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Abstract

We study the deterministic optimization problem of a pro2t-maximizing 2rm which plans its
sales/production schedule. The 2rm knows the revenue associated to a given level of sales, as
well as its production and storage costs. The revenue and the production cost are assumed to
be, respectively, concave and convex whereas the cost of storage has no particular properties
of convexity. First, in spite of this non-convexity, we give an existence result. Second, from
the necessary conditions, we derive some precise qualitative description of the optimal plan. In
particular, we obtain that inventory accumulation is not optimal.
? 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

We consider a 2rm which produces and sells a good which can be stored. The
2rm acts in continuous time on a 2nite period in order to maximize dynamically
its pro2t. Here, the instantaneous pro2t of the 2rm is the revenue entailed by the
instantaneous sales, diminished by the cost of the instantaneous production, and by the
cost of storage of the current inventory. Our approach of this production planning and
inventory management problem is in the same vein as the one launched in 1958 by
Arrow et al. [1]. Many contributions to this theory have been brought from the 1950s
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until now, with many diEerent approaches. However, authors generally consider 2rms
that do not have any control on the level of the (possibly stochastic) demand driven
sales.
In this paper, we work in a competitive and deterministic context. Following, Arvan

and Moses [2], we assume that the 2rm controls not only its production but also its
sales level. It knows the revenue associated to the selling of x units of goods, the
cost of producing y units, and the cost of storing S units of the good. We assume
that the marginal revenue is non-increasing and that the marginal cost of production is
non-decreasing, i.e. the revenue function is concave and the production cost function is
convex. Our aim is to study the impact of the shape of the storage cost in this context:
does the 2rm actually use its storage ability to accumulate inventories?
The concavity assumption on the revenue function is quite realistic. A particular

case of our model is the following: sales are completely within the company’s control
but the price is a given function of the level of sales. This price is governed by the
demand curve. When the 2rm is monopolistically competitive, it is a non-increasing
function of the quantity of the product that the 2rm wants to put on the market. By
computing the instantaneous revenue as the sales rate times the corresponding price,
the concavity of the revenue corresponds to the non-decreasing feature of the demand
price. The convexity of the production cost means that producing additional output
increases expenditures, without any scale economies.
The sales/production planning problem of the pro2t-maximizing 2rm is formulated

as a maximization problem on a set of integrable decision variables: the sales and
production rates paths. The cumulative sales and production processes are therefore
continuous.
The existence issue of an optimal sales/production plan is addressed by considering a

relaxed optimization problem where the cumulative sales processes is allowed to jump
at time 0: the sales path may have a singular part at time 0. We prove that the relaxed
problem has at least one solution and that, if it has a solution with no singular part,
this solution provides an optimal sales/production plan.
We also derive from the 2rst-order conditions of optimality some precise qualitative

description of the optimal plan. We prove that, whatever the shape of the storage cost
is, it is never optimal for the 2rm to accumulate inventory. In particular, if the company
starts with no good in stock, it adopts the static strategy which consists in producing
and selling at the same constant rate. This optimal rate is the quantity, a, at which the
marginal revenue is equal to the marginal production cost. If the 2rm is endowed with
an initial inventory then, the best sales/production policy consists in selling this initial
inventory in an optimal way: the level of sales (resp. production) is always greater
(resp. lower) than a, it is non-increasing (resp. non-decreasing) until the exhaustion
of the inventory. Production actually starts when the marginal revenue entailed by the
sales, �̇(x(t)), overtakes the lowest marginal cost of production, ċ(0). Then, sales and
production rates (x(t); y(t)) are chosen so as to equal the marginal revenue and the
marginal cost of production, i.e �̇(x(t)) = ċ(y(t)). Once the 2rm has cleared all its
stock it maximizes its pro2t over time by maximizing its instantaneous pro2t, produc-
ing and selling at the constant rate a. This leads to a three phases sales/production
plan.
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The precise formulation of the planning problem of the 2rm is given in Section 2.
The existence result is stated in Section 3. Section 4 is devoted to the characteriza-
tion of the extremals of both relaxed and initial problems, from which we deduce
some qualitative description of the optimal plan. The proofs are collected in Sections 5
and 6.

2. The model formulation

The 2rm acts in continuous time on a 2nite planning period [0; T ]. It is endowed
with an initial inventory of s0 ∈R+ units of the good.

A sales/production plan is represented by a couple (x; y) of functions in L1+[0; T ],
the set of non-negative elements of L1[0; T ], where x(t) (resp. y(t)) is the sales (resp.
production) rate in units of the good at time t. In other words

∫ t
0 x(u) du (resp.∫ t

0 y(u) du) is the cumulative quantity of the good sold out (resp. produced) up to
time t. We shall say that (x; y)∈L1+[0; T ] × L1+[0; T ] is a sales/production plan if the
induced inventory S(x;y) satis2es

S(x;y)(t), s0 +
∫ t

0
y(u) du−

∫ t

0
x(u) du¿ 0; ∀t ∈ [0; T ]; (1)

which means that the company must never be out of stock. We denote by A the set
of all sales/production plans, i.e.

A, {(x; y)∈L1+[0; T ]× L1+[0; T ]| Eq: (1) holds}:
When selling out at the rate x(t) at time t, the 2rm has a revenue rate of �(x(t)).

The cost of producing at the rate y(t) at time t is c(y(t)). Both � and c are continuous,
non-decreasing functions on R+. They satisfy �(0)=0, c(0)=0 and �(x)¿ 0, c(x)¿ 0,
for all positive x. The function � (resp. c) is assumed to be concave (resp. convex).
The cost of storing S(t) units of the good at time t is denoted by s(S(t)). The

function s is assumed to be continuous, non-decreasing on R+ and to satisfy s(0) = 0
and s(S)¿ 0, for all positive S. Observe that, in contrast to the previous literature, we
make no assumption on the shape of the storage cost function.
Given the discount rate �¿ 0, the pro2t over time induced by (x; y)∈A is

de2ned by

J (x; y),
∫ T

0
e−�t[�(x(t))− c(y(t))− s(S(x;y)(t))] dt:

Observe that by concavity of � and Jensen’s inequality∫ T

0
e−�t�(x(t)) dt ¡∞:

Since the functions c and s are non-negative, it follows that J is well de2ned as a
map from A into R ∪ {−∞}.
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The pro2t-maximizing company plans its sales/production schedule by solving the
following optimization problem

sup
(x;y)∈A

J (x; y): (2)

3. Relaxed problem and existence result

We 2rst study the case of no starting inventories: s0 = 0. Observe that in this case,
the inventory constraint on (x; y) reads

S(x;y)(t) =
∫ t

0
y(u) du−

∫ t

0
x(u) du¿ 0; ∀t ∈ [0; T ]: (3)

De2ne

mx ,

∫ T
0 e−�tx(t) dt∫ T

0 e−�t dt
; my ,

∫ T
0 e−�ty(t) dt∫ T

0 e−�t dt
(4)

and notice that, by Jensen’s inequality

J (x; y)6
(∫ T

0
e−�t dt

)
[�(mx)− c(my)]−

∫ T

0
e−�ts(S(x;y)(t)) dt:

Integrating by parts in (4) and using (3), we see that mx6my. If S(x;y) is not identically
null on [0; T ], we therefore have

J (x; y)¡
(∫ T

0
e−�t dt

)
[�(my)− c(my)] = J (my;my):

As a consequence, we have the following:

Proposition 1. If s0 = 0 then, Problem (2) has a solution if and only if the function
� − c admits a maximum. The set of solutions is the set of all (x; x)∈A with x
valued in Argmax

R+
(�− c).

Proof. It follows from the above discussion that the set of solutions is necessarily
included in {(x; y)∈A | S(x;y) ≡ 0}= {(x; y)∈A | x = y a:e:}. Writing

J (x; x)6
(∫ T

0
e−�t dt

)
sup
m∈R+

(�(m)− c(m))

concludes the proof.

The above proposition means that, if the 2rm has no goods in stock at time 0 then,
the concavity/convexity of the revenue/production cost leads to a static optimal plan:
the 2rm produces only for immediate sales. There is no inventory accumulation.
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In light of this remark, we make the following:

Assumption 1. The initial inventory s0 is positive and the function � − c admits a
maximum at some positive point a.

We shall prove in Proposition 3 that Problem (2) is always 2nite. However, we
know that the maximum may be not attained. This is typically the case when s0 is too
high (see [4]). In order to obtain an existence result, we therefore have to consider a
relaxed problem, the sup of which equals the sup in (2), see Proposition 3 below. The
relaxed problem consists in allowing the 2rm to get rid of a certain amount of the good
in stock at time 0. The link between the two problems is established in Proposition 3
and Corollary 4. In particular, we shall see that if there is a plan without depletion
at time 0 which is optimal for the relaxed problem then, it is optimal for the initial
planning problem.
The relaxed problem is constructed as follows. The sales rate is no longer described

by an integrable function, but by a non-negative 2nite Borel measure on [0; T ] which
has its singular part positively proportional to the Dirac measure at 0. In this framework,
for a sales rate equal to ��0+x, where x∈L1+[0; T ] represents the absolutely continuous
part of the considered Borel measure, the cumulative sales process is given by

X(0) = 0 and X (t) = �+
∫ t

0
x(u) du; ∀t ∈ (0; T ]:

Here, � is the share of the initial inventory that the 2rm sells out at time 0.
The production path is still assumed to be integrable. A sales/production plan is now

a triplet (�; x; y) in R+ × L1+[0; T ]× L1+[0; T ] which satis2es the inventory constraint

S(�;x;y)(t) = s0 +
∫ t

0
y(u) du− �−

∫ t

0
x(u) du¿ 0; ∀t ∈ (0; T ]: (5)

For t = 0, we set S(�;x;y)(0) = s0. The inventory level S(�;x;y) may jump downward
(�¿ 0) at 0+.

We denote by B the set of relaxed sales/production plans:

B, {(�; x; y)∈R+ × L1+[0; T ]× L1+[0; T ]| Eq (5) holds}:
The relaxed pro2t on B is de2ned by

F(�; x; y) = ��̇(∞) +
∫ T

0
e−�t[�(x(t))− c(y(t))− s(S(�;x;y)(t))] dt;

where we have set

�̇(∞), lim
x→∞ �(x)=x;

which is well de2ned in R+ by concavity and non-negativity of �. This is the price at
which the 2rm can sell at an in2nite rate. It is also the lowest price accessible for the
company. However, since holding inventories has a cost, the 2rm may take advantage
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of an immediate depletion, even at this price. Observe that, when � is diEerentiable,
we have

lim
x→∞

�(x)
x

= lim
x→∞ �̇(x): (6)

Remark 2. The plan (0; x; y)∈B if and only if (x; y)∈A. Moreover, F(0; ·) ≡ J (·)
on A.

From now on, we shall work on the relaxed optimization problem

sup
(�; x;y)∈B

F(�; x; y): (7)

This relaxation is justi2ed by the

Proposition 3. Let A∗ (resp. B∗) be the subset of A (resp. B) given by

A∗ , {(x; y)∈A | x¿ a¿y a:e:; x is non-increasing; y is non-decreasing};

B∗ , {(�; x; y)∈B | x¿ a¿y a:e:; x is non-increasing; y is non-decreasing}:
Then, we have

sup
(x;y)∈A

J (x; y) = sup
(x;y)∈A∗

J (x; y) = sup
(�;x;y)∈B∗

F(�; x; y) = sup
(�;x;y)∈B

F(�; x; y):

Moreover, if (x; y) (resp. (�; x; y)) is a maximum of J on A (resp. of F on B) then
x¿y a.e. on [0; T ].

As a direct consequence of the above proposition and Remark 2, we obtain the
following relation between the initial and relaxed problems.

Corollary 4. (x; y) solves supA J if and only if (0; x; y) solves supB F.

It also results from the right-hand side equality of Proposition 3, that we can replace
B by B∗ in (7). This optimization domain restriction will play an essential role in the
proof of our existence result.

Theorem 5. The optimization problem (7) has at least one solution which is in B∗.

Remark 6. The lack of uniqueness of the respective solutions of Problem (2) and
Problem (7) prevent us from asserting that solving Problem (2) is equivalent to solving
Problem (7). Typically, we cannot aNrm that if Problem (7) has a solution with a
singular part (�¿ 0) then, Problem (2) has no solution. This question is answered in
[4] in the case of a convex storage cost function. The authors establish that Problem
(2) has a solution if and only if Problem (7) has a solution with �=0. Moreover, they
characterized the situations (depending on s0) where the solution of Problem (7) does
or does not have a singular part.
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4. The characterization of extremals

We turn now to our main purpose: to give a precise qualitative description of
the optimal plans. To do this, we derive some characterizations of the extremals of
(2) and (7). We shall require the following additional regularity assumptions on �, c
and s.

Assumption 2. The function � − c admits a unique maximum at the positive point a.
The function � is diEerentiable on (0;∞), its derivative �̇ is continuous and one to
one on [a;∞). The function c is diEerentiable on R+, its derivative ċ is continuous
and one to one on [0; a]. The function s is continuously diEerentiable on R+.

We start with characterizing the extremals of (7).

Theorem 7. Let (�; x; y)∈B.
If (�; x; y) is a solution of Problem (7) then,

1. (�; x; y)∈B∗,
2. S(�;x;y)(T ) = 0, T0 , inf{t ∈ (0; T ] | S(�;x;y)(t) = 0}∈ (0; T ],
3. if T0¡T then, S(�;x;y) ≡ 0 on [T0; T ] and x = y = a a.e. on [T0; T ],
4. the function S(�;x;y) is decreasing on [0; T0],
5. the functions x and y are both continuous on (0; T0) and they satisfy the following

system:

∀t ∈ (0; T0);




e−�t �̇(x(t))−
∫ t

0
e−�uṡ(S(�;x;y)(u)) du= �̇(x(0+));

y(t) = g(x(t));

(8)

where g(z) =

{
ċ−1(�̇(z)) if �̇(z)¿ċ(0)

0 elsewhere
;∀z ∈ [a;∞),

6. if T0¡T then, x(T0−) = a,
7. if �¿ 0 then, x(0+) =∞.

Conversely, suppose that (�; x; y) satis@es the above conditions then, for every
("; h; k)∈R × L1[0; T ] × L1[0; T ] such that (�; x; y) + $0("; h; k)∈B for some $0¿ 0,
we have

lim sup
$¿0
$→0

{
F((�; x; y) + $("; h; k))−F(�; x; y)

$

}
6 0:

We postpone the proof of this result to Section 6 and turn to the characterization
of the extremal sales/production plans of our initial problem (2). This is an immediate
corollary of Proposition 3 and Theorem 7.
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Corollary 8. Let (x; y)∈A.
If (x; y) is a solution of Problem (2) then,

1. (x; y)∈A∗,
2. S(x;y)(T ) = 0 and T0 , inf{t ∈ (0; T ] | S(x;y)(t) = 0}∈ (0; T ],
3. if T0¡T then, S(x;y) ≡ 0 on [T0; T ] and x = y = a a.e. on [T0; T ],
4. the function S(x;y) is decreasing on [0; T0],
5. the functions x and y are both continuous on (0; T0) and they satisfy the following

system:

∀t ∈ (0; T0);




e−�t �̇(x(t))−
∫ t

0
e−�uṡ(S(x;y)(u)) du= �̇(x(0+));

y(t) = g(x(t));

(9)

where g is de@ned as in Theorem 7,
6. if T0¡T then, x(T0−) = a.

Conversely, suppose that (x; y) satis@es the above conditions then, for every (h; k)∈
L1[0; T ]× L1[0; T ] such that (x; y) + $0(h; k)∈A for some $0¿ 0, we have

lim sup
$¿0
$→0

{
J ((x; y) + $(h; k))− J (x; y)

$

}
6 0:

The above corollary states that, if the revenue is concave and if the production cost is
convex then, the behavior of the company towards inventories is qualitatively the same
for any kind of storage cost function: there is no inventory accumulation. The sales
rate is always greater than the production rate. The optimal way to deplete the initial
inventory is in two phases. This leads to a three phases sales/production plan. The 2rst
phase is devoted to the selling activity. The sales rate is non-increasing or equivalently
the marginal revenue is non-decreasing. If the marginal revenue overtakes the lowest
marginal cost of production then, the production activity actually starts. During this
second phase, the sales rate and the production rate are such that the marginal revenue
equals the marginal production cost (see the de2nition of g). The sales level is still
non-increasing, the production rate non-decreasing. The third phase starts when the
stock is all cleared. Production and sales are at the same constant rate, the one that
maximizes the instantaneous pro2t.

5. Maximization domain restriction, relaxed problem justi(cation and existence
result: proofs

5.1. Proof of Proposition 3

We split the proof in several steps. The 2rst three steps are dedicated to the proof
of the equality

sup
B

F= sup
B∗

F: (10)
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Since B∗ ⊂ B, we only have to prove that supB F6 supB∗ F. We do it by showing
that

∀(�; x; y)∈B; ∃(�; x∗; y∗)∈B∗ :F(�; x∗; y∗)¿F(�; x; y): (11)

We will then prove that sup
B∗

F¡∞, and the last step will end the proof.

Observe that, since (s0; a; a)∈B∗ and satis2es F(s0; a; a)¿ 0, we may restrict our
attention to plans such that F(�; x; y)¿−∞ and we rede2ne B and B∗ accordingly.
In the following, for a measurable set E ⊂ [0; T ], we shall denote by |E| its Lebesgue

measure.
Step 1: For all (�; x; y)∈B, there exists some (x̂; ŷ) such that (�; x̂; ŷ)∈B, x̂¿ŷ

a.e. and F(�; x̂; ŷ)¿F(�; x; y). Moreover, if |{y¿x}|¿0, then F(�; x̂; ŷ)¿F(�; x; y).
For ease of notation, we shall write

S(t), s0 − �+
∫ t

0
[y(u)− x(u)] du; ∀t ∈ [0; T ]:

By de2nition, S is absolutely continuous on [0; T ]. Let us de2ne

M (t), min
[0; t]

S(u); ∀t ∈ [0; T ]:

We will prove that the triplet (�; x̂; ŷ) de2ned by

x̂ = ŷ = a on {M ¡S}, {t ∈ [0; T ] |M (t)¡S(t)};{
x̂ = x

ŷ = y
on {M = S}, {t ∈ [0; T ] |M (t) = S(t)}

satis2es the requirements of Step 1.
We shall make use of the following technical result whose proof is reported at the

end of this section.

Lemma 1. 1. The function M is absolutely continuous on [0; T ].
2. The derivative of M , denoted by Ṁ , exists almost everywhere and is integrable.

Moreover, Ṁ ≡ −[y − x]−1{M=S}, where, for any real number z, we denote [z]− =
max{0;−z}. More precisely,

(a) Ṁ = 0 a.e. on {M ¡S},
(b) Ṁ = Ṡ = y − x a.e. on {M = S} and
(c) the set {y¿x} ∩ {M = S} has zero measure.

3. 06M (t) =M (0) +
∫ t
0 Ṁ (u) du= S(�; x̂; ŷ)(t), ∀t ∈ (0; T ].

By construction (x̂; ŷ)∈L1+[0; T ] × L1+[0; T ]. From property 3 of the above lemma,
we deduce that (�; x̂; ŷ) satis2es (5), and therefore lies in B. From property 2(c) and
by construction of (x̂; ŷ), we also see that x̂¿ ŷ a.e.
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It remains to prove that F(�; x; y)6F(�; x̂; ŷ), with strict inequality if |{y¿x}|¿0.
Writing

{y¿x}= ({y¿x} ∩ {M = S}) ∪ ({y¿x} ∩ {M ¡S})

we see from property 2(c) of Lemma 1 that {y¿x} has positive measure if and only
if {M ¡S} does. The above assertion is then equivalent to: F(�; x; y)6F(�; x̂; ŷ),
with strict inequality if |{M ¡S}|¿ 0.

Since by construction M6 S, it follows from property 3 of Lemma 1 that S(�; x̂; ŷ)6 S.
Since the function s is non-decreasing, we therefore have by de2nition of (x̂; ŷ),

F(�; x; y)−F(�; x̂; ŷ)

=
∫ T

0
e−�t�(x(t))1{M¡S}(t) dt − �(a)

∫ T

0
e−�t1{M¡S}(t) dt

−
∫ T

0
e−�tc(y(t))1{M¡S}(t) dt + c(a)

∫ T

0
e−�t1{M¡S}(t) dt

−
∫ T

0
e−�ts(S(t)) dt +

∫ T

0
e−�ts(S(�; x̂; ŷ)(t)) dt

6
∫ T

0
e−�t�(x(t))1{M¡S}(t) dt − �(a)

∫ T

0
e−�t1{M¡S}(t) dt

−
∫ T

0
e−�tc(y(t))1{M¡S}(t) dt + c(a)

∫ T

0
e−�t1{M¡S}(t) dt: (12)

If |{M ¡S}| = 0 then, the right-hand side is null and hence F(�; x; y)6F(�; x̂; ŷ).
In order to conclude the proof, we only have to show that F(�; x; y)¡F(�; x̂; ŷ)
whenever |{M ¡S}|¿ 0. We therefore assume from now on that |{M ¡S}|¿ 0. By
Jensen’s inequality, we deduce from (12) that

F(�; x; y)−F(�; x̂; ŷ)

6 [�(mx)− c(my)− (�(a)− c(a))]
∫ T

0
e−�t1{M¡S}(t) dt; (13)

where

mx ,

∫ T
0 e−�tx(t)1{M¡S}(t) dt∫ T

0 e−�t1{M¡S}(t) dt
and my ,

∫ T
0 e−�ty(t)1{M¡S}(t) dt∫ T

0 e−�t1{M¡S}(t) dt
: (14)
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Now, observe that, by de2nition of S and the characterization of Ṁ in 2 of Lemma 1,

S(t)−M (t) =
∫ t

0
(y(u)− x(u)) du+

∫ t

0
[y(u)− x(u)]−1{M=S}(u) du

=
∫ t

0
(y(u)− x(u))1{M¡S}(u) du

+
∫ t

0
[y(u)− x(u)]+1{M=S}(u) du

=
∫ t

0
(y(u)− x(u))1{M¡S}(u) du; ∀t ∈ [0; T ];

where the last equality is obtained by 2(c) of Lemma 1, and we used the notation
[z]+ = max{0; z}. We deduce that∫ t

0
(y(u)− x(u))1{M¡S}(u) du= 0 on {M = S}

∫ t

0
(y(u)− x(u))1{M¡S}(u) du¿ 0 on {M ¡S}:

(15)

Integrating by parts in (14) and using (15), it is easy to see that mx ¡my. Since c
is convex, non-decreasing, and satis2es c(0) = 0 and c(y)¿ 0, ∀y¿ 0, it is indeed
increasing. It follows that c(mx)¡c(my). Then, using (13) and recalling that � − c
reaches its maximum at a, we obtain

F(�; x; y)−F(�; x̂; ŷ)

¡ [�(mx)− c(mx)− (�(a)− c(a))]
∫ T

0
e−�t1{M¡S}(t) dt6 0:

This completes the proof of Step 1.

Remark 9. The last assertion of Proposition 3 is an immediate consequence of Step 1.

Step 2: For all (�; x; y)∈B such that x¿y a.e., there exists some (x̂; ŷ) such that
(�; x̂; ŷ)∈B; x̂¿ a¿ ŷ a.e. and F(�; x̂; ŷ) ¿F(�; x; y).
Let us de2ne

(x̂(t); ŷ(t)),




(x(t)− (y(t)− a); a) if x(t)¿y(t)¿a;

(a; y(t) + (a− x(t))) if a¿x(t)¿y(t);

(x(t); y(t)) if x(t)¿ a¿y(t):

By construction x̂¿ a¿ ŷ a.e. Moreover, x̂ and ŷ are in L1+[0; T ] and

x̂ − ŷ = x − y a:e: and therefore S(�; x̂; ŷ) ≡ S(�;x;y); (16)
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so that (�; x̂; ŷ)∈B. In order to conclude, we shall show that F(�; x̂; ŷ)¿F(�; x; y).
By (16), we have

F(�; x̂; ŷ)−F(�; x; y)

=
∫ T

0
e−�t[�(x̂(t))− �(x(t))− (c(ŷ(t))− c(y(t)))] dt: (17)

We shall prove that for almost every t ∈ [0; T ],

�(x̂(t))− �(x(t))− [c(ŷ(t))− c(y(t))]

¿ [�̇l(a)− ċl(a)](a− x(t))1{x6a}(t)

+ [�̇r(a)− ċr(a)](a− y(t))1{y¿a}(t); (18)

where �̇l and ċl (resp. �̇r and ċr) are the left (resp. right) derivatives of � and c. Since
�− c reaches its maximum at a, we have

[�̇l(a)− ċl(a)](a− x(t))1{x6a}(t) + [�̇r(a)− ċr(a)](a− y(t))1{y¿a}(t)¿ 0:(19)

Hence, (18) will imply that F(�; x̂; ŷ)¿F(�; x; y). Let us denote �(t) = �(x̂(t)) −
�(x(t)) − [c(ŷ(t)) − c(y(t))]. On {t ∈ [0; T ] | x(t)¿ a¿y(t)} inequality (18) holds
because both sides are null. On {t ∈ [0; T ] | a¿x(t)¿y(t)}, we have by construction
x̂(t) = a and ŷ(t) = y(t) + a− x(t). It follows from the concavity of � and −c that

�(t) = �(a)− �(x(t))− [c(y(t) + a− x(t))− c(y(t))]

¿ �̇l(a)(a− x(t))− ċl(y(t) + a− x(t))(a− x(t)) (20)

¿ �̇l(a)(a− x(t))− ċl(a)(a− x(t)); (21)

where inequality (20) (resp. 21) holds because x(t)¡a and y(t)¡y(t)+a−x(t) (resp.
y(t) + a − x(t)6 a). The same kind of arguments shows that on {t ∈ [0; T ] | x(t)¿
y(t)¿a}, �(t)¿ �̇r(a)(a − y(t)) − ċr(a)(a − y(t)). Recalling that x¿y a.e. by
assumption, this proves that inequality (18) holds a.e. on [0; T ]. This concludes
Step 2.
For later purpose, we make the following.

Remark 10. Assume that � is strictly concave on [a;∞) and that c is strictly convex
on [0; a]. If one of the sets {t ∈ [0; T ] | x(t)¡a} or {t ∈ [0; T ]; y(t)¿a} has positive
measure then, F(�; x̂; ŷ)¿F(�; x; y). Indeed, for every t ∈ [0; T ] such that x(t)¡a,
we have y(t)6 x(t)¡a and y(t)+a−x(t)¡a. Since c is strictly convex on [0; a], it
follows that inequality (20) is strict. Hence, if the set {t ∈ [0; T ] | x(t)¡a} has positive
measure, inequality (18) is strict on a set of positive measure and therefore, by (17),
F(�; x̂; ŷ)¿F(�; x; y). Analogously, we check that if � is strictly concave on [a;∞)
and if the set {t ∈ [0; T ] |y(t)¿a} has positive measure then, F(�; x̂; ŷ)¿F(�; x; y).

Step 3. For all (�; x; y)∈B such that x¿ a¿y a.e., there exists some (x∗; y∗)
such that (�; x∗; y∗)∈B∗ and F(�; x∗; y∗)¿F(�; x; y).
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Let x∗ be the non-increasing rearrangement of x and y∗ be the non-decreasing
rearrangement of y (see [7] for the de2nitions of the rearrangement operators and
their basic properties). From the increasing feature of the rearrangement operators
and the assumption x¿ a¿y¿ 0 a.e., we have x∗¿ a¿y∗¿ 0: Moreover, the equi-
measurability property provides the equalities∫ T

0
y∗(u) du=

∫ T

0
y(u) du and

∫ T

0
x∗(u) du=

∫ T

0
x(u) du:

Therefore,

S(�;x
∗ ;y∗)(t) = s0 − �+

∫ t

0
(y∗(u)− x∗(u)) du

¿ s0 − �+
∫ T

0
(y∗(u)− x∗(u)) du= S(�;x;y)(T )¿ 0; ∀t ∈ (0; T ];

where the inequality holds because x∗¿y∗. Recalling that x∗¿ a¿y∗¿ 0, and that
x∗ (resp. y∗) is non-increasing (resp. non-decreasing), it follows that (�; x∗; y∗)∈B∗.
It remains to prove that F(�; x∗; y∗)¿F(�; x; y).
By property of the rearrangement operators, we have∫ t

0
y∗(u) du6

∫ t

0
y(u) du and

∫ t

0
x∗(u) du¿

∫ t

0
x(u) du; ∀t ∈ [0; T ]:

Consequently,

S(�;x
∗ ;y∗)(t) = s0 − �+

∫ t

0
y∗(u) du−

∫ t

0
x∗(u) du

6 s0 − �+
∫ t

0
y(u)du−

∫ t

0
x(u) du= S(�;x;y)(t):

From the Hardy–Littlewood inequality and the increasing feature of s, it follows that

F(�; x∗; y∗)−F(�; x; y) =
∫ T

0
e−�t�(x∗(t)) dt −

∫ T

0
e−�t�(x(t)) dt

−
[∫ T

0
e−�tc(y∗(t)) dt −

∫ T

0
e−�tc(y(t)) dt

]

−
∫ T

0
e−�t[s(S(�;x

∗ ;y∗)(t))− s(S(�;x;y)(t))] dt

¿ 0:

This concludes the proof of Step 3.
These three 2rst steps prove (11) and therefore (10).

Remark 11. The same arguments show that supA J = supA∗ J . The proof is therefore
omitted.
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Step 4. supB∗ F¡∞.
Fix (�; x; y)∈B∗. It follows from the non-negativity of x, (5) and the inequality

06y6 a a.e. that∫ t

0
e−�ux(u) du6

∫ t

0
x(u) du6 s0 − �+

∫ t

0
y(u) du6 s0 − �+ Ta; ∀t ∈ (0; T ]:

Observe that

F(�; x; y)6 �̇(∞)�+
(∫ T

0
e−�t dt

)
�

(
1∫ T

0 e−�t dt

∫ T

0
e−�tx(t) dt

)

by Jensen’s inequality and non-negativity of c and s. Sending t to 0 in (5), we also
see that 06 S(�;x;y)(0+) = s0 − �. We then deduce from the two previous inequalities
and the increasing feature of � that F is uniformly bounded from above on B∗ by

�̇(∞)s0 +
(∫ T

0
e−�t dt

)
�

(
1∫ T

0 e−�t dt
(s0 + Ta)

)
:

This concludes the proof of Step 4.
The following step ends the proof of Proposition 3.
Step 5. supA J = supB F.
Since {0} × A ⊂ B and F(0; ·) = J (·) on A, we have supA J6 supB F and

thus, we only have to establish the converse inequality. In virtue of the equalities
supBF=supB∗ F and supA J =supA∗ J that comes from the above steps, it is enough
to prove that supA J¿ supB∗ F. We do it by proving that for every (�; x; y)∈B∗, there
exists a sequence (xn)n such that (xn; y)∈A and limn→∞ J (xn; y) =F(�; x; y).
Fix (�; x; y)∈B∗, we shall prove that xn , n�1[0;1=n] + x1[1=n;T ] satis2es the above

requirements. We have

S(xn;y)(t) = s0 +
∫ t

0
y(u) du− �nt¿ s0 +

∫ t

0
y(u) du− �

¿ S(�;x;y)(t) if t6
1
n
;

S(xn;y)(t) = s0 +
∫ t

0
y(u) du− �−

∫ t

1=n
x(u) du¿ S(�;x;y)(t) if t ¿

1
n
:

Since S(�;x;y)¿ 0; (xn; y)∈A. Moreover, S(xn;y) is bounded by s0+Ta and it converges
simply towards S(�;x;y). Therefore, since s is continuous, it follows from the dominated
convergence theorem that

lim
n→∞

∫ T

0
e−�ts(S(xn;y)(t)) dt =

∫ T

0
e−�ts(S(�;x;y)(t)) dt:
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Observing that

∫ T

0
e−�t�(xn(t)) dt =

∫ 1=n

0
e−�t�(�n) dt +

∫ T

1=n
e−�t�(x(t)) dt

=
�(�n)
n

(
1− e−�1=n

�1=n

)
+
∫ T

1=n
e−�t�(x(t)) dt

we also deduce that

lim
n→∞

∫ T

0
e−�t�(xn(t)) dt = �̇(∞)�+

∫ T

0
e−�t�(x(t)) dt:

We have proved the convergence limn→∞ J (xn; y)=F(�; x; y). The proof of
Proposition 3 is completed.

Proof of Lemma 1. By construction, M is non-increasing and satis2es 06M6 S on
[0; T ]. In order to prove that M is absolutely continuous, we 2rst establish that

∀ 06 u¡v6T; ∃ Pv∈ [u; v] such that |M (u)−M (v)|6 |S(u)− S( Pv)|: (22)

Let 06u¡v6T . The case where M (u)=M (v) is obvious. Assume that M (v)¡M (u).
Then, we have M (v) = mint∈[0; v] S(t) = mint∈[u;v] S(t), i.e. S reaches its minimum on
[0; v] at some point Pv∈ (u; v] and we have S( Pv) =M (v)¡M (u)6 S(u), so that (22)
holds.
Now, 2x $¿ 0; n∈N, and let {ui; vi}ni=1 be ends of n non-overlapping (possibly

abutting) subintervals [ui; vi] of [0; T ]. Let Pvi be de2ned as in (22) with (u; v)=(ui; vi).
The intervals [ui; Pvi], are non-overlapping and satisfy

n∑
i=1

|ui − Pvi|6
n∑
i=1

|ui − vi| and
n∑
i=1

|M (ui)−M (vi)|6
n∑
i=1

|S(ui)− S( Pvi)|:

Therefore, since S is absolutely continuous on [0; T ], there exists some �¿ 0 such that

n∑
i=1

|ui − vi|¡�⇒
n∑
i=1

|M (ui)−M (vi)|¡$:

This proves 1.
2. Since M is absolutely continuous, Ṁ exists almost everywhere and is integrable.
2(a). Since the functions M and S are both continuous on [0; T ], the set {M ¡S}

is open. Hence, it is enough to prove that M is constant on each connected component
of {M ¡S}. Let I be such a (non-empty) component. It suNces to prove that M (t)=
S(inf I), for all t ∈ I . Let t ∈ I . If M (t) = minu∈[0; t] S(u)¡S(inf I) then S reaches its
minimum on [0; t] at some û∈ (inf I; t]. We therefore have M (û) = S(û) and û∈ I ⊂
{M ¡S}. This is a contradiction. Hence, M (t) = S(inf I).
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2(b). By property of Lebesgue measurable sets, if |{M = S}|¿ 0 then there exists
E ⊂ {M = S} such that |{M = S}\E|= 0 and

lim
$→0

|(t − $; t + $) ∩ {M = S}|
2$

= 1; ∀t ∈E:

It follows that, for every t ∈E, the limits limu→t (M (u) − M (t))=(u − t) and
limu→t (S(u)− S(t))=(u− t), when they exist, can be computed along some sequence
(tn)n in {M = S}\{t}. We therefore have

Ṁ (t) = lim
n→∞

M (tn)−M (t)
tn − t

= lim
n→∞

S(tn)− S(t)
tn − t

= Ṡ(t) = y(t)− x(t):

2(c). Assume that

|{y − x¿ 0} ∩ {M = S}|¿ 0:

Then, by 2(b), there exists some t ∈{y−x¿ 0}∩{M=S} such that Ṡ(t)=y(t)−x(t)¿ 0
and

lim
$→0

|(t − $; t + $) ∩ {y − x¿ 0} ∩ {M = S}|
2$

= 1;

so that, there exists a sequence (tn)n in {y − x¿ 0} ∩ {M = S}\{t} which converges
towards t. Hence, for every suNciently large n∈N, we have

M (tn)−M (t)
tn − t

=
S(tn)− S(t)

tn − t
¿ 0;

which contradicts the decreasing feature of M .
Combining properties 2(a)–(c), we obtain Ṁ =−[y − x]−1{M=S}.
3. Finally, by absolute continuity of M , property 2, 2(c) and de2nition of (x̂; ŷ), we

have

06M (t) =M (0) +
∫ t

0
Ṁ (u) du

= s0 − �−
∫ t

0
[y(u)− x(u)]−1{M=S}(u) du

= s0 − �+
∫ t

0
(y(u)− x(u))1{M=S}(u) du

= S(�; x̂; ŷ)(t); ∀t ∈ (0; T ]:

This concludes the proof of Lemma 1.

5.2. Proof of Theorem 5

By Proposition 3, there exists a sequence (�n; xn; yn)n in B∗ such that

lim
n→∞F(�n; xn; yn) = sup

B

F:
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Step 1. There exist some �; "∈R+ and some functions x; y∈L1+[0; T ] such that,
possibly along some subsequence of (�n; xn; yn),

1. the sequence (�n)n converges to �,
2. the sequence (yn)n converges a.e. to y,
3. the sequence (xn)n converges a.e. to x and satis@es

lim
n→∞

∫ T

0
xn(t)g(t) dt = "g(0) +

∫ T

0
x(t)g(t) dt

for every bounded function g on [0; T ], continuous in 0. In particular,

lim
n→∞

∫ t

0
xn(u) du= " +

∫ t

0
x(t) du; ∀t ∈ (0; T ];

4. (�+ "; x; y)∈B∗ and the sequence (S(�n;x n;yn))n converges pointwise to S(�+";x;y).

Since the sequence (�n)n is valued in [0; s0], it is clear that up to a subsequence it
converges towards some �∈ [0; s0].
The sequence (yn)n is in the class of non-decreasing functions with values in [0; a].

Then, from the Helly compactness theorem (see [6] or [3]), it has a subsequence,
which converges a.e. to some non-decreasing function y which satis2es 06y6 a.

Recalling that yn6 a and �n¿ 0, for all n∈N, we obtain from (5) that

sup
n∈N

∫ T

0
xn(t) dt6 s0 + Ta: (23)

Since the sequence (xn)n is in the class of non-increasing functions of L1+[0; T ], it
follows that, for every �∈ (0; T ] and n∈N

06 xn(t)6
1
�
(s0 + Ta); ∀t ∈ [�; T ]: (24)

Then, by the Helly compactness theorem, and by a classical diagonal extraction process,
we can construct a subsequence, still denoted (xn)n, that converges a.e. to some x on
(0; T ], which is non-negative, non-increasing and satis2es x¿ a a.e. By Fatou’s lemma
and (23), we have∫ T

0
x(t) dt6 lim inf

n

∫ T

0
xn(t) dt6 s0 + Ta: (25)

Since x¿ 0, it follows that x∈L1+[0; T ]. Observe that, possibly after passing to a
subsequence, we may assume that

lim
n

∫ T

0
xn(t) dt = lim inf

n

∫ T

0
xn(t) dt:

We still denote by (�n; xn; yn) the induced subsequence.
We now prove item 3. Let g be a bounded function on [0; T ], continuous in 0. De2ne

g̃ , g − g(0) on [0; T ]. Fix $¿ 0. By continuity of g̃ in 0, there exists some �¿ 0
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such that 06 t6 �⇒ |g̃(t)|6 $=4(s0 + Ta). Since x¿ 0 and xn ¿ 0, it follows from
(23) that∣∣∣∣

∫ T

0
xn(t)g̃(t) dt −

∫ T

0
x(t)g̃(t) dt

∣∣∣∣6
∫ �

0
|xn(t)− x(t)‖g̃(t)| dt

+
∫ T

�
|xn(t)g̃(t)− x(t)g̃(t)| dt

6
$
2
+
∫ T

�
|xn(t)g̃(t)− x(t)g̃(t)| dt:

By (24), the sequence (xng̃)n is uniformly bounded by (1=�)(s0 + Ta)‖g̃‖∞ on [�; T ].
As it converges a.e. towards xg̃, we get from the dominated convergence theorem, that
there exists some n0 ∈N for which

n¿ n0 ⇒
∫ T

�
|xn(t)g̃(t)− x(t)g̃(t)| dt6 $

2
:

We have proved that limn→∞
∫ T
0 xn(t)g̃(t) dt =

∫ T
0 x(t)g̃(t) dt, i.e.

lim
n→∞

∫ T

0
xn(t)g(t) dt = "g(0) +

∫ T

0
x(t)g(t) dt; (26)

where

", lim
n

∫ T

0
xn(t) dt −

∫ T

0
x(t) dt:

Taking g ≡ 1[0; t] for t ¿ 0 in (26), we obtain

lim
n→∞

∫ t

0
xn(u) du= " +

∫ t

0
x(u) du; ∀t ∈ (0; T ]: (27)

This concludes the proof of item 3.
We 2nally prove item 4. As the sequence (S(�n;x n;yn))n is in the class of non-increasing

functions with values in [0; s0], it follows from the Helly compactness theorem, that
it has a subsequence, still denoted (S(�n;x n;yn))n, which converges pointwise to some
non-increasing function S with values in [0; s0]. In order to conclude the proof of Step 1,
it remains to check that S ≡ S(�+";x;y). Notice that this will show that (�+"; x; y)∈B∗.
Indeed, we already know that the functions x and y are in L1+[0; T ], satisfy x¿ a¿y
a.e., are, respectively, non-increasing and non-decreasing, and that S is non-negative.
By de2nition, S(�n;x n;yn)(0)= s0, ∀n∈N, and therefore S(0)= s0. Finally, since (yn)n

is bounded, we obtain, by the dominated convergence theorem and Eq. (27), that for
every t ∈ (0; T ],

S(t) = lim
n→∞

(
s0 − �n +

∫ t

0
yn(u) du−

∫ t

0
xn(u) du

)

= s0 − �+ lim
n→∞

(∫ t

0
yn(u) du

)
− lim

n→∞

(∫ t

0
xn(u) du

)
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= s0 − �+
∫ t

0
y(u) du− " −

∫ t

0
x(u) du

= S(�+";x;y)(t):

Step 2. The sequence (�(xn)− �̇(∞)xn)n is uniformly integrable and therefore

lim
n→∞

∫ T

0
e−�t[�(xn(t))− �̇(∞)xn(t)] dt =

∫ T

0
e−�t[�(x(t))− �̇(∞)x(t)] dt:

Remind that supn
∫ T
0 xn(t) dt ¡∞ by (25). The function f de2ned by f(z) ,

�(z)− �̇(∞)z; ∀z ∈R+, is continuous, non-decreasing, concave and satis2es: f(0)= 0
and limz→∞ f(z)=z=0. Since the case where f is bounded is obvious, we assume that
limz→∞ f(z)=∞. The function f is concave, non-decreasing and unbounded, then, it
is increasing and it admits an inverse G on R+ which satis2es limz→∞G(z)=z = ∞.
The proof is concluded by using the equality

sup
n

∫ T

0
G(f(xn(t))) dt = sup

n

∫ T

0
xn(t) dt ¡∞

and applying the la VallSee–Poussin’s criterion of uniform integrability (see [5]).
Step 3. supB F= limn→∞ F(�n; xn; yn) =F(�+ "; x; y).
By Steps 1 and 2, the uniform bounds on (yn) and (S(�n;x n;yn)), and by the dominated

convergence theorem, we have

lim
n→∞F(�n; xn; yn) = lim

n→∞

[
�̇(∞)�n +

∫ T

0
e−�t�(xn(t)) dt

−
∫ T

0
e−�tc(yn(t)) dt −

∫ T

0
e−�ts(S(�n;x n;yn)(t)) dt

]

= �̇(∞)�+
∫ T

0
e−�t[�(x(t))− �̇(∞)x(t)] dt

+�̇(∞) lim
n→∞

(∫ T

0
e−�txn(t) dt

)

−
∫ T

0
e−�tc(y(t)) dt −

∫ T

0
e−�ts(S(�+";x;y)(t)) dt

= �̇(∞)�+
∫ T

0
e−�t�(x(t)) dt − �̇(∞)

∫ T

0
e−�tx(t) dt

+ �̇(∞)
(
" +

∫ T

0
e−�tx(t) dt

)
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−
∫ T

0
e−�tc(y(t)) dt −

∫ T

0
e−�ts(S(�+";x;y)(t)) dt

=F(�+ "; x; y):

This concludes the proof of Theorem 5.

6. Proof of Theorem 7

Let (�; x; y)∈B. For ease of notation, we now denote by S the function S(�;x;y).
We 2rst assume that (�; x; y) is a solution of Problem (7) and establish the optimality

conditions 1–7.
1. Let us prove that (�; x; y)∈B∗. We know, from Proposition 3, that x¿y a.e. on

[0; T ]. Moreover under Assumption 2, � is strictly concave on [a;∞) and c is strictly
convex on [0; a]. Then, by Remark 10, we have

x¿ a¿y a:e: on[0; T ]:

Let us prove that x (resp. y) is non-increasing (resp. non-decreasing) on [0; T ]. We have
already seen, in the proof of Proposition 3, that by considering x∗ the non-increasing
rearrangement of x and y∗ the non-decreasing rearrangement of y, we have S(�;x

∗ ;y∗)¿ S
and F(�; x∗; y∗) − F(�; x; y)¿ 0. Then, by optimality, F(�; x∗; y∗) − F(�; x; y) = 0
i.e.

0 =
∫ T

0
e−�t�(x∗(t)) dt −

∫ T

0
e−�t�(x(t)) dt

−
[∫ T

0
e−�tc(y∗(t)) dt −

∫ T

0
e−�tc(y(t)) dt

]

−
∫ T

0
e−�t[s(S(�;x

∗ ;y∗)(t))− s(S(t))] dt:

By the increasing feature of s and the Hardy–Littlewood inequality, the right-hand side
is a sum of non-negative terms and therefore∫ T

0
e−�t[s(S(�;x

∗ ;y∗)(t))− s(S(t))] dt =
∫ T

0
e−�t�(x∗(t)) dt −

∫ T

0
e−�t�(x(t)) dt

=
∫ T

0
e−�tc(y∗(t)) dt −

∫ T

0
e−�tc(y(t)) dt

= 0:

Observe that by the increasing feature of � and −c, the non-increasing rearrangements
of �◦x and −c◦y coincide with �(x∗) and −c(y∗). As the Hardy–Littlewood inequality
is strict if the function which is rearranged is not monotone, we deduce from the above
equalities that �(x∗) = �(x) and c(y∗) = c(y) a.e. Under Assumption 2, the functions
� and c are increasing, so that x= x∗ and y=y∗ a.e. and therefore x is non-increasing
and y is non-decreasing.
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2. Let us prove that S(T )= 0. Assume to the contrary that S(T )¿ 0. Recalling that
S is non-increasing by item 1, there is some interval [t̂; T ] on which S is bounded
from below by some +¿ 0. Let x̂ , x + (+=(T − t̂))1[t̂; T ], then it is easy to check
that (�; x̂; y)∈B and F(�; x̂; y)¿F(�; x; y), which contradicts the optimal feature
of (�; x; y). This proves the 2rst part of item 2 and insures the existence of T0 ,
inf{t ∈ (0; T ] | S(t) = 0}. We shall prove in 3. that T0¿ 0.
3. Let us prove that if T0¡T then, S ≡ 0 on (T0; T ] and x= y= a a.e. on [T0; T ].

From item 1, S is non-increasing on [0; T ]. Since it is non-negative, it follows from
the de2nition of T0 that it is identically null on (T0; T ]. Since, by item 1, x¿ a¿y
a.e. on [0; T ], this shows that x = y = a a.e. on [T0; T ].
We now prove that T0 is positive. Since S is continuous on (0; T ], this will imply

S(T0)=0 and therefore conclude the proof. From the above discussion we know that if
T0¡T then, S(T0+)=0. Then, assuming that T0 = 0, leads to s0 − �= S(0+)=0 and
hence �¿ 0. By property 7 (which will be proved later) this implies that x(0+) =∞
which contradicts the fact that x = y = a a.e. on [T0; T ].

4. Let us prove that S is decreasing on [0; T0]. Since by item 1 x¿ a¿y a.e., it is
enough to establish that the set {y= x= a} ∩ [0; T0] has zero measure. Let us assume
that it has positive measure. We shall construct a variation in order to end up with a
contradiction. De2ne

,,
|{y = x = a} ∩ [0; T0]|

2
:

Writing that |{y = x = a} ∩ [T0 − ,; T0]|6 ,, we see that |{y = x = a} ∩ [0; T0 − ,)|
¿ 0. Besides, since, by item 1, de2nition of T0 and item 3, S ¿ 0 on [0; T0), and
S(T0)=0, it follows that |{x¿y}∩ (T0− ,=2; T0)|¿ 0 and therefore |{x¿y}∩ (T0−
,=2; T0) ∩ {x¿ a}|¿ 0, by item 1. We can now apply Lusin’s theorem to the sets
{y= x= a} ∩ [0; T0 − ,) and {x¿y} ∩ (T0 − ,=2; T0) ∩ {x¿ a}, to 2nd two compact
sets F ⊂ {y = x = a} ∩ [0; T0 − ,) and K ⊂ {x¿y} ∩ (T0 − ,=2; T0) ∩ {x¿ a} which
both have positive measures and such that the restrictions x|F and x|K are continuous.
Observe that, by construction, we have

max F ¡minK;min
K
x¿ a and +, min

conv(F∪K)
S ¿ 0; (28)

where the last inequality holds by continuity of S, item 1, de2nition of T0 and the
fact that the compact conv(F ∪K) ⊂ [0; T0). Now, since |F |¿ 0 and |K |¿ 0, we can
de2ne q= |F |=|K | and 2nd $0 such that

0¡$0¡min
(
a
q
;
+
|F |
)
:

We are now in position to construct a sequence of variations that will lead to the
required contradiction.
For 0¡$6 $0, let

x$ , x + $1F − $q1K :

Using (28) and the de2nition of $0, it is easy to check that x$ ∈L1+[0; T ]. Then, writing
successively S(�;x$;y) on [0; max F]; (max F; minK) and [minK; T ], we immediately
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see from (28) and the de2nition of $0 again, that 06 S(�;x$;y)6 S on [0; T ], and in
particular that (�; x$; y)∈B. Now, since s is non-decreasing and x = a on F , we have

F(�; x$; y)−F(�; x; y)
$

¿
∫ T

0
e−�t

(
�(a+ $)− �(a)

$

)
1F(t) dt

+
∫ T

0
e−�t

(
�(x(t)− $q)− �(x(t))

$

)
1K (t) dt:

By concavity of � and the inequality x¿ a on K , this implies that

F(�; x$; y)−F(�; x; y)
$

¿ e−�max F �̇(a+ $)|F | − e−�min Kq�̇(a− $q)|K |:

Recalling that �̇ is continuous in a, q = |F |=|K | and that max F ¡minK , we
deduce that

lim inf
$→0
$¿0

{
F(�; x$; y)−F(�; x; y)

$

}
¿ (e−�max F − e−�min K)�̇(a)|F |¿ 0;

which contradicts the optimal feature of (�; x; y) and concludes the proof of item 4.
5. Let us prove that the functions x and y are both continuous on (0; T0) and that

they satisfy

∀t ∈ (0; T0);




e−�t �̇(x(t))−
∫ t

0
e−�uṡ(S(u)) du= �̇(x(0+));

y(t) = g(x(t));

(29)

where

g(z) =

{
ċ−1(�̇(z)) if �̇(z)¿ċ(0);

0 elsewhere;
∀z ∈ [a;∞):

We split the proof in two steps.
Step 1. The function x is continuous on (0; T0) and satis@es

∀t ∈ (0; T0); e−�t �̇(x(t))−
∫ t

0
e−�uṡ(S(u)) du= �̇(x(0+))∈ [�̇(∞); �̇(a)]:

We 2rst prove that the left-hand side is constant a.e. Since, by items 3 and 4, S is
decreasing on [0; T0] and S(T0)=0, for small enough �¿ 0, we have S(t)¿ S(T0−�)
¿ 0, for every t ∈ [0; T0−�]. Let h∈C∞

c (0; T0−�) be such that
∫ T0−�
0 h(t) dt=0, and

2x $0¿ 0 satisfying

$0‖h‖∞¡min
{
a;
S(T0 − �)
T0 − �

}
:

Observe that, for every $∈ (0; $0]; (�; x$; y)∈B where we have set

x$ , x + $h1[0;T0−�]:
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Thus, by the optimal feature of (�; x; y) we have

0¿
F(�; x$; y)−F(�; x; y)

$

=
∫ T0−�

0
e−�t

(
�(x(t) + $h(t))− �(x(t))

$

)
dt

−
∫ T0−�

0
e−�t

(
s(S(t)− $

∫ t
0 h(u) du)− s(S(t))

$

)
dt: (30)

Observing that, for every $∈ (0; $0] we have∣∣∣∣�(x(t) + $h(t))− �(x(t))
$

∣∣∣∣6 �̇(a− $0‖h‖∞)‖h‖∞ a:e: on [0; T0 − �]

and ∣∣∣∣∣ s(S(t)− $
∫ t
0 h(u) du)− s(S(t))

$

∣∣∣∣∣6 (T0 − �)‖h‖∞max
I
ṡ a:e: on [0; T0 − �];

where I = [0; s0 + $0‖h‖∞(T0 − �)], we can let $ tend to 0 in (30) to get by the
dominated convergence theorem

0¿
∫ T0−�

0
e−�t �̇(x(t))h(t) dt +

∫ T0−�

0
e−�t ṡ(S(t))

(∫ t

0
h(u) du

)
dt:

Noticing that, by item 1,

06 e−�t ṡ(S(t))6max
[0; s0]

ṡ for all t ∈ [0; T ]; (31)

we can integrate by parts the second term in the previous inequality to get

0¿
∫ T0−�

0
e−�t �̇(x(t))h(t) dt −

∫ T0−�

0

[∫ t

0
e−�uṡ(S(u)) du

]
h(t) dt:

By homogeneity, the inequality is indeed an equality. This proves that, for every
h∈C∞

c (0; T0 − �) satisfying
∫ T0−�
0 h(t) dt = 0, we have

0 =
∫ T0−�

0

[
e−�t �̇(x(t))−

∫ t

0
e−�uṡ(S(u)) du

]
h(t) dt:

Since the function t → f(t), e−�t �̇(x(t))− ∫ t0 e−�uṡ(S(u)) du is in L∞(0; T0 − �), it
follows from the previous result that there exists some constant k� for which

e−�t �̇(x(t))−
∫ t

0
e−�uṡ(S(u)) du= k� a:e: on [0; T0 − �]: (32)
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It remains to prove that k�=�̇(x(0+)), for all small �¿ 0, where x(0+), lim t→0
t¿0

x(t)

is well de2ned in R+ ∪ {∞} by the non-increasing feature of x (item 1), and lim t→0
t¿0

�̇(x(t)) = �̇(x(0+))∈ [�̇(∞); �̇(a)] ⊂ R, by continuity of �̇ on [a;∞) and by (6). We
do it by letting t tend to 0 in (32) and using (31). This leads to

e−�t �̇(x(t))−
∫ t

0
e−�uṡ(S(u)) du= �̇(x(0+)) a:e: on

⋃
�¿0

[0; T0 − �] = [0; T0):

By continuity of the function t → e�t(�̇(x(0+)) +
∫ t
0 e−�uṡ(S(u)) du) on (0; T0), and

since �̇ is continuous and one to one on [a;∞), this also shows that x is continuous
on (0; T0).
Step 2. The function y is continuous on (0; T0) and satis@es

y(t) =

{
0 if �̇(x(t))¡ċ(0);

ċ−1(�̇(x(t))) if �̇(x(t))¿ ċ(0):

Recalling that, by item 1, y is non-decreasing on (0; T0), by de2ning

Ty , sup{t ∈ (0; T0) |y(t) = 0}
with the convention sup ∅=0, we have y(t)=0;∀t ∈ (0; Ty) and y(t)¿ 0;∀t ∈ (Ty; T0).
We 2rst prove that

ċ(y(t)) = �̇(x(t)) for a:e: t in (Ty; T0): (33)

Let h∈C∞
c (Ty; T0), with support denoted by K . By de2nition of Ty and since y is

non-decreasing, y is bounded from below by y(minK)¿ 0 on K . Fix $0¿ 0 such that
$0‖h‖∞¡y(minK). For every $∈ (0; $0], set

(x$; y$), (x; y) + $(h; h)1(Ty;T0):

Then, clearly, (�; x$; y$)∈B and S(�;x$;y$) ≡ S(�;x;y). Therefore, from the optimal feature
of (�; x; y) we have

0¿
F(�; x$; y$)−F(�; x; y)

$

=
∫ T0

Ty
e−�t

(
�(x(t) + $h(t))− �(x(t))

$

)
dt

−
∫ T0

Ty
e−�t

(
c(y(t) + $h(t))− c(y(t))

$

)
dt: (34)

Noticing that, by construction, for every $∈ (0; $0]∣∣∣∣�(x(t) + $h(t))− �(x(t))
$

∣∣∣∣6 �̇(a− $0‖h‖∞)‖h‖∞ a:e: on (Ty; T0)
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and ∣∣∣∣c(y(t) + $h(t))− c(y(t))
$

∣∣∣∣6 ċ(a+ $0‖h‖∞)‖h‖∞ a:e: on (Ty; T0);

we can let $ tend to 0 in (34) to get, by the dominated convergence theorem,

0¿
∫ T0

Ty
e−�t �̇(x(t))h(t) dt −

∫ T0

Ty
e−�t ċ(y(t))h(t) dt:

Since by homogeneity the inequality is in actual fact an equality, this proves that,
for every h∈C∞

c (Ty; T0),

0 =
∫ T0

Ty
e−�t[�̇(x(t))− ċ(y(t))]h(t) dt:

Since the function t �→ |�̇(x(t))− ċ(y(t))| is in L∞(Ty; T0), we then have

�̇(x(t)) = ċ(y(t)) for a:e t in (Ty; T0): (35)

We have proved (33). Observe that, since by Step 1, the function �̇ ◦ x is continuous
on (Ty; T0) and ċ is continuous and one to one on [0; a], this shows that

y is continuous on (Ty; T0): (36)

We now concentrate on (0; Ty). Considering variations of the form

(x$; y$), (x; y) + $(h; h)1(0;Ty); h¿ 0;

we can establish in an analogous way that

�̇(x(t))6 ċ(y(t)) = ċ(0) for a:e: t in (0; Ty): (37)

Since y is non-decreasing, the limit y(Ty+) exists, and by (35), Step 1, (37), it
satis2es ċ(y(Ty+)) = �̇(x(Ty+)) = �̇(x(Ty−))6 ċ(y(Ty−)) = ċ(0). Hence, since ċ is
non-decreasing, we get y(Ty+) = 0 = y(Ty−). This shows that y is continuous in Ty
and equal to 0 on [0; Ty]. In particular, it follows from (36) that y is continuous on
(0; T0).
Finally, since by item 1 x¿ a¿y, since �̇([a;∞))=(�̇(∞); �̇(a)]=(�̇(∞); ċ(a)] ⊂

[0; ċ(a)] and since ċ−1 is well de2ned on [0; ċ(a)] (see Assumption 2), we deduce
from (35) and (37) that, for every t ∈ (0; T0),

y(t) =

{
0 if �̇(x(t))¡ċ(0);

ċ−1(�̇(x(t))) if �̇(x(t))¿ ċ(0):

This concludes the proof of item 5.
6. Let us prove that if T0¡T then, x(T0−)=a, where x(T0−) is well de2ned because

x is non-increasing. By item 1, we know that x(T0−)¿ a. Let 0¡�¡min{T−T0; T0}.
For every $∈ (0; a=2], we de2ne

x$ , x − $1(T0−�;T0) + $1(T0 ;T0+�):



1390 M. Chazal et al. / Nonlinear Analysis 54 (2003) 1365–1395

Then, clearly, (�; x$; y)∈B and therefore, by optimality of (�; x; y),

0¿
F(�; x$; y)−F(�; x; y)

�$

=
1
�

∫ T0

T0−�
e−�t

(
�(x(t)− $)− �(x(t))

$

)
dt

+
1
�

(
�(a+ $)− �(a)

$

)∫ T0+�

T0
e−�t dt

− 1
�

∫ T0

T0−�
e−�t

(
s(S(t) + $(t − (T0 − �)))− s(S(t))

$

)
dt

− 1
�

∫ T0+�

T0
e−�t

(
s($�− $(t − T0))− s(0)

$

)
dt: (38)

Since, by construction, for every $∈ (0; a=2], we have∣∣∣∣�(x(t)− $)− �(x(t))
$

∣∣∣∣6 �̇
(a
2

)
a:e: on (T0 − �; T0);

∣∣∣∣ s(S(t) + $(t − (T0 − �)))− s(S(t))
$

∣∣∣∣6 � max
[0; s0+(a=2)�]

ṡ a:e: on (T0 − �; T0)

and ∣∣∣∣ s($�− $(t − T0))− s(0)
$

∣∣∣∣6 � max
[0;(a=2)�]

ṡ a:e: on (T0; T0 + �);

we can let $ tend to 0 in (38) to get, by the dominated convergence theorem,

0¿−1
�

∫ T0

T0−�
e−�t �̇(x(t)) dt +

1
�
�̇(a)

∫ T0+�

T0
e−�t dt

− 1
�

∫ T0

T0−�
e−�t ṡ(S(t))(t − (T0 − �)) dt

− ṡ(0) 1
�

∫ T0+�

T0
e−�t(�− (t − T0)) dt:

Recall that x(T0−) is well de2ned in [a;∞). Also notice that �̇ is continuous on
[a;∞), S is continuous in T0 and ṡ is continuous on R+. Then, by sending � tend to
0 in the above inequality, we get �̇(x(T0−))¿ �̇(a), which concludes the proof since
x(T0−)¿ a and �̇ is decreasing on [a;∞).
7. Let us prove that if �¿ 0 then, x(0+) =∞, where x(0+) is well de2ned as an

element of [a;∞], by item 1. Assume that �¿ 0. Let $¿ 0 and �¿ 0 be such that
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$�6 �, and de2ne

x$ , x + $1[0; �]:

Then, (� − �$; x$; y)∈B. Moreover, S(�−�$;x$;y)(t) = S(t) + $(� − t) for t ∈ [0; �], and
S(�−�$;x$;y)(t) = S(t) for t ∈ [�; T ]. By optimality of (�; x; y) it follows that

0¿
F(�− �$; x$; y)−F(�; x; y)

�$

= −�̇(∞) +
1
�

∫ �

0
e−�t

(
�(x(t) + $)− �(x(t))

$

)
dt

− 1
�

∫ �

0
e−�t

(
s(S(t) + $(�− t))− s(S(t))

$

)
dt:

Observe that, by item 1,∣∣∣∣ s(S(t) + $(�− t))− s(S(t))
$

∣∣∣∣6 � max
[s0−�; s0+�]

ṡ:

Then, letting $ tend to 0, we get, from the monotone convergence theorem for the 2rst
term and from the dominated convergence theorem for the last one, that

0¿−�̇(∞) +
1
�

∫ �

0
e−�t �̇(x(t)) dt − 1

�

∫ �

0
e−�t ṡ(S(t))(�− t) dt

¿−�̇(∞) +
1
�

∫ �

0
e−�t �̇(x(t)) dt −

∫ �

0
e−�t ṡ(S(t)) dt:

Recall that x(0+) is well de2ned in [a;∞]. Also recall that �̇ is continuous on [a;∞)
and satis2es limx→∞ �̇(x) = �̇(∞), see (6). Since, by item 1, the functions t →
e−�t �̇(x(t)) and t → e−�t ṡ(S(t)) are bounded (respectively, by �̇(a) and max[0; s0] ṡ),
letting � tend to 0 in the above inequality leads to 0¿ − �̇(∞) + �̇(x(0+)). Since
x(0+)∈ [a;∞] and �̇ is decreasing on [a;∞), this implies that x(0+) =∞.

Observe that we only used item 1 to derive this result.
We have proved the 2rst claim of Theorem 7. We turn to the proof of the converse

assertion.
Converse assertion: We now prove that if (�; x; y) has properties 1–7 of Theorem 7

then, for every ("; h; k)∈R× L1[0; T ]× L1[0; T ] such that (�; x; y) + $0("; h; k)∈B for
some $0¿ 0, we have

lim sup
$¿0
$→0

{
F((�; x; y) + $("; h; k))−F(�; x; y)

$

}
6 0:

Let ("; h; k)∈R× L1[0; T ]× L1[0; T ] be such that (�; x; y) + $0("; h; k)∈B for some
$0¿ 0. We introduce the functions

H (t), " +
∫ t

0
h(u) du and K(t),

∫ t

0
k(u) du on [0; T ]:



1392 M. Chazal et al. / Nonlinear Analysis 54 (2003) 1365–1395

De2ne

�$F,
F((�; x; y) + $("; h; k))−F(�; x; y)

$
and �F, lim sup

$→0
$¿0

�$F:

By concavity of � and −c we have

�$F = �̇(∞)" +
∫ T

0
e−�t

(
�(x(t) + $h(t))− �(x(t))

$

)
dt

−
∫ T

0
e−�t

(
c(y(t) + $k(t))− c(y(t))

$

)
dt

−
∫ T

0
e−�t

(
s(S(t) + $(K(t)− H (t)))− s(S(t))

$

)
dt

6 �̇(∞)" +
∫ T

0
e−�t �̇(x(t))h(t) dt −

∫ T

0
e−�t ċ(y(t))k(t) dt

−
∫ T

0
e−�t

(
s(S(t) + $(K(t)− H (t)))− s(S(t))

$

)
dt:

Observe that for $∈ (0; $0] and t ∈ [0; T ], we have∣∣∣∣ s(S(t) + $(K(t)− H (t)))− s(S(t))
$

∣∣∣∣6 [‖K‖∞ + ‖H‖∞] max
[0; s0+$0(‖K‖∞+‖H‖∞)]

ṡ:

Then, it follows from the dominated convergence theorem that

�F6 �̇(∞)" +
∫ T

0
e−�t �̇(x(t))h(t) dt −

∫ T

0
e−�t ċ(y(t))k(t) dt

−
∫ T

0
e−�t ṡ(S(t)) [K(t)− H (t)] dt: (39)

We now consider the right-hand side terms separately. First, observe that, by item 5,
we have �̇(x) = ċ(y) a.e. on {t ∈ [0; T0] |y(t)¿ 0} and then∫ T0

0
e−�t[�̇(x(t))h(t)− ċ(y(t))k(t)] dt

=
∫ T0

0
e−�t �̇(x(t))(h(t)− k(t))1{y¿0}(t) dt

+
∫ T0

0
e−�t[�̇(x(t))h(t)− ċ(y(t))k(t)]1{y=0}(t) dt:

Moreover, since (�; x; y)+ $0("; h; k)∈B, we have k¿ 0 a.e. on {t ∈ [0; T0] |y(t)=0}.
By item 5, we also know that �̇(x)6 ċ(y) a.e. on {t ∈ [0; T0] |y(t) = 0}. It follows
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that −ċ(y)k6− �̇(x)k a.e. on {t ∈ [0; T0] |y(t) = 0}. We then deduce from the above
equality that∫ T0

0
e−�t[�̇(x(t))h(t)− ċ(y(t))k(t)] dt6

∫ T0

0
e−�t �̇(x(t))(h(t)− k(t)) dt: (40)

If T0¡T , we know from item 3 that �̇(x(t))= ċ(y(t))= �̇(a) on [T0; T ], and therefore∫ T

T0
e−�t[�̇(x(t))h(t)− ċ(y(t))k(t)] dt = �̇(a)

∫ T

T0
e−�t(h(t)− k(t)) dt: (41)

Since, by item 3 again, S=0 on [T0; T ], we get after plugging (40) and (41) into (39)

�F6 �̇(∞)" +
∫ T0

0
e−�t �̇(x(t))[h(t)− k(t)] dt

−
∫ T0

0
e−�t ṡ(S(t))[K(t)− H (t)] dt

+ �̇(a)
∫ T

T0
e−�t(h(t)− k(t)) dt − ṡ(0)

∫ T

T0
e−�t [K(t)− H (t)] dt: (42)

Let us now consider the term∫ T0

0
e−�t �̇(x(t))(h(t)− k(t)) dt −

∫ T0

0
e−�t ṡ(S(t))[K(t)− H (t)] dt

=
∫ T0

0

[
�̇(x(0+)) +

∫ t

0
e−�uṡ(S(u)) du

]
(h(t)− k(t)) dt

+
∫ T0

0
e−�t ṡ(S(t))[H (t)− K(t)] dt;

where the equality holds by (8). Then, integrating by parts the last term, we obtain∫ T0

0
e−�t �̇(x(t))(h(t)− k(t)) dt −

∫ T0

0
e−�t ṡ(S(t))[K(t)− H (t)] dt

= �̇(x(0+))
∫ T0

0
(h(t)− k(t)) dt +

∫ T0

0
e−�t ṡ(S(t)) dt[H (T0)− K(T0)]

=− �̇(x(0+))" +
[
�̇(x(0+)) +

∫ T0

0
e−�t ṡ(S(t)) dt

]
[H (T0)− K(T0)]

=− �̇(x(0+))" + e−�T0 �̇(x(T0−))[H (T0)− K(T0)];

where the second equality follows from the de2nition of H and K , and the last one
from (8). Plugging the last equality into (42) leads to

�F6 �̇(∞)" − �̇(x(0+))" + e−�T0 �̇(x(T0−))[H (T0)− K(T0)]

+ �̇(a)
∫ T

T0
e−�t(h(t)− k(t)) dt − ṡ(0)

∫ T

T0
e−�t[K(t)− H (t)] dt: (43)
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We now consider two diEerent cases. First, we deduce from the above inequality that

�F6 �̇(∞)" − �̇(x(0+))" + e−�T �̇(x(T−))[H (T )− K(T )] if T0 = T: (44)

We now consider the case T0¡T . Then, by item 6, x(T0−) = a and therefore

e−�T0 �̇(x(T0−))[H (T0)− K(T0)] + �̇(a)
∫ T

T0
e−�t(h(t)− k(t)) dt

= �̇(a)
(
e−�T0 [H (T0)− K(T0)] +

∫ T

T0
e−�t(h(t)− k(t)) dt

)

= �̇(a)
(
e−�T [H (T )− K(T )] + �

∫ T

T0
e−�t(H (t)− K(t)) dt

)
;

where the last equality is obtain by integrating by parts. Plugging this into (43), we
get

�F6 �̇(∞)" − �̇(x(0+))"

+ �̇(a)
(
e−�T [H (T )− K(T )] + �

∫ T

T0
e−�t(H (t)− K(t)) dt

)

− ṡ(0)
∫ T

T0
e−�t[K(t)− H (t)] dt if T0¡T: (45)

We shall now prove that

�̇(∞)" − �̇(x(0+))"6 0 (46)

K − H¿ 0 on [T0; T ]: (47)

Plugging these inequalities in (44) and (45) will complete the proof. First, since
�̇(∞) = inf �̇6 �̇(x(0+)), (46) holds for "¿ 0. Since, (�; x; y) + $0("; h; k)∈B, we
have �+$0"¿ 0. Therefore, we see that " can be negative only if �¿ 0, which implies
�̇(x(0+))= �̇(∞) by item 7. This proves that (46) also holds for "¡ 0. We now turn
to the proof of (47). From (�; x; y) + $0("; h; k)∈B again, we deduce that

06 s0 − �+
∫ t

0
[y(s)− x(s)] ds+ $0(K(t)− H (t))

= S(�;x;y)(t) + $0(K(t)− H (t)) for all t ∈ (0; T ]:

Since by item 3, S(�;x;y) = 0 on [T0; T ], we see that (47) holds by taking t ∈ [T0; T ] in
the above inequality.

7. Concluding remarks

In this paper, we have shown that, if the revenue is concave and if the production
cost is convex then, the behavior of the company towards inventories is qualitatively
the same for any kind of storage cost function: the 2rm does not use its storage
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ability for inventory accumulation. One possible explanation of this phenomenon is the
following. Since the 2rm must have cleared all its stock at the end of the period, an
inventory accumulation would lead it to let variate its sales rate from below a to above
a and vice versa for the production rate. 1 But, the concavity of the revenue and the
convexity of the production cost urges the company to reduce the variations of the
sales and production rates. Our model is more suited for determining the optimal way
to sell an inventory than for explaining inventory accumulation. In order to carry out
this last task, it would be of interest to introduce non-convexities in the production cost
function. There are some empirical results showing evidence of 2rms facing decreasing
marginal cost on some range of output (see [8]). The variation of the production rate
should be greater under these conditions than under increasing marginal cost. Finally,
our model suEers from time independence. Time plays an obvious role in production
planning mixed with inventory management: inventories constitute an alternative to
future production. Hence, time-dependent production cost and/or time-dependent
revenue should be considered. These are directions for future research.
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