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1. Introduction

The simplest consumption–investment problem can be formulated as follows. There
is an economic agent with preferences described by a utility function U (c)=∫ T
0 u(t; c(t)) dt, where c is the consumption path in the time interval [0; T ]. The agent
has an income function ! de�ned on [0; T ]. The �nancial market consists in one risk-
less asset with price function S. At each time t, the agent receives an income !(t),
rebalances his portfolio (by buying or selling some �nancial assets) and spends the rest
for consumption. Then, Ando and Modigliani [1] proved that the optimal consumption
behaviour of the agent is constant over the time interval [0; T ].
Here, we study the case where the portfolio rebalancement involves the payment of

taxes on bene�ts. Then, the purchasing time of the asset to be sold has to be recorded
in order to compute the amount of tax to be paid. In addition to the no-short-selling
constraint, our model assumes that sales are subject to the �rst-in-�rst-out priority rule
on sales. A precise description of the model is given in Section 2. The agent problem
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turns out to be a nonclassical optimal control problem with endogeneous delay and
with complex nonnegativity constraint on consumption.
Section 3 is devoted to the proof of the following economic appealing result. An

optimal strategy can always be chosen such that the agent never sells out of his portfolio
and buy new �nancial assets simultaneously. Using this property, the nonnegativity
constraint on consumption is simpli�ed and reduced to a classical constraint on the
controls and the state variables. Namely, the nonnegativity constraint on consumption
can be expressed simply in terms of the investment and the disinvestment functions.
In Section 4, we assume some additional smoothness conditions on the optimal

strategy in order to derive the �rst-order conditions associated to the control problem
of interest. The usual variational methods are adapted to handle the endogeneous delay
function.
The existence problem as well as the numerical computation of the optimal solution

using the �rst-order conditions are left for future work.

2. The model

2.1. The �nancial market

There is a single consumption commodity available for consumption through [0; T ]
where T is a �nite time horizon. The �nancial market consists in one riskless asset,
called bond, whose price function is given by

S(t)= S(0) exp
∫ t

0
r(s) ds; t∈[0; T ];

where r(:) is a continuous nonnegative function de�ned on [0; T ]; r(t) is the instanta-
neous interest rate at time t.

2.2. Taxation rule

In this paper, we assume that sales are subject to taxes on bene�ts. 1 More precisely,
we shall consider the usual �rst-in-�rst-out rule according to which any bond sold at
some time t should be the oldest one in the time t portfolio.
We introduce the set �= {(t; u)∈R2: 0≤ u≤ t≤T}. Fix some (t; u) in �. For each

monetary unit invested at time u and sold out at time t, we denote by ’(t; u) the after
tax amount received at time t, i.e. the amount of tax paid by the investor is

S(t)
S(u)

− ’(t; u):

The after tax return function ’ de�ned on � is assumed to satisfy the following
conditions.

1 Since the instantaneous interest rate is nonnegative, sales always yield some nonnegative bene�t.
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Assumption 2.1. ’ is a C1 function mapping � into [1;+∞) with ’(t; t)= 1, for all
t∈[0; T ], and

’t

’
(t; :) is decreasing for any t∈[0; T ]: (2.1)

The fact that ’≥ 1 is a natural condition on the after tax return function ’ since the
asset price S(t) is nondecreasing and the tax is a (possibly varying) proportion of the
capital gains. The restriction ’(t; t)= 1 is a natural condition which expresses the fact
that there is no bene�t from selling and buying the same share of a �nancial asset at
the same time t. The technical condition (2.1) is needed for the proof of Theorem 3.1
which is essential for all our analysis. As, it is illustrated by the following example,
this condition is satis�ed in most classical taxation cases.

Example 2.1. Constant tax rate. Suppose that the tax to be paid for one asset bought
at time u and sold at time t is given by �[S(t)− S(u)]. Therefore, the investor return
from such a strategy is ’(t; u)= [S(t)− �(S(t)− S(u))]=S(u)= �+ (1− �)S(t)=S(u)=
�+(1− �)exp

∫ t
u r(s) ds. It is easily checked that ’ satis�es the conditions of Assump-

tion 2.1.

Let us note that condition 2.1, together with the other conditions of Assumption 2.1,
is stronger then the following economic appealing one:

’(t; u)’(u; v)≤’(t; v) for all 0≤ v≤ u≤ t≤T: (2.2)

The latter condition says that one cannot save some taxes by selling and buying
the asset S at any intermediate date u between v and t. To see that Eq. (2.2) fol-
lows from Assumption 2.1, denote by �(t; u)= ln(’(t; u)) and consider the function
f(t)=�(t; u) + �(u; v) − �(t; v) de�ned on [u; T ] for �xed (u; v) in �. Then since
’(t; t)= 1, we have f(u)= 0. Furthermore, it is easily checked that f′(t)≤ 0 which
provides Eq. (2.2).

Remark 2.1. An immediate consequence of Eq. (2.2) and the fact that ’ is valued
in [1;∞) is that ’(t; u) is nondecreasing in t and nonincreasing in u.

2.3. Trading strategies

We denote by L1+ the set of all nonnegative L1[0; T ] functions. Let (x; y) be a pair
of L1+ functions. Here, x(t) (resp. y(t)) is the investment rate (resp. disinvestment) in
units of the risky asset at time t. In other words,

∫ t
0 x(s) ds (resp.

∫ t
0 y(s) ds) is the

cumulated number of assets purchased (sold out) up to time t. Such a pair (x; y) is
said to be a trading strategy if the no short selling constraint

∫ t

0
y(s) ds≤

∫ t

0
x(s) ds; 0≤ t≤T (2.3)
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holds. Condition (2.3) says that sales must not exceed purchases at any time. Given a
trading strategy (x; y), we de�ne the delay function �x;y by

�x;y(t)= sup
{
s∈[0; t]:

∫ s

0
x(u) du≤

∫ t

0
y(u) du

}
:

In the sequel, we shall write � for �x;y for notation simpli�cation. As de�ned, � is
nondecreasing and whenever

∫ t
0 y(s) ds¿0, �(t) is the purchasing date of the last asset

sold out from the portfolio. If
∫ t
0 x(s) ds=

∫ t
0 y(s) ds=0 (no market participation up

to time t a.e.), then �(s)= s for all s∈[0; t]. Furthermore, from the no short sales
constraint (2.3), we have

�(0)= 0≤ �(t)≤ t; 0≤ t≤T: (2.4)

Remark 2.2. Since x and y are integrable (Lebesgue); the functions

t 7→
∫ t

0
x(s) ds and t 7→

∫ t

0
y(s) ds

belong to the Sobolev space W 1;1[0; T ] which coincides with the set of all absolutely
continuous functions, see e.g. Br�ezis [3], Remark 8, p. 125.

We then have the following useful properties of �.

Lemma 2.1. (i) � is right-continuous on [0; T ]; i.e. �(t+)= �(t) for all t∈[0; T ];
(ii) for all t∈[0; T ]; ∫ �(t)

0 x(s) ds=
∫ t
0 y(s) ds;

(iii) for all t∈[0; T ]; ∫ �(t)
�(t−) x(s) ds=0.

Proof. (i) Fix some t∈[0; T ). By de�nition of �, we have that
∫ �(t+�)
0 x(s) ds≤∫ t+�

0 y(s) ds for all �¿0. Since y ∈L1+, this provides∫ �(t+)

0
x(s) ds≤

∫ t

0
y(s) ds;

see Remark 2.2. Now, since �(t+)≤ t (because �(t + �)≤ t + �), this proves that
�(t+)≤ �(t), by de�nition of �, and therefore �(t+)= �(t) since � is nondecreasing.
(ii) First, suppose that �(t)¡t. Then, by de�nition of �, we have

∫ �(t)
0 x(s) ds≤∫ t

0 y(s) ds≤
∫ �(t)+�
0 x(s) ds for su�ciently small �¿0. The required result is obtained

by letting � go to zero, recall that x∈L1+ and use Remark 2.2. If �(t)= t, then, from
the no short sales constraint and the nonnegativity of y, we have∫ t

0
y(s) ds≤

∫ t

0
x(s) ds=

∫ �(t)

0
x(s) ds≤

∫ t

0
y(s) ds:

(iii) From the fact that x and y are in L1+, it is easily checked that
∫ �(t+)
0 x(s) ds=∫ �(t−)

0 x(s)=
∫ t
0 y(s) ds, see Remark 2.2.
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2.4. The agent problem

At each time t∈[0; T ], the agent is endowed with an income rate !(t) in units of
the consumption good. Here ! is a given positive continuous function on [0; T ]. Then,
given a trading strategy (x; y), the agent consumption rate function is given by

cx; y(t)=!(t)− x(t)S(t) + y(t)’(t; �x; y(t))S(�x;y(t)); t∈[0; T ]: (2.5)

Therefore, a trading strategy (x; y) is said to be feasible if the induced consumption
rate function is nonnegative.
The agent preferences are represented by a time-additive utility function from con-

sumption U (t; c). We assume throughout the paper that U is C1;2([0; T ];R+), decreas-
ing in t and concave nondecreasing in c.
We are now able to write the control problem of the agent. An admissible trading

strategy (x; y) is a feasible trading strategy such that∫ T

0
|U (t; cx; y(t))| dt¡∞: (2.6)

We shall denote by A the set of all admissible trading strategies, i.e.

A= {(x; y)∈L1+ × L1+: Eqs: (2:3) and (2:6) hold and cx; y ≥ 0}: (2.7)

The agent optimal control problem is

sup
(x; y)∈A

∫ T

0
U (t; cx; y(t)) dt; (2.8)

i.e. maximize the utility from consumption over all admissible trading strategies. Here,
we derive the �rst-order conditions corresponding to an optimum. The optimal control
problem (2.8) is nonstandard for two reasons:
(i) the presence of the delay function �x;y in the expression of the consumption rate

function (2.5),
(ii) the constraint cx; y ≥ 0 which involves x; y and �x;y.
Our approach is the following. In Section 3, we prove that it is not optimal to

purchase new assets and to sell out from the portfolio at the same time t (in the
a.e. sense). We shall see that the condition given by Eq. (2.2) does not seem to be
su�cient for the derivation of this property. This economic appealing result is essential
in order to simplify the nonnegativity constraint on consumption and to reduce the
control problem to an optimal control problem with endogeneous delay, but with more
standard constraints. In Section 4, assuming some smoothness conditions on x and y,
we derive the �rst order conditions by adapting the classical variational approach which
allows to derive the Pontryagin principle.

3. Simplifying the nonnegativity constraint on consumption

In this section, we prove the following basic result.
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Theorem 3.1. Let (x; y) be some admissible strategy in A. Then, there exists an
admissible strategy (x̃; ỹ)∈A such that cx; y ≤ cx̃; ỹ and

x̃(t)ỹ(t)= 0; 0≤ t≤T a:e: (3.1)

The last theorem has an appealing economic interpretation: if there exists an optimal
strategy for the optimal consumption investment problem, then it can be chosen such
that the agent never sells out from his portfolio and buys new assets simultaneously.
Before turning to the proof of the last theorem, we state an important consequence

of it in terms of constraints simpli�cation. Theorem 3.1 says that the set of admissible
strategies in the optimization problem (2.8) can be restricted to the subset A0 of A
whose elements satisfy condition (3.1). In view of the expression of the consumption
rate function in Eq. (2.5), it follows that, for all (x; y)∈A0, cx; y(t)¡0 if and only if
x(t)S(t)¿!(t) (since y(t)’(t; �(t))S(�(t))≥ 0). We then have the following result.

Corollary 3.1. Let A0 be the subset of A given by

A0 = {(x; y)∈L1+×L1+: xS ≤!; Eqs: (2:3); (2:6) and (3:1) hold}:
Then, we have

sup
(x; y)∈A

∫ T

0
U (t; cx; y(t)) dt= sup

(x; y)∈A0

∫ T

0
U (t; cx; y(t)) dt:

The rest of this section is devoted to the long proof of Theorem 3.1.

3.1. The case of a positive investment rate function

We �rst prove Theorem 3.1 when the investment rate function x is such that

x(t)≥ �; 0≤ t≤T a:e:

for some �¿0. This is a preliminary result for the proof of Theorem 3.1 for general
investment functions x.
Let A be a Borel subset of [0; T ] with positive Lebesgue measure and suppose that

y(t)¿0 for all t∈A:

Then de�ne

x�(t)= x(t)− �
h(t)
S(t)

; 0≤ t≤T; (3.2)

where h is an L1+ function with h¿0 on A and h=0 on Ac. We intend to prove the
existence of some y� such that

(x�; y�)∈A and cx; y(t)= cx�; y�
(t); 0≤ t≤T a.e.

i.e.

y�(t)f(t; ��(t))=y(t)f (t; �(t))− �h(t); 0≤ t≤T; (3.3)
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where ��= �x�; y�
and

f(t; u)=’(t; u)S(u) for all (t; u)∈�:

Remark 3.1. In order to ensure that x� and y� are in L1+; we can think of the par-
ticular choice of h given by

h(t)= 1
2 min{x(t)S(t); y(t)f(t; �(t))}1A; 0≤ t≤T:

Moreover, if we restrict � to the interval [0; 1], then the perturbed investment rate
function x� remains bounded from below by the constant �=2.

Remark 3.2. When the investment rate function is known to be positive a.e. the delay
function is continuous, see Lemma 2.1(iii).

In the rest of this paragraph, we intend to prove that equation (3.3) admits a solu-
tion y� such that (x�; y�) is an admissible trading strategy. From Remark 3.1 and the
de�nition of y� as a solution to Eq. (3.3) (if exists), we have to ensure, in particular,
that the no short sales condition (2.3) holds for (x�; y�).
For �xed (t; �)∈[0; T ]×[0; 1], we introduce the function �(t; : ; �) de�ned on [0; T ] by

�(t; �; �)=
∫ �

0
x�(u)f(t; u) du; 0≤ �≤T:

Then, since x�(:)f(t; :) is a positive L1[0; T ] function, �(t; : ; �) is an increasing con-
tinuous function for all �xed (t; �). Therefore, it admits a [0; T ]-valued continuous
increasing inverse function  (t; : ; �) de�ned by

z=�(t; �; �) ⇔ �=  (t; z; �):

Remark 3.3. Since x� is nonincreasing in �, the function  (t; z; :) is nondecreasing.

Remark 3.4. For �xed (t; z); the function  (t; z; :) is continuous on [0; 1]. To see this,
consider an arbitrary small parameter � 6=0. From the obvious equality �(t;  (t; z; �);
�)=�(t;  (t; z; �+ �); �+ �); we see that

∫  (t; z; �)

 (t; z; �+�)
f(t; u)x�(u) du+ �

∫  (t; z; �+�)

0
’(t; u)h(u) du=0:

Now; from Remark 3.3, the limits  (t; z; �+) and  (t; z; �−) exist and are in [0; T ].
Then, sending � to zero in the last equality provides

∫  (t; z; �)

 (t; z; �+)
f(t; u)x�(u) du=

∫  (t; z; �)

 (t; z; �−)
f(t; u)x�(u) du=0;

which provides the required result from the positivity of fx�.
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Remark 3.5. By a similar argument to Remark 3.4, it is easily checked that  (: ; z; �)
is continuous on [0; T ] for any �xed (z; �).

Proposition 3.1. Let �∈ [0; 1]. Suppose that there exists a continuous solution z� to
the integral equation

z(t)=
∫ t

0
[�t(u;  (u; z(u); �); �) + y(u)f(u; �(u))− �h(u)] du; (3.4)

0≤ t≤T (with �= �x;y); satisfying

 (t; z�(t); �)≤ t for all t ∈ [0; T ]:
Then; there exists a solution y� to Eq. (3.3) such that (x�; y�) is an admissible trading
strategy. Moreover; we have

z�(t)=�(t; �x�; y�
(t); �); 0≤ t≤T:

Proof. Let z� be a continuous solution of Eq. (3.4) and assume that the function
�� de�ned by ��(t)=  (t; z�(t); �) satis�es ��(t)≤ t for all t ∈ [0; T ]. From Eq. (3.4),
it is easily seen that z� is nondecreasing and nonnegative. This implies that �� is a
continuous nondecreasing and nonnegative function, see Remark 3.5.
By the dominated convergence Theorem, it is easily checked that � is di�erentiable

with respect to the variable t and we have �t(t; ��(t); �)=
∫ ��(t)
0 x�(u)ft(t; u) du for all

t ∈ [0; T ]. Then, by de�nition of � and  , we get

∫ t

0
�t(u;  (u; z�(u); �); �) du=

∫ t

0

(∫ ��(u)

0
x�(s)ft(u; s) ds

)
du;

which provides by the Fubini theorem:

∫ t

0
�t(u;  (u; z�(u); �); �) du=

∫ ��(t)

0
x�(s)

∫ t

(��)−1(s)
ft(u; s) du ds

= z�(t)−
∫ ��(t)

0
f((��)−1(s); s)x�(s) ds; (3.5)

where (��)−1 is the right-continuous inverse function of the nondecreasing continuous
function ��. We now use the following result whose proof will be carried out later.

Lemma 3.2. The function t 7→ ∫ ��(t)
0 x�(u) du is absolutely continuous.

We then de�ne y� as the L1+ generalized derivative of the nondecreasing function

t 7→ ∫ ��(t)
0 x�(u) du. By de�nition, we have

∫ s

0
y�(u) du=

∫ ��(s)

0
x�(u) du; 0≤ s≤T: (3.6)
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Note that from the positivity of x� and the fact that ��(t)≤ t, we have ��= �x�; y�
= ��.

Now, the integral on the right-hand side of Eq. (3.6) can be seen as a Stieljes integral
with respect to the measure d(

∫ s
0 x�(u) du). Then, from Eq. (3.6), the change of variable

formula for Stieljes integrals leads to∫ t

0
�t(u;  (u; ��(u); �); �) du= z�(t)−

∫ t

0
f(s; ��(s))y�(s) ds

since ��(0)= 0, see e.g. Riesz and Nagy [7]. Since z� is a solution to the integral
equation (3.4), the last equality provides:∫ t

0
f(s; ��(s))y�(s) ds=

∫ t

0
[f(s; �(s))y(s)− �h(s)] ds; 0≤ t≤T:

Since the terms inside the integrals are in L1[0; T ], the left-hand side term as well as
the right-hand side one, as functions of t, are absolutely continuous. This proves that
y� solves (3.3) by uniqueness of the generalized derivative.

Proof. Since z� is a continuous solution of the integral equation (3.4), it is easy to see
that it is absolutely continuous. Now, take an arbitrary �¿0. Then there exists �¿0
such that for any family of nonintersecting intervals {(ti; t′i ), i=1; : : : ; n}, satisfying∑

i |t′i − ti|¡�, we have∑
i

|z�(t′i )− z�(ti)|¡�:

Next, let �i= ��(ti)=  (ti; z�(ti); �) and �′i = ��(t′i )=  (t′i ; z
�(t′i ); �). By the de�nition of

 , we have∑
i

|�(ti; �i; �)− �(t′i ; �
′
i ; �)|¡�:

This provides

∑
i

∣∣∣∣∣
∫ �′i

�i
x�(u)f(ti; u) du

∣∣∣∣∣¡�+
∑

i

∣∣∣∣∣
∫ �′i

0
x�(u)[f(t′i ; u)− f(ti; u)] du

∣∣∣∣∣ ;
by the triangular inequality, which implies that

1
2�S(0)

∑
i

|�i − �′i |¡�+ ‖x�‖1‖ft‖∞
∑

i

|t′i − ti|

¡�+ ‖x�‖1‖ft‖∞�;

where � is the lower bound on x. This proves that �� is absolutely continuous and
therefore the required result follows from the fact that x� ∈L1.

In the sequel, we introduce the notation

L(t; z; �)=�t (t;  (t; z; �); �) + y(t)f(t; �(t))− �h(t):
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The integral equation (3.4) can then be rewritten in

z(t)=
∫ t

0
L(u; z(u); �) du; 0≤ t≤T: (3.7)

Remark 3.6. By elementary di�erential calculus; it is easily checked that; for any
�xed t ∈ [0; T ]; the function L(t; : ; :) is C1 and

@L
@z
(t; z; �)=

’t

’
(t;  (t; z; �)) ; (3.8)

@L
@�
(t; z; �) =

’t

’
(t;  (t; z; �))

∫  (t; z; �)

0
’(t; u)h(u) du

−
∫  (t; z; �)

0
’t(t; u)h(u) du−

∫ t

0
h(u) du; (3.9)

since x� ≥ �=2¿0.

Lemma 3.3. For any �∈ [0; 1]; the integral equation (3.7) has a unique continuous
solution z�.

Proof. Denote by Z=C[0; T ] the set of all real-valued functions de�ned and contin-
uous on [0; T ]. The set Z is a Banach space when equipped with the norm ‖:‖∞. We
de�ne the operator H� on Z by

H�g(t)=
∫ t

0
L(u; g(u); �) du:

It is clear that H�g∈Z. We intend to use a contraction argument on H� in the set Z
which will prove the existence of a unique �xed point for H� in Z. Take two arbitrary
elements g(1), g(2) in Z. Then from Eq. (3.8), it is easily checked that

sup
0≤u≤t

|H�g(1)(u)− H�g(2)(u)| ≤ t
∥∥∥∥ft

f

∥∥∥∥
∞
sup
0≤u≤t

|g(1)(u)− g(2)(u)|:

The last inequality shows that H� is a contraction on Z for a su�ciently small t.
Therefore, the required result is obtained by reasonning locally in t.

In order to prove the existence of a solution y� to Eq. (3.3), such that (x�; y�)∈A,
it remains to prove that ��(t)≤ t, i.e.  (t; z�(t); �)≤ t, for all t ∈ [0; T ], as required by
Lemma 3.3. In the rest of this paragraph, we shall prove that �� ≤ � which su�ces to
prove the required result.

Remark 3.7. Recall that z�(t)=
∫ ��(t)
0 x�(u)f(t; u) du and therefore∫ ��(t)

0
x(u)f(t; u) du= z�(t) + �

∫ ��(t)

0
h(u)’(t; u) du:
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Therefore; in order for ��(t) to be nonincreasing in � in a neighbourhood of �=0 it
su�ces that[

@z�

@�
(t) +

∫ ��(t)

0
h(u)’(t; u) du

]
�=0

¡0;

whenever @z�=@� and @��=@� exist.

Remark 3.8. The unique solution z� of the integral equation (3.7) is nonincreasing
in �. To see this; let g(t; �) be a real-valued function continuous in t ∈ [0; T ] and C1

nonincreasing in �. De�ne the operator H by Hg(t; �)=H�g�(t) where g�(t)= g(t; �).
Then Hg is C1 in � and

@Hg
@�
(t; �)=

∫ t

0
L�(u; g(u; �); �) du+

∫ t

0
Lz(u; g(u; �); �)

@g
@�
(u; �) du:

The second term on the right-hand side is nonpositive since g is nonincreasing in
�; see Eq. (3.8) and Remark Eq. 2.1. In view of Eq. (3.9), the other term can be
written in∫ t

0
L�(u; g(u; �); �) du=−

∫ t

0
h(u) du

+
∫  (t; g(t; �); �)

0
f(t; u)h(u)

×
[
ft

f
(t;  (t; g(t; �); �))− ft

f
(t; u)

]
du≤ 0;

since (ft=f)(t; :) is nonincreasing by de�nition of the after tax return function ’.
Therefore; recalling that z� is a �xed point of the operator H�; we can conclude that
the function � 7→ z� is nonincreasing; the C1 property is not necessarily inherited at
the limit. Unfortunately; this is not su�cient to prove that ��(t) is nonincreasing in
�; see Remark 3.7.

Lemma 3.4. For any �xed t in [0; T ]; the function � 7→ z�(t) lies in the Sobolev
space W 1;∞.

Proof. Let � and �′ in [0; 1) and denote by �(t)=
∣∣∣z�(t)− z�

′
(t)
∣∣∣. Then, since Lz and

L� are bounded, see Eqs. (3.8) and (3.9), the integral equation (3.7) provides

�(t)≤M
(
|�− �′|+

∫ t

0
�(u) du

)
; 0≤ t≤T

for some constant M . From the Gronwall inequality, this proves that �(t)≤
M ′|� − �′| for some constant M ′. The required result follows from Br�ezis [3],
Corollary 4, p. 126.
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To simplify the notations, we introduce the generalized derivative of z� with respect
to �:

g̃�(t)=
@z�

@�
(t); 0≤ t≤T; 0≤ �≤ 1:

Then, g̃� solves the following linear integral equation

g̃�(t)=
∫ t

0
[Lz(u; z�(u); �)g̃�(u) + L�(u; z�(u); �)] du;

see Remark 3.6 together with Br�ezis [3], Corollary 10, p. 131. This provides

g̃�(t)−
∫ t

0

’t

’
(u; ��(u))g̃�(u) du

= −
∫ t

0
h(u) du−

∫ t

0

∫ ��(u)

0
’t(u; v)h(v) dv du

+
∫ t

0

’t

’
(u; ��(u))

∫ ��(u)

0
’(u; v)h(v) dv du: (3.10)

Next, following Remark 3.7, we introduce the function g� de�ned by

g�(t)= g̃�(t) +
∫ ��(t)

0
’(t; u)h(u) du; (t; �)∈ [0; T ]× [0; 1]: (3.11)

Lemma 3.5. The function (t; �) 7→ g�(t) is continuous on [0; T ]× [0; 1] and; for all
t ∈ [0; T ]; g0(t)¡0 whenever ∫ t

0 h(u) du¿0.

Proof. From Eq. (3.10) and the de�nition of g� in Eq. (3.11), we see that g� solves
the linear integral equation:

g�(t)−
∫ t

0

’t

’
(u; ��(u))g�(u) du=H (t);

where

H (t)=
∫ ��(t)

0
’((��)−1(u); u)h(u) du−

∫ t

0
h(u) du:

Then, it is easily checked that the solution of this �rst-order di�erential equation is
given by

g�(t)=H (t) +
∫ t

0
H (u)

’t

’
(u; ��(u)) exp

(∫ t

u

’t

’
(v; ��(v)) dv

)
du:
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Substituting the expression of H and applying the Fubini theorem provides

g�(t) =−
∫ t

0
h(u) exp

(∫ t

u

’t

’
(v; ��(v)) dv

)
du

∫ ��(t)

0
h(u)’((��)−1(u); u) exp

(∫ t

(��)−1(u)

’t

’
(v; ��(v)) dv

)
du:

Now, note that ’((��)−1(u); u)=− ∫ u
(��)−1(u)(’t=’)(s; u) ds, and therefore g�(t) can be

written in

g�(t) =−
∫ ��(t)

0
h̃�(t; u)

[
1− exp

(
−
∫ (��)−1(u)

u

(
’t

’
(s; ��(u))− ft

f
(s; u)

)
ds

)]
du

−
∫ t

��(t)
h̃�(t; u) du;

where h̃�(t; u)= exp
∫ t
u (’t=’)(s; ��(s)) ds. This proves that (t; �) 7→ g�(t) is continuous

in [0; T ]× [0; 1] since  is continuous in z and � and z� is continuous in � as a W 1;∞

function. For �=0, we have �0 = � and

g0(t) =−
∫ �(t)

0
h̃0(t; u)

[
1− exp

(
−
∫ �−1(u)

u

(
ft

f
(s; �(u))− ft

f
(s; u)

)
ds

)]
du

−
∫ t

�(t)
h̃0(t; u) du:

The second term on the right-hand side is clearly nonpositive. Moreover, since �−1(u)≥
u and (ft=f)(t; u) is decreasing in u, the �rst one is also nonpositive. Finally, it is clear
that g0(t)¡0 whenever

∫ t
0 h(u) du¿0.

We are now able to prove Theorem 3.1 in the special case where the investment
rate function x is positive.

Proposition 3.2. Let (x; y)∈A be an admissible trading strategy with x≥ �¿0. Sup-
pose that y¿0 on a Borel subset A with positive measure. Then there exists some
�¿0 such that the pair (x�; y�) de�ned by Eqs. (3.2) and (3.3) is an admissible trading
strategy; provides the same consumption rate function; i.e. cx;y = cx�; y�

and satis�es
��(T )¡�(T ).

Proof. Let �= inf{t≥ 0: ∫ t
0 h(u) du¿0}. Then, by de�nition of (x�; y�), we have

��(t)= �(t) for t ∈ [0; �]. Next, for t¿�, the last lemma ensures the existence of �t¿0
and an open neighbourhood Vt of t such that ��(u)¡�(u) for all (u; �)∈Vt × [0; �t].
Now, note that

⋃
t Vt is an open cover of the compact set [�; T ]. Then there exists

a �nite subcover
⋃

i=1;:::; n Vti of [�; T ]. De�ning �=min{�ti , i=1; : : : ; n}, we see that
for all t ∈ [�; T ] we have ��(t)¡�(t). This proves that ��(t)≤ t for all t ∈ [0; T ] and
therefore (x�; y�) is an admissible trading strategy with ��(T )¡�(T ).
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In order to use the last result for the proof of the general case, we need a �nal
re�nement.

Lemma 3.6. The parameter � in the last proposition can be �xed to any constant in
(0; 1].

Proof. Let �∗= sup{�∈ [0; 1): �� ≤ �}. Then, since �� is continuous in �, the pair
(x�

∗
; y�∗) is an admissible strategy. Suppose that �∗¡1, then the investment function

x�
∗
is positive and y�∗¿0 on A. We can therefore apply Proposition 3.2 to (x�

∗
; y�∗)

which leads to a contradiction.

3.2. Proof of Theorem 3.1

Consider an admissible trading strategy (x; y)∈A such that x(t)y(t)¿0 for all t ∈A,
where A has positive (Lebesgue) measure. Recall that the endowment rate function !
is a positive continuous function on [0; T ]. Then it admits a lower bound �¿0. For
any positive integer n, de�ne the investment function:

xn(t)= x(t) +
!(t)
nS(t)

1{x¡�}; 0≤ t≤T:

It is easily checked that the pair (xn; y) is an admissible trading strategy. Moreover, as
de�ned, the investment rate function is such that xn ≥ �=(nS(0)) for each n. Then, we
can apply Proposition 3.2 together with Lemma 3.6. Using the notations of the previous
paragraph, the pair (x1n; y

1
n) is an admissible trading strategy such that cxn; y = cx1n ; y

1
n .

From the de�nition of xn, it is clear that

x1n → x1 ∈L1+ in the sense of L1: (3.12)

Moreover, for each n, the delay function �1n= �x1n ;y
1
n is a nondecreasing function. We

now provide a useful lemma.

Lemma 3.7. The set of nondecreasing right-continuous functions � such that 0≤
�(t)≤ t is compact in the sense of the Levy metric. 2

Proof. From the Helly selection Theorem (see [2], p. 227) or the Prohorov theo-
rem (see [2], p. 37), the set of nondecreasing right-continuous functions f such that
f(0)= 0 and f(1)= 1 is relatively compact for the Levy metric, since the cumulative
distribution functions in this set have compact support. The result follows from the fact
that, by obvious normalization, the set of nondecreasing right-continuous functions �
such that 0≤ �(t)≤ t is a closed subset of the previous set.

2 We recall that the Levy distance between two nondecreasing rightcontinuous functions f and g such
that f(0)= g(0)= 0 and f(1)= g(1)= 1 is the in�mum of those positive � such that f(x − �) − �≤
g(x)≤f(x + �) + � for all x.
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This proves that

�1n → �1 in the sense of the Levy metric; (3.13)

possibly along some subsequence, where �1 is a nondecreasing right-continuous func-
tion. Since �1n ≤ �n for all n, we have

�1(t)≤ �(t) for all t ∈ [0; T ]:

We next use a result from Hennequin and Tortrat [6], p. 194 and 198 which says that
the Levy convergence implies the pointwise convergence at each continuity point of
the limit function. From Eq. (3.3) de�ning y1n and since any nondecreasing function is
continuous a.e., we can then conclude that

y1n →y1 ∈L1+ a.e. (3.14)

with

y1(t)=
y(t)f(t; �(t))− h(t)

f(t; �1(t))
t ∈ [0; T ] a.e.

It remains to prove that �1 is the delay function associated to the perturbed trading
strategy (x1; y1), i.e. �1 = �x1 ;y1 . To see this recall that

∫ t

0
y1n(u) du=

∫ �1n(t)

0
x1n(u) du; 0≤ t≤T:

From Eq. (3.14) together with the dominated convergence theorem, the left-hand-side
term converges to

∫ t
0 y

1(u) du as n→∞ (use Eq. (3.3) to bound y1n). Next, note that

∣∣∣∣∣
∫ �1n(t)

0
x1n(u) du−

∫ �1(t)

0
x1(u) du

∣∣∣∣∣≤
∫ �1n(t)

0
|x1n(u)− x1(u)| du+

∣∣∣∣∣
∫ �1(t)

�1n(t)
x1(u) du

∣∣∣∣∣
≤
∫ T

0
|x1n(u)− x1(u)| du+

∣∣∣∣∣
∫ �1(t)

�1n(t)
x1(u) du

∣∣∣∣∣ :
From Eqs. (3.12) and (3.13), the right-hand-side term of the last inequality converges
to zero as n→∞. We have then proved that

∫ t

0
y1(u) du≤

∫ �1(t)

0
x1(u) du; 0≤ t≤T a.e.

This shows that �1 = �x1 ;y1 .
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4. First-order condition for a smooth delay function

4.1. Investment regimes

As noted in the previous sections, given an admissible trading strategy (x; y), the
associated delay function �x;y presents some jumps by de�nition. This is consistent
with the interpretation of � as the purchasing time of the last asset sold out by the
investor.
In the rest of the paper, we derive the �rst-order conditions for the optimal investment

problem with taxes in case where the optimal delay function �∗= �x∗ ;y∗
is known to

be smooth. The study of the general case is left for future work.

Assumption 4.1. The utility maximization problem (2.8) admits a solution (x∗; y∗)∈
A such that �∗= �x∗ ;y∗

is continuous on [0; T ].

Assuming continuity of the delay function �∗ is a strong assumption and imposes,
in particular, some restrictions on the associated optimal investment function x∗.

Proposition 4.1. Let (x; y) be a nonzero admissible trading strategy such that �x;y is
continuous on [0; T ] and

∫ T

0
x(u) du=

∫ T

0
y(u) du: (4.1)

Then there exist 0≤ bx¡cx¡T such that:
(i) No market participation regime: on [0; bx]; x=y=0 a.e. and therefore

�x;y(t)= t;
(ii) Investment regime: on [bx; cx]; x¿0 and y=0 a.e. and therefore �(t)= b;
(iii) No-investment regime: on [cx; T ]; x=0 a.e; �x; y(T )= c and there exists an in-

creasing sequence (tn)n valued in (c; T ) such that �x;y(tn)¡c and �x;y(tn)→ c.

Proof. Since x 6=0, we can de�ne

bx = inf
{
t ∈ [0; T ]:

∫ t

0
x(u) du¿0

}
; (4.2)

cx = inf
{
t ∈ [b; T ]:

∫ T

t
x(u) du=0

}
: (4.3)

It is clear that we have 0≤ b¡c≤T . From Lemma 2.1(iii), it follows that we must
have x¿0 on [bx; cx] a.e. in order for �x;y to be continuous. The rest of the claim
follows easily from condition (4.1), the continuity of �x;y as well as Theorem 3.1.

Note that condition (4.1) is clearly satis�ed by the optimal trading strategy (x∗; y∗);
this is an immediate consequence of the increasing feature of the utility function U in
the c variable.
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The next step is to rewrite the optimal control problem (2.8) in terms of (x̂; �)
rather than (x; y) where x̂= xS is the time t investment in the �nancial asset in
units of the consumption good. This is an easy consequence of Lemma 2.1(ii) which
says that

∫ t
0 y(u) du=

∫ �(t)
0 x(u) du. Since � is a nondecreasing function (then di�er-

entiable a.e. on [0; T ] by the Lebesgue theorem) and (x; y)∈L1+×L1+, this provides
y(t)= �̇(t)x(�(t)) a.e. on [0; T ] where the dot denotes the derivative with repect to the
t variable. Therefore, the consumption rate function (2.5) can be written in terms of
(x̂; �)= (xS; �) as

cx̂;�(t)=!(t)− x̂(t) + �̇(t)x̂(�(t))’(t; �(t)); t ∈ [0; T ] a.e. (4.4)

In order to derive the �rst-order conditions by means of the variations calculus, we
have to assume further regularity conditions on the optimal trading strategy of
Assumption 4.1.

Assumption 4.2. The optimal trading strategy (x∗; y∗) of Assumption 4.1 is such that
(i) the investment rate function x∗ is piecewise C1 on [0; T ];
(ii) the delay function �∗= �x∗ ;y∗

is piecewise C1 on [0; T ].

Remark 4.1. Since the �nancial asset price function S(t) is C1 and positive on [0; T ];
Assumption 4.2(i) says equivalently that x̂∗ is piecewise C1 on [0; T ].

Remark 4.2. Let x be an investment function with 0≤ x≤! and consider a nonde-
creasing function � with 0≤ �(t)≤ t for all t ∈ [0; T ]. Suppose that � is continuous and
piecewise C1 (as required in Assumptions 4.1 and 4.2(ii) for the optimal strategy).
Then; the associated disinvestment function y= �̇x(�) is such that (x; y)∈A. In the
sequel we shall identify the pairs (x̂; �) and (x; y). In particular (x̂; �) will be referred
to as a trading strategy.

We end this paragraph by discussing part(ii) of the last assumption. De�ne the
function X ∗ on [bx∗ ; cx∗ ] by X ∗(t)=

∫ t
0 x

∗(u) du. As a continuous increasing function,
X ∗ admits an inverse function X ∗−1 de�ned on X ∗([bx∗ ; cx∗ ])= [0;

∫ T
0 x∗(u) du]. Next,

let Y ∗ be the function de�ned on [0; T ] by Y ∗(t)=
∫ t
0 y

∗(u) du. Then, from Lemma
2.1(ii) and the no short sales condition (2.3), we have �∗(t)=X ∗−1(Y ∗(t)). Since
x∗¿0 on [bx∗ ; cx∗ ] a.e., this provides

�̇
∗
(t)=

y∗(t)
x∗(�∗(t))

; t ∈ [bx∗ ; T ] a:e:

Therefore, Assumption 4.2(ii) imposes that the function t 7→y∗(t)=x∗(�∗(t)) be de�ned
and piecewise continuous on [bx∗; T ].

4.2. Necessary conditions from the calculus of variations

Under Assumptions 4.1 and 4.2, the utility maximization problem (2.8) can be writ-
ten in

sup
∫ T

0
U (t; c(t)) dt; c(t)=!(t)− x̂(t) + v(t)x̂(�(t))’(t; �(t)); (4.5)
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where x̂ is piecewise C1 and v is piecewise continuous on [0; T ]. (x̂; v) are controls
subject to the constraints:

0≤ x̂(t)≤!(t); ∀t ∈ [0; T ]; (4.6)

v(t)≥ 0; ∀t ∈ [0; T ]: (4.7)

The function � is a continous state variable de�ned by the dynamics

�̇(t)= v(t) and �(0)= 0 (4.8)

with state constraints

0≤ �(t)≤ t for any t ∈ [0; T ]: (4.9)

The originality of this optimal control problem consists in the presence of the state
variable � as argument of the control variable x̂, which makes the classical �rst order
conditions of optimality not valid in this context. In this section, we shall provide
necessary conditions of optimality for this problem by adapting the classical variational
approach which allows to derive the Pontryagin principle.
Throughout this paragraph, v and x̂ denote optimal control variables of the problem

and � is the induced state variable. In order to derive necessary conditions for optimality
of v and x̂, we consider small variations in the form:

v(t; �)= v(t) + ��v(t) and x̂(t; �)= x̂(t) + ��x̂(t)

where �≥ 0, �v is a piecewise continuous function on [0; T ] and �x̂ is di�erentiable
on [0; T ] with bounded derivative. We also denote by �(t; �) the solution of Eq. (4.8)
where v(t) is replaced by v(t; �) and we de�ne

c(t; �)=!(t)− x̂(t; �) + v(t; �)x̂(�(t; �); �)’(t; �(t; �));

we shall keep using the notation �̇(t; �) for the derivative with respect to the t variable.
Now, consider the function:

J (x̂ + ��x̂; v+ ��v)=
∫ T

0
U (t; c(t; �)) dt: (4.10)

For sake of simplicity, we shall denote x̂(t; 0)= x̂(t). Since (x̂; v) is assumed to be an
optimal control, we have by de�nition that J (x̂; v) is the value function of the optimal
control problem of interest.

Remark 4.3. Suppose that x̂(t; a); v(t; a) and �(t; a) satisfy the constraints (4.6), (4.7)
and (4.9) for some a¿0; i.e. (x̂(: ; a); v(: ; a)) is an admissible control. Then; for any
�∈ [0; a]; (x̂(: ; �); v(: ; �)) is an admissible control and (x̂; v) is said to be a radial
point of the set of admissible controls in the direction (�x̂; �v). For such a pair
(�x̂; �v); the necessary conditions for a maximum provide J (x̂; v)≥ J (x̂+ ��x̂; v+ ��v).
Whenever the right hand derivative with respect to � of J (x̂+ ��x̂; v+ ��v) exists; we
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must have

d+

d�
J (x̂ + ��x̂; v+ ��v)

∣∣∣∣
�=0

≤ 0;

where d+ denotes the right derivative.

Remark 4.4. If (x̂; v) is a radial point (in the set of all admissible controls) both in
the direction (�x̂; �v) and (−�x̂;−�v) then (x̂; v) is said to be an internal point in the
direction (�x̂; �v). For such pair (�x̂; �v); whenever the derivative with respect to � of
J (x̂ + ��x̂; v+ ��v) exists; we must have

�J (x̂; v; �x̂; �v) :=
d
d�

J (x̂ + ��x̂; v+ ��v)
∣∣∣∣
�=0

=0:

The last remarks are the basic tools in order to derive the Pontryagin principle. By
adapting the classical methods to our optimal control problem with endogeneous delay,
we obtain the following result.

Proposition 4.2. Suppose that the optimal control (x̂; v) is a radial point of the set
of admissible controls in the direction (�x̂; �v). Then; we have∫ T

0
�v(t) (t) dt +

∫ T

0
�x̂(t)�(t) dt≤ 0;

where

 (t) =−
∫ T

t
[ ˙̂x(�(s))’(s; �(s)) + x̂(�(s))’�(s; �(s))]Uc(s; c(s))v(s) ds

+x̂(�(t))’(t; �(t))Uc(t; c(t)); (4.11)

�(t) =−Uc(t; c(t)) + ’(�−1(t); t)Uc(�−1(t); c(�−1(t)))1{t ≤ �(T )} (4.12)

for all t ∈ [0; T ].

Proof. See the appendix.

Remark 4.5. From the de�nition of the utility function U (t; c) as well as Assumptions
4.1 and 4.2, it is easily checked that  is continuous and piecewise C1 on the interval
[0; T ].

We now derive necessary conditions of optimality by considering variations (�x̂; �v)
such that the optimal control (x̂; v) is a radial point in the direction (�x̂; �v). We shall
consider separately directions (0; �v) and (�x̂; 0) and we will show that this su�ces to
recover all �rst-order conditions.

Lemma 4.1. Let t∗ ∈ (0; T ] such that � is increasing on a neighbourhood V of t∗ in
[0; T ] and 0¡�(t∗)¡t∗. Then  ̇ =0 on V .
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Proof. Since � is increasing on V , the set W = {t ∈V : �̇(t)¿0} is dense in V . Let
t be any element of W and let [t1; t2] be a neighbourhood of t such that �̇(s)≥ � for
some �¿0 and 0¡�(s)¡s for any s∈ [t1; t2]. Let k = mint1≤s≤t2{s−�(s), �(s)} which
is obviously positive. Consider some C1 function h with support in [t1; t2] and choose
�¿0 such that �‖h‖∞ ≤ k and �‖ḣ‖∞ ≤ � which proves that � + �h is nondecreasing
and 0≤ �(t) + �h(t)≤ t for 0≤ t≤T . Then both v + �ḣ and v − �ḣ are admissible
controls. Therefore, letting �v= ḣ and �x̂ =0, we see that (x̂; v) is an internal point in
the direction (�x̂; �v) and the �rst-order condition for the optimality of (x̂; v) is given
by �J (x̂; v; �x̂; �v)= 0. This provides∫ T

0
ḣ(s) (s) ds=

∫ t2

t1
ḣ(s) (s) ds=0:

Integrating by parts, we get
∫ t2
t1

h(s) ̇ (s) ds=0 for any C1 function h with support in

[t1; t2], which proves that  ̇ =0 on [t1; t2]. The result of the lemma follows from the
density of W in V .

Lemma 4.2. Let [t0; t1] be an interval on which �(t)= t. Then we have  ̇ (t)≤0 for
all t ∈ [t0; t1].

Proof. Let h be some nonpositive C1 function with support in [t0; t1]. Then, possi-
bly multiplying by a constant, we can assume that ‖ḣ‖∞≤1 and therefore v + ḣ is
an admissible control and (x̂; v) is a radial point in the direction (0; ḣ). This proves
that

∫ T
0  (t)ḣ(t) dt=

∫ t1
t0

 (t)ḣ(t) dt=− ∫ t1
t0

 ̇ (t)h(t) dt≤0. The result follows from the
arbitrariness of the nonpositive C1 function h.

Lemma 4.3. Let [t1; t2]⊂ [0; T ) be a maximal interval on which �̇=0. Then we have
 (t1)=  (t2) and  (t)≤ (t1) for all t ∈ [t1; t2].

Proof. The proof is organized in two steps. We �rst prove that  (t)≤ (t2) for all
t ∈ [t1; t2] and then  (t)≤ (t1) for all t ∈ [t1; t2].
(i) Consider some �¿0. Since [t1; t2] is a maximal interval on which �̇=0, there

exist t3 and t4 in the interval (t2; t2 +�] such that �̇(t)¿0 on [t3; t4]; we then introduce
�= �(t4)− �(t3).
Let h be any (nonzero) nondecreasing C1 function on [t1; t2] with h(t1)= 0. Possibly

multiplying by some well chosen positive constant, we can assume h(t2)=�. We next
extend h continuously to [0; T ] as follows:
• ḣ=0 on [t2; t3];
• ḣ=−�̇ on [t3; t4];
• h=0 outside the interval [t1; t4].
Then, it is easily checked that v + ḣ is an admissible control and therefore (x̂; v) is a
radial point in the direction (0; ḣ). This proves that

∫ T
0  (t)ḣ(t) dt=

∫ t2
t1

 (t)ḣ(t) dt +∫ t4
t3

 (t)ḣ(t) dt≤0. Integrating by parts and noting that  ̇ =0 on [t3; t4] by Lemma 4.1,
this provides:

∫ t2
t1

 (t)ḣ(t) dt −  (t3)h(t3)≤0. Now, since h(t3)= h(t2) and h(t1)= 0,
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we obtain
∫ t2
t1
[ (t) −  (t3)]ḣ(t) dt≤0 for all nonnegative function ḣ on [t1; t2] which

implies that  (t)≤ (t3) for all t ∈ [t1; t2]. By sending � to zero and using the continuity
of  , we get  (t)≤ (t2) for all t ∈ [t1; t2].
(ii) We now prove that  (t)≤ (t1) for all t ∈ [t1; t2]. Consider some �¿0. Since

[t1; t2] is a maximal interval on which �̇=0, there exist t−1 and t0 in the interval
[t1 − �; t1) such that �̇¿0 on [t−1; t0]. Let t∗ be an arbitrary value in [t1; t2]. Given a
su�ciently small �¿0, consider the following continuous function h de�ned on [0; T ]
by
• h=0 outside the interval [t−1; t∗ + �];
• ḣ=−�̇ on [t−1; t0];
• ḣ=0 on [t0; t∗ − �];
• ḣ= [�(t0)− �(t−1)]=2� on [t∗ − �; t∗ + �].
Then it is easily checked that v + ḣ is an admissible control and therefore (x̂; v) is
a radial point in the direction (0; ḣ). It then follows by the necessary conditions of
optimality of (x̂; v) that

∫ T
0  (t)ḣ(t) dt≤0. Letting � go to zero, this provides

 (t∗)≤
∫ t0
t−1

 (t)�̇(t) dt

�(t0)− �(t−1)

by the continuity of  . The required result is obtained by sending � to zero in the last
inequality and using again the continuity of  .

Lemma 4.4. Let T0 ∈ (0; T ] such that �(t)= c¡T0 for all t ∈ [T0; T ]. Suppose that
there exists an increasing sequence (tn)n converging to T0 such that 0¡�(tn)¡c.
Then  (T0)= 0.

Proof. For each n ∈ N , de�ne the function:

hn(t)=

{
�(t)− �(tn); tn≤ t≤T;

0; 0≤ t≤ tn

and de�ne the disjoint subsets of [0; T ]

Cn= {t ∈ [tn; T0]: �̇(t)= 0} and Dn= [tn; T ]\Cn:

Then int(Cn)= ∪t∈int(Cn)
(at; bt) where [at; bt] is a maximal interval of Cn containing t.

As de�ned, the intervals (at ; bt) and (as; bs), t; s∈ int(Cn) are either identical or disjoint.
Therefore, we can write int(Cn)= ∪i∈ I (ai; bi) for a possibly in�nite family I . Note
also that bi 6= T0 for all i∈ I since there exists an increasing sequence (tn)n converging
to T0 such that �(tn)¡�(T0).
Now, for each i∈ I , we have  (ai)=  (bi) by Lemma 4.3 and therefore,

∫
Cn

 ̇ =
∑
i∈ I

∫ bi

ai
 ̇ =0: (4.13)
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Moreover, since hn is constant on each [ai; bi], integration by parts provides∫
Cn

 ̇ hn=
∑
i∈ I

∫ bi

ai
 ̇ hn=0: (4.14)

Now, it is easily checked that v − �ḣn is an admissible control for small �¿0 and
therefore (x̂; q) is a radial point in the direction (0;−ḣn). This provides the optimality
condition∫ T

0
ḣn(t) (t) dt=

∫ T0

tn
ḣn(t) (t) dt≥0; (4.15)

where we used the fact that hn is constant on [T0; T ]. Integrating by parts and recalling
that hn(tn)= 0, we get

 (T0)hn(T0)−
∫
Dn

 ̇ (t)hn(t) dt≥0;

where we used Eq. (4.14). This provides

 (T )≥
∫
Dn

 ̇ (t)
hn(t)
hn(T )

dt

≥
∫
Dn

 ̇ (t) dt;

where the second inequality follows from the fact that hn(t)≤hn(T ) and  ̇ ≤0 on Dn

by Lemmas 4.1 and 4.2. Using Eq. (4.13), we then get

 (T )≥
∫ T

tn
 ̇ (t) dt=  (T )−  (tn);

which provides  (T )≥0 by sending n to ∞ and using the continuity of  .
To see that the reverse inequality holds, notice that, since �(T0)¡T0, it follows

that v + �ḣn is also an admissible control for small �¿0. Therefore, (x̂; v) is a radial
point in the direction (0; ḣn). Repeating the above arguments provides the required
result.

In the following lemmas of this section, we concentrate on the control variable x̂
and we consider variations of the control variable (x̂; v) of the form (�x̂; 0).

Lemma 4.5. Let t∗ ∈ [0; �(T )] such that 0¡x̂(t∗)¡!(t∗). Then �(t∗)= 0.

Proof. Since x̂ is continuous there exits an interval [t1; t2]⊂ [0; �(T )] containing t∗ such
that 0 ¡x̂¡! on [t1; t2]. Let �x̂ be any continuous function with compact support on
[t1; t2]. Then, possibly multiplying by a constant both x̂+ �x̂ and x̂− �x̂ are admissible
controls and therefore (x̂; v) is an internal point in the direction (�x̂; 0). This provides
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the optimality condition:

0=
∫ T

0
�x̂(t)�(t) dt:

The required result follows from the arbitrariness of the test function �x̂.

Lemma 4.6. (i) Let [t1; t2] be an interval of [0; T ] on which x̂=0. Then �(t)≤0.

Proof. Let �x̂ be any nonnegative continuous function with compact support on [t1; t2].
Then �x̂ is an admissible control and therefore (x̂; v) is a radial point in the direction
(�x̂; 0). This provides the optimality condition

∫ t2
t1

�x̂(t)�(t) dt≤0. The required result
follows from the arbitrariness of the test function �x̂.

Lemma 4.7. Let [t1; t2]⊂ [0; T ] be an interval on which x̂=!. Then �(t)≥0 for any
t in [t1; t2].

Proof. Let �x̂ be any negative continuous function with compact support on [t1; t2].
Then, possibly multiplying by a constant x̂+ �x̂ is an admissible control and therefore
(x̂; v) is a radial point in the direction (�x̂; 0). This provides the optimality condition:

0≥
∫ T

0
�x̂(t)�(t) dt=

∫ t2

t1
�x̂(t)�(t) dt:

The required result follows from the arbitrariness of the test function �x̂.

We now use the results of the previous lemmas in order to derive the �rst-order
conditions associated with the optimal investment problem with taxes in the case where
the optimal investment function and the optimal delay function are known to satisfy
Assumptions 4.1 and 4.2.

Theorem 4.1. Consider an admissible strategy (x̂; �)∈A0 and let bx and cx be the
associated dates of regime changes de�ned in Proposition 4.1. Then; the following
conditions of optimality hold:
(i)  ̇ (t)≤0 for all t ∈ [0; bx];
(ii)  (bx)=  (cx) and  (t)≤ (bx) for all t ∈ [bx; cx];
(iii) for all t ∈ [cx; T ];  ̇ (t)= 0 if �̇(t)¿0. If �̇=0 on some (t1; t2)⊂ [cx; T ] then

 (t1)=  (t2) and  (t)≤ (t1) for all t ∈ [t1; t2];
(iv) Let T0 ∈ (0; T ] such that [T0; T ] is a maximal interval on which � is constant.

Then  (T0)= 0 and  (t)≤ (T0) for all t ∈ [T0; T ].
(v) for all t ∈ [bx; cx]; �(t)= 0 if x̂(t)¡!(t) and �(t)≥0 if x̂(t)=!(t).
Conversely; suppose that (x̂; �)∈A0 satisfy the necessary conditions (i)–(v). Then
for any variation (�x̂; �v) such that (x̂; v) is a radial point in the direction (�x̂; �v);
we have

�J (x̂; v; �x̂; �v)≤0;



54 E. Jouini et al. / Nonlinear Analysis 37 (1999) 31–56

where �J (x̂; v; �x̂; �v) is the right-side derivative of the value function J de�ned in
Eq. (4.10) in the direction (�x̂; �v).

Proof. The necessary conditions (i)–(v) are obtained by direct application of Lemmas
4.1–4.7. We now prove the second part of the theorem. Note that x̂=0 on [cx; T ]
and therefore only nonnegative perturbations �x̂ are admissible. Since Uc(t; c(t))≥0,
we have

�J (x̂; v; �x̂; �v)≤
∫ T

0
�v(t) (t) dt +

∫ cx

0
�x̂(t)�(t) dt:

For t ∈ [0; bx], �−1(t)= t and therefore �(t)= 0. Next, for t ∈{t ∈ [bx; cx]: x̂(t)¡!(t)},
we have �(t)= 0 by (v). Now, note that for t ∈{s∈ [bx; cx]: x̂(s)=!(s)}, �(t)≥0, by
(v), and �x̂ must be nonpositive in order for the variation �x̂ to be admissible. This
proves that

∫ cx

0 �x̂(t)�(t) dt≤0 and therefore

�J (x̂; v; �x̂; �v)≤
∫ bx

0
�v +

∫ cx

bx
�v +

∫ T0

cx
�v +

∫ T

T0
�v ; (4.16)

where T0 is as de�ned in the theorem. By condition (iv), we have  (t)≤ (T0) for all
t ∈ [T0; T ] and the variation �v must be nonnegative therein in order to be admissible.
This proves that∫ T

T0
�v(t) (t) dt≤0: (4.17)

Next, de�ne h(t)=
∫ t
0 �

v(s) ds, 0≤ t≤T . Then, integrating by parts in the �rst integral
on the right-hand side of Eq. (4.16), we get

∫ bx

0
�v(t) (t) dt= h(bx) (bx)−

∫ bx

0
h(t) ̇ (t) dt:

Now,  ̇ ≤0 on [0; bx] by (i) and, since �(t)= t on [0; bx], h must be nonpositive
therein, in order for �v to be an admissible variation, and we have∫ bx

0
�v(t) (t) dt≤h(bx) (bx): (4.18)

Since �̇=0 on [bx; cx], �v must be nonnegative therein in order to be an admissible
variation. Since  (t)≤ (bx)=  (cx) by (ii), this provides

∫ cx

bx
�v ≤  (bx)[h(cx)− h(bx)]=  (cx)h(cx)−  (bx)h(bx): (4.19)

Finally, let ∪i∈ I [ai; bi] be the closure of {t ∈ [c; T0]: �̇(t)= 0} where the intervals [ai; bi]
are disjoint (see the proof of Lemma 4.4 for the construction of such intervals). Then,
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integrating by parts and using (iii) and (iv), we get

∫ T0

cx
�v(t) (t) dt ≤ −h(cx) (cx)−

∑
i∈ I

{
 (ai)[h(bi)− h(ai)]−

∫ bi

ai
�v(t) (t) dt

}
:

Now, �v must be nonnegative on each interval [ai; bi] in order to be an admissible
variation. Since  (t)≤ (ai) for t ∈ [ai; bi] by (iii), this shows that each term inside
the sum is zero and therefore∫ T

cx
�v(t) (t) dt≤−h(cx) (cx): (4.20)

The required result is obtained by plugging Eqs. (4.17)–(4.20) into (4.16).

Appendix. Proof of Proposition 4.2

We denote by �(t; �) the solution of Eq. (4.8) where v(t) is replaced by v(t; �); we
shall keep using the notation �̇(t; �) for the derivative with respect to the variable t.
Remark that �(t; �) is de�ned as the unique solution to �̇(t; �)= v(t) + ��v(t), with

initial condition �(0; �)= 0, and is therefore continuously di�erentiable with respect
to �.
Now, let � be some a.e. di�erentiable function de�ned on [0; T ] with �(T )= 0 and

consider:

J (x̂ + ��x̂; v+ ��v) =
∫ T

0
U (t; c(t; �)) dt

=
∫ T

0
{U (t; c(t; �))− �(t)[�̇(t; �)− v(t; �)]} dt;

where c(t; �)=!(t)− (x̂ + ��x̂) + �̇(t; �)(x̂ + ��x̂)(�(t; �))�(t; �(t; �)).
Integrating by parts in Eq. (4.10) and recalling that �(T )= �(0; �)= 0, we get

J (x̂ + ��x̂; v+ ��v) =
∫ T

0
[U (t; c(t; �)) + �(t)v(t; �) + �̇(t)�(t; �)] dt:

The derivative of J with respect to �, evaluated at �=0, is then given by

�J (x̂; v; �x̂; �v)

=
∫ T

0
{��(t; 0)[�̇(t) + Uc(t; c(t))v(t)[x̂(�(t))’�(t; �(t)) + ˙̂x(�(t))’(t; �(t))]]

+�v(t)[Uc(t; c(t; 0))x̂ ◦ �(t)’(t; �) + �(t)]

− �x̂(t)Uc(t; c(t; 0)) + �x̂(�(t))Uc(t; c(t; 0))v(t)’(t; �)} dt;
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where we denoted by Uc the partial derivative of U with respect to the consumption
variable and �� the derivative of �(t; �) with respect to �. The di�erentiation under the
integral sign is justi�ed by Lemma 3.1, p. 6 in Fleming and Rishel [5].
Now, in order to get rid of the �rst term inside the integral de�ning �J (x̂; v; �x̂; �v),

de�ne �(:) by

�(t)=−
∫ T

t
Uc(s; c(s))v(s)[x̂(�(s))’�(s; �(s)) + ˙̂x(�(s))’(s; �(s))] ds: (A.1)

Since ˙̂x is bounded and � is continuous, the function �(:) de�ned in Eq. (A.1) is
continuous and di�erentiable a.e.
Next, note that, since � is nondecreasing and piecewise continuously di�erentiable,

it follows from Saard’s lemma that the set {�(s): �̇(s)= 0} has zero Lebesgue measure
and the inverse function �−1 is de�ned a.e. Therefore, by the state Eq. (4.8), a direct
change of variable provides

�J (x̂; v; �x̂; �v) =
∫ T

0
�v(t) (t) dt +

∫ T

0
�x̂(t)�(t) dt; (A.2)

where  (t) and �(t) are the functions given in the proposition.
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