just have to add it (if there
exists an arbitrage opportunity with 7], then there will also exist one with
AU TPY).

2.5. Main results

We present our main theorem under the following postulate: there is no
arbitrage opportunity and, if there is a positive element in the negative polar of the
payoff set then it will also contains a positive element which is independent of the
path. Notice that using a hyperplane separating result, the no-arbitrage condition
implies that the negative polar of the payoff set contains a positive element. Our
assumption is obvioudy satisfied if every element of the negative polar of the
payoff set is independent of the path. We will see in the next section that this
condition is satisfied under some conditions in a model taking into account
transaction costs.

Let us state precisely the assumption about the negative polar of the payoff set.
To do that, we use the following notation. Let H; be the negative polar of the

payoff set S}:

Hi=(80)° = {he2,/¢h,p). <0, ¥pe §).
Note that

Hi={hel?/(h W), <0 vWeRl}=(A)

Now, we distinguish the elements of Hy which are independent of the path. To
do that, we define new processes, which are independent of the path and called
them harmonized processes. Thus, a harmonized process is such that for each date
n and each state of the world w, @(n, w) only depends on the product w, ... w,.
Let X"=TII{",X;, then the definition of the harmonized process is stated as
follows:

Definition 2.5. The harmonized process associated to @ is defined by:
@d(n, ) =E[®,X"].
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The element H, which are independent of the path are called HY and are defined
by:

Hy:={heHJ/h=h}.

Assumption 2.1. For every finite subset J of | and for every investment horizon N,
if the set Hy contains a positive element up to date N, then Hy also contains such
an element:

HiNL:,  #@=HINL2, +O.

The main theorem states as follows:

Theorem 2.1. Suppose that the model contains a lending rate r, > 0. Under
Assumption 2.1, the absence of arbitrage opportunity implies the existence of two
real numbers r and 7*, with r>r, and 0<7* <1, such that for every
investment i e 1,

Ti

)»

I ey S 1 =0

where E* is the expectation under P*, which is the unique probability making
the coordinate mappings independent and identically distributed and such that
P*(X,=uw=a* and P*(X,=d) =1— 7*.

Theorem 2.1 can be explained as follows: the discounted sum at the rate r of the
investments expected value under P* is non-positive.

If we denote by |w|, the number of upin »", the preceding expectation under P*
is computed as follows,

E*[@(n,-)]

I
7

D(0"P*(Xi=wyq,..., X, =w,)

I
g

Di(@")PH( Xy =) ... P*( X, = )
o"=(wq,..., o)E N,

Y wleh(1— ) ().

w"e N,
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Notice that if there is short selling constraints we can apply the preceding
results to the cash-flows @; and — &;, and we obtain that the discounted sum of
the expected value is equal to zero.

Under some additional assumption, we are able to prove that 7* ]0,1[.

Assumption 2.2. There exists two investments k and |, such that for all x€]0,1[,

Ty T
Y X, (u") > 0and Y x"d(d") > 0.
n=0 n=0

We have denoted by u" (respectively d") the path with length n and which
contains only u (respectively d). We will use this Assumption only for x < 37+
Under this additional assumption, we can prove the following:

Theorem 2.2. Suppose that the model contains a lending rate r, > 0. Under
Assumptions 2.1 and 2.2, the absence of arbitrage opportunity is equivalent the
existence of two real numbersr and 7*, with r > r, and 0 < 7* < 1, such that
for every investment i €1,

Ti

)»

no(1+1)"

E*[@i(n,-)] <0,

where E* is the expectation under P*, which is the unique probability making
the coordinate mappings independent and identically distributed and such that
P*(X,=uw=a* and P*(X,=d) =1— 7*.

We present an example under which Assumption 2.2 is satisfied. Assume that
our model contains an asset following a binomial price process caled S and
consider a call and a put with exercise date equal to T and exercise date equal to
K, such that S(0)d" < K < S(0)u”. Recall that a call option (respectively a put
option) is the right to buy (respectively to sell) the underlying at the exercise time
T for the exercise price K. The condition S(0)d" < K < S(O)u' is in particular
satisfied for options at the money (K = S0)). Note that if this condition is not
satisfied, the option is obviously redundant since it can be duplicated by a smple
buy and hold strategy. Remarking that (S(0)d™ — K)* =0 (respectively
(K—90)d")*=0), the cash-flow generated by the selling of the call option
(respectively the put option) is an example of asset | (respectively k).
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2.6. Proof of the main results

2.6.1. Proof of Theorem 2.1
We first prove the implication of the absence of arbitrage opportunity.

Step 1: use of a hyperplane separating result.
First, we recall the following proposition, which is proved for example in
Carassus and Jouini (1997):

Proposition 2.1. If Z is a set of vectorsin R* then exactly one of the following

two alternatives must occur.

1. Thereis a linear combination of vectors of .2~ with non-negative coefficients,
which belongs to R4 and is not equal to zero.

2. There exists a vector of R¢ , which makes a non-positive scalar product with
all elements of Z.

Notice that property 2 is equivalent to Z°NR%, # .

For every Ne N, every J included in I, we apply Proposition 2.1 with
Z=T(S)={T(p)/p< S} c%. The no-arbitrage condition implies that there
does not exist a non-negative and non-zero linear combination, with non-negative
coefficients, of elements of SJ. By isometry, there does not exist any non-negative
and non-zero linear combination, with non-negative coefficients of elements of
Z=T(S). Thus, we get that (T(S§)))° N%,  # <. From the isometry between
& and £, thisis equwalent 0 (S)°N L2, # & and applying Assumption 2. 1
HJ N L2, s . Let ke HIN L2 , we normallze it by the condition k(0) =

Consider now the following subset of L2,
={hel? /h=hh(0) = 1and (h¥), <0, ¥¥e.r7).
Let (2, .={hel?/h=h}, wegettha K={hel? /O =1 N0

First, we prove that K is a non-empty compact set for the topology o (L2,,L2).
To do that, we define the following subset of L2,

~

Ki ={hel% /h=hh(0)=1and(h¥), <0 VFe.5)}
={hel? /h(0) =1} n (A7)’

Notice that KJ={he L2 /h(O) 1} N Hy. Recalling that for every J and N,
Al Cs and that 7= UJNJ:N, we find that K <Ky and K= n ;K. Firs,
we show that KN and thus K are included in some weak -compact subspace of
L2
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Recall that without loss of generality we can assume that .7 contains each TP
and that for every he K}, and every t=0,...,N, T®*? e_#J, and (h,Tot2),,
=(h,T%%?%_, <0. Now,

(h,TOM2y = —h(0) + Y h(w')(1+T1,)".

w'e 0,

Thus, £ ,cc o M@) <@ +r1)"" Asfordl te Nandforal o' 2, h(w") >0,
we get that,

)y hZ(w‘)s( )y h(w‘))zs(wp)”-

w'e 0, w'e 0,
Furthermore,
N N 1+r
Ih% =1hi% =Y ¥ r(e') < Y(1+4r,) ——( )
t=0uic 0 —o s +2r
t

Let M= \/(1+ r,)’/(r2+2r,) and & ={hel? /llhl, <M}. Recaling that
L2, is areflexive set, the Theorem of Kakutani applies (see, for example, Brézis,
1983, p. 44), and % is a weakly compact set.

Let JcJ', and N€IN, as 7] %], 1, we find that KY.,cKJ. We next show
that for every J and N, K is anon- empty and weakly closed set. First, K isa
non-empty set because there exists k in HyN L%, ., such that k(0) = 1. Next we
prove that KN is aweakly closed set.

Let (hy), C KJ be a sequence converging weakly to h. First, we fix some t e N
and w e _Q and let 4 be a function mapping L2, into itself and defined by y(t,
) = 1 and zero otherwise. From the weak convergence, we get that h(t,») goes
simply to h(t,w). It is easy to see that h € L2, . Now, if we fixed agam some t,
we get that h oty )— E[h,IX"] goes to h(t, - )— E[h[X'] as p goes to infinity.
Recalling that h we get that h(t,-) = h(t,-) and hence h=h. Then, we
choose for ¢ the function defined by (0) = 1 and ¢ equal to zero elsewhere, this
function belongsto L2, and so (h,, ¢ )., = h (0) = 1 converges simply to (h, 4 ),
= h(0) = 1. Finally, Iet vesc Lﬁy, (h, 1P>M < 0 convergessimply to {h, ¥ ),
and (h,¥), <0. We conclude that he KN

The sequence(K );n Of Z, which is a weakly compact set, is a decreasing
sequence of non-empty, weakly closed set. From a compactness argument, their
intersection K is a non-empty set, furthermore K does not_reduced to zero.
Remarking that each K is a convex and weakly closed set, K isaso a convex
and weakly closed set. As K is subset in the weakly compact set %, K is aso
weakly compact.
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Step 2: use of a fixed point theorem.

Let us denote by T*" the adjoint of T". Using the adjoint property, that is for

dl @ and hincluded in L2, (T“(®),h),, = (&, T*"(h)), it is easily checked that
T*'(h)(n,0) =h(n+1, (u,w)).

In the same way, we prove that the adjoint of T¢, denoted by T*¢, is defined by
T*9(h)(n,w) =h(n+1, (d,0)).

Let 4" be the mapping from K into K and associating to h, y“(h) = (T*"(h)
+h)/(T*"(h)(0) + h(0)). First, we justify that if h belongsto K then “(h) also
belongs to K. We see immediately that ¢“(h)€L?, and ¢“(h)0)=1. It
remains to show that for every N € N, for every finite subset Jof I, y'(h) e HN
or equivalently T*(h) € HJ. As h belongsto K, he K}, , C HNJ+l Let pe S,
then TY(p) € X, ;. Hence we find that {(TY( p) h).,, <0, and from the adjoint
property ¢ p,T*Y(h)), < 0. This prove that T*“(h) € Hy. From the linearity of
T*" and of the conditional expectation, we get that

TFi(h)(n,) = E[T*“(h)(n, )| X"] =T*“(E[h(n,-)IX"])

=T*(h)(n,").

Recalling that he HY, ,, and thus h=h, T¥U(h) = T*%h) = T*'(h). Accord-
ingly, we proved that T*"(h) € H for al N and for all finite subset J of 1.

Next, we prove that " or equwalently T*Y is weakly continuous. Let
(hy), € L%, converging weakly to h. Let € L%, <T**(h,), ¢y o = Ch, TU()).,
asT”(d;) eL?, (h,, T¥()). converges simply to (h, T”(zﬁ))M ={T*h), ).

The mapping l,l;” is weakly continuous from K, which is a convex, weakly
compact set into itself and Theorem of Schauder—Tychonoff (see Dugundji and
Granas, 1982) applies: there exists a fixed point | for ¢". Notice that 1(0) = 1 and
thus | is not equal to zero. Moreover, we have that,

T +1
T*(1)(0) +1°

Denoting by a, = T*"(1)(0), we get that T*'(1) = a,. .

Let ¢ be the function mapping L = Km{heL 2,/T*%(h) = a,h} into L,
defined by ¢ 4(h) = (T*"(h) + h)/(T*%(h)X0) + h(0)). First, we justify that if
hel, then yih) L. As prewously done, we prove that ¢ %h) € K, it remains
to prove that ¢ %(h) € {h L2,/T*“(h) = a,h}. To do that, we first prove that for
dl hel, 9o T*9(h) = T*9o T*(h),

T e T*h)(n,0) =T*"(w->h(n+1,(dw)))(n o)
=h(n+2, (u,dw))
—h(n+2, (d,u,w))
=T*(w->h(n+1,(uw)))(ne)
— T T*U(h)(n,w).
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We used that h belongs to K, and therefore is independent of the path.

If we denote by id the function mapping L2, into itself and such that id(®) = @
we get that for all he L,

T*9h) +h T*%e T*Y(h) +id e T*"(h)
Ty () =T*“(T*d =

(h)(0) +h(0) T*7(h)(0) +h(0)
(T**+id) e T*(h)  (T*+id)(a,h)
T*(h)(0) +h(0) ~ T*%(h)(0) + h(0)

T*%h) +h
= Xy 4 =au¢d(h)'
T*(h)(0) +h(0)

As previously done, we prove that Y9 is a weakly continuous function
mapping L, which is a convex and weakly compact set, into itself. The theorem of
Schauder—Tychonoff applies and we get that there exists a fixed point f for ¢
Notice that f(0) =1 and thus the fixed point is not equal to zero. Let ay=
T*9(£)(0), we get that T*(f) = a, f. Recalling that fe L: we get that T*"(f) =
a,f. Recalling that |wl, is the number of up in »" and using the fixed point
properti&s, we prove by induction that

f(n w) = alw‘nan_lm‘n

Notice that T*(f)(0) = «,f(0)=«, and hence a,+ ay=T*"(f)0) +
T*9(f)0). Recdling tha feK, and that . contains T%M?, we get that
—f(0) + [T(f)(Ww) + T(EXDKL +r) <0. As T(f)w = T*%(f)0) and
T(f)(d) = T*(£)0), we find that a,+ ay<1/(1+r,). Remark aso that
fel?, and therefore (a,,ay) €10, 1/(1 + 1yl

Suppose that «,=ay=0 then for all mveﬂments i, &0 <0. If every
investment is equal to zero at time zero, it is sufficient to shift the zero of the time
origin. Now, if every investment is negative, recalling that the investor has no
money to begin with, she/he cannot begin any strategy, and it is obvious that
there is no-arbitrage opportunity. We conclude that «, and «4 cannot be
simultaneously equal to zero, in a model where trade occurs even without an initial
amount of money.

Let r = [1/(a +a)l—1, and 7* =[e,/(a, + ay)], it is straightforward to
provethat 0 < 7* <1, r>r,, and that f(n,w) = gt m*“I(1 — 7*)" 19l we
get that
T

Y e [@(n)] <0

n=0(l+r)

Remark. We use Assumption 2.1 and harmonized investments in order to prove
that T*"o T*% = T*%0 T*" and thus to find a common fixed point to 4" and v °.
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2.6.2. Proof of Theorem 2.2

To prove the first implication it remains to show that under Assumption 2.2
m* €]0,1[. Suppose that =* =0, then there exists r >r, such that for every
mvestment i, oh_ o <0[1/(1+r)"]d;(d" < 0. Indeed, we remark that the unique
o"e 0, such that |w|, = 0is d". This contradicts Assumptlon 2.2 for investment
I, with x=1/(1+r)€]0,1/(1+r )]0 Now if 7* =1, there exists r >,
such that for every investment i, we have Xl o[1/(1+ r)"l®;(u) < 0. Th|s
contradicts Assumption 2.2 for investment k, with x=1/(1+r)<]0,1/(1+
rp)[c]O,l[.

Conversely, suppose that there exists two real numbers r and #*, with
0< 7* <1, such that for al i I, we have

T

n=0(1+ r)n
Thus

E*[®(n,-)] <0

g ( . r) [ e = a) " (n,0)dP(w) = (f,@,)., <0,

we

(2.1)
where we use the notation, f(n,w) = gt m*“I(L — 7*)" 1ok,

Suppose that there exists an arbitrage in the sense of Definition 2.4. Then there
exist an investment horizon N, a finite subset J of | and a strategy A € A},
leading to a non-negative and non-zero payoff p,. If we multiply Eq. (2.1) applied
to the assets T‘“p(@j), by A;(wP) which is non-negative, and if we sum on every
wP and for al j € J, we get that {f,p,). < 0. But the previous inequality is the
scalar product between the positive function f and the non-negative and non-zero
function p,. This lefthand-side should be positive and we get a contradiction. |

3. Application to the transaction cost case
3.1. The model

We study a very simple model, which displays the following properties.

The model contains an underlying asset, which price process follows a binomial
process denoted by S=(S),.. This means that S(t,w) = Sul“ld'~ Il This
asset represents the productive power of the economy. We assume that the price S
is a strictly increasing function of the produced quantity. We assume that there are
some proportional transaction costs on the underlying asset. We denote by c the
buying transaction cost, where ¢ > 0 and by ¢’ the selling transaction cost, where
O0<c<1l
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We use the same probability space (£2, %, P) as in the previous section, and
also the same filtration. Notice that in this model the filtration can aso be defined
by #,=0(S,,...,S). The horizon of dates is infinite and we choose for P the
unique probability which turns the coordinate mapping X, to be independent and
identically distributed, and such that P(X,=u)=P(X,=d)=1/2.

The model contains an infinite number of consumers i, which are assumed to
be infinitely small. Each consumer i has a finite life time equal to T,. Notice that
the horizon of dates is infinite. The consumers have preferences over their
consumption al over the time. More precisely, we assume that at each date t, the
consumer i specifies her /his preferences thanks to the function u; ;. We assume
that each function u; , is strictly increasing and strictly concave. The utility of an
adapted consumption process ¢, ={c,(t,0)/t=0,...,T,0 € 2} L?, is given
by:

U(e) = LA u(e(te)dp(o) = L el (e(t)].

weE

This utility is in fact the discounted sum of the expected value of the consump-
tions' utility. The discounted rate B;/2 is called the psychological rate and it is
positive. Notice that we have included the 2" of the scalar product in the
psychologica rate.

The model includes a lending rate equal to r, and a borrowing rate equal to r..

We consider afamily of options (call and put options) written on the underlying
asset They are indexed by their common exercise date T and a real humber k,
which allows to compute the exercise price. We assume that at each date t, there
exists an option with exercise time equal to t + T and exercise price equal to kS.
Recall that a call (respectively put) option is the right to buy (sell) at the exercise
date, the option at the exercise price We say that an option is not trivia if
d" <k<u'. Otherwise, assume that k>u', k§>Su'>S,, then (S,;—
kS)* =0, and the call option is not an interesting asset. Moreover, the put option
will have a payoff equal to (kS — S ), which is strictly positive and the put
option is a static combination of the underlying asset and of an obligation. In the
same way, if d" >k, S, 1= Sd" > kS, the cal option will be such a combina
tion and the put option will have a zero payoff. We assume that there exists a
bid—ask spread on the option price. This includes the transaction costs case. The
buying price for a call option at time t will be denoted by C(T,k,S), and its
selling price at time t by C'(T,k,S). We assume that the prices are homogeneous,
that isto say C(T,k,AS) = AC(T k,S), (respectively C'(T,k,AS) = AC'(T k,S)).
This means that if there is a change of scale on the asset price, the same one will
apply on the options price. We can also think this property as an invariance against
the monetary unit.

Finally, we assume that there exist some assets called exchange assets which
alow to transfer money from two particular states against an initial cost. For every
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date t, and every states o, w E £ such that |w'|; =|wly, if the consumer pays at
time t =0 (initial state) py ' , then she/ he can exchange at time t $1 from state
o to state w'. This asset is denoted by E‘“ " This possibility is given not only
from the initial state but from every state of the world having ! and o' as
successor. We also allow some transaction costs on the exchange assets. Notice
that the consumer receives (algebra|cally) at time zero —p‘” ' in order to
exchangeat time t, $1 from state o' to state w. Thus, —pg" ' jsthe selling price
of E¢"" and from the transaction costs this number is in general different from
its buying price pg

Each consumer i maximizes her /his individual utility U,, and has a demand
function called D;. The tota demand of the model is the sum of the individual
demands, which makes sense because the consumers are assumed to be infinitely
small. As the single production possibility is the underlying asset, the supply is
defined by the production in this asset. We will say that the model is at
equilibrium when every consumer maximizes its individual utility function and
when the demand is equal to the supply.

3.2. Main results

Suppose that the lending rate is equal to the buying rate and denote by
r=r,=r, this common value. When there is no transaction costs, the price at
time t of an option with exercise time equal to t + T, and exercise price equal to

kS, is

CRR(T k&) = - o ZocTw*'u =) I(suldT —ks)
]

where ur* +d(1 — 7*)=(1+r).

Thisis the main result of the model of Cox et a. (1979). Recall that the limit of
this formula in continuous time is the well-known formula of Black and Scholes
(1973). The option price is the expected value under the probability, defined by
the transition probability 7*, of the terminal value of the option discounted at the
rate r. We mention that when there are transaction costs, the no-arbitrage
condition alows only to situate the option price in an interval. The lower
(respectively upper) bound of this interval corresponds to the lower (respectively
upper) option price that does not allow arbitrage. Moreover, as showed by Jouini
and Kallal (1995), the bounds of every sub-interval also define no arbitrage bid
and ask prices. Of course, the Black—Scholes’ price, or the Cox—Ross—Rubinstein’s
price in discrete time setting, belong to the maximal interval, but they do not
belong to every sub-interval of the maximal one. We show that with an infinite
time horizon, the Cox—Ross—Rubinstein’s price is always between the selling and
buying price.
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Theorem 3.1. At the equilibrium, there exists an equilibrium rate r, between r,,
and r,, and a real number 7* €]0,1[, such that uw* + d(1— #*) =1+r, and
for every datet,

C(T.k,S) <CRR(Tk,S) <C(Tk,S).

If we consider the case of a buying (respectively selling) transaction cost on the
option equals to u (respectively w'). We denote by C, the option price process,
that is C(T,k,§) =1+ w)C(T,kS) and C(T,kS)=(1—w)C(TkS). In
this case, we find explicit bounds on the option price.

Corollary 3.1. At the equilibrium, there exists an equilibrium rate r, between r,
andr,, and areal 7* €]0,1[, such that uw* + d(1 — #*) = 1 + r, and for every
date t,

L CRR(T.K.S) <C(T.K.S) < CRR(T k.S).
1+ ®

1-w

If there are transaction costs on the underlying asset but not on the options, we
find that the option price is the Cox—Ross—Rubinstein’s one.

Corollary 3.2. At the equilibrium, there exists an equilibrium rate r, between r,
and r,, and a real number 7* €]0,1[, such that uw* + d(1 — #*) = 1+r, and
for every date t,

C(T.k,§) =CRR(T.,Kk,S).

3.3. Proof of Theorem 3.1
We first prove that our model satisfies the stationarity property.

3.3.1. Sationarity

The first step is to give the representation of the considered assets in term of
cash-flows. We first express the cash-flow AV'e'vB which corresponds to the
buying at time t, and the selling at time t, of one unit of underlying asset if event
the B€ %, occurs:

AVREE(tw) = —Sutd TN (L4 ) I (D) ], < s( @)

+Suetd T (1= ) L (1) ], c ().
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Next, we express the cash-flow VA8 which corresponds to the selling at
time t, and the buying at time t; of one unit of underlying asset still if the event
the B 7, occurs.

VAR B(t ) = Sutd™ (1 - ) I (D)1, c s( @)

— U (L4 €) ()], c o @)

Next, we represent the cash-flows generated by the lending and the borrowing
rates. The cash-flow TP''8 represents the lending of $1 at time t, if the event
B .7, occurs and its withdrawal at time t,, till if the event B occurs,

TPoB(t,-) = —lgl_ + (14T, )t Clgl tyr

The borrowing of $1 at time t, if the event B € &, occurs and its refunding at
time t,, still if the event B occurs generate the following cash-flow, called
TE:.B:

-l_Eto'tl'B(t"):|B|t=10_(1"'re)t tOlEslt t,"

Now, we express the cash-flow generated by the options. Let AO'T'kB pe the
cash-flow associated to the buying at time t, of a call option of exercise date
to+ T and of exercise price kS, if the event B €%, occurs.

AOIO,T,k,B(t,.) = _C(T,k,St)|t=t0|B+ (S kSt ) t=tg+T 8-

Now, if we consider the selling of a call option of exercise date t,+ T and of
exercise price kS, if the event B€.%, occurs and denote by VO ™*® the
associated cash-flow, we get that:

VOIO,T,k,B(t,.) :C’(T,k,St)It:tolB—(S[ kS[) t=to+T B

In order to prove that the stationarity assumption holds, we can check by
induction that for every n and every o" € 0,

Twn( Avto,tl,B) — uf\w\nd\w|nanvt0+n,t1+n,Bwn, (31)

where B, = {(0",0)/w € B} €., .. The same formula holds for VA%, We
can also check that

Twn( Aoto,T,k,B) - uflw\nd|w\nanot0,T,k,B' (32)

and again the same formula holds for VO'oT:¥-B,

This prove that the cone generated by the cash-flows AV'otB VAlWwB
AO'TkB and VO kB js a stationary set of investments. Notice that the same
results also apply for the put option, and therefore the cone generated by the put
option cash-flows is also stationary.

Moreover, it is straightforward to see that T"(TPwB) = TPlo+nt+n.Bun g0
as well for TEWB,
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Finally, the exchange assets are stationary by definition, because we have
assumed that we can transfer at each date and in each state of the world. Thus,
T"(EL"") = Elg""«"«™ and this one exists by assumption.

In order to prove Theorem 3.1, we want to use the results of the second part. To
do that, we prove that Assumptions 2.1 and 2.2 are satisfied.

3.3.2. Assumptions 2.1 and 2.2

We have already seen that Assumption 2.2 is satisfied if the model contains a
non-trivial call and put option, which is assumed to be true by construction of this
model. For example, consider the case of a call (respectively put) option at the
money. As the selling price of call option C'(T,1,S,) (respectively the put option
P'(T,1,S)), is positive and (§d"— §)*=0 (respectively (§,— Su")*=0),
Assumption 2.2 is trivialy satisfied. We have aready seen that the considered
model is stationary.

First, we prove that at the equilibrium, there is no arbitrage opportunity.
Otherwise, assume that there exists an arbitrage opportunity in the sense of
Definition 2.4. Then there exists a finite subset J of 1, an investment horizon
N> T, and a strategy A € Ay, leading to a non-negative and non-zero payoff p,.
Without any excess cost, the consumer i can add A to her/his portfolio and
therefore consumes ¢p, more. Let ¢; be the initial consumption of consumer i.
Her /his utility at time t and in the state of the world w varies of
ep(t,w); (c(t,w)) + o(e). Recalling that all the sums are finite, the variation
of her /his global utility is equal to

Ti
eX. B[ dP(@)p(to)u (c(tw))+o(e).
t=0 ~@E€0

Notice that the utility u; , is a strictly increasing function and the function u; , is
strictly positive. Moreover, the payoff p, is a non-negative and non-zero function.
The total variation of the utility is then positive. The individual optimization
problem of agent i has no solution and there is no possible equilibrium.

At the equilibrium, there is no arbitrage opportunity and from Section 2.6.1,
step 1, we conclude that for every finite subset J of I, for every investment
horizon N> T,, the set

Hi= (53)° = {hel2,/(h,p), <0, Vpe Si),

of separating forms (often called numéraire) contains a positive element denoted
by k and normalized to k(0)=1. We put Ky=HJNO, where O:={he
L2,./h(0) = 1}. This set is non-empty and also weakly closed. Recall that consid-
ering TP, U 7], the set Ky is included in the weakly compact set % ={he
L2, /lIhll, < M}. Thus, the set Ky is weakly compact.

The next step consists in showing that every investment of Hy is independent
of the path, that is Hy = Hy. To do that, we fix an investment horizon N, and a
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finite subset J of | containing the exchange assets occurring before N. Let us
consider two states of the world w and ', such that |o'|y =|w|y. First, we prove
that there exists h* € K} such that h*(N,w) = h*(N, o").

To see this point, we first show that the mapping h — h(N,w) is weakly
continuous on L2, where w isfixedin (2. Let ¢ be the function equal to 1in (N,
) and zero otherwise, ¢ belongs obviously to L%,. Let (h,), be a sequence
converglng weakly to some h, then (h,, ¢’>M =2Nh (N ) converges to (h,f )y,
= 2"h(N,w). Recalling that the set KN is weakly compact and non-empty,
g =inf, . KJ:((L“ @) exists and is reached. We will prove that gy = 1. Otherwise,

suppose that ¢ > 1 We denote by ¢ the asset paying at time N, g3 in state o’
and —1 in state w, and nothing else. We do not assume that such an asset is
feasible and belongs to the investment set.

Let he Ky, (h,eqa=2Nh(N,»")q — h(N,w)) < 0, by definition of qgy; thus,
we get that ¢y € (KR)°. In order to work in the finite dimension space %, we
consider the isometrics by 1" of our sets. Applying well-known results on negative
polar sets, we find that,

(T(K3) = ((1(8) 0 7(0) =((1(8)) + (T ()"
= 7(S) +(1(0))"

Hence, there exists x,, such that 7'(x,) € (T(0))° satisfies ¢ — X, € Sy, that
isto say ¢y — X, belongs to the set of investments build from J ending before N.
We consider a consumer i with life time T, greater than N, and equilibrium
consumption equal to c*. Suppose that she/he adds e(¢y — xy) to her/his
equilibrium portfolio.

Thanks to ¢y, the consumer i consumes at time t =N, ¢f(N,w) — ¢ in state w,
c*(N,w') + eqy and her /his consumption does not change in the other state of
the world. Thus, the utility of consumer i a time N will vary of
—eU o (¢ (N,0)) +0(e) in state w, and of +eqiu; y(cf(N,0))+0(e) in
state ', and zero otherwise. The globa variation of the utility is then equa to:

8(;) [_u,i,N(Ci*( N,a))) +q,€,U/i'N(Ci*(N,a)’))] +0(&).

Now, thanks to — e x, the utility of consumer i varies a time t and in state w
from —exy(t, ), (cf(t,w)) + 0(e). The globa variation from the utility is
then equal to:

_a_zi,Bitf dP(w) xy(t,@)U; (cf(t,w))+o0o(e)

we ()

= —e{z,Xy)w +0(&),
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where z(t,w) = ( B,/2)'t; (cf(t,w)). Notice that the utility u; , is strictly increas-
ing and concave, so that the function U, is positive. Hence we get that
zy/U; o(cF(0) =1, and thus [z/U; ((c;(0))] € O. We deduce that (z, X\ )y =
(T(2),T(x))% < 0.

As c is the optimal consumption, the total variation of the utility should be
non-positive. Thus,

B " / / !/
(7] Tt (o) + g (e (Vo)
—e{z,Xy)v+0(&)<0.
As qy is strictly greater than 1 and { z, X )., iS non-positive, we obtain that,
Ui n(CF (N, @) <ui \ (¢ (N, w)).
Moreover, the function u; \ is strictly concave and
¢'(N,0')>cf(Nw).
This last inequality is true for every agent i, so that summing over all consumers
living at this date (this makes sense because the consumers are assumed to be
infinitely small), we find that the total consumption at date N and in state w is
strictly greater than the demand at time N and in state w. Thus, the economy
should produce at time N, strictly more in state ' than in state w, that is

S\(@") > S (w). This contradicts the binomial evolution of the underlying asset

and proves that inf, . ;. "Nv) < 1. Using the same line of arguments, we show
h(N, ")

the converse inequality and finally, infy, ., "N.) =1, Hence, with J, N, w, such

h(N
that |o'|y =|wly, fixed, there exists h* € |(<3,, such that h*(N, ) = h*(N,).
Next, we prove that the equallty HJ=H; holds.
Recalling that h* € K, we get that h* € H. Moreover, the exchange securi-
ties E@veN and E@vev belong to S. We obtain that,

—penenh*(0) — 2Vh* (N, w) + 2Nh*(N,w') <0
and
—pgh et (0) + 2N (N,w) — 2N (N, o) <0,

As h*(N,w) =h*(N,w'), and h*(0) =1, we get that p@“v and pghen are
non-negative. We call c; (respectively c)) the buying (respectively selling)
transaction costs on the exchange assets. Hence, there exists x such that paying
X[(1+ ¢,) /(1 — c,)], we can exchange $1 at time N from state w to state «’ and
peven = x[(1 + ¢;) /(1 — ¢;)]. Now, receiving x[(1— c})/(1+ c,)] at time zero,
the consumer exchanges $1 at time N from state o' to state w, and thus
—pgven =x[(1—c))/(1+c)]l. We obtain that pgvev= —[(1+c,)/(1—
c)Ppghen. As pgven and pghvn are non-negative numbers, we get that pgven
and pgven are equal to zero.
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Let he HJ, recalling that E¢v@v and E¢V ey belongsto S, we get that,
—2Nh(N,0) + 2"h(N,w') < 0 and 2¥h(N,w) — 2%h( N, o) < 0.

Thus, for every J, N, w, such that |o'|y =|w|y ad he HY, we obtain that
h(N,w) = h(N,»"). We proved then that for every finite subset J containing the
exchange assets and for_every investment horizon N, the equality Hy = Hy holds.
Recalling that the set H,] is non-empty, we get that Assumption 2.1 is satisfied.

3.3.3. End of proof of Theorem 3.1

We now can apply the result of Theorem 2.2 to our model and there exists two
real numbers r and #*, with r>rP and O0< #* <1, such that for every
investment i € I,

Ti

)»

n:omE*[q}i(nr)] <0

where E* is the expectation under P*, which is the unique probability making
the coordinate mappings independent and identically distributed and such that
P¥*(X,=w==* and P*(X,=d)=1— #*. Applying this result to the under-
lying asset, and more precisely to AV > and VA®“ % we get that,

1-¢ 1 XI:CJ Vi di1 et 1+c
< — < .
1+C_(1+r)‘j=0 {(umr )( ( T )) =1_¢

Thus, we obtain that,

1-¢ ur* +d(1-7*)\' 1+c
< < .
1+c 1+r 1-¢

We deduce that, = (ur* 4+ d(1 — #*)) = 1. Otherwise, if 0< 1/
A+ r)ur* 4+ d(d — #*)) < 1, taking the limit, we will get that ¢ > 1, which is
impossible by assumption. The probability defined by the transition probability 7 *
is the Cox—Ross—Rubinstein’s probability.

Applying Theorem 2.1 to the interest rate r,, and more precisely to TE® %,

we get that 1 — o+ (7* + (1 — 7*))(1 +r,) < 0. Finally, we obtain that r, <r <

1+r
r

e

Now applying Theorem 2.2 to the options AO"“T*?t and VO'"T'k we get
that,

Z W*W\HT(l_ﬂ.*)t*T*W\HT

.
SR

C(Tk,S) +

(1+1)" (1+n)"7 .

X(SHT_kSt)Jrlw‘en‘Sov
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- Z W*\wIHT(l_ ,n_*)HT*\leT
(1+r) wt+TEQl+T

.
X(SJrT_ kS) lote .Q‘SO-

Remarking that, ¥, c o 7**M(1— 7)ok = Tt Cla*I(1 — 7)1 = (7% +

(1— 7*))' = 1, we obtain that,

Z W*lw‘HT(l_W*)I+T—|M‘I+T(S+T_kS)JrIwIE_Q‘

t+T
o ED

= i’ﬂ*j(l - W*)TijC%(Sude_j -kS)
i=0

WC’(T,k,S)

+

Thus, denoting by:

CRR(T k,S) = ﬁ_ioqw*i(l — ) I(uld™ —ks)
iz

we get that,
C'(T.k,§) <CRR(T,k,S) <C(T.k,S).
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