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The graph of the Walras correspondence 
The production economies case* 
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This paper shows topological properties of the graph of the Walras correspondence such as 
connectedness and simple connectedness for economies with production. 

1. Introduction 

As in the exchange economy model, the Walras correspondence associates 
the set equilibria to an economy (parametrized by the initial endowments of 
the consumers). The purpose of this paper is to generalize Balasko’s (1975) 
results on the topological properties of this correspondence to economies 
with production. 

The model and the main assumptions are given in section 2. In section 3, 
we prove that the graph of the Walras correspondence has the same 
topological structure as the set of production equilibria. In section 4, we 
study a subset of the graph of the Walras correspondence defined by a fixed 
total supply. In section 5 we prove the connectedness and the simple 
connectedness of the set of the production equilibria under convexity 
assumptions on the production sector. 

Let o and w’ be two m-tuples of initial endowments. Let e and e’ be two 
equilibria associated with o and w’, respectively. The connectedness means 
that there is a continuous modification o(t), t E [0, l] from the m-tuple o to 
o’ such that for every t there is an equilibrium e(t) associated with w(t) and 
e(t) is a continuous function such that e(0) = e and e( 1) = e’. 

Simple connectedness means that there is always a continuous deformation 
of a continuous trajectory linking (e, o) to (e’, w’) to another one linking the 
same points, 
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2. The model’ 

Let d be an economy with I goods (h= 1,. . . , l), m consumers (i= 1,. . . ,m), 
and n firms (j = 1,. . . , n), and let w =(wl,. . . , co,,,) E R’“’ be the vector of initial 
endowments of the consumers. Let S = (p E rW’+ + :I\= 1 p,,= l} be the set of 
normalized prices, the technology of the jth firm is described by 5 c R’, and 
we assume that for every efficient production plan yj~ aYj, the firm chases a 
price p in cpXyj), where cpj:ayj~cl(S) is a correspondence’ called jth pricing 
rule. 

The behavior of the ith consumer is described by a correspondence 
Di:S x R+F%‘, which associates, to a price vector PES and a wealth wi, the 
set D,(p,wJ of possible consumption plans for the ith consumer. The income 
wi of this consumer is defined for production plans (yj) and a price vector p 
by wi=pwi+ri((yj), p) where ri is a real valued function defined on n;= 1 
q x s. 

Now we posit the following standard assumptions which describe the 
general framework of the paper: Let k 2 - 1 and s = max(O, k). 

Assumption (D). For all i, Di is a Ck-correspondence2 satisfying the Walras 
law (i.e. for every (p, w) in S x R and every x in Di(p, w) we have px = w). 

Assumption (P). For all j, I$ is a nonempty closed set satisfying the free 
disposal assumption (i.e. 5 - @+ c $). 

We recall, following Bonnisseau and Cornet (1988), that if q satisfies 
Assumption (P) then the restriction of proj,l to a? is an homeomorphism. 
Consequently cpjO(projel larj)-’ 0 proj el extends ‘pj to R’, we denote also by 
‘pj this extension. 

Assumption (PR). For all j, qj is a Ck-correspondence. 

‘If x =(x,J, y=(y,) are vectors in [w’, we let xy=z*= i X,JJ,, be the scalar product of W’, and 
llxll =(xx)f be the Euclidean norm. The notation xzy (resp. x>>y) means x,zy, (resp. x,,>y,) 
for all h, we let lR’+={x~R’:x~O} and R’++= {XIZ R’:x>>O}. We denote by e, the vector in R’ 
with every coordinate equal to 1. For AcR’, we denote by cl A, int A, aA, co A, and A” 
respectively, the closure, the interior, the boundary, the convex hull and the negative polar of A 
and, for B c IF!‘, and real numbers i, p, we let IA + pB = {la + Mb: a E A, b E B}. If A is nonempty, 
and XER’, we let d,(x)=inf{l(x-all:aoA} and f or r-20, B(A,r)={xER’:d,(x)~r}. If A is a 
subspace of R’ we denote by proj, the orthogonal projection on A. 

‘Given two topological spaces X and Y a correspondence 4 from X to Y associates with each 
element x in X, a subset I#J(X) of Y; it is said to be upper semi-continuous if 4 is locally bounded 
and if the graph of 4, i.e. {(x, y) EX x Y: yo 4(x)}, is closed. We denote by D(4) the domain of 4, 
i.e. D(4)= {x EX: 4(x) #@}. A correspondence F is called Ck, for k?O, on a set Q, if defines a 
Ck-function on D and is called C-i if is upper semi-continuous on Q with nonempty convex 
compact values. 
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Assumption (R). For all i, ri is a C”-function and we have: for all 

((Yj),P)Efly= 1 5 x so CT= 1 ri((Yj)3P)=Pxj”=l Yj. 

3. The Walras correspondence and the set of production equilibria 

Let us now define the following sets: 

A=R’“x fi qxsx Rfm, 
j=l 

EP= ((Yj),P)E fi ~XS:PE f) CpXYj) 7 

j=l j=l 

EG = ((xi, (YJ, P, (OJ) E A:((Yj), P) E EP> (Xi) E 

and 

ifil i( ’ P9Pwi+ri((Yj),P)), 5 xi= i Yj+ f Oi 9 

i=l j=l i=l 

EE = ((Xi), (Yj), P, (oi)) E A:((YJ, P) E 

EP, (xi) E ifil Dip, Pi), t Xi = f -i). 
i=l i=l 

Note that, the space EG is canonically homeomorphic to the graph of the 
Walras correspondence and EP is the set of the production equilibria of the 
economy 8. 

Lemma 1. Under the assumption there exist Cs-functions nT= 
for all and for ((‘j), P) ny= 1 x S, p) =pRi((yj), 

and CT= Ri((Yj), P) I Yj* 

Let ((yj), E ny= 6 x let a Cj”= 1 and let 

R ,((y ,) p) = ri(bj)P p) + ta2 + 1)/m 
’ J’ Yj + Ca2 + lk 

- C(a* + l)/mle, 
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where e=(l,..., 1). Then the functions Ri satisfy the conditions of the above 
lemma. 0 

Let ~:[wf”x~~,,~xSx[w*“~Iw’mx~J,,~x~x~lm be the map defined 

by ((xi), (Yj), P, (WJ)+((xJ, (Yj), P, (ai + Ri((Yj), P)). 

Proposition 3.1. The map @ is a C”-homeomorphism and @(EG) = EE. 

The proof of this result is left to the reader. 
For XE R’ we denote by X the vector of R’-’ defined by X=(x1,. . . ,xl_ J 

and let ~:[W’“X~~=~ $xS~lQ’~+nJ=i YjxSx[WmxaB~‘~‘~~m~‘~x[W’xIW*m be 
the correspondence defined by ((xi), (Yj), p, (Oi))+((Yj), p, (PO,), (Oi - Xi)rZii, 
Cr= i Oi-Cy= 1 Xi, (Xi-D&y PO,))). 

Theorem 3.2. If the demand correspondences are C”, then q is a 
C”-homeomorphism and q(EE) = EP x R” x R(‘-l)(m-l) x (0) x (0). 

The proof of this result is left to the reader. 

Corollary 3.3. The spaces EE and EG are homeomorphic to the product of 
EP by an euclidian space. Consequently, EE and EG have the same topological 
structure as EP. 

Proof. This result is a direct consequence of Proposition 3.1. and Theorem 
3.2. l-J 

Remark. Note that, in general, EP is not connected. For example, let 

y,={(Yl,Y;)~[w2:Y1+Y;Io}, Y,=((Y,,Y;)E[W2:Y:+Y;~O), cpl(Yl,Y;)=G,~), 
for all (Y~,Y;) E au,, and CPZ(YZ,Y;) =PYS/U + 3~%,1/C1+ 3yS1, for all 
(y2,y;)~dY2. In fact cpi and cp2 are the marginal pricing rules associated to 
Y, and Y,, respectively. Furthermore, it is clear that 

E~={((YL, -YI)($ -$t:,i)): y,tRj 

which is not connected. 
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Lemma 2. Let A be a connected space and y: A-*B be a C-’ correspondence, 
then the graph2 of y is connected. 

Proof: Assume that A is connected and let U and V be open subsets of 
A x B such that gr(y) c U u V and U n I/ =o. Let A” and A, be subsets of A 
defined by A,={aEA:y(a)n U#@} and A,={aEA:y(a)n V#@) and for 
aeA we denote by U,={bEB:(a,b)EU) and I/,={bEB:(a,b)EV). It is easy 
to check that y(a) c U, u V, and U, n V,=@ Since r(a) is convex and 
consequently connected we have U, n y(a) = 0 or V, n y(a) = 0 which implies 
that AU n Av =8. The previous property implies that A, = {aE A:?(a) c U} 
and Av = {ae A:y(a)c V}. Since y is upper semi-continuous, A, and A, are 
open subsets of A such that A= AU v Av and A, n A, =8. Since A is 
connected we have A, =0 or A, =0 and consequently gr(y) n V =0. Then 
gr(y) is connected. 0 

Corollary 3.4. If n= 1 (i.e., if there is only one firm) then the graph of the 
Walras correspondence is connected. If we further assume that kz0 then the 
graph of the Walras correspondence is homeomorphic to an Euclidian space. 

Proof: Following Corollary 3.3, EG is homeomorphic to the product of EP 
by an euclidian space. Furthermore, for n= 1, EP is canonically homeomor- 
phic to the graph of ‘pl. Since aY, is homeomorphic to el, the graph of cpl is 
connected by Lemma 2. Furthermore if kz0, cpl is a function and gr(cpl) is 
homeomorphic to aY, and consequently to IF@-‘. The graph of the Walras 
correspondence is then homeomorphic to R’“. 0 

Remark. Note that if k= - 1, even for the marginal pricing rule, the graph 
of the Walras correspondence, in general, is not homeomorphic to an 
euclidian space. Indeed, we refer to Jouini (1992) to show that there exist 
production sets Y such that, for all ye 8x q(y) =cl(S), where cp is the 
marginal pricing rule associated to X For such set, we have that EP is 
homeomorphic to Iw’- ’ x cl(S) and EG is homeomorphic to R”” x cl(S). 
Nevertheless we shall see in Proposition 5.4 that if Y is convex then EP is 
actually homeomorphic to [w’- ‘. 

4. A subset of the graph of the Walras correspondence 

For the next. it is necessary to refine our description of the behavior of the 
consumers. We assume that the ith consumer has a utility function ui:l%+R 
and th,: Dip, wi) is defined as the set of the solutions of the following 
maximization program: 

max Ui(Xi), S.t. pXis Wi. 
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For Xi E [w’ we denote by di(Xi) the matrix defined by 

di(Xi) = 
(a2ui/axh dxk(Xi))h,k ’ VUi(Xi) 

> 0 ’ 

and we assume the following. 

Assumption (U). For all i, ui is a P-function such that for all xi~ R’, 
VUi(Xi) E rW: + and di(xi) is definite negative. 

The previous conditions are the first and second order sufficient condition 
for monotonicity and strict quasi-concavity of the preferences of the con- 
sumers. The following result is due to Balasko (1987), 

Proposition 4.1. Under the Assumption (U), the map 6:s x R”+R’ x Rm-’ 
defined by (p,(wi))+(~~= 1 Di(p, wi),(ui(Di(p, wi)))y:>) is a Cm-di&omorphism. 

For I E R’ we define the following sets: 

EG,= ((Xi),(yj),p,(oi))EEG: 5 WC+ i Yj=r 7 
i=l j=l 

and 

EE,= ((Xi),(yj),p,(oi))EEE: f mi=r . 
i=l 

The space EG, is the set of economies with associated equilibria such that 
the total supply is equal to r. It is interesting to study the existence of 
trajectories between two equilibria and of deformations of these trajectories 
when the total supply is kept fixed. 

Proposition 4.2. The map @ induces a C”-homeomorphism between EG, and 
EE,. Furthermore 

q(EE,)=B(r) x R(l-l)(m-l)~ (0) x {0}, 

where B(r) = {((Yj), P, (wi)): ((Yj), PI E EP, CT= 1 Ddp, wi) = r). 

The proof of this last result is left to the reader. 
Consequently, for k 20 and following Theorem 3.2, EG, is 

Ck-homeomorphic to the product of an Euclidian space with the set B(r). 
Let us now introduce the following maps: A :n;= 1 i3q x S x R”+(el)” x S x 

R” defined by d((yj),p,(Wi)) =((cpj(yj)-p),p,(wi)) and T:(el)” x S x R”-*(el)” x 

I@ x K’- 1 defined by r((Zj), P, (WJ) =((zj), Cy= 1 Di(p, Wi), (Ui(Di(py Wi)))~i~‘). 
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Following Proposition 4.1 and under Assumption (U), it is clear that f is a 
Cm-diffeomorphism and that 

B(r)=A-‘(T-‘((0) x (r} x LF1)). 

Theorem 4.3. Under Assumption (U), if kz0 and if for j= 1,. . . , n, ‘pj is 
one-to-one with SC q,(aYj) then EG, is homeomorphic to R1(m-l’. 

Proof Under the above assumptions it is easy to show that A is one-to-one 
with (0) x S x [w”’ cA(fli”,,~I;xSxRm. Consequently, To A is a 
Ck-homeomorphism between B(r) and (0) x {r} x R”-‘. Hence B(r) is 
Ck-homeomorphic to [w”-’ and EG, is Ck-homeomorphic to W”- ’ x 
@-l)(m-i)_@(m-1) - 

5. Profit maximization 

Let 5 be a production set, a pricing rule ‘pj is called profit maximization 
rule if for all yj~81;. we have (~Ay~)={p~cl(S):py~Z?py>, for all y;~?}. It is 
well known that if Yj is a convex set then the profit maximization rule 
satisfies the assumption (PR) and that if Yj is differentially strictly convex 
(i.e., the set Yj satisfies the second order sufficient conditions for strict 
convexity, more precisely Y$ is convex and the Gaussian curvature of a? is 
everywhere different from 0) then the profit maximization rule defines a 
C’-diffeomorphism between a? and (pl(aq). 

Proposition 5. I. Under Assumption (V), if all the producers maximize their 
profits on differentially strictly convex production sets with SC cp,(aq), j = 
I,.. . ,n, then EG, is C”-homeomorphic to R”“-l’ and EG is C”-homeomorphic 
to R’“. 

Proof: Under the previous assumptions ‘pj is C’ for j = 1,. . . , n and Di is C” 
for i= 1 , , . . , m, consequently we have k 2 0. Furthermore, A is one-to-one and 
(0) x S x W’c A(n;= 1 85 x S x W) then, following Theorem 4.3, EG, is 
C”-homeomorphic to [w’(m- 1) Finally it is clear that EG= 
(Fo A)-‘((0) x R’ x Rmml) x [w~‘-‘~~“-‘~ which implies that EG is 
C”-homeomorphic to Wm. 0 

It is easy to show that the previous assumption Sccp(aY) is satisfied if 
there exist two vectors a and b such that a - F@+ c Y c b - U@+ . 

Proposition 5.2. Zf all the producers, except at most one of them (j= l), 
maximize their profits on convex production sets with cpl(aYl) cint(cp,(aT)), 
j=2 , . . . ,n, then EP is connected. 
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Proof. Let A be the graph of the correspondence ‘pi (i.e., 

A={(y,,p)~aYi xcl(S):~~cpl(~~)l) and y:A-fl!=2aYj be the correspon- 
dence defined by (Y 1, PI -‘(VA& . . . , V,(P)), where for P E cl(S), qj(P) = 

{yje q:pyj=maxpq}. By Lemma 2, A is connected. Since rpl(aY,)c 
int (q(aq)), j=2,..., n, it is easy to show that int(D(y)) #8. Furthermore y is 
a maximal monotone operator consequently, by Brezis (1973, proposition 
2.9) int (D(y))=int(cl(D(y))) and y is locally bounded on int(D(y)) and 
consequently on A. If we further remark that y is convex valued and has a 
closed graph we obtain then that y is a C-l-correspondence on A. By 
Lemma 2, EP, which is canonically homeomorphic to the graph of y, is 
connected. 0 

In the next we denote by Y the set defined by Y = Yi + ..* + Y, and by 
A(Y) the asymptotic cone of Y, i.e. A(Y)=n,2,{ily:y~ Y 220, (lyll2p). 

Proposition 5.3. If all the producers maximize their profits on strictly convex 
production sets and if A(Y) n -A(Y) = (0) ( irreversibility assumption) then EP 
is contractible (and consequently simply connected). 

Proof. It is clear that EP is canonically homeomorphic to the graph of the 
following correspondence s:cl(S)+nJ= 1 a5 defined by 6(p) =(nl(p), . . . , n,(p)). 
Let v]:cl(S)+aY be the correspondence defined by p+{y~Y:py=maxpY}. 
We can show easily that 6 and q have the same domain. Since Y is convex, it 
is clear that int(A( Y)‘) n cl(S) CD(~). By the irreversibility assumption we 
have int(A( Y)‘) #8, and then int(D(n)) #0. Since q is clearly a maximal 
monotone operator, by the same argument used in the proof of Proposition 
5.2 we have, int(D(r)) =int(cl(D(q))) and q is locally bounded on int(D(q)), 
furthermore this last set is convex. 

Since int(D(b)) is a nonempty open convex set and D(G)ccl(int(D(G))), we 
can choose p0 in int(D(b)) and we have for all peD(G) and all t E [0, l[, 
(1 - t)po + tp Eint(D(6)). Thus let H: D(6) x [0, l]+D(S) be the map defined by 
(p, t)+(l - t)pO + tp. It is clear that H is continuous and that H(D(6) x (0)) = 
{pO} and H(D(6) x {l})=D(6). C onsequently D(6) is contractible. 

Since production sets are strictly convex, 6 is a single valued function 
defined on a contractible set and consequently gr(y) is contractible. 0 

In the following result we consider constant-returns production structure as 
in Kehoe (1982) and Mas-Cole11 (1985). This type of specification includes 
decreasing returns as a special case. 

Proposition 5.4. If all the production sets are convex cones of vertex 0 and if 
Yn -Y=(O) (’ trreversibility assumption) then EP is connected. 

Proof Under the irreversibility assumption we have int( Y”) # 8 and conse- 
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quently n&r int( Y,O)#@. With the notations of the Proposition 5.2 we then 
have int(D(y) #@. The proof then follows as in Proposition 5.2. 0 

Proposition 5.5. Zf n = 1 and if this producer maximizes its profit on a convex 
production set then EP is homeomorphic to El-‘. 

Proof: We denote by Y the set YI. Let p:EP+B( Y +B(O, 1)) be the map 
defined by (y,p)-+p/llpll + y and let rc be the projection on the convex set I: 
For z E a( Y + B(0, 1)) and (y,p) E EP, it is easy to show that 

z - 7c(z) 

n(z)’ (z - 7-c(z))e 
E ER ~P(Y, P)) = Y, and 

P(YvP)-Y =p 

(Ay, p) -y)e ’ 

Consequently, ,u is an homemorphism between EP and a( Y +B(O, 1)). Fur- 
thermore the set Y +B(O, 1) satisfies the assumption (P) then, following 
Bonnisseau and Cornet (1988), a( Y +B(O, 1)) is homeomorphic to 
[WI-’ 

0 
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