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1. Introduction

The aim of this paper is to establish a compactness result on some function sets.
More precisely, our paper extends the concept of Lipschitz functions to a larger class
including nondecreasing (nonnecessarily continuous) functions, functions with bounded
below derivatives. We prove then that a bounded subset of this set of “generalized”
Lipschitz functions is relatively compact. This result as Ascoli’s theorem can be applied,
in particular, in order to establish existence results for some families of di�erential
equations.
The main idea is very simple: it su�ces to change the axis in order to transform a

family of nondecreasing functions in Lipschitz ones and then to apply Ascoli’s theorem.
As we will see, this simple geometrical approach can be extended to a wider class of
functions.
The paper is organized as follows. In the next section we shall de�ne the concept of

Q-Lipschitz functions, where Q is a convex cone and we shall construct a particular
topology on this set. In Section 2, we shall establish our compactness result and we
shall explore some properties of the considered topology. In Section 3, we shall extend
the previous result to a more general class of functions and in Section 4 we shall
present some applications of our result.
At the end of this introduction we recall some useful de�nitions and notations.
Let Y be a closed subset of R‘ then, for every y∈Y , the tangent cone TY (y) in the

sense of Clarke consists of all vectors v∈R‘ such that, for all sequences {t k}⊂ (0;∞)
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and {yk}⊂Y converging, respectively, to 0 and y, there exists a sequence {vk}⊂R‘
converging to v, with yk + t kvk ∈Y , for all k. Clarke’s normal cone is then de�ned by
polarity as follows:

NY (y)=TY (y)◦= {p∈R‘: pv≤ 0; for all v∈TY (y)}:

Let A be a subset of R‘; we will denote, respectively, by @A, cl(A), int(A) and
cone(A), the boundary of A, the closure of A; the interior of A and the convex cone
generated by A. If A is a subspace of R‘; we denote by projA, the orthogonal projection
on A:
If f is a given real-valued function de�ned on some subset A of R‘, we de�ne the

epigraph of f by

E(f)= {(x; �)∈A×R: �≥f(x)}

and we say that f is lower semi-continuous (l.s.c.) if E(f) is closed.
For x and y in R‘; we will write x≥y (resp. x�y) when xh≥yh (resp. xh¿yh)

for h=1; : : : ; ‘. Finally, we de�ne the following sets:

R‘+ = {x∈R‘: x≥ 0}

and

R‘++ = {x∈R‘: x� 0}

and, for e in R‘; we will denote by e⊥ the set de�ned by

e⊥= {x∈R‘: xe=0}:

2. Q-Lipschitz functions

Let Q be a nonnecessarily convex cone with vertex 0 of Rn×R. If q is an element
of Q we will denote by q′ and q′′, respectively, in Rn and R, the unique pair such that
q=(q′; q′′).
Let f be a real-valued function de�ned on a given compact subset K of Rn, we will

say that f is Q-Lipschitz on K if f is l.s.c. and satis�es

∀x∈K; ∀q∈Q; x + q′ ∈K⇒f(x) + q′′ ≥f(x + q′)

or equivalently, from a geometric point of view, if E(f) is closed and satis�es

[E(f) + Q]∩ (K ×R)⊂E(f):

Example 1. For k in R let us consider the cone Qk de�ned by

Qk = {(x; �): �≥ k‖x‖}:
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It is easy to see that f is Qk -Lipschitz on a given set if and only if f is k-Lipschitz
on this set.

Example 2. If Q=(−R+)n×R+; then it is easy to see that f is Q-Lipschitz on a
given set if and only if f is nondecreasing relatively to each coordinate on this set.
Note that f is not assumed to be continuous.

For a given cone Q with vertex 0 and nonempty interior and a given subset K of
Rn, let us de�ne the set Lip(Q;K) as the set of Q-Lipschitz functions on K . We will
construct in the next a particular topology on this set and we will call it �-topology.
Let us consider that (e1; : : : ; en+1) is the canonical basis of Rn×R endowed with

the canonical scalar product. It is easy to see that Lip(Q;K)=Lip(Q′; K) where Q′=
cone[Q∪{en+1}].
Now remark that if Q′′ ⊂Q′ then Lip(Q′; K)⊂Lip(Q′′; K). Furthermore, since Q and

then Q′ have a nonempty interior, then there exists an element e′ in Q′ and a positive
real number �′ such that ‖e′‖=1 and B(e′; �′)⊂Q′. We clearly have e′ 6=−en+1, indeed
if this were not the case then we should have, for all (x; �)∈Rn×R, f(x)−�≥f(x).
Furthermore, if we de�ne e by e=(en+1 + �e′)=‖en+1 + �e′‖ and � by �=(�=‖en+1+
�e′‖)�′; for � su�ciently small, then we have een+1¿0 and B(e; �)⊂Q′.
It su�ces then to construct the �-topology on Lip(Qe� ; K) with Q

e
� = cone[B(e; �)]. In

order to simplify the notations, we will denote by Q the set Qe� .
Let f in Lip(Q;K) and let us de�ne the set E(f) by E(f)=E(f)+Q. It is clear then

that we have E(f)+Q⊂E(f) and, by de�nition of Lip(Q;K), E(f)∩ [K ×R] =E(f).
Let us now consider the real-valued function �f on e⊥ de�ned for y in e⊥ by

�f(y)= inf{�∈R: y + �e∈E(f)}. We also consider the function �f on e⊥ with
values in Rn×R de�ned for y in e⊥ by �f(y)=y + �f(y). We have the following:

Lemma 3 (Bonnisseau and Cornet [2]). The functions �f and �f are well de�ned
and
(i) �f is a homeomorphism between e⊥ and @E(f); with inverse proje⊥ |@E(f),
(ii) �f is Lipschitz and @�f(y)= {p∈ e⊥: p− e∈NE(f)(�f(y))} for all y in e⊥.

Since E(f) + Q⊂E(f), then for all z in @E(f), we have Q⊂TE(f)(z) and conse-
quently NE(f)(z)⊂Q◦. Furthermore, we have B(e; �)⊂Q which implies that Q◦ ⊂{p+
�e: p∈ e⊥; �≤−�‖p‖} and consequently @�f(y)⊂{p∈ e⊥: ‖p‖≤ 1=�} for all y in
e⊥. The function �f is then 1=�-Lipschitz on e⊥.
In the next, we will consider subsets of Lip(Q;K) denoted by LipM (Q;K) (with M

in R∪{+∞}) and de�ned as the set of functions of Lip(Q;K) bounded by M on K .

Lemma 4. If f and g are two functions in LipM (Q;K) with �f(y)= �g(y) for all y
in proje⊥(K × [−M;M ]) then f= g.

Proof. Let x in K , it is easy to see that (x; f(x))∈ @E(f)∩ (K × [−M;M ]). If we
denote by y the projection of (x; f(x)) on e⊥, we have then y + �f(y)e=(x; f(x))
and consequently y + �g(y)e=(x; f(x)). This proves that (x; f(x))∈E(g) and it is
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easy to show then that g(x) is necessarily lower than f(x). A symmetrical reasoning
gives us that f(x)= g(x) and then f= g on K .

De�nition 5. The �-topology on LipM (Q;K) is de�ned as the weakest topology for
which the mapping 	 :f→ �f de�ned from LipM (Q;K) into the set of 1=�-Lipschitz
functions on proje⊥(K × [−M;M ]) endowed with the uniform convergence topology is
continuous.

In particular, we have that the sequence (fn) converges to f in LipM (Q;K) if and
only if the sequence (�fn) converges to �f for the uniform convergence topology on
proje⊥(K × [−M;M ]).

Theorem 6. For M¡+∞; LipM (Q;K) is compact for the �-topology.

Proof. Let f be in LipM (Q;K) and let x0 be an element of K . We have clearly that
(x0; M)∈E(f) and we can �nd a unique pair (z1; z2) in e⊥ ×R such that (x0; M)= z1+
z2e. Let y be an element of e⊥, let t be the real number de�ned by t=2‖z1 − y‖=�
and let v be a vector of e⊥ de�ned by v=−(z1 − y)=2‖z1 − y‖. It is easy to see that
y+(t+z2)e=(x0; M)+ t(e+�v). Since e+�v is in B(e; �) and (x0; M) is in E(f), then
t(e+�v) is in Q and y+(t+z2)e is in E(f). Consequently, we have that �f(y)≤ t+z2
and can be bounded independently from y when y is in proje⊥(K × [−M;M ]).
We have then that 	[LipM (Q;K)] is bounded in the set of all the real valued 1=�-

Lipschitz functions on proje⊥(K × [−M;M ]). Following Ascoli’s theorem, 	[LipM (Q;
K)] is then relatively compact. Since 	 is, by de�nition of the �-topology and by
Lemma 2, a homeomorphism between LipM (Q;K) and 	[LipM (Q;K)] we have that
LipM (Q;K) is relatively compact. The closedness of this last set is easy to check and
we obtain then the required result.

Next, we will establish links between the �-topology and some classical notions of
convergence in functional spaces.

Proposition 7. If (fn) is a sequence in LipM (Q;K) converging for the �-topology to
some f in the same set then we have the pointwise convergence at every continuity
point of f in int(K).

Proof. In order to simplify the notations, we will denote �fn by �n and �f by �. By
de�nition of the �-convergence, we have that the sequence �n converges uniformly
to �. Let x be in int(K), let e′ be the orthogonal projection of e on (e1; : : : ; en) and
let �¿0 such that x′= x − �e′ is in K . Let us consider now y in e⊥ de�ned as the
orthogonal projection of (x′; f(x′)) on e⊥ and 
 such that y + 
e=(x′; f(x′)). We
can easily check that �(y)= 
 and we can choose n0 su�ciently large in order to
have ‖�n(y) − �(y)‖¡� for all n≥ n0. By de�nition of �n, we have y + �n(y)e +
q∈E(fn) for all q in Q. It su�ces to consider q=(�− �n(y) + �(y))e to obtain that
(x′; f(x′))+�e∈E(fn) which clearly implies that fn(x)≤f(x′)+�een+1 or equivalently
fn(x)≤f(x − �e′) + �een+1.
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Since f and fn play the same role, we have also f(x)≤fn(x−�e′)+�een+1 and if we
replace x by x+�e′ we obtain that f(x+�e′)≤fn(x)+�een+1. If x is a continuity point
of f then for a given �¿0 we can chose �¡� in order to have ‖f(x+�e′)−f(x)‖≤ �
and ‖f(x − �e′) − f(x)‖≤ �. For such an � we have then that ‖fn(x) − f(x)‖≤ 2�.
This completes the proof.

Proposition 8. If the sequence (fn) converges to f in LipM (Q;K) for the �-topology
and if f is continuous on int(K) then the sequence (fn) converges uniformly to f on
all the compact subsets of int(K).

Proof. The proof of this result is a direct adaptation of the previous one. Indeed on
the compact subsets of int(K), f is uniformly continuous and we can then chose �
independently from x in order to have x±�e′ ∈ int(K) and ‖f(x±�e′)−f(x)‖≤�.

Lemma 9. If f and g are in LipM (Q;K) with f≥g, then ∫K (f−g)≤ ∫
proje⊥ (K× [−M ;M ])

(�f − �g).

Proof. It is easy to see that
∫
K f(x) dx=

∫
−M≤y≤f(x); x∈K dx dy−

∫
−M≤y≤0; x∈K dx dy.

Let now (x; y)∈K × [−M ;∞[ such that y¡f(x), we have clearly that (x; y) 6∈E(f)
which is equivalent to proje⊥(x; y) + [(x; y)e]e 6∈E(f) which in turn is equivalent to
(x; y)e¡�f(proje⊥(x; y)).
Furthermore, we have already seen that when y=f(x) then (x; y) · e= �f(proje⊥(x;

y)). Let us denote by � and �′, respectively, the following sets �= {(x; y)∈K × [−M;
∞[: (x; y)e¡�f(proje⊥(x; y))} and �′= {(x; y)∈K × [−M;∞[: (x; y)e≤ �f(proje⊥(x;
y))}: It is easy to see that

�⊂{(x; y)∈K × [−M;∞[: y≤f(x)}⊂�′:

Let us denote by �′′ the set {(x; y)∈K × [−M;∞[: y≤f(x)}, we have then
∫
�′′
dx dy=

∫
K
f(x) dx −M

∫
K
dx

and, consequently,∫
�
dx dy +M

∫
K
dx≤

∫
K
f(x) dx≤

∫
�′
dx dy +M

∫
K
dx:

Since we assumed that f≥ g we have then ∫K (f−g)≤ ∫
� dx dy where �= {(x; y)∈

K × [−M;∞[: �g(proje⊥(x; y))¡(x; y)e≤ �f(proje⊥(x; y))}:
Let us de�ne the set �′ by �′= {(u; v)∈ proje⊥(K×[−M ;M ])×proje(K × [−M ;

M ]): �g(u)≤ v≤ �f(u)}, it is clear then that we have
∫
K (f − g)≤ ∫

�′ du dv≤∫
proje⊥ (K × [−M ;M ])(�f − �g).

Proposition 10. The �-convergence implies the L1 convergence.
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Proof. Let (fn) be a sequence of functions converging in the sense of the �-con-
vergence to some function f. It is clear that∫

|fn − f|=
∫
(|f̃n − fn|+ |f̃n − f|);

where f̃n=max(fn;f).
If we prove that �̃n= �f̃n =max(�n; �) then we have, by the previous lemma, that∫
K |fn−f| ≤

∫
proj⊥e (K × [−M ;M ])(�̃n− �)+

∫
proj⊥e (K × [−M ;M ])(�̃n− �n). The uniform con-

vergence of (�n) and (�̃n) to � permits then to conclude.
It only remains now to prove that �̃n=max(�n; �). First, we can remark that E(f̃n)=

E(fn)∩E(f). Assume now that we have, for some y in e⊥, max(�n; �)(y)= �. This
implies that y + �e∈E(fn) as well as y + �e∈E(f) and then y + �e∈E(f̃n) which
in turn imply that �̃n(y)≤ � and consequently �̃n≤max(�n; �).
Conversely, the inclusions E(f̃n)⊂E(fn) and E(f̃n)⊂E(f) imply that �̃n≥ �n and

�̃n≥ � which completes the proof.

3. Generalizations

In this section we will extend the previous concepts and results to non l.s.c. functions.
First, it is easy to see without any proof that these results are veri�ed if we consider
u.s.c. functions instead of l.s.c. ones. Indeed, it su�ces to consider −f instead of f.
Let us now consider a function f from A⊂Rn to R: We will say that f is

C-continuous at some point x of A, for a given nonempty open cone C of Rn, if

lim
h→0; h∈C; x+h∈A

f(x + h)=f(x):

In particular, if n=1 and C =R+ (resp. R−), the C-continuity is the right-continuity
(resp. left-continuity).

Lemma 11. If f and g are two C-continuous functions from A⊂Rn to R with
cl[E(f)]= cl[E(g)], then f= g on int(A).

Proof. Let f be a given function on A and let us de�ne the function f̃ by

f̃(x)= inf
(x;y)∈ cl[E(f)]

y:

If f is C-continuous, then for all x0 in int(A); {x∈A: x − x0 ∈C} is nonempty and
we have

f(x0)= lim
x→x0 ; x−x0∈C

f̃(x):

Indeed, let {(xn; f̃(xn))} be a sequence converging to (x; ‘) with xn − x∈C (and,
in particular, xn − x 6=0) for all n and let, for each n; a sequence {(xpn ; ypn )} in E(f)
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converging to (xn; f̃(xn)): By a diagonal extraction process, it is easy to see that there
exists an application ’ such that the sequence {(x’(n)n ; y’(n)n )} converges to (x0; ‘):
Since C is open, we can assume that the sequence {x’(n)n } is in x0 + C; this ensures
then that f(x0)= ‘:
Now, since f̃= g̃ and are both C-continuous, we have clearly that f= g:

Next, we will say that the function f is Q–C-Lipschitz, if it is C-continuous and
satis�es

∀x∈A; ∀q∈Q; x + q′ ∈A⇒f(x) + q′′ ≥f(x + q′)
and we will denote by LipM (Q;C; A) the set of Q–C-Lipschitz functions bounded by
M on A.
Remark that the main di�erence between a Q–C-Lipschitz function and a Q-Lipschitz

function is that the �rst one is C-continuous instead of l.s.c.
Since we have a one-to-one correspondence between the Q–C-Lipschitz functions on

a given open set A and their epigraphs, the �-topology can be extended to this space
and we have the following.

Theorem 12. Let {fn} be a sequence in LipM (Q;C; A); where A is an open subset
of Rn then, for each compact subset K of A; there exists a subsequence {f’(n)} such
that {f’(n)} converges, for the �-topology, on K .

The proof of this result is analogous to the similar one for LipM (Q;K): The main
di�erence is that the one-to-one correspondence between the Q–C-Lipschitz functions
on some set A and their epigraphs is well de�ned only if A is open. For this reason,
in order to obtain the �-convergence on K; we have to consider functions de�ned on
an open set larger than K:

4. Applications

In this section we will consider some corollaries of the previous results and make
some links with known results. Our aim is to show that many known results can be de-
rived from our results which make then a synthesis between many di�erent approaches
in the literature.
The �rst result can be found in [6, Theorem 10.8]:

Corollary 13. If (fn) is a sequence of real convex C1-functions de�ned on some
compact interval [a; b] of R and converging pointwise to some convex C1 function f
then (fn) converges uniformly to f as well as (f′

n ) to f
′.

Proof. Let � be a su�ciently small positive real number and let x∈ [a+ �; b− �]. It
is easy to see by a convexity argument that

fn(a+ �)− fn(a)
�

≤f′
n (x)≤

fn(b)− fn(b− �)
�

;
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and if n is su�ciently large in order to have |fn(y)−f(y)| ≤ � for y= a; a+�; b−�; b,
we have

f(a+ �)− f(a)
�

− 2≤f′
n (x)≤

f(b)− f(b− �)
�

+ 2:

The sequence (f′
n ) is then a sequence of nondecreasing and uniformly bounded

functions on [a + �; b − �] and by the compactness of this set of functions, there
exists some nondecreasing function g on [a+ �; b− �] and some subsequence {f′

’(n)}
converging to some function g.
Since g is nondecreasing, the set of discontinuity points of g has a zero measure and

we have then by Proposition 4 the pointwise convergence of (f′
’(n)) almost everywhere

on [a+ �; b− �].
If (f′

’(n)(x)) converges to g(x) then for all h¿0, we have (by a convexity argument),

f’(n)(x)− f’(n)(x − h)
h

≤f′
’(n)(x)≤

f’(n)(x + h)− f’(n)(x)
h

and taking the limit when n goes to ∞ we obtain

f(x)− f(x − h)
h

≤ g(x)≤ f(x + h)− f(x)
h

:

If we take now the limit when h goes to zero we obtain then that f′(x)= g(x) almost
everywhere.
Since f′ is a continuous nondecreasing function and g a nondecreasing function

equal almost everywhere to f′ we have then that g=f′ and g is continuous.
The continuity of g implies then, by Proposition 5 that f′

’(n) converges uniformly to
g=f′. We have then that all the converging subsequences of (f′

n ) converge uniformly
to f′ and we can deduce that f′

n converges uniformly to f
′. Since we have also the

pointwise convergence of the sequence (fn) to f, it is well known then that we have
then the uniform convergence of (fn) to f.

Let us now consider in Rk the vector e=(1; : : : ; 1): A real-valued function F on
Rk will be said continuous from above at some point x if for each positive �; there
exists a positive � such that x≤y≤ x+�e implies |F(x)−F(y)|¡�: Recall now that a
distribution function is a function F(x)=F(x1; : : : ; xk) on Rk with the following three
properties:
(i) F is everywhere continuous from above;
(ii) 0≤F(x)≤ 1 for all x, F is nondecreasing in each variable, and, for each k-

dimensional rectangle (a; b],∑
±F(a1 + �1d1; : : : ; ak + �kdk)≥ 0;

where di= bi − ai, where the sum ranges over all 2k sequences (�1; : : : ; �k) of
0’s and 1’s, and where the sign + or −; according as the number of 0’s in the
sequence, is even or odd;
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(iii) F(x)→ 0 as any one coordinate of x goes to −∞ and F(x)→ 1 as all coordinates
of x go to ∞.

We can now prove the following result:

Corollary 14 (Helly’s Selection Theorem). If {Fn} is a sequence of distribution func-
tions on Rk; then there exists a subsequence {F’(n)} and a function F satisfying
conditions (i) and (ii) above (but perhaps not (iii)) such that

limn F’(n)(x)=F(x)

for all continuity points x of F .

Proof. It su�ces to remark that a distribution function is in Lip1((−R+)n×R+; Rn++;Rn)
and we obtain then the existence, for each compact subset of Rn; of a �-converging
subsequence: By a diagonal extraction process we can construct a subsequence
�-converging to some function F for all compact subset of Rn: Since the �-convergence
implies the pointwise one for all continuity points of the limit and since conditions (i)
and (ii) are inherited at the limit, this completes the proof.

Let now � be a family of probability measures on (Rk;Rk) where Rk is the class
of Borel sets in Rk: If such probability measures Pn and P satisfy

∫
Rk f dPn →

∫
Rk f dP

for every bounded continuous real function f on Rn; we say that Pn converges weakly
to P and write Pn⇒P: For a probability measure P in �; we de�ne the associated
distribution function F by

F(x)=P{y: y≤ x}:
Such a function F satis�es the conditions (i)–(iii) introduced previously and it is

well known (see [1], p.17) that Pn⇒P if and only if the sequence {Fn(x)} converges
to F(x) at continuity points x of F:
We can now prove the following weak form of a theorem due to Prohorov:

Theorem 15 (Prohorov). Every sequence of elements of � contains a weakly-con-
vergent subsequence if and only if for every positive � there exists a compact set K
such that P(K)¿1− � for all P in � (in this case, � is said to be tight).

Note that the strong form of Prohorov’s Theorem claims that the “if ” part is valid
for every metric space S instead of Rk and the “only if ” part for every separable and
complete space S.

Proof. Assume that � is tight and let us consider a sequence {Pn} in � with the asso-
ciated sequence {Fn}: Following Helly’s Theorem, there exists a subsequence {F’(n)}
contained in {Fn} and a function F satisfying (i) and (ii) such that {F’(n)(x)} con-
verges to F(x) at continuity points x of F: Let �¿0 and K be a compact set such that
P(K)¿1− � and let us de�ne the following constants:

M = inf
x∈K; h=1;:::; k

xh;
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M ′= sup
x∈K; h=1;:::; k

xh:

If x has a coordinate lower than M; then we have Fn(x)¡� for all n and if x has
all its coordinates greater than M ′ then Fn(x)¿1 − � for all n: Since, following (ii),
F is nondecreasing and consequently almost everywhere continuous, we obtain that
F(x)¡� in the �rst case and F(x)¿1 − � in the second one. This su�ces to prove
that F satis�es (iii) and is then associated to some probability measure P such that
P’(n)⇒P:
Conversely, assume that � is not tight. There exists then some �¿0 and a sequence

{Pn} such that Pn(B(0; n))≤ 1 − �: Assume now that there exists a subsequence such
that P’(n)⇒P and let K be a compact set such that P(K)¿1 − �=2: By Urysohn’s
Lemma, we can construct a continuous function f equal to 1 on K and equal to 0 out
of some compact set K ′ containing K: Since

∫
Rk f dP’(n)→

∫
Rk f dP; we obtain easily

that P’(n)(K ′)¿1− � for n su�ciently large which contradicts the de�nition of Pn:
In fact for nondecreasing one-dimensional functions, our topology coincides with the

topology de�ned by the Levy distance de�ned, for a pair (f; g) as the in�mum of those
positive � such that

f(x − �)− �≤ g(x)≤f(x + �) + �:

Geometrically this is the shortest distance between the graph of f and the graph of
g along lines in the direction of the second diagonal (spanned by (−1; 1)). The choice
of � to name our topology is directly linked to this diagonal geometric property.
We will now try to apply our results in order to prove existence results for some

di�erential equations.
Let � and 	 two nonnegative continuous functions from R×R to R and assume

that for x su�ciently large (larger than a given M) � is positive and greater than K	
where K is a given constant.
Consider now the following di�erential equation on [0; T ]:

ẋ�(t; x)=	(t; x)

with the following initial condition: x(0)= x0≥ 0.
If � is positive, we can construct the following mapping from the set C([0; T ]; R)

endowed with the uniform convergence topology to itself:

� : x(:)→�(x)(:)= x0 +
∫ :

0

	(s; x(s))
�(s; x(s))

ds

we can easily check that � is a continuous mapping and that, for all nonnegative func-
tion x; �(x) is nonnegative, bounded above by x0 +T (max[0;T ]× [0; M ](	(t; y)=�(t; y))+
(1=K)) and (max[0;T ]× [0;M ](	(t; y)=�(t; y)) + (1=K))-Lipschitz.
By a �xed point argument as in Peano’s Theorem, we prove that there exists a

solution to our di�erential equation on [0; T ]:
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The following theorem permits to extend this result to a nonnecessarily positive
function �:

Theorem 16. There exists a left-continuous function x on [0; T ] such that x(0)=x0 and

ẋ(t)�(t; x(t))=	(t; x(t))

on every interval on which �(t; x(t)) is positive.

Proof. Let us denote by xn; the solution of the previous equation when � is replaced
by � + (1=n); it is easy to check that xn is an increasing function bounded below by
x0 and above by x0 + T (max[0;T ]× [0;M ](	(t; y)=�(t; y)) + (1=K)):
Then there exists a subsequence �-converging to some nondecreasing function x̂:

Note that, if � is bounded below by some positive constant C on a given interval, it
is easy to see that the sequence {xn} is (max[0;T ]× [0;M ](	(t; y)=C) + (1=K))-Lipschitz
on that interval and then that there exists a subsequence of {xn} converging for the
uniform convergence topology to x̂ on that interval. Let us now de�ne a left-continuous
nondecreasing function x as follows:

x(t)= sup{x̂(t − h): h¿0 and t − h≥ 0}
and x(0)= x0:
If �(t0; x(t0)) is positive then there exists, by continuity of �; a positive real number

� such that �(t; y)¿ 1
2�(t0; x(t0)) for all pair (t; y) such that |t − t0|¡� and |y −

x(t0)|¡�: Since x is left-continuous, there exists �¡� such that for all t satisfying
t0−�¡t≤ t0 we have �(t; x(t))¿ 1

2�(t0; x(t0)) and |x(t)− x(t0)|¡�=2:
Since x̂(t) is almost everywhere equal to the limit of {xn(t)} then it is easy, by a di-

agonal extraction process, to construct sequences {tn} and {t′n} converging from below,
respectively, to t0 and t0 − � and such that xn(tn) and xn(t′n) converges, respectively,
to x(t0) and x(t0 − �):
Let, now �¡� be a given positive real number. For n su�ciently large, we have

|xn(tn)− x(t0)|¡�=2; t0− �¡tn≤ t0; |xn(t′n)− x(t0−�)|¡�=2 and t0−�− �¡t′n≤ t0−�:
These inequalities imply that for t ∈ (t0−�; t0−�); we have x(t0−�)−(�=2)¡xn(t)¡

x(t0) + (�=2) and then x(t0)− �¡xn(t)¡x(t0) + (�=2): Consequently, for n su�ciently
large and for t ∈ (t0−�; t0− �) we have �(t; xn(t))¿ 1

2�(t0; x(t0)): As we have already
seen, when � is bounded below the sequence xn converges uniformly and the limit x̂
is then continuous and consequently equal to x on (t0 − �; t0 − �):
This permits to write that for t ∈ (t0 − �; t0 − �);

x(t)− x(t0 − �)=
∫ t

t0−�

	(s; x(s))
�(s; x(s))

ds

and this for all � su�ciently small or equivalently

ẋ(t)�(t; x(t))=	(t; x(t))

on (t0 − �; t0) and then on all intervall where ẋ(t)�(t; x(t)) is positive.
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