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An agent’'s optimization problem of the expected terminal wealth utility in a trinomial
tree economy is selved. At each transaction date. the agent can trade in a riskless asset,
a primitive asset subject ta constant proportional transaction costs, and a contingent
claim characterized by some parameter k whose bid and ask price is defined by allowing
for different equivalent martingale measures. In addition to the classical portfolio choice
probiem, the characteristic of the contingent claim k is determined endogenously in the
optimization problem. Under suitable conditions, it is proved that the optimal demand of
the agent in the primitive risky asset is zero independently of the choice of the terminal
wealth utility function: the agent prefers not to trade in the asset subject to transaction
costs, which prevents the market from being complete, rather than trading in both
assets. Next, the optimal choice of the contingent claim is characterized and the results
are applied te European call and put options with fixed maturity and varving exercise
price k.
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1. INTRODUCTION

Puring the last decade, the exchange volumes in derivative assets have been
growing very quickly and tend to be much more important than those in
primitive assets, A usual justification of the latter is that transaction costs on
primitive assets are much higher than those on contingent claims. In this paper,
using a utility maximization argument, we provide a rigorous justification of this
empirical fact, in the limit case where there are no transaction costs on the
contingent claims.

We will study the limit case of the real situation on the market, assuming that
primitive assets are subject to transaction costs, while derivative assets are not.
The decision problem of the agent is:

# either not to trade in the primitive risky assets, which are subject to
transaction costs, and therefore make decisions in an incomplete market;
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8 or to trade in the primitive risky assets, which are subject to transaction
costs, and therefore form his or her decision in a complete market.

In this paper, we prove that, if the agent can choose the derivative assets
optimally, his/her demand in the primitive assets is zero. Such a result is
immediate in a financial market with finite degree of incompleteness, if all
options are available for trading. Indeed, in such a framework, the underlying
asset is clearly redundant and the problem is irrelevant. However, in practice,
only a few options are available for trading and, therefore, the underlying asset
cannot be considered as a redundant asset. In order to capture these two ideas,
we study the simplest framework where there is one degree of incompleteness
and only one option available for trading at each transaction date.

In our model, the uncertainty is described by a trinomial multiperiodic event
tree. There are two primitive assets avatlable for trading in the economy: a
nonrisky asset and a risky one. The latter is subject to constant proportional
transaction costs. At any transaction date, besides those primitive assets, there
is a nontrivial contingent claim, characterized by a parameter k, which is also
available for trading. The agent chooses optimally his/her investment in the
primitive assets and replaces his/her investment in the contingent claim which
prevailed in the previous period by that of the current one. The characteristic of
the contingent claim is determined endogencusly in the optimization problem
so that the same option could be traded at two successive transaction dates.

The returns induced by the contingent claim for the agent {whether his/her
position is short or long) are defined by the individual optimality conditions.
This is an important feature of the model since such conditions are consistent
with the existence of a bid-ask spread. The absence of transaction costs on the
contingent claim is an important limitation of the model which cannot be
overcome in the present analysis. Nevertheless our model can be seen as the
limit of a model in which the transaction costs on the riskv asset are
significantly higher than those on the contingent claims.

The choice of a trinomial model with two primitive assets and a unique
contingent claim is only motivated by the simplicity of the presentation. Such a
model is the simplest mode! for which the primitive risky asset, subject to
transaction costs, is necessary for the market to be complete and which makes
the agent effectively face the choice between incompleteness and transaction
costs.

Note that, at each date, the agent can trade only one derivative asset - this
captures the idea that only a finite number of derivatives are available for
trading. However, this derivative asset is optimal for the agent. Therefore, we
are studying a 'best case’ scenario, as if the unique derivative asset traded by
the agent can be chosen optimally.

The main results of the paper are the following. Under suitable regularity
conditions, we prove that the optimal policy of the agent is not to trade in
the primitive risky asset which is subject to transaction costs and therefore the
agent prefers incompleteness to transaction costs. An important feature of our
result is that it holds independently of the choice of the terminal wealth utility
function.
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Moreover, it turns out that the contingent claims characterized by different
parameters x are not equivalent from the viewpoint of terminal wealth utility
maximization. We thus provide existence and uniqueness resuits of the optimal
contingent claim in the power utility case.

The previous results are consistent with empirical observations. Indeed it is
well known that the traded velumes are much more important on options than
on stocks. Our result is a limit result, in some sense, since the agent does not
trade the primitive risky asset in our model. Moreover. it is observed that only
a few options are traded in the market although many others are available for
trading. A possible interpretation of our model is that the most liguid option
corresponds to the optimal one produced by the agent maximization problem.

Our paper deserves alsc two comments in relation with the security design
literature. There are two main reasons which motivate fnancial market
innovation: (i} regulation agency costs and tax codes on one hand and (ii} the
use of securities for the hedging of substantive risks ~ see Duffie and Rahi
(1995}, In our knowledge, these reasons are always studied separately in the
literature. In our model, contingent claims reduce the amount of transaction
costs paid by the agent but do not induce any increase of the spanning. It is then
difficult to justify the usual approach which decorrelates the two effects and
considers them separately. Qur paper has also a concrete application: a very
important topic in the empirical literature is to know whether financial
innovation increases social welfare or not. Empirical studies are based. in
general, on the increase of the market volatility, taken as a svmptom of reduced
social welfare —~ see Zapatero (1994). Our results lead us to suggest the amount
of transaction costs paid by the agents as an alternative measure. Then. quite
surprisingly, a reduction of the trading volume on the non-purely financial assets
would be the sign of an increase in social welfare,

The paper is organized as follows. Section 2 presents the general framework
of the paper and describes the agent optimization problem. Section 3 contains
our main result concerning the optimal policy of the agent in the primitive risky
asset which is subject to transaction costs. Section 4 extends the results of
Section 3 to the case where the contingent claim pavoff function is not
continuously differentiable, as in the important case of a family of European
options. The interest of Section 3 is more theoretical, but it is an essential
preliminary to Section 4. Section 5 provides an example of ‘regular economy’
which is a sufficient condition for the results of Sections 3 and 4 to hold. Finally,
Section 6 is devoted to the optimal policy of the agent in the contingent
claim.

2. THE GEMERAL FRAMEWORK

2% Traciable assets

The framework of this paper is very close to a classical event tree economy.
There are T+ 1 transaction dates f=0. .., T and a finite number of states.
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Tradable assets in the economy are decomposed in primitive assets and
contingent claims. There are two primitive assets:

@ a nonrisky asset with associated interest rate r deterministic and
normalized to ;

& a risky asset subject to proportional transaction costs. At any time
t=0,...T, the asset bid price is S{I + A~ and its ask price is S{1 + k)
where h and k are strictly positive constants, independent of time and
state.

We introduce the function:

() =x(1 + Bx=0} + — H{x =0} (2.1}

1+h

sc that the primitive risky asset bid (resp. ask) price process can be written in
the form {—+(—S), t=0,...T} (resp. {7(Sy, t=0,...,T}). The ‘average price’
{S, 0 =t=T} dynamics are described by the following event tree. We denote by
s, the state revealed at time ¢ and by e, = (s;.. . .5 the sample path until time ¢,
i.e. the state at time ¢. Let €, be the set of possible states at time £. Given ¢,€ ¢,
three states can prevail at time ¢+ 1:

s.a(e) €58(e) = {unle), mu(e). d.i(e)}

where u,, ,(e) > m,, (e} > d,,{(e) > 0. Therefore there are 3’ possible states in €,
The risky asset ‘average price’ at time 0 is S5, = 1 and evolves according to:

S=sS.=lls,t=1,...T

We also introduce the projection operator:

T Er &,
= (5. - S?)"’”’”rer (Sy5 - S

and we denote by €(e) the set of sample paths e, € €, which can be attained
from the state e, ie
&ley = {e”P mer= el

There is a probabihty measure P defined on £, with Ple;} >0 for any e, € £, We
denote by F, the probability measure induced by Pon €,:

Pley= > Plep for any e, €€,

erEgley

The model described above differs from a classical symmetric event tree
economy with spanning number 3 (in the sense of Duffie and Huang, 1985) in
that the primitive risky asset is subject to transaction costs.

At any time t=40,. . ,T— 1 and any state e, € ¢, in addition te the primitive
assets described above, there is a contingent claim chosen in a family of
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contingent claims indexed by a real parameter x. For each k the contingent
claim is characterized by its terminal pavoff function ¢(. .k} mapping £, into &
The family of contingent claims will be denoted by

Cle) = (ol .k} K € Ke)}

where &e,) is a ciosed interval of & with nonempty interior.

In practice, two major types of derivative securities are traded: options and
futures. In our framework, any future contracts together with the nonrisky asset
are sufficient to duplicate the primitive asset. This implies obviously that the
primitive asset will not be traded by the agent and therefore, the futures case is
not relevant for cur analysis since our results hold trivially.

In the European options example, ({e;) is indexed by the exercise price, ie.
Cle) = o Ky =(5,() — K)7, K& Ke)].

Notice that the terminal payoff function ¢(e«) depends on the state e, and
not only on the primitive asset price S, as in the case of European options.
Therefore our family of contingent claims entails also exotic ones.

In order to avoid the case where the primitive risky asset can be duplicated
by the contingent claims and the nonrisky asset, inducing trivially a zero-
demand on the risky asset from the considered agent, we will assume:

(i} atanytimer=0...7— 1and any state e, € €, only one contingent claim
¢le,xfe}} can be traded and is converted automatically in cash at the
following date according to its price (which will be discussed later).
Nevertheless the agent can chose optimally k(e in the set Xe}):

(iiy atanytimet!=0...,7—1and any state ¢, € ¢, the set e} is such that for
any w{e) € Ke, the associated contingent claim and the nonrisky asset
are not sufficient to duplicate the primitive risky asset.

For a better understanding of (ii). let us consider again the example of European
call options. Suppose that the agent is allowed teo trade at any time
£=0,...,T—1 and any state e, € ¢, in a European call option with exercise price
Kee}<1115157{e~} er € (e Then this provides a strategy in the contingent
claims and the nonrisky asset which duplicates the final payoff of the risky
primitive asset and avoids the transaction costs. Thus. in the options case, (ii}
sayvs that fle) is restricted to be included in the open interval (inf{S;{e,).
e, S &(e); supiS{er). ex€€le}iforallt=0.. . T—1and e, <S¢,

This condition is essential in our finite state space framework: it would have
been innocuous i the state space was unbounded.

2.2 Valuation ruie of the contingent claims

The contingent claims valuation raises two problems. The first is related to the
presence of transaction costs on the underlving asset price which prevents one
from defining the contingent claim price from classical arbitrage arguments. We
use an admissible pricing rule in the sense of Jouint and Kallal {1995} consider
a process ix, f=0,. . .7} lying between the bid and the ask price processes. then
any eguivalent probability measure under which ix, = 0... .. T} is a martingale
induces an admissible pricing rule. We define the pricing rule implied by the
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choice of the average price {5, £ = 0. . .7} as a process lying between the bid and
the ask price.

The second problem is related to market incompleteness: there are two
primitive assets and three states of the world at each date t=90,...,7— 1. Let
Cle,x(e)) be the price of the contingent claim defined by k(e at date t and in
the node e, Then, at each node e, there exist transition probabilities {gi(e).
gr{e),q%(e)} such that:

g/(e) >0, qi(ep >0, gi(ey >0

Q?(_et} +giie) + q('j(ef) = I ) ) ) (2.2)
gi{e)SLedu,. (e + g (epS{em,. (e + gi(e)Sfe)d,, (e} = S(e) °
g (e)Cli(erfe)) + ¢ {epClife.xled) + Q?(ez)ci}{er'(r(e:}) = Cle.xfe))

where C, (e.xfe}) is the price of the same contingent claim with exercise
price x{e) at time ¢+ 1 in the state (e, s) ¢, for s& {y, (e}m, . (e} d, ,(e}}.
Note that this transition probability depends on the contingent claim price
process. Conversely, given a system of transition probabilities, satisfying the
three first equations of (2.2}, the fourth equation together with the terminal
condition

Clepxgers) = olegkery)

determines the contingent claim price process. However, the three first
equations of (2.2} do not determine a unigue system of transition probabilities
which allows for the existence of a bid-ask spread for the contingent claim. But,
in equilibrium and for a given agent, there is only one price for this claim and
this unique price is defined by only one transition probability which then
satisfies the system (2.2). The price C{e, kfe}} is an ask price if the agent is a
buyer in the contingent claim at this node and a bid price if he/she is a seller.

In the sequel, we will denote by @ the probability on the set of terminal states
defined by the transition probabilities (¢“(e,). ¢7(e).q%(e)). It is clear that under
this probability the primitive price process is a martingale. Considering the
process C whose returns in state e, coincide with those of the contingent claim
effectively traded by the agent, i.e.

€arensii(@)) _ Crrl(eps, (e xle))
Cley Cle,xfe)

then C is also a martingale under the probability measure Q. Note that, at each
date and each node, the process C corresponds to a different contingent claim,
the best one for the agent for this date and this node. Thus, this process is the
relevant one in order to study the optimal decision problem that we will
describe now.

2.3 The agent probiem

This paper is interested in the optimal portfolio choice of an agent whose
preferences are represented by a Von Neuman-Morgenstern utility function with
terminal wealth utility function u assumed to be continuously differentiable,
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increasing and strictly concave. Decisions are taken at the discrete dates
t=0,1...,7— 1. The agent is initially endowed by one unit of cash (W, =1} and
ends up at the final date T with a terminal wealth converted in cash. At each
date t=0,. .., T— | and state ¢, € €, the agent

8 solds his/her past position in contingent claims,

# and decides to invest an amount %(e)) in the primitive risky asset, 8°(e;} in
the contingent claim ¢ .x(e.)} and the remaining wealth ir the nonrisky
asset.

Since the strategy adopted by the agent is self-financed and since all the
consumption takes place at the final date 7, the total gain (or cost) at date £, if
€, , is the state at date {— 1 and e, the state at date ¢ is:

Cle.x,_ ‘(e )

Se 3
C t
KRG )C fe_..x._(e,. |

S ~ 6¢e) —~l85(e) — 83 fe. |

Therefore. the budget constraint of the agent written in all the nodes of the tree
provides the following terminal wealth for any final state e, € £x

Cleqx,_i{e. 1) _{

Weed =1+ 36 (e )|

A Coyle ke D)
T
- Z 7(0(e) — 67 (e s (2.3)
where e, = 7e, is the state at date ¢ on the sample path e s, = §/§, , is the state

revealed at date ¢ on the sample path e, and (&’ s} =(0.1) b\ ‘convention.
Notice that since all the wealth of the agent is converted in cash at the final date
T we have 83=0.

Finally, introducing the set A of all possible controls (&7e}.8%¢).x(e)}
€ RIx Ke) for t=0,..,T—1 and ¢, € €, the optimal decision problem of the
agent is

sip Efu(W ] (2.4)
Thus the decision problem of the agent not only determines the optimal
demand in the existing assets, but also the ‘best’ contingent claim through its
characteristic x{e}. Such an optimal contingent claim can be seen as the one
chosen by an ‘invisible hand” which has to fix a unique contingent claim to be
traded bv the agent. The choice of an optimal contingent claim can be seen as
an economic justification to the liquidity effects observed in practice on
contingent claims markets.
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3. OPTIMAL POLICY IN THE PRIMITIVE RISKY ASSET

In this section, we derive the first-order conditions in the controls of the optimal
decision problem (2.4) and we provide a characterization of the optimal
investment in the primitive risky asset which holds independently of the agent
utility function. In order to simplify the presentation, we assume that the
terminal payoff function of the contingent claim o{epx) is continuously
differentiable in « for all possible values of k. Of course this restriction rules out
the typical example of European options; we will show in the next section that
our results extend easily to more general terminal payoff functions. We shall use
the notation

plep) = Plepu'(Wie) foraller€s, 3.0

and we introduce the ®* vector u whose components are the u(e,) classified
according to the lexicographic order of the final states e, We shall denote by &,
the ith element e, € €; in the lexicographic order.

From the terminal wealth expression (2.3) it is clear that, for fixed k{e), the
terminal wealth is linear in the optimal investment in the contingent claim 8¢ (e}
and piecewise linear in the optimal investment of the primitive risky asset & (e}
for any t=0,. . .,T— 1 and e, € €, From the concave feature of the utility function
u, this shows that for given characteristics of the contingent claim k(e the
optimal choice in 8¢ (e) and & (e} is characterized by the first-order conditions.
Unfortunately these arguments do not extend to variable x and we therefore
consider the following approach. Suppose that the supremum of the terminal
wealth expected utility is attained in an interior point of sf. Then, from the
regularity of the utility function, it satisfies the first-order conditions. Next, we
prove under regularity conditions and in the power utility case that the first-
order conditions admit a unigue solution (see Section 6) and, for the European
call options, we will justify our interior point condition (see Section 5).

The first-order conditions in 6° (e} for a given f=0,.. .,T—1 and ¢, €€, are
easily obtained by differentiating the objective function:

-

9
98 (e)

Flawyi= 3 [Geeed) gl

er€ €e)

= - [Caal(ense Drde)} 1 .
=2 [ IC,'(G:;K:{%D - l_i DS (er)

S i € S(ed) erE e, 1)

Define the B* vector A%e,) whose components are

A%e)y=1{0 Hler&ele)

4

icfﬂ(ﬁhze:]ﬂ(:(et)) - Ct (err”(z(eJ} if eiTe E(e,} (3.2)

Then the first-order conditions in the portiolic choice in the contingent claim
can be written in:
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<A%e), w>=0fort=0,..T-1andeceg, (3.3)

where <..>is the Euclidean vector inner product in #°. This provides
(37— 1)/2 first-order conditions.

Next we focus on the first-order conditions in the contingent claim character-
istic k{e) for t=0,....T— 1 and ¢, € €, By simple differentiation of the expected
terminal wealth utility, we get:

d ¢ 3 (Co(m.emfedn .
— E uur zg: e“\ E - : 1 i+ iv7 ;\I 3 {87‘}
drfe) (Wl < A}eTES:e,}dK‘{e"}L Cle,xe) s
- g G {{e.s,.nxriedn . .
:8L ) ‘;‘ \,' [ ,’f’“‘ ! } ’ (e
(© 2 ol ey )= D

For a given «, following Jouini and Kallal {(1995) the price process (fe,.x) is a
martingale under some probability measure @ and we have then Cfe.x) =
Ellofexx) e} It is then clear that Cfle,k) is C' relative to x and we can
define:

-

Afen) = 5= Cle,x) = EF 5 eled) (3.4)

and the &3 vector A*(e} whose components are

Avey =10 i er&ele) _
l WA, (L enxded) — dr{enkfe)) i er€efe) (3.5}

Then, using the Arst-order conditions in the portiolio choice in the contingent
claim (3.3}, the first-order conditions in the contingent claim characteristic can
be written in:

6iley<A%e),uw>=0fort=0...7—1! and e, E¢, (3.6)

which provides (37 — 1)/2 additional first-order conditions. Now suppose that
the optimal portfolio choice in the contingent claim 6%(e) =0 for some
t€i0,...,T— 1} and e, ¢, Then 65(e) =0 solves the first-order condition in
8%(e) for any contingent claim in the family C(e). Le.

AN E-C'fl<(e!‘sf+ E}fK{et}} —1
g Cle.x{e))

Sp-: 2 S}

o)

for any «{e) € Ke,). But from the definition of p(e;) in (3.1} and the expression
of the terminal wealth in (2.3), [u(er)]e, o is independent of x(e}. Therefore.
differentiating the last equation with respect to k(e,} we get

< A%eJ,u> =0 for any (e} € Ke)
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This proves that the first-order condition in the contingent claim characteristic
(3.6} can be written equivalently:

<A¥e, > =0for t=90,...,F—1 and e, €&, 3.7

Proposition 3.1 Suppose that the 37~ 1 vectors A%e), A(e), t=0,...T—1and
e, €¢, in R® are linearly independent. Then, for any choice of the agent utility
function u the optima! demand in the primitive risky asset is zero, ie.

@(ey=0foralit=0,. .Tand e Eg¢,

Remark. Recali that we have considered only optimal interior points because,
as will be justified in Section 5 (in the case of European call options), the case
of extremal points can be treated easily and directly.

Proof. See Appendix.

Proposition 3.1 provides the optimal policy of the agent in the primitive risky
asset under suitable conditions on the contingent claims available in the
economy. Thus, in an economy satisfying the assumption of Proposition 3.1, the
optimal demand of the agent in the primitive risky asset, which is subject to
transaction costs, is always zero.

An important feature of the last result is that it does not depend on the nature
of the terminal wealth utility function. The assumption of Proposition 3.1 seems
to be artificial and does not have any economic justification. The following
result provides a simple sufficient condition, with a nice economic inter-
pretation, for an economy to satisfy this assumption.

Proposition 3.2 Forany t=0,. .., T—1 and e, € €, define the matrix:

PCo(ua(epr(e)) AL (e)xie))
Blep =1} 1 C.y(my (ex(e)) AHE(’“H;(@):”@[)) 3.8)
1 Cold (e xie))y AL, dsﬂ(\e:}fK(ez‘)}’

If B(e) is invertible for alf t=10,....T—1 and e,€¢, then the assumption of
Proposition 3.1 is satisfied and therefore the optimal demand in the primitive risky
asset is zero.

Proof. See Appendix.

Let us provide an economic justification of the assumption of Proposition 3.2,
Suppose that B(e) is singular for some f€{0,....7— 1} and ¢,€¢,. Then the
contingent claims characterized by ke and k (e} + € (for a sufficiently small &)
are redundant up to the first order: if date ¢+ 1 price of the contingent claim
plegkfe) + €) is approximated by its first-order expansion around &=, then
date ¢+ 1 payoff matrix of the nonrisky asset and the two contingent claims is
singular. Therefore optimizing over the characteristic of the contingent claim
does not improve the terminal wealth utility of the agent.

Notice that Proposition 3.2 provides only a sufficient condition for the
assumption of Proposition 3.1 to be satisfied. However this condition is still
difficult to check in practice since B(e) requires knowledge of the optimal



Incomplete markets, transaction costs and liguidity effects 335

choice of the contingent claim characteristic k(e,}. The following result provides
a sufficient condition which can be verified in practice.

Proposition 3.3 Consider some t € {0,....T— 1} and e, € €. A sufficient condition
for B(e) to be invertible is that the function

o Ceflenmig — G, ((e.d ) x)
(e ) — Cy({enm i)

admits no singularities, Le. its derivative does not vanish. An economy satisfving
this condition will be called regular.

Proof. The result follows directly from the fact that the determinant of B(e)) is
given by

detB(e)
[Csemde)) — Corllemynie )]

Coyllen) g = € (e

NN

:i{QA@W&@—QJEQW?
Ik s

since the derivative of the function given in the proposition is nonzere for any
K.

In Section 5, we shall provide a simple example of regular economy. But let us
first extend the previous results to the case where the terminal payoff function
is only piecewise continuously differentiable as in the standard example of
European options.

4. THE NONREGULAR PAYOFF FUNCTION CASE

In this section we foliow the arguments of the previous section except that the
terminal payvoff function is not continuously differentiable. Instead we assume it
to admit both right and left derivatives on its domain.

For any t=0,....T— 1 and e, € g, the first-order condition (3.3} in the optimal
investment in the contingent claim 6°(e)) is unchanged since it involves only the
continuity of o

For any t=0.....T— 1 and e, € ¢, the first-order condition in the contingent
claim characteristic x(e,} is now

-

¢’ d-
oxe;)

Efu(W)] =0 and - 20s Elu(W)] =0

where ¢ /0« and ¢ /dk are, respectively, the right and the left derivative
operators. As in the previous section, using the first-order conditions (3.3},
these conditions can be written

8(e) <A* (e),p> =0 and 6(e) <A (e)n>=0 (4.1)
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where A*"(e) (resp. A< (e)) are defined in the same way as A“(e) in (3.5),
replacing the derivatives by the right (resp. left) derivatives. Now if 8°(e)} =0
then it is easily seen that <A*'(e),un> = <A* (e),p>=0. If 6°(e) # 0 then it
can be simplified in (4.1). In both cases the first-order conditions {(4.1) imply
that

<A (e)p> <A (eppn>=0 4.2y

for any t=0,...,7— 1 and e, € €, This proves the existence of AMe) € [(,1] such
that

<MegA (e + (1 — Me DA (e)p>=10 (4.3)
Now define
A%(e) = MepA ™ (e) + (1 — Me DA (e (4.4)

for any =190, ... 7— 1 and e, € g, With this more general definition of the Ry
vectors A%(e,), one can check easily that Proposition 3.1 still hoids. Next we
define a regular economy in this more general framework exactly as in the
previous section except that a singularity is now a point for which @ lies in the
interval defined by the left and the right derivative. Notice that if the terminal
payoff function is continuously differentiable, this definition coincides with that
of the previous section.

Proposition 4.1 Assume that the economy is regular. Then the optimal demand of
the agent in the primitive risky asset is zerc.

Proof. Define B(e) as in the previous section by replacing its third column

by
AR CACARYON) AL (. (€ x(e))
Medl Af (m @) ] + (=1 | AL (m,. (e)x(e))
ALl (e xie)) A (@ (edx(e))

f the 37— 1 vectors A%e), A%(e) for t=0,..7—1 and e,€¢, are linearly
dependent then, following the proof of Proposition 3.2, there exists some
te {0, ..,.T—1} and e, E¢, such that Be) is not invertible. This implies
obviously that the function

— C,.‘+1((€‘.,ITI),K:} B CH';((eﬂd)vK)
T (e — Gy (e

admits a singularity since there exists a convex combination of the right and the
left derivative which vanishes.

5. AN EXAMPLE: EUROPEAN CALL OPTIONS AND iid. RETURNS

In this section we provide an example of regular economy. The primitive risky
asset returns are independent and identically distributed in the sense that:
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Sey={umd withm=ud=1foranyt=0,.. . T—1and e ce¢, a.hH

Equivalent martingale measures are characterized by (2.2). In cur economy this
condition induces the following set of e.m.m..

I - q:(€:>

I+u ©-2

(gie).qr(e).qile ) = (gi(e).ale) ugi(e)) with ¢ie) =

where the middle state probability ¢{e} varies in (0.1}. Moreover we assume
that the transition probabilities of the e.m.m. are time and state independent,
ie.

gley=gforany t=0,...T—lande,E¢, (5.3)

and then ¢i{e.} = ¢" is also time and state independent. The family of contingent
claims consists of European call options, with common maturity 7, indexed by
their exercise price K. Thus, we have

Kep= iS5~ K", K& Kei

Note that if the optimal exercise price K*(e)} is such that K*{e) = min, ¢, 5(€;)
then the agent does not use the primitive asset since he can replicate without
transaction costs using the contingent claim and the nonrisky asset. Fur-
thermore, if K*(e) = max, ... S(e;) then the optimal contingent claim has a
zero payoff. This is equivalent to saying that the agent does not use the entire
family of contingent claims. In particular, the agent does not use the contingent
claim with zero exercise price which is the same thing as the risky asset but
without transaction costs. Then, it is obvious that again the agent does not use
the primitive asset, It is justified now to restrict our attention to the case where
K*(e) € (min, g, \S(e5), Mmax, ¢ ¢..S(€5)). Since this interval is open we can use
the first-order conditions for an interior point developed in the previous
sections.

Proposition 5.1 Suppose that¢q=¢" .u. Thenforany t=0,.. .T— 1l and e, € €, the
function

— C‘ ;({.ﬁ’:em}’m — C,_((e,d}K)
e B =T e R

is strictly monotorniic and therefore the economy described above is regular. Hence,
the agent does not use the primitive risky asset.

Proof. It is clear that it is sufficient to prove the required resuit for ¢ = § and for
any number of periods T in the economy. We define the function:

CimK} — C.dR)
Clu k) — C(mK)

(0 =
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First notice that on each interval lying between two terminal nodes (¢,z"" '} for
i=—"T...T—1, the function { is differentiable with

o BK)
(K= [C(uk)— C,(mK)

<K<yl

and

| LES,1{(S,= K} iu] Q[S;=Klu]
BUY =det} 1 FOS,1{(S;= Kt im] QiS;=Kim]
LEYS,{(S, = K1id] Q[Sr=Kid)

where EV[.1s] is the expectation under @ conditionally to s, = s, s € {g,m,d} and
0l.is] is the probability under @ conditionally to s, =s, s€ {umdi. Now it is
easily seen that the function B is constant on any semi-closed intervat {v . u'"1)
for any i = — 7... .,T— 1. Therefore, in order to prove that the function { admits
no singularities, it is sufficient to prove that the sequence

@d, i=—T+1,...,T-1)

is strictly monotonic. More precisely we intend to prove that it is strictly
decreasing. Define the probabilities:

g, = Q[S;=t'tm] i=-T+1,...7T-1
Then, from (5.3), it is easily seen that

QiS,=u'lul=gqg,_, i=-T+2...T
and

QiS,=u'ld] = g,., i=—-T7...,T-2
Substituting the options prices we get

\ ol

W1/ gu ,
Q(U’)Z—(1+—'——.) fori=—T+1,..,T—2
¢ 2 g,

(@ H=0

Define the seguences:

Wiy = ;fq fori=—T+2,..T—1

e i
j=i-1

WO=—2 fori=-T+1...,T—1
i

<
J,_l
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then using the fact that ¢ . =u'g for r=— T+ 1... .. FT— 1 (this can easily be shown
by induction on the number of periods 7). direct computation shows that
Ny <ife™  Vi=-T+2...7T-2

@l;;c;w%iv- U Vi=-T=+2...T-2

and for a fixed / we have

For the rest of the proof, we need a technical lemma, the proof of which is given in
the Appendix.

femma 5.1 Suppose that ¢q=¢" u Then ¢ . .iq.=q._ e ., for any i=-T~=
L...,.T-3

Now we prove by induction that &
f=—TFT=1...T-2

8>1-(g/q,.y fer any
8 Fori=—-T-+1
— :I‘; 1

w*(_T+1‘:l>l“‘q—;rI‘3
g 7

¢ Fori=T-3. assume y*{}>1—(g/q,_.). Then

Ui+ 1) = @——gq = —qq Wr(6
S TN I S/ B/ B
a > a3 a @i

where the last inequality follows from Lemma 5.1.

8. OPTIMAL CHOICE OF THE CONTINGEMT CLAIM IN A REGULAR
ECONOMY

Our main result {Proposition 3.1) states that the agent does not trade in the
primitive riskv asset when the economy is regular, In this section we focus on
the optimal choice of the contingent claim. We will prove that if there exists an
optimal contingent claim then it is unique. If the family of contingent claims is
composed by European call options we provide necessary and sufficient
conditions for the existence of such an optimal contingent claim.

We first establish the result that, in a regular economy, the first-order
conditions make a direct connection between the equivalent martingale meas-
ure ¢ and the marginal rate of substitution of the agent at the optimum.
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Proposition 6.} Suppose that the economy is regular. Then there exists a positive
scalar h such that:

Qler) = npley), for any e €€,

Proof. The result follows directly from the proof of Proposition 3.1. Recall that
the R¥ vectors u and g are both orthogonal to the linear space spanned by the
R* vectors A (e), A%(e), t = .1 — 1 and e, € €, Since the economy is regular,
the dimension of the last linear space is 37 — 1 and therefore the vectors g and
g are linearly dependent.

From the strict concave feature of the utility function u, the functions
W Elu(Wple, Wle) =W}

are strictly decreasing for any t=0,. . ,7— 1 and e, € €,. This shows that it is one-
to-one since it is clearly continuous. We denote by /, its inverse function. The
result of the last proposition can be written in terms of this function as

Wi sCeyt @) = e (Ress) 1)
(epmr }(@;}) [\e mea(ed) \{)3:7(7:;2) (62)
W, (e, d. (e)) = (94e) ) (6.3)

fean 5 piey)

where W{e) is the optimal wealth at date ¢ in the state e, This allows one to
prove the following uniqueness result.

Proposition 6.2 If the utility function is a power function then the optimal
contingent claim (if it exists) is characterized by x (e} for some t€ {0,.. ,T—- 1} and
e, €&, is unique.

Proof. Expressing the optimal wealth at date £+ 1 in terms of that of date ¢,
equations (6.1), (6.2} and (6.3} can be written:

- ¢ C* A AN | = £
e + e SR B | o ()
u@(ei) 4 ef(et){chI((ez;}g;:k'](i(;e))}KKet}) _ 1} - Ie,mﬂfe,) { )\p";g(eet))\'

s Ct-rl . t-‘dt—%' ) Tt ) i V 2
Wiep + 8_&(@,}{ «eCt(e,, :fzg i)K () _ 1 L= Ly deten) { Aq;cg(ee){) |
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Combining these equations we get

C..{(e.m_(e))xfe) —C. ((e,d. (e NEICH
Coo{(e.u, (e} xfe)) — Cuylleem,. (ed)xle))

BN AN gl
3 (enmipi{e m(el} {e,dei{€d) )\pf’e\)"
PN O AON
(€ntr{eds *hp”(e) et (e ‘)\p (e}
o Ee)y,  ae))
(enme(edt | prie)’ (ecdfeds pie)’
ACHS LAY

{€ntirarie)} ‘p,ie) LT € ) Y m(er)

where the right-hand side term does not depend on k(e and where the last
equality is obtained under the power utilitv assumption. The left-hand side term
is a monotonic function of x,(e,} since the economy is regular. This shows that
if k(e exists then it is unique.

In the last equation we noted that the left-hand side is monotonic. Therefore,
to prove the existence of an optimal contingent claim it is necessary and
sufficient to compare the right-hand side of the equation with the extreme
values of the monotonic function. In the next proposition we apply this result to
the example studied in Section 5. More precisely, we characterize the existence
of an optimal exercise price in (min, ¢ ¢ \5(€7), matxe,_t S(en))*. It is easy to
show, in this case, that the extreme values are § and {m — &)/(u —m) and we
therefore have the following.

Proposition 6.3 In the power utility case and under the assumption of Propasition
5.1, there exists an optimal exercise price K*(e) in {min, c¢..S(e-). maX, ceq,
Se)y if and only if

/ (G (e) —7 A!’.;"(fge}‘
(e, i} ‘ W{e) fe,d ,%\ )r {,Q

c,uxpu{e\} e p (e}

m— a"‘:}
¥ —m:

Proof. This is a direct consequence of the monotonicity.

7. COMNCLUSION

In this paper we have proved that the optimal strategy for an investor faced
with transaction costs and market incompleteness is not to trade in an asset
subject to transaction costs. This is in agreement with empirical evidence which

* As shown in Section 3, the case of an optimal exercise price outside this interval is a degenerated
one.
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shows much higher trading volumes on contingent claims markets than in
primitive assets ones. Our model allows for a bid-ask spread for the contingent
claim. The absence of transaction costs on the contingent claim can be seen as
an {unrealistic) lmit case of the real situation on the market: in practice
transaction costs on primitive assets are much higher than those on contingent
claims ones.

Our analysis extends easily to the case of recursive utility v, = Az, ., u" v ).
The only difference is that the probabilities ple.} in (3.1} are repia{:ed by an
appropriate combination of partial derivatives of the certainty equivaience
function f, whose positivity is ensured by the usual assumptions on £ Therefore
the definition of a regular economy remains unchanged and the resuits of
Section 5 are valid in this larger class of utility functions.

In a multinomial modei, iIntroducing sufficient assets to make the choice
between market incompleteness and transaction costs relevant, it is easily seen
that the resuits of Section 4 still hold under the regular economy assumption.
However, in this more general framework, such an assumption is very difficult to
check for a particular economy (as in Section 5).

APPENDIX

Proof of proposition 3.1

Consider any sample path e; € €, We intend to prove that the optimal demand
of the agent in the risky asset is zero along the sample path e, ie. 8(me) =0
for any t=0,...,7— 1. Let

xoler) = mf[{u= 0 8men#0} L {T}]

be the first date of nonzero optimal demand in the primitive riskyv asset, We also
define for t=1... T

xden) = mf[{ ) BN () 5 S } m]

frm\ 3

to be the date of the #th (nonzero} trading in the primitive risky asset on the
sampie path e, (if x e < T). In the rest of the proof, we show by induction that
if the agent has a long (resp. short) position in the primitive risky asset at some
date, then his/her position in the risky asset is always long {(resp. short)} until
the final date 7, i.e.

if x{ep) <T and & .(7, e # 0
then for any ¢=(,. LT

r (eﬂ'[
,\ew‘gxfr /r se ) - \( (T " l, )eT) - Gy (T{ J\‘ < iy > 0
& Lasc o 7S (en) -

which clearly implies the result stated in the proposition (recall that at the end
the agent converts his/her position in cash and ¢5.= (). Fix a sample path €, € ¢,
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We shall use the notation %, = x(é,) and &_= w_6, Suppose that 3, <7 and
Gq(e' 1= (. Then the first-order condition in 6"@ \1 is

o ) .
e Fl{W = <A u > =
ey Eluival = <At > =0

where the components of the &% vector A are

it e ge(e)

The last expression is well defined since 7 is differentiable in Z.{0}. Next
define the matrix A whose columns are 47, A° ce} Aepfor t=0...T-1 and
e, € €, then the first-order conditions in K:(e‘), 8:(e,) and 9: (€, can be written

Au=0with p >0 foralli=1, 37

This proves that the matrix A is singular and the assumption of the proposition
ensures that A4S is a linear combination of the A(e) and the A¥(e) for

=g,..., 71 emd e,£¢&. Now remember that the contingent claim prrce
process is a martingale under the e m.m. Q (with a fixed characteristic k} and
notice that this property is inherited by the process A, defined in {3.4). We
therefore have

<A%e),g> =0 and <A{e).g>=0
for t=0,...T—1 and e €€, where g is the #% vector whose components are
the Q{ey) cia<51ned according to the lexicographic order of the final states €
This shows that

<Ae).g—u>=<AYe)g—pn>=0fort=0¢.. .T-1landec€<g,
and since A7 is a linear combination of the A%(e)} and the A*(e)), we have

<< 4“ > =<Ap>

The first-order condition in 8(€ } can thus be written

S ANCAR
0S 5 0N ) - RN P o 5N
T v.,,\t.f;{e\y; b: (€, S ) b>j,(e;,
r . s “ - ¢
= iy (6> (m ey — B3¢ Sy e ler) s v Uen
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But 7' (x) can only take the values (1 + k) or (1 + kh)~' for x#0. Therefore since
the average price process {S, t=0,...,7} is a strong martingale under the e m.m.
¢, the previous equation implies that

[< S = N\ S'v’-‘-](e"'\(e‘
85 (e .) 9 ( )S X (T))[GXIH\ﬁi)(w)(u-)(eﬁer:} - ﬂ§'(eX) ~_XL§(.2_T)_T)} > Q

for all e;€ €(¢, ), which ends the proof.

Proof of Proposition 3.2

The result is obtained by backward induction on the number of periods 7% we
therefore add a 7 subscript to the notations used in this proof. Let A7 be the
vector in R* whose components are all 1 and consider the matrix A whose
columns are A} A%(e) and Aie) for t=10,...,7— 1 and e, € €, Suppose that the
37— 1 vectors Af(e) and A¥(e) for t=0,. . .yT~— 1 and e,E¢, are not linearly
independent then the matrix 4, is singular. We now prove that this implies that
B(e) is singular for some t€{0,.. ., T— 1} and e, € ¢, which will provide the
required result.

First suppose that the vectors A% A%(e,) and A%{e,) are linearly dependent. Then,
from the definition of these vectors in (3.2} and (3.5}, this is equivalent to the fact
that the matrix B{ey} is singular which ends the proof. Next we examine the case
where the vectors A% Ae,) and A%e,) are Im@arlv mdependent Since Ay is singular

there exists a vector (agafe),Ble), t=4, —l,e€g)in R{0} such that
T—1
adf+ 2 2 {a(mepAf(vey) + (re Ai(men) =0 (A1)
ey €r t=0

Case A. If a A+ ale)ANey) + BlepAi{ey = 0. Then since A% A¥(e,) and Aiey) are
linearly independent we have that o, = afey) =gy} =¢ and therefore equation
(3.9} can be written

T—1
2 2 2ie(mepAflves) + BlrepAi(ren) = 0 (A2)

S1€8eq) er€ E(s) =1

where (a(me)p(me), t=1,..7—1, e,€¢&,) is a nonzero vector in B 3 Now
notice that, from the definition of the vectors A%(e) and AYe) in (3.2} and (3.5),
given a final state e, € €, there exists a unique s, € §{e,} for which A%{(ne # ¢ and
AYmey # 0 for any t=1,...,T— 1, and therefore the previous equation is equiva-
lent to

T
VeS8, 2 2 la(medAimer) + B(meddment =0

erc €y =1

with a nonzero vector {a{me;)f{nes}, t=1...T—1,e, €€ 1in R¥-3 This proves
the existence of a state s;E€S(e;) such that vectors A{(wme, and A¥(wme,),
t=1,..,T—1, e,€€(s}}, are not linearly independent. Finally, define the vectors
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AS (me and A% (mep) in A% " from the vectors AYme;) and A¥wer by
dropping all the components i for which e-€ €(s}). Then the 37! — 1 vectors A%,
(meyy and A% (weq), =1....T—1 and e, € &(s,). are linearly dependent. Defining
the matrix A‘_*(cl} whose cofumns are AL, the A5 (we)'s and the A% (we)'s we
see that the matrix A;_(sy) is singular.

Case B. I a, A}~ ale)Afe) + Ble)AS Hew # 0 Then (agaleBle) # (0.0, G\
From the definition of the A*(e)) and the A%(e)) in (3.2} and (3.5). separating the 7
vectors in three blocks of ®Y vectors, equation (3.9} can be written equiva-
fentiy:

¥S. € S(eg) 1 M)A + Z E o(mepAr . (men + BlmepAs (mept =10
S =3

where (hu,(e))Mm. (e )\ (d (e))) = (0,0,0) and the &% vectors AY .(me;) and
¥ ({mey) are defined as in case A of this proof. Chose s; such that k(s]) # 0. then
the matrix A, ,(s}), defined as in case A, is singular.
Iterating the previous arguments 7 — | times we have that

@ either B{e,) is singular for some t=0,.. .., T—-2 and ¢,€ €,
8 or Afe; ) =B(e; ) is singular for some e, €&,

which ends the proot.

Proof of Lemma 5.1
The result is proved by induction on the number of periods 7 and we therefore

add a superscript T in the notation of the terminal node probabilities ¢,
i=-1T,...7T We shall prove in the sequel that

Yi=—-7T....T-2 %q‘;\r’ = ¢gT

for anv T=1.

For T=1 the result follows directly from the fact that 5'5,7{;‘3'3:}-211

(@7 =qhgl.
Suppose that the result holds for T— 1, ie.

Vi=—T+1...T-3 (5" =¢7 gl?

In order to simplify the presentation, we extend the definition of the ¢/ ¥ as
follows:

ST1 (T by p(T— 17 e fT~30 =
glrli=qg =gy =gy =0

so that the induction assumption can be written

Vie—T—1...T-1(g0"] =¢7 Vgl"
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The terminal node probabiiities g" for date T are obtained from the ¢V as
¢ =g ¢ + ¢ Vg+ gl Pug  i=-T...T (A3)
We intend to prove that

/ y 2
F— { 0 7T
Yi=-T7. ..,T—-2 q,?) = ¢Pgl,

Using (A1} and rearranging the terms, the previous requirement is equivalent
to

0= f"q —u(q)‘% [{'qg?”)‘ gl 1]
ot/ ‘\2 o
(@Y | g7 V) - Vel n

‘ Wi ’ {’_1\2 ’IT'_;F ,’“_‘.‘
+ (ug’y’ [(ez’ - gl ‘)]

+u(g)? [ g7 0T — g gl |

a3

+qq”{cz§"”' Vgl
+ugq | g7, g7, - g Vgl

The first three terms are non-negative from the induction assumption. We now
show that the final three terms are also positive. We present the arguments only
for the fourth term since the other terms can be treated in the same way. From
the induction assumption we have

/ \ 2
{ 71 (T -1 (T D) (1) D72 D
(") =al Vgl and( 5 } =

and therefore
/
(a7 Yeil; bl >fr““{q.‘ ’i q"‘ ’
u -1 q(, inz—)-})q(?"—ﬂ
where the final inequality follows from the induction assumption. This provides
the required result:
¢T- Vg5 = g

:""~ 7— 1)

‘gt
since:
¢ if —T+1=i=7T-3, then the result is ohvious from the fact that
(T-13 -1
g VgLt #0; SR
& if i< —T then ¢ V¢!’V =0 and the result follows;
e if i=T-2, then ¢/;9¢";Y = 0 and the result follows.
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