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Abstract

This paper studies foundational issues in securities markets models with fixed costs of trading, i.e.
transactions costs that are bounded regardless of the transaction size, such as fixed brokerage fees,
investment taxes, operational, and processing costs or opportunity costs. We show that the absence
of free lunches in such models is equivalent to the existence of a family of absolutely continuous
probability measures for which the normalized securities price processes are martingales. This is a
weaker condition than the absence of free lunch in frictionless models, which is equivalent to the
existence of an equivalent martingale measure. We also show that the only arbitrage-free pricing
rules on the set of attainable contingent claims are those that are equal to the sum of an expected
value with respect to any absolutely continuous martingale measure and of a bounded fixed cost
functional. Moreover, these pricing rules are the only ones to be viable as models of economic
equilibrium. © 2001 Elsevier Science B.V. All rights reserved.

Keywords:Arbitrage; Fixed costs; Absolutely continuous martingale measure; Contingent claims pricing;
Viability

1. Introduction

The Fundamental Theorem of Asset Pricing, which originates in the Arrow—Debreu
model (Debreu (1959)) and is further formalized in (among others) Cox and Ross (1976),
Harrison and Kreps (1979), Harrison and Pliska (1981), Duffie and Huang (1986), Dybvig
and Ross (1987), Dalang et al. (1989), Back and Pliska (1990), and Delbaen and Schacher-
mayer (1994), asserts that the absence of free lunch in a frictionless securities market model
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is equivalent to the existence of an equivalent martingale measure for the normalized secu-
rities price processes. The only arbitrage-free and viable pricing rule on the set of attainable
contingent claims, which is a linear space, is then equal to the expected value with respect
to any equivalent martingale measure.

In this paper, we study some foundational issues in the theory of asset pricing in securities
markets models with fixed trading costs. Transaction costs are said to be fixed in the sense
that they are bounded regardless of the transaction size. Such fixed costs include for exam-
ple fixed brokerage fees, brokerage arrangements where marginal fees go to zero beyond
a given volume that is reset periodically (such arrangements are common in the industry),
fixed investment taxes to gain access to a market (such as a foreign market), operational and
processing costs that typically exhibit strong economies of scale (e.g. through automation),
fixed costs involved in setting up an office and obtaining access to information, and the
opportunity cost of looking at a market or of doing a specific trade. We find that the absence
of free lunch in models with fixed trading costs is equivalent to the existence of a family of
“absolutely continuous” probability measurefor which the normalized (by a numeraire)
securities price processes are martingales. Note that this is a weaker condition than the
existence of an equivalent martingale measure (as in frictionless markets), because in this
case the martingale measures are only required to be absolutely continuous. As in the Fun-
damental Theorem of Asset Pricing, we find that the absence of free lunch is also equivalent
to the existence of a family of nonnegative state price densities and to the existence of a
family of continuous weakly-positive linear operators. We define admissible pricing rules
on the set of attainable contingent claims as the price functionals that are arbitrage-free
and are lower than or equal to the superreplication cost (i.e. the lowest cost of dominating
a given payoff). Indeed, no rational agent would pay more than its superreplication cost
for a contingent claim, since there is a cheaper way to achieve at least the same payoff
using a trading strategy. We then show that the only admissible pricing rules on the set of
attainable contingent claims are those that are equal to the sum of an expected value with
respect to any absolutely continuous martingale measure and of a bounded fixed cost func-
tional. Moreover, these pricing rules are the only ones to be viable as models of economic
equilibrium.

A simple example can illustrate our main result. Consider a model where two securities,
denoted byA andB, can be traded at two dates 0 and 1 and in two possible states of the
world 5 ands, at date 1. Security, the numeraire, is normalized to be always worth
one unit of account and securiB has a value of 1 at date 0 and a value of 1 or 2 at
date 1 in states; or sp, respectively (all in numeraire units). In the perfect market case,
this model yields an arbitrage opportunity which consists in buying one urit ahd
selling one unit ofA at date 0 at a zero investment cost, and closing the position at date
1 at a profit in state; and at no loss in stat®. If we introduce fixed trading costs, this
arbitrage opportunity disappears, since the investment required at date 0 by the strategy is
not zero anymore but is equal to the fixed cost. According to the Fundamental Theorem
of Asset Pricing, there cannot exist an equivalent martingale measure. Nevertheless, the

2Let (2, F, P) be a given probability space. We say that another probability me&¥udefined on the same
probability space®, F, P) is absolutely continuous with respectRpand we shall write) « P, if for all event
Ain F satisfyingP (A) = 0 we haveQ(A) = 0.
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probabilityQ defined on the set = {s1, s2} of the possible states of the world at date 1 by
Q(s1) = 1 andQ(s2) = 0 is an absolutely continuous martingale measure for secuities
andB.

There is an existing body of literature that studies transaction costs and other market
frictions. For instance, Jouini and Kallal (1995a) studies proportional transaction costs and
finds that a bid—ask price process is arbitrage-free if and only if there exists an equiva-
lent probability measure that transforms some process between the normalized bid and
ask price processes into a martingale. Jouini and Kallal (1995b) studies the case of short
sales constraints and shortselling costs (as well as different borrowing and lending rates)
and finds that the absence of arbitrage is equivalent to the existence of an equivalent su-
permartingale measure. The set of expected values of the payoff of a contingent claim
with respect to all the martingale (respective supermartingale) measures is an interval and
coincides with the set of its possible prices compatible with arbitrage and economic equi-
librium. The characteristic of this class of frictions is that they lead to a pricing rule that
is sublinear, i.e. positively homogeneous and subadditive, and since this is not the case
for fixed transaction costs they require a specific analysis. Also, Cvitanic and Karatzas
(1993, 1996) study the optimal hedging problem in a diffusion model with portfolios
constrained to belong to a given convex set and proportional transaction costs, respec-
tively. Pham and Touzi (1996) study the case of constraints that take the form of closed
convex cones in finite discrete tinfe.As far as fixed transaction costs are concerned
Duffie and Sun (1990), Grossman and Laroque (1990) and Morton and Pliska (1995),
among others, have studied the optimal portfolio problem with transaction fees that are
proportional to the size of the overall portfolio (as opposed to the size of the specific
transaction).

The remainder of the paper is organized as follows. Section 2 describes our securities
markets model with fixed trading costs. Section 3 characterizes the absence of free lunch
in such a model. Section 4 characterizes the arbitrage-free and viable pricing rules. Section
5 concludes.

2. The model with fixed costs

The securities market model consists of a®et [0, T'] of trading dates, wheré& de-
notes the terminal date for all economic activity; a complete probability spacé,(P),
where the sef2 represents all possible states of the world; an information structure which
describes how information is revealed to agents, given by a filtrafiea {F;};c + with
Fo = {0,2} and Fy = F; n + 1 traded securities 0, ., nand a g + 1)-dimensional,
F-adapted procesg = {Z;;t € ¥} with component processez’, ... , Z" where zk
represents the price of securikyat timet. We assume that for at| Z? = 1, which
means that the riskless rate is equal to zero. Note that this assumption amounts to a
normalization of all securities prices by a numeraire, and can be made without any loss

3 Other papers on market frictions include Magill and Constantinides (1976), Constantinides (1986), Dybvig and
Ross (1986), Prisman (1986), Ross (1987), Taksar et al. (1988), He and Pearson (1991), Bensaid et al. (1992),
Hindy (1995), and Jouini and Kallal (1999).
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of generality as long as at least one of the securities has a positive price at any time.
In the remainder of the paper, we shall refer to the Oth security as the riskless asset.
We also make the technical assumptiothat for any trading daté in F, Z, is in Lt

(£22,F, P).
A trading strategy is an(+ 1)-dimensionalF-adapted process$ = {0;;r € F} with
component processeés, . .. , 6", whereéf represents the quantity of securkyheld at

timet. The vecto®, represents the agent’s portfolio at titnend its components may take
negative as well as positive values. Henég,= 6, Z, is® the market value of the portfolio
9, at datet and we call the proceds? = {V?; + e F} the value process for the strategyy
Letd, denote for each datehe vector ¢, ... , 67) of quantities of risky securities held at
timet. As in Harrison and Kreps (1979), we only consider simple strategies, i.e. strategies
such that for alt, 6Z, is in LY(£2, F,, P); agents may trade only at a finite number of dates
(although that number can be arbitrarily large) that must be specified in adfaNote
that simple strategies are natural in our context because we shall assume that agents incur
a fixed transaction cost each time they trade.

We denote by, the positive fixed transaction cost paid at dafdrading has occurred
in any of the risky securities and = {¢;; ¢t € F}. If agents do not trade in any of the
risky securities at timg, then we assume that they do not incur any transaction cost. The
transaction cost is fixed in the sense that it is bounded regardless of the amount of securities
traded. We assume that the processF-adapted, which means that agents only know at
timet the past and current values of the fixed trading cost but nothing more. We also allow
the fixed transaction costs to depend upon the trading strategy (and not to be necessarily
strictly positive at each trading date), i.e. to each simple strafegyth trading dates
fo,...,ty = T is associated a nonnegative transaction cost prafess (c?),e{to,.__,,N}
with ¢/ = C(t, (6,),<;) such that
o for any simple trading strategiésands’, such that = 6’, we haver? = ¢ and agents
do not pay any fixed transaction cost if they do not trade the risky securities, i.e. for any

simple strategy with trading datesy, ... , ty,

0 oo .

ot 1(9_r,~ =, )= 0, foralliwithl<i<N
6 0

¢lgy=0 =0 1l =0

& =0, forallr ¢ {r,... .1y}

o for any datd, there exists a positive random variablesuch that for any simple strategy
6 with trading dategy, .. ., ty,

0 _ _ _ _ . - .
¢t G206, =0forall <) = €11G,204,=0forall;<»  foralliwithl<i <N,

4We recall thatL(2, F, P) denotes the set of measurable random variables with finite expected value with
respect tdP.

5Forall (x,y) in R? x R4 for somed € N*, we letxy = Y%, x; ;.

6 The extension to trading dates that are stopping times (instead of being specified in advance) is straightforward.
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i.e. the first time real trading occurs, the fixed cost must be positive. Alternatively we can
assume that there exists a positive real nunatserch that for any simple strate@ywith
trading datesy, ..., ty,

N

0
thi z &
i=0

i.e. the cumulative transaction cost from the first to the last trading date must be greater
than some positive constant;
o for all t, there exists a positive real numh@y such that for any simple strategy

C[e S Cts

i.e. the transaction cost is bounded at each date. This implies that for any simple strategy
6 with trading datedy, .. ., ty, the cumulative transaction cogfvzocg is smaller than

or equal to some constant (that only depends on the dgtes., ty involved in the
strategy). Alternatively we can assume that for any simple strategynd any trading

datet, the transaction cost at timdés such thatctw/k)h%OO — 0, which means that the
transaction cost per unit of security traded goes to zero as the amount traded becomes
arbitrarily large.

Note that these conditions are consistent with a large class of transaction costs that can
be identified in financial markets. As mentioned in Section 1, they include fixed brokerage
fees or brokerage arrangements where marginal fees go to zero beyond a given volume that
is reset periodically (such arrangements are common in the industry), and fixed investment
taxes to gain access to a market such as a foreign market. They also include operational and
trade processing costs that typically exhibit strong economies of scale (especially if these
tasks have been automated), and fixed costs incurred in setting up an office and obtaining
access to price or other relevant information. Also, the opportunity cost of focusing on a
market or of doing a specific trade can be viewed as a fixed cost.

In order to get some of our results, we shall need the following additional assurption
(that we shall mention each time it is needed).

Assumption A. There exists a real numbe€rsuch that for every strategy >, #¢! < C.

This means that, under Assumption A, the cumulative transaction costs of any trading
strategy are assumed to be bounded by a constant. Note that this condition is automatically
satisfied in a discrete time model with a finite or infinite number of states of the world (as
long as transaction costs are bounded at each time), but a finite number of possible trading
dates. It is also automatically satisfied in a model where there is a fixed cost to access a
market such as a fixed investment tax, a fixed cost for setting up information technology
or a trade processing department, or a fixed opportunity cost of looking at a market. We
emphasize that it is also consistent with a situation where the fixed transaction costs consist

7 For instance, we shall need Assumption A when using the same definition of free lunch as in Kreps (1981).
However, we shall also introduce an alternative definition of free lunch for which Assumption A is not required
for any of our results.
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in brokerage fees with a brokerage arrangement where transactions go free beyond a certain
volume which is reset on a periodical basis.

Agents transfer wealth from all dates and events (for contingent wealth) to the terminal
date using the traded securities, subject to paying the fixed transaction costs. In doing so,
they use self-financing strategies defined as followsi heta date ifF and letB be an event
in the information set at daieF; (in the remainder of the paper we shall always suppose
thatP(B) # 0). We then have the following Definition 2.1.

Definition 2.1. A self-financing simple strategy from the datnd the everB is a strategy
6 that is null before the dateand satisfyingd = {6; # 0} and such that there exist trading
datesty, ..., ty,withi =19 < ... <ty = T, for whiché(t, ») is a.s. constant over each
interval [t,—1; t[ and satisfies

OnZy +c) <0y Zy, fork=1,...,N-1

and
OrZr + C(; =0y 1 Z7T.

This means thata self-financing simple strategy does notrequire any additional investment
beyond what is required at the initial date: purchases of securities as well as transaction
costs after the initial date are financed by the sale of other securitieS-Petlenote the
set of such strategies. We also have the following Definition 2.2.

Definition 2.2. A frictionless self-financing simple strategy from the dagnd the event
B is a strategy that is null before the daieand outsidéB and such that there exist trading
datestp, ..., ty withi =19 < ... <ty = T for which6(t, ») is a.s. constant over each
interval frx—1; %[ and satisfie9,, Z,, =6, ,Z, asPfork=1,... ,N.

This means that a frictionless self-financing simple strategy is a self-financing simple
strategy in an otherwise identical economy where there is no transaction co®¥ et
denote the set of such strategies.

3. Arbitrage opportunities and free lunches
3.1. Arbitrage opportunities

An arbitrage opportunity is a trading strategy that yields a positive gain in some circum-
stances without a countervailing threat of loss in any other circumstances. A free lunch is
the possibility of getting arbitrarily close to an arbitrage opportunity. We shall define two
concepts of arbitrage opportunities as follows.

Definition 3.3.

1. An arbitrage opportunity with fixed costs (As a strategy such that there exist, )
inF,0<i < j <T,anevenBin F;, for whichd is null after datg, 6 belongs taS-Z,
V/ +¢] <0onB, V] > 0and eithel + ¢{ or v/ is different from 0.
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2. Africtionless strong arbitrage opportunity (8fJs a strategy such that there exist, (
jJ)inF,0<i < j<T,anevenBinF;, for which¢ is null after datg, & belongs to
W5, vf < 0onBandVy > 0.

1

This means thatan AQs a trading strategy thatyields, in our model with fixed transaction
costs, a positive gain in some circumstances without a threat of loss in other circumstances.
An AO- is a trading strategy that yields a positive gain at the starting date and event of
the trading strategy without a countervailing threat of loss in other circumstances. We then
have the following Proposition 3.1.

Proposition 3.1.

1. There exists an AQf and only if there exists a net gain arbitrage opportunity with fixed
trading costs, i.e. a strategy such that there exists a date i indnd an event B in F
for whiché belongs to 8% and[V{ — V! — ] > 0,# 0on B

2. There exists an Agif and only if there exists a frictionlegsnet gain arbitrage oppor-
tunity, i.e. a strategy such that there exists a date i) dn event B in Fand a positive
real numbete for which¢ belongs to W2 and V! — V¢ > ¢ on B

3. There exists an AQf and only if there exists an AQ

This means that the two notions of arbitrage opportunities that we have introduced are
equivalent. Also, an arbitrage opportunity in our model with fixed transaction costs cor-
responds to the possibility of achieving a positive net gain. An arbitrage opportunity in
the otherwise identical frictionless model corresponds to a net gain that is greater than
some positive constant in all states of the world. Let us recall that a frictionless arbitrage
opportunity in the classical sense consists in a strategych thatvg’ <0, Vﬁ > 0 and
P(Vﬁ — VOQ > 0) > 0. Notice thatthe main difference with an A@ that the strictinequality
is on the net gain and not on the initial gain. It is hence clear that the set of arbitrage oppor-
tunities in our model with fixed transaction costs is strictly smaller than the set of arbitrage
opportunities in the frictionless model, or equivalently that the assumption of no arbitrage
in our model with fixed transaction costs is less stringent than in the frictionless model.

3.2. Free lunches

As in Kreps (1981), we define a free lunch as the possibility of getting arbitrarily close
to an arbitrage opportunity. More precisely, we have the following Definition 3.4.

Definition 3.4.

1. A free lunch with fixed costs (Fl) is a sequencé™),cy of trading strategies such
that there exist in F, B in F;, sequencesx”),cy and(e),en of random variables,
respectively, in1(s2, F, P) andL($2, F;, P) and converging ih1(s2, F, P), respectively,
tox > 0 ands; > 0 onB with x + &; # 0 for which for alln,

o"isinsE, vI" 4" < —e"onBandvy > x".

2. Africtionless strong free lunch (Rl.is a sequenc&™),cy of trading strategies such
that there existin ¥, Bin F; and sequencgs™), <y and(r"),cy of random variables,
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respectively, in1(£2, F, P) andL1(s2, F;, P) and converging ih1(£2, F, P), respectively,
tox > 0 andr > 0 onB for which for alln,

0" isin W2 and satisfie¥’?" < —r" andvy" > x".

3. An “asymptotic free lunch” (AsFL) is a sequen@¥®), <y of strategies such that there
existi in F, Bin F;, a sequencé,),>o of positive real numbers and sequencey, ey
and (¢"),en Of random variables, respectively, irt($2, F, P) andL}(£2, F;, P) and
converging inL1(s2, F, P), respectively, toc > 0 ands; > 0 onB for which for alln,

971 + 9)1 911
. ! c?
9" isin §4B, L < —¢’onBand—L- > x".
An An

This means that a free lunch is a sequence of strategies with a payoff that converges to
an arbitrage opportunity. A frictionless strong free lunch is a sequence of strategies with
a payoff that converges to a frictionless strong arbitrage opportunity. An “asymptotic free
lunch” is a sequence of strategies that are strong free lunches when renormalized by a
sequence of scaling factors. We introduce this notion in order to avoid using Assumption A
in our characterization Theorems in the next section.

Note that as in the definition of arbitrage opportunities, we could replace thd datie
any datg, satisfying 0< i < j < T for which#” is null after the datg. We then have the
following Proposition 3.2.

Proposition 3.2.

1. There exists a FLif and only if there exists a net gain free lunch with fixed costs, i.e.
a sequencéd”),y of strategies such that there existii) B in F;, and a sequence
(x™),en of random variables belonging tot(s2, F, P) and converging in (2, F, P)
to somex > 0, # 0 on B for which for all ng" isin S:8 and V" — (V" + %) > x.

2. There exists a FLif and only if there exists a frictionlessnet gain free lunch, i.e. a
sequencéd™),n Of strategies such that there exist i+hHin F;, a positive real number
¢ and a sequence™),cy of random variables belonging td (2, F, P) and converging
to somex > ¢ on B for which for all ng” is in W-# and satisfies’¢" — v/ > x.

This means that a free lunch corresponds to a sequence of trading strategies with a payoff
that converges to a positive net gain. Similarly, a frictionless strong free lunch corresponds
to a sequence of trading strategies with a payoff that converges to a net gain that is strictly
positive in all states of the world. We then have the following characterization of the absence
of frictionless strong free lunches.

Corollary 3.1. Letk’8 = (vl -V 0 ¢ Wi-B} c L1(2, F, P), the setof possible gains

from date i and event B in the frictionless model, &idf = K-8 — L1 (2, F, P), where
the closure is taken inlL Let

AB = {f e LY@, F, P),3e > Osuchthatf > eonB).

The assumption of no frictionless strong free lunch (WAk equivalent to the condition
that for all i in Fand B in |, the two convex sets'@ and A® have an empty intersection
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We also have the following Lemma 3.1.
Lemma 3.1.

1. The absence of frictionless strong free lunch (MHmplies the absence of free lunch
in our model with fixed trading costs (NIfL

2. Under Assumption A, the absence of free lunch in our model with fixed costs)(&teL
the absence of frictionless strong free lunch (MFare equivalent

3. The absence of “asymptotic free lunch” (NAsFL) in our model with fixed trading costs
and the absence of frictionless strong free lunch (MFre equivalent

It is easy to see that the absence of frictionless strong free lunch implies the absence of
free lunch with fixed trading costs. But, unlike for arbitrage opportunities, the converse is
not necessarily true. Indeed, although the number of trading dates for each trading strategy
0" is finite, it can be arbitrarily large, and therefore so can the cumulative trading costs (see
Example 3.1 in the Appendix A for an example of a NFkecurities market with a Fl.

Hence the need to bound the total trading costs of any simple strategy as in Assumption
A or to consider the notion of “asymptotic free lunch”. In both the cases, we obtain the
equivalence between the absence of strong frictionless free lunches and the absence of free
lunch in our model with fixed trading costs.

3.3. Absolutely continuous martingale measures

With the notations of Corollary 3.1, it is easy to see, using the definition of the set of
self-financing simple trading strategies in the frictionless matfef and the fact that
z0 = 1, thatk™® = (v — v/;0 € W-B}, the set of possible gains from datend
eventB in the frictionless model, is a vector space and #iaf = Lin{6,(Z; — Z); 6, €
P p,i <s <t},whereforalls > i, Z; = (Z%, ..., Z") and whereP 5 denotes the set
of n-dimensional random variablés = (9S1, ..., 01 that areFg-measurable, null outside
B and beforé and such that, Z; is in L1(£2, Fy, P).

The use of Corollary 3.1 and of a separation Theorem will now enable us to obtain our
main result: the characterization of the absence of frictionless strong free lunches in terms
of absolutely continuous martingale measures.

Theorem 3.1. There exists no frictionless strong free lunch if and only if for all Hard
all B in F;, there exists a probability measuré ®on (2, F), absolutely continuous with
respect to P and weighted by B, with bounded density, and sucfEﬁi‘zﬁ{ZﬂFJ = Zs
forall (s, t) such thai < s < 1.

We then obtain the Fundamental Theorem of Asset Pricing for securities markets models
with fixed trading costs.

Theorem 3.2. The following are equivalent

1. There exists no “asymptotic free lunch” in our model with fixed trading costs
2. There exists a family of absolutely continuous martingale measures: for at-iandl
for all B in F;, there exists an absolutely continuous probability measure with bounded
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density P8 defined on {2, F) such that P2 (B) = 1 and satisfying
EP"1Z,F,] = Z,, forall (s, 1) withi <s <.

3. There exists a family of nonnegative state price densities: for alH and for all B in
F;, there exists a random variablé § in L>°(s2, F, P) withg® > 0, 0, on B and
such that for all (s, t) with < s <1,

E[g"8Z s8] = E[g"8Z;14ng], forall Ain F;.

4. There exists a family of weakly-positR/&ontinuous linear operators: let’® denote
the set of random variables null outside B and belonging{@a, F;, P). For all i in F,
for all B in F;, there exists a weakly-positive continuous linear operatof defined on
RT-8 and taking values in R, such that there exists A in With A ¢ B and RA) # 0
for which

By =vlonA, forallginw'5.

Under Assumption A, these statements are all equivalent to the following part.
5. There exists no free lunch in our model with fixed trading costs

This means that the absence of free lunch in our model with fixed trading costs (or
equivalently the absence of strong free lunch in the otherwise identical frictionless model)
is equivalent to the existence of a family of absolutely continuous martingale probability
measures. Note the difference with the frictionless case where the absence of free lunch
(a weaker condition than the absence of free lunch in the model with fixed trading costs)
is equivalent to the existence of an equivalent martingale probability measure (a stronger
condition, since a family of absolutely continuous martingale measures can be derived from
any equivalent martingale measure) as shown in Harrison and Kreps (1979).

We can also obtain the slightly more general results in the spirit of Yan’s (1980) Theorem
(also see Anseland Stricker (1990) as well as Stricker (1990) among others for an application
of Yan’s Theorem).

Theorem 3.3. Let K be a convex set int(s2, F, P) containing 0. The following conditions

are equivalent

1. For all n in L1 such that; > 0, there exists a positive real number ¢ for whiahis not
inK — L.

2. There exists a positive real number ¢ such tgt is not inK — Li.

3. There exists arandom variable Ziffl(£2, F, P) satisfying > 0, # Oandsup. ¢ E[Z¢]
< OQ.

We also have the following Corollary 3.2.

8 Let X denote the set of random variables ¢h £, P). A functionalp defined orX is said to be weakly positive
if for all xin X such thaP(x > 0) = 1, we havep(x) > 0.
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Corollary 3.2. Let K denote R with
K" ={vi — V{0 e WB) = Lin{6,(Z, — Z,); 65isin Py g, 1 = s > i},

where for alls > i, Z; = (Zsl, ..., Z}) and R, p denotes the set of n-dimensional random
variablesf, = (951, ..., 0" that are F-measurable, null outside B and before i, and such
that6,Z, is in L1(£2, Fy, P). Also, let £ denote{ f € L, 3¢ > Osuch thatf > ¢ on B}.
The following conditions are equivalent.

1. The intersectioM® N K — L} isempty

2. The random variabld, does not belong t& — Li.
3. There exists an absolutely continuous martingale measure.for Z

This concludes our characterization of processes that admit an absolutely continuous
martingale measure — which relates to the Theorem of Asset Pricing in securities markets
models with fixed trading costs (note that the implicatiés= (1) in Theorem 3.3 and
Corollary 3.2 are quite general and can be useful in other contexts as well). The charac-
terization of processes that admit an equivalent martingale measure (or the Fundamental
Theorem of Asset Pricing in frictionless securities markets models) can be found in Harrison
and Kreps (1979), Yan (1980), Kreps (1981), Duffie and Huang (1986), Stricker (1990), or
Delbaen and Schachermayer (1994, 1998), as well as Back and Pliska (1988) and Dalang
et al. (1980) for the discrete time case.

In discrete time, it is easy to construct processes that are martingales under some abso-
lutely continuous probability measure, but are not martingales under any equivalent proba-
bility measure. It suffices, for instance to consider the two dates and two states of the world
example given in Section 1. In continuous time, the construction of such examples is more
delicate, and we provide below a process that admits a family of absolutely continuous
martingale probability measures but does not admit any equivalent martingale probability
measure.

Example. (Delbaen and Schachermayer (1994))W&be a standard Wiener process, with
its natural filtration(G,)o<:<1. We define a local martingale of exponential type by

t t
L = exp(—/o F)dw (u) — % (/O F2(u) du)) , ift <landL; =0,

wheref(t) = 1/(+/1 — t). We define the stopping timeby T = inf{z, L, > 2}. We then
define the price proces$ by

1
dS; =dW; + ——dr, if t < T, anddS; =0ifr < T, anddS;, =0ifr > T,
t t m t t

and the fl|tratI0r(F,)o§,51 = (Gmin(t,T))Ostfl-
According to Delbaen and Schachermayer (1994), there exists a unique probability mea-

sureQ that is absolutely continuous with respecPtand makes the proceS& martingale.
Itis given by dQ = L7 dP. Since,P[Ly = 0] > 0, Q is not equivalent td>. Moreover,
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forallt < 1, the measure® andP are equivalent oft; since the density.; ,7 is positive.
Itis now easy to see that for any datend for all evenB at that date, there exists a proba-
bility measureQ’-Z given by d0*-% = (L715/E[L715]) dP such thatQ”-8(B) = 1 and
EC"°[Sy|F,] = S, for all (u, v) with r < u < v.

4. Pricing and viability with fixed costs
4.1. Admissible pricing rules

A contingent clainBto consumption at the terminal d&ftés a random variable belonging
to L1(£2, F, P). A contingent clainB is said to be attainable (in the model without fixed
cost) if there exists some frictionless self-financing strategy W% such thatVﬁ = B.
Note that the sa¥l of all attainable contingent claims is a linear space. We shall now define
and characterize pricing rulgéB) on M that are admissible.

Definition 4.5. An admissible pricing rule oM is a functionalp defined orM such that

1. pinduces no arbitrage, i.e. itis not possible to find strategiies . ,0,, in W for which
Y p(VE) <0, 3", v > 0and one of the two is nonnull;
2. p(B) < 7y(B), whererry(B) := inf{V{ + ¢, 0 € %2, v > B}, forall Bin M.

Part 1 is the usual no-arbitrage condition. Part 2 says that an admissible price for the
contingent clainB must be smaller than its superreplication price: if it is possible to obtain
a payoff at least equal tB at a costr(B), then no rational agent (who prefers more to
less) will accept to pay more than,(B) for the contingent clainB. Note that sincd is
attainable by a frictionless self-financing strategy, if the total trading costs incurred by any
strategy are bounded, there always exists at least a self-financing (inclusive of transaction
costs) strategy dominatir, i.e. B is also attainable (in the superreplication sense) in our
model with fixed trading costs.

The following Proposition 4.3 characterizes the admissible pricing ruldd tdmough
the use of the absolutely continuous martingale measures obtained in Theorem 3.2.

Proposition 4.3. Under Assumption A and the assumption of NFir under the assump-
tion of NAsSFL, any admissible pricing rule p on M can be written as

p(B) = EP'[B] + ¢(B), forall BinM,
where P is any absolutely continuous martingale measure @) /A — o0 O.

This means that i8 = V¢ thenp(B) = V{ + ¢(B), sinceEP" (V) = V¢ for any
absolutely continuous martingale measiteMoreover, it is easy to show thatpf(ix) <
Alp(x)] for any real numben large enough, then the fixed cost functiowabbtained
in Proposition 4.3 is nonnegative. And if there exists- 0, such that for any. large
enough, and for alkk, p(Ax) < A[p(x) — €], then the fixed cost is greater than or equal
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to this positive constard. Notice that under Assumption A, i.e. if the cumulative fixed
costs incurred by any strategy are bounded by a positive real nugldeenc(B) =

p(B) — EP"(B) < ny(B) — EP"(B) < C, for any absolutely continuous martingale
measuré*. Also, Proposition 4.3 implies that(A B) /A —;_.« E’"[B]forany attainable
contingent clainB, whereP* is any absolutely continuous martingale measure. This means
that the unit price of any attainable contingent cldris equal to£”"[B] in the limit of

large quantities.

As usual, we say that the market is complete in the frictionless model if any contingent
claim is attainable. If the market is complete, there exists a unique admissible pricing rule.
However, in incomplete markets (i.e. if there are some nonattainable contingent claims),
even in a frictionless model there is no universal pricing concept. We can only find arbitrage
bounds and the pricing rules are sublinédower semicontinuous functionals (see Jouini
and Kallal (1995a, 1999)). By analogy with the case of attainable contingent claims, we
define an admissible pricing rule on the set of contingent claims in the following way.

Definition 4.6. A pricing rule onL(£2, F, P) is admissible if it is of the formp(B) =
7(B) + ¢(B) for all Bin L1(£2, F, P), where

1. 7 is a sublinear lower semicontinuous functional, afglsuch that (A B) /A — - O;
2. p(B) < my(B), wherery(B) := inf{V§ +c§,0 € s%2 V¢ > B}.

We then obtain the following characterization of the admissible pricing rules.

Proposition 4.4. Under Assumption A and the assumption of NFdr under the assump-
tion of NAsFL, any admissible pricing rule p oA(2, F, P) can be written as

p(B) = supEY"[B] +¢(B), forall BinM,
P*eK
where K denotes a convex subset of the set of all absolutely continuous martingale measures,
and c the fixed cost given in Definition 4.6

This means that any admissible sublinear lower semicontinuous functionah be
written as the supremum of a subset of all continuous linear functibnatsch lie below
m, are weakly positive and such thayy) = V¢ for all o in WO It also means that
pPAB)/A =500 supp*eKEP* [ B] for any contingent clainB, whereK is a convex subset
ofthe set of absolutely continuous martingale measures. This means that the unit price of any
attainable contingent claiBmust belong to aninterval [infcx EX [ B], supp*eKEP*[B]]
in the limit of large quantities.

Note that since the absence of free lunch in our model with fixed trading costs is weaker
than the absence of free lunch in a frictionless model, these theorems enable us to price
contingent claims in a wider class of models. We shall now turn to the study of the viability
of such admissible pricing rules.

9 A functional is sublinear ifr (Ax) = Az (x) andm (x 4+ y) < 7 (x) + 7 (y) for all contingent claims, y, and
nonnegative real numbeks
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4.2. Viability

Agents are assumed to be characterized by their preferences on the space of net trades
R x X, whereX = L1(£2, F, P). A pair (, X) represents units of consumption today and
units of consumption tomorrow. Preferences are modeled by complete and transitive binary
relations> onR x X. In the usual fashion; denotes the strict preference defined frem
We also make the following Assumption P.

Assumption P. Preferences are assumed to satisfy the following three requirements.

1. Forall(r,x) € R x X,thesef{(+',x’) € R x X : (r', x") = (r, x)} is convex.

2. Forall(r,x) € R x X,thesef{(+',x") e R x X : (+',x") = (r, x)} as well as the set
{r',xYe Rx X :(r,x) = (+',x")} are closed.

3. Forall(r,x) e R x X,r > 0andx’ € L_{ such that there exists a real numbet 0
withx' > ¢, (r +7',x) > (r, x) and(r, x + x') > (, x).

Part 1 says that agents are risk averse. Part 2 says that their preferences are continuous.
Part 3 says that agents prefer more to less.

A price systemW/, p) is a subspack! of X and a linear functiongd onM. In the economy
associated to this price system, agents can buy and sell any contingeniclaiM at a
price p(m) + c(m) in terms of date O consumption, whes@n) is a bounded nonnegative
fixed trading cost satisfying(0) = 0 and for allm # 0, ¢ < ¢(m) < C for some positive
scalarsc andC.

Definition 4.7. A price system K, p) is said to be viable if there exists some binary
relation > satisfying Assumption P and*, m*) in R x M such that(m*) +r*+ p(m*) <
0 and

(r*,m*) > (r,m)
for all (r, m) in R x M such that(m) +r + p(m) < 0.

This definition is analogous to the definition in Harrison and Kreps (1979) and Kreps
(1981). Itmeans thata price systemis viable ifthere is some agent with preferences satisfying
Assumption P who can find an optimal net trade subject to his budget constraint. Note that
if we assume that the fixed cost functiors subadditive, i.ec(mq +m>2) < c(m1) + c(mo)
for all m1, m2 € M, a natural assumption to make about fixed costs, then a price system
is viable if and only if there are some agents with preferences satisfying Assumption P for
whom (0, 0) is an optimal trad&} i.e. who are happy with their initial endowment. This
means that a price systemis viable if and only if it is compatible with economic equilibrium.

10|ndeed, suppose that there exists an agent with preferensasisfying Assumption P and such that, (m*)
is an optimal net trade (i.e(m*) + r* + p(m*) < 0 and(r*, m*) > (r, m) for all (r, m) in R x M such that
c(m)+r+ p(m) < 0). Define the preferencesby (r1, m1)=(r2, m2) if (r1+r*, my+m*) > (ro+r*, ma+m*).
They satisfy Assumption P. Also note thaD) + 0 + p(0) = 0. Now suppose that(m) + 7 + p(m) < 0 and
F,m)=(0,0), i.e.(F +r*, m +m*) = (r*, m*). We havec(m + m*) + 7 + r* + p(m + m*) = [c(imn + m™*) —
c(m) — c(m®)] + c(m) + 7 + p(n) + c(m™) + r* + p(m*) < c(m + m*) — c(m) — c(m*) < 0 by subadditivity
of the fixed cost functionad.
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Definition 4.8. A free lunch for a price systen\, p) is a sequenceén™),cy in M, such that
there exist sequences’),cy, (x*")nen in L1(82, F, P) converging, respectively, to> 0
andx > O withr + x # 0, for which for allnin N,

m" >x" and c(m") +r" + p@m") <O.

We shall now consider the case whéfe= {Vﬁ; 6 in W9}, the set of attainable contin-
gent claims in the frictionless economy, and where the pricing rule is the linear functional
p defined onM by p (V£) = V¢ for all 6 in W>. As we have seen in Proposition 4.3,
if we want a price systenM, =) to be compatible with the assumption of no arbitrage —
which must be the case for viable price systems as well as for price systems that admit no
free lunch — then we must have = p. We shall now investigate the converse, i.e. the
conditions under which this price system is a viable one and the conditions under which it
admits no free lunch. But first let us have the following Definition 4.9.

Definition 4.9. A strong free lunch from time 0 in the frictionless securities market model is
a sequenc@”),cy of simple strategies such that there exist sequeidgs.y of random
variables belonging tb(s2, F, P) and (7"),cn in RV converging, respectively, to > 0

in LY(£2, F, P) andr > 0 in Rfor which for alln,

omisinw%?  y¥ < and VI >
We then have the following Theorem 4.4.
Theorem 4.4. The following conditions are equivalent

1. (M, p) is viable

2. (M, p) admits no free lunch

3. There exists a weakly positive continuous linear functionah L'(2, F, P) such that
7|y = p and such that for all finA = {f e L1, 3¢ > Osuchthatf > ¢}, we have

7(f) > 0.
4. There is no strong free lunch from tiBe

Therefore, the price system we have obtained in Section 4.1 through Proposition 4.3 is
viable and admits no free lunch if there is no free lunch in the initial model with fixed
trading costs.

5. Conclusion

In this paper, we have shown that a securities markets model with fixed trading costs
admits no free lunch if and only if there exists a family of absolutely continuous probability
measures for which the normalized (by a numeraire) price processes are martingales, condi-
tional on any possible future event. The main difference with the frictionless case is that the
martingale measures only need to be absolutely continuous instead of equivalent (but we
need a whole family of martingale measures). Since, the absence of arbitrage opportunity
or free lunch is a weaker condition in the presence of fixed trading costs than in the fric-
tionless case, this result will allow future research to consider a wider class of models. The
transaction costs are assumed to be fixed in the sense that they are bounded (regardless of
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the transaction size). This is compatible with fixed brokerage fees, brokerage arrangements
where marginal fees go to zero beyond a given volume (a common arrangement in the in-
dustry), fixed investment taxes to gain access to a market, operational and processing costs,
fixed costs involved in setting up an office and information technology, and the opportunity
cost of looking at a market or of doing a specific trade. We also show that the only arbitrage
free pricing rules on the set of attainable contingent claims are those that are equal to the
sum of an expected value with respect to any absolutely continuous martingale measure
and of a bounded fixed cost functional. Moreover, these pricing rules are the only ones to
be viable as models of economic equilibrium.
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Appendix A

Proof of Proposition 3.1. We will write EAO for existence of an arbitrage opportunity
and NAO for no arbitrage opportunity. We will denote a net gain arbitrage opportunity with
fixed costs by AQ and a frictionlesg-net gain arbitrage opportunity by AOWe shall
prove that the four notions of NAO are equivalent. We first treat the case where the fixed
costs do not depend upon the strategy.

1. NAO3 & NAO; : EAO; = EAQg3 is immediate. EAQ = EAO:: we consider the
strategyd null beforei and outsideéB such that for alk > i

02 = 62 + (—c; — V/)onBandg* forallk # 0.

Itis easy to check thatisin S5, V¥ + ¢; =0 andVZ > 0, 0 onB.
2. NAO, & NAO1 : EAO1 = EAO,: we consider the strate@ynull beforei and outside
B such that
6, =6;and forallt > i
00 =6P—>"i11(6; —6;-1)Z; onBand
0k =k, forallk #0.

Thend is in W5, Vﬁ > 0and as; > 0, we haveVl.é < 0onB. EAO; = EAO;:
notice that, by considering son# C B, one can replace the conditid/(f < 0onB
by either the condition Vi" < 0, # 0 onB” or by the condition “there exists a positive
real numbee such thatv? < —e onB” becauseV/ is F;-measurable. So there exists
A>1 satisfyingu/f < —C whereC = ZZ:iCk andCy = sup,cpck (w). We consider
the strategy) null beforei and outsidé such that for alk > i

60 =260+ C —Y'_;c;and

6k = x0% forallk # 0.

Thend isin S+Z and satisfiesvf~ +c¢i =1V +C <0onB, Vﬁ > 0.
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3. NAO; & NAO, : EAO2; = EAQy is easy with the technical remark made for the proof
of EAO, = EAO;. EAOs = EAO;: we consider the strategynull beforei and outside
B and such that for all > i

éﬁ:ep_vf_gongand
6k =9k forallk # 0.

Thend is in W5 and satisfiesvié = —(¢/2) < OonB. We havev? = 0 outsideB,
and Vilg = (V& — vl + VP1p = (V£ — VP)1p — (¢/2)1psoVE > e/2onB
andv{ > 0.

If the costs depend upon the strategy, then EA® EAO3 is immediate. For EA@ =
EAO4, we easily get the existence of a strategy: W2, V! — V/ > ¢; onB. Then
there exists: > 0, such that forB’={¢; > a}, P(B’) > 0 and8'=01p is an AQ. The
proof of EAOs = EAO, remains the same as above, as well as EAOEAO;, replacing
C=Y,1_CbyC =¥1_.cl. O

Proof of Proposition 3.2. We adopt the same notations as in the proof of
Proposition 3.1.

1. NFL3 <& NFLj: we shall treat here the case where the fixed cost do not depend upon the
strategy. The case where the cost depends upon the strategy is an immediate extension,
replacingc; with cf" each time it is needed. EfL= EFL3: there exists a sequence
(0™)n=0 in S°B for which V" — (V" + ¢;) > x" + (k" — ¢;) that converges to
x + (ki —ci) = 0, # 0. For EFl3 = EFLy, we consider the sequengef strategie®”
null beforei and outsideB such that for alhin N, for all r > i

@m0 = (6"° + (—¢; — V/")onBand
@™k = @™k forallk # 0.

It is then easy to check that for allin N, 6" is in S°5, V" +¢; = 0 andVy' =
Vi — (V¥ +¢) = x" — x > 0,# 0 onB. Notice that in the case where the cost
depends upon the strategy, we use the factd¢hat ¢ whenéd = ¢'.

2. NFLy & NFL4 : EFL, = EFL4 is immediate since we can indifferently assume
0, # 0 orr > 0 or there exists a positive real numigesuch that > ¢ by considering
for all nin N the random variableg’ = r"1,.¢ and7" = r"1,>, and the following
corresponding strategi@é andd” such that for alt, 67 = 61,0, 0" = 0'1,=.. For
EFL4 = EFL,, we consider the sequenéef strategie®” null beforei and outside3
and such that for alhin N, for all ¢ > i

@0 = (em° - v — gonB and
@™k = ™)k forallk # 0.
Then for alln in N, 6” is in W-Z and satisfies{V]@:" — Vf”)lg = (V& — vl so

Vl" > x" — g/2 0nB. As V" = —£/2 < 0 onBandV{" = 0 outsideB, this completes
the proof. O
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Proof of Corollary 3.1. Immediate using Proposition 3.2. O

Proof of Lemma 3.1.

1. For NFL, = NFL1, we prove the implication NF. = NFL3, which is immediate
using the fact that; > 0 (or thatcf" > ¢; > 0in the case where the cost depends
upon the strategy) and changing a strategy belongirgy tbinto a strategy belonging
to W5 by proceeding like in the proof of Proposition 3.1.

2. Under Assumption A, NFL= NFL5: suppose there is a ;Lin the form of a sequence
(0™),en Of simple strategies like in Definition 3.4. As we have seen in the proof of
Proposition 3.2, we can indifferently assume that 0, = 0 orr > 0 or there exists a
positive real number such that > ¢ by considering for alhin N the random variables
M = r"l,.0 and7" = r"1,>. and the following corresponding strategi&sand6”
such that for all, 5{’ = 0/'1,~0, é{' = 6/'1,>.. So there exists a real number> 1
such thatr > C whereC denotes the real number in the additional Assumption A. We
consider a sequendeof strategie®” such that” isin §'-5

@Mk = 1(™F forallk # 0andforalk > i
09 =102+ C —c.

We then have for ath

‘/ié'n — )\"/ien + C —¢
son" + X" —=C+c¢;) <0with(Ar® — C +¢;) —c; — Ar — C > 0. We can choose
6 such that for alh

Ve = av? > ax"with ax" — Ax > 0

so the sequenc&constitutes a free lunch with fixed costs.

3. NAsSFL & NFL; : EFL, = EASFL: here again, we can assume thas (strictly)
greater than some positive real numbem B. The fixed cost at each date is supposed
to be boundedd < C; in the case where the fixed cost does not depend on the strategy
andc! < C, in the case where the fixed cost depends upon the strategy). Then for all
n, there exists., such that,, ¢ is greater than the cumulative fixed costs of any simple
strategy with the same trading dates&sso that for alln, there exists a strategy; in
S5 for which

VI =V + he - Ci
VI > VI > hpx.

We get
‘/ié'n + Cién o Cén _ Cl- Vé'n
4L =V  4e+Lt——<—r"+e—> —r+e<0, r
An ! An - An
EAsFL = EFLy: by investing at each date the fixed cost in the riskless asset, we obtain a
sequenced”),~o of strategies i -, Letting for alln, 6"":=6" /1,,, we obtain a sequence

>x" = x
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(0" a0 Of strategies inV-Z such that

/
Vl_e" < —¢&!' - —& <00nB
7
VTanx”—>sz. O

Example 3.1. We give an example of a securities market where the f\N&&sumption is
satisfied and where there exists apFL

Let us consider a market with a bond with constant price equal to 1 and a stock with a
price process defined as followswhere the price-at0 is 1/2 and the two possible prices

/ / /
1/2 — 1/4 — 1/8 — 1/16 --- 1/2» ...

ats, = 1-1/2*, forn > 0, are 1 with a probability 1-1/2and 1/2+1 with a probability

1/2™. It is easy to see that a buy and hold strategy between date O anig datthis asset

with an initial investment equal to 1/2 leads to a positive terminal payoff, equal to 1 with a
probability 1-1/2*. A FL, between date 0 and date 1 is then obtained considering a sequence
of such buy and hold strategies.

Let us now introduce a fixed cos;, = 4" at datet,. Since the transaction costs are
increasing withn, it is easy to see that it is optimal to liquidate the portfolio when the stock
price reaches 1. Consequently, a stratédyetween 0 andy is completely determined
by the quantity of risky asset held in the portfolio in the states of the world where the
stock price is different from 1. Therefore, such a strategy can be represented by a sequence
b0, ... ,0N).

Let us now considev™),cy a FLy and let us assume that all these strategies &82‘h
i.e. all these strategies start at date 0. Since the initial fixed cost is equal to 1, it suffices to
replace this free lunch b§26"),,.c v in order to have’y” — v§" —co > x, — x* > 1. Since,
there is a riskless asset with a constant price equal to 1, it is possible to assume without loss
of generality thavg" = —cp forall nand then thav;)" > x, — x* > 1. Forn sufficiently
large, we havé|x, — x*||1 < 1 and the terminal payoff of the strate@¥y is smaller than
0o—c1 with a probability 1/2 and thefy > ¢1 — 1 = 3. The terminal payoff is also smaller
than 3; — 1/269 — ¢, with a probability 1/4 and thef; > ¢ — 3+ 1/26p = 14.5. If
we denote b, the last trading date for strategy, the terminal payoff of this strategy is
smaller than2+t — 1)6, — 1/25°"""46; — ¢, 41 with a probability 1/2+ for all p < N,,.

Itis easy to prove by induction thag > 4% for p < N,. Finally, this terminal payoff is also
smaller thaml/zzjvggle,- — cn, With a probability 12N+1 and we have thefix,||1 >
4Nn=1(2Nn+2) Remark that, for alh, there exists an equivalent martingale measure for
our price process between dates 0 gh@onsequently, there is no rlbetween 0 and,

and the sequeno@V, ),y is necessarily unbounded. The sequefgg, <y is then also
unbounded and this contradicts the convergenoe & x* for the L1-norm.

Proof of Theorem 3.1. First notice that the existence of such a family of probability
measures is equivalent to the existence of a family of random variables denaed try
L>°(£2, F, P) satisfyingg”? > 0, % 0 onB and such that for allg( t) with i < s < r and
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forall Ain Fy, E[g"#Z;1anp] = E[g"*Z,14n3]: the equivalence is easily obtained by
takingg"? = dP"8/dP and by defining®-Z by

E[gi’BlAmB]

PiB(A) = :
W = i1,

forall Ain F;. O

1. Assume first the existence of such a family of martingale measures and of a sequence
(eﬁ)neN of strategies such that there exigt ¥ andB in F; for which for alln, 6" is in
W-B Let( = 19,17, 1y = T) denote the trading dates of the simple strat@gy

Then using the definition df ", the fact that” is a frictionless self-financing strategy,
the martingale property ¢¥-Z and the fact tha@” is null outsideB, we have for alh

EPVEIR] = EP 107211 F]
- EPi'R[Qt";\,M_lZﬂFi]
- EPi’R[et']’,gvrlEPi’B[ZTIFt;H]IFi]
= "y IR
so that for alln
EPIVIR] = .. = BV IR = V" onBas P"?
and
EPL(vE —vE"1p|F] =0.

Then for allAin F;, for allnin N, E[¢g"Z (V" — V#")15n4] = 0. Now it is impossible
to haveVy" — v > x" with x" — ;1 x > & on B because this would lead to -0

E[g"B(vE —vI)1g] > E[g"Bx"15]andE[g"Bx"15] — E[g"Bx1p] > 0 because
g-Z is assumed to be bounded: there exists no frictionlesst gain free lunch, which

using Proposition 3.2, completes the proof of the first implication.
2. Conversely, assume there exists no frictionless strong free lunch. As we have seen in

Corollary 3.1, ifC*# = KB — L} and
AB = {feLl, 3¢ > Osuchthayf > ¢onB)

the condition of no frictionless strong free lunch is equivalent to the condition that for all
in Fand for allBin F;,

ChBnAB =g.

For each fixedi( B), we apply a Hahn—Banach strict separation theorem (see e.g. Schaefer
(1999), Theorem II, 9-2)1(s2, F, P) to the closed convex s&-Z and {15} to findg -
in L>(£2, F, P) and two real numbers andp with @« < 8 such that

gi’B|Ci.B <a<f< (1B,gi’B>.
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The random variablg - Z is bounded from above d&i-Z and therefore, on® , sog’# > 0.
As 0 belongs taC’-Z andC/-Z is a convex cone, we can take= 0. Then(1z, g-%) >
0sog’® £ 00onB. As 0 belongstd.l, we haveg’-2| s < 0 and we even get the equality
becauseki-Z is a vector space. For all > i for all A in Fy, we consider for alk in
{1, ..., n}, then-dimensional random variabtg 4 x € P g given by

0§,A,k = Lanp
O 4 =0 foralll #k.

As KiB=Lin{0,(Z, — Z); 65 € Ps.p,i <s < t}, we get that for alkin {0, ... , n}, for
all (s,t) withi < s < ¢ and for allAin Fy, we have

Z,{(]-AHB — ZflAﬂB e KB,
Then for all §, t) withi < s < ¢, for all Ain F; we obtain
E[¢"%(Z; — Z)1anp) = 0

or E[g"8Z,14np] = E[g"2 Z;1ans].

Proof of Theorem 3.2. (1) = (2): See Theorem 3.1.

(2) = (3): Considerg”-8 = dP"B /dP.

(3) = (4): Leti in FandB in F; be fixed. We will writeg for g2 andx for, 7! 5.
We can assume = 0 outsideB. As g > 0, # 0, onB, the same is true for the random
variableE[g|F;] and there exists a positive real numbesuch thatP (E[g|F;] > «) > O.
Let A = {E[g|F;] > «}. ThenA belongs toF;, A ¢ B andP(A) # 0. We define an
operatorr onR”-Z by

_ E[gClF]

C) = 1, forallCc e RT3,
O = Fleim

The linear operator is linear, continuous and takes valueRn?. If C > 0,gC > 0 so
7 is weakly positive. Only the last condition remains to be checked.

Notice first that for ali < s < ¢, E[9Z|F;]1a = Z;E[g|F;s]14. Now, for all6 in w8
with trading dates denoted by £ 1, 11, ... , ty = T), we have

E[gbr Zr|Fi]
E[g|Fi]
_ El0ry_E[9Zr| Fry ]I Fi]
B E[g|F]
E[V]  Elg|Fr, ,]IF]

- E[g|F] A

n(Vi) =

14

som (V) = (V) ) =...= V1,
(4) = (1): consider a sequence")neN of strategies such that there exigt FandBin
F; such that for alh, 6" is in W5, For allnin N, we then have Az"8(v{" — v¢") = 0.

Now it is impossible to have’?" — V%" > x" with x” — ;1 x > e on B because this
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would lead to 0= 1,78 (V" — V") > 1,778 (x") becauser’-? is linear and weakly
positive; ast’-Z is continuous, 1758 (x") — 14748 (x) > 1478 (e14) > €14 because
Lu7B(14) = 14: a contradiction.

(1) & (5): See Lemma 3.1. O

Proof of Theorem 3.3. (1) = (2) is immediate.
(2) = (3): using a strict separation theorem exactly like in the proof of our main theorem,
we get that there exists a random variabii@ L°°($2, F, P) such that

teK,aell sup E[Z( -] <cHZ1gl

1
(eK,aely

Since 0 belongs t&, replacinga by ax with a > 0, we getZ > 0. We haveZ =# 0,
because iZ = 0, thencE[Z1;] = 0 and we would get 6 0. Takinge = 0, we obtain
sup.ex E[Z¢] < cHZ1g] < oo.

(3) = (1): Suppose 1) does not hold; then there exisits L1, > 0 such that for alh
inN*, npisinK — Li. Sincennisin K — L}F for all nin N*, there is a sequeno:e,’f),,eN
such thatin = lim,1n7 and for alln, for all p, there isz! in K satisfyingn; < ¢f. Then
E[Zn}] < E[Z¢7] and aZis uniformly boundedE[Zn)] — ,E[Zm] = nE[Zn] — oo
so condition (3) is not satisfied. O

Proof of Corollary 3.2. (1) = (2) is obvious.(2) = (3) and(3) = (1) are in the proof
of our main Theorem. O

Proof of Proposition 4.3. We have assumed that there is no arbitrage in the primitive
market, so that if two frictionless self-financing strategiemdo’ are such thavj‘? = Vﬁ ,
thenV{ = V{'. We define orM a linear functional given byl (V) = V¢. Now it is easy
to see that for alBin M

. AB . —ns(—AB

lim 7s(AB) = lim % =1[(B)

A—+o0 A A—> 400

Since there is no arbitrage, we must hay@) > —p(—B) so that
—n5(—B) < —p(—B) = p(B) < 75(B)

and the price functionad can be written as the sum of a continuous linear functional and a
fixed cost, i.e. for alB, p(B) = I[(B) + ¢(B) wherec(AB)/) —j_ 0.

If we assume thgb(rx) < A[p(x)], then the fixed cost is nonnegative; moreover, if we
assume that there exists> 0, such that for a large enoughp(Ax) < A[p(x) — €], then
the fixed cost is greater than or equal to this positive constanNotice thatc(B) =
p(B) —I(B) < ms(B) —1(B) < C.

Consequently, the fair pricg(B) associated with any attainable contingent cl&ns
given by

p(B) = EP"[B] + afixed cost

whereP* is any absolutely continuous martingale measure. O
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Proof of Proposition 4.4. Sincer is a sublinear lower semicontinuous functional defined
on a vector space, it can be written as the supremum of all continuous linear functionals
lying below it

m(x) = sup l~(x).

I<7,lcont lin.funct

We first show thak(V{) = V{§ foro € WO, LetT, denote the set of trading dates involved

in 6 and letC(Ty) denote the upper bound for the cumulated cost of any strategy with same
trading dates a8, i.e.C(Ty) = ZleTQC,. Sincel + ¢ lies below the superreplication price,

it satisfied (VE) + c(VY) < V{ + C(Tp).

For all positive real number, T(A0) = T'(8) hencel (V}?)/a + (Vi) /n < V¥ /n +
C(Ty)/2 and lettings go tooco, I(VY) < VE. In the same way, we obtait— V) < —V{,
which gives ug(v) = V{.

It is easy to see thdtis weakly positive. Indeed, for alB < 0, 7,(B) < 0 so that
I(B) < 0andforallB > 0,/(B) > 0.

According to the following Lemma, there is a one-to-one correspondence between ab-
solutely continuous martingale measures with bounded deR3itgnd weakly positive
continuous linear functionalssuch thaf(Vﬁ) = VOQ. The functionalr can therefore, be
written in the formm (x) = supp«.x E¥"[x] whereK denotes a convex subset of the set of
all absolutely continuous martingale measures. O

Proof of the Lemma. Let P* be such that for alB in F, P*(B) = p(1p). As there exists
a strategy inW% with terminal valueV{ = 1o and initial valueV§ = 1, we have
p(le) = 1; aspis assumed to be weakly positive and sublinBatakes values in [0, 1]; as
according to the remark preceding the lemma-continuous and linealP* is a probability
measure. Ap(0) = 0, we getP* <« P. Aspis a continuous linear functional dri(s2,
F, P) there existgy in L>($2, F, P) such that for alb in L1(£2, F, P), p(b) = E[gb]. Then
EP"[p] = E[gh] = p(b) so for all strategy in WO EP*[VE] = p(VE) = V¢ so for all
(s, t)withs <t

EP'[(Z, — Z)1,] =0 forallAin F,

or Z is aP*-martingale.

Conversely lep be defined by (b) = EF"[b] for all bin LY(s2, F, P). Thenpis linear,
continuous becausePd/dP belongs toL*°($2, F, P), weakly positive because, & is
absolutely continuous with respectRpwe haveg = dP*/dP > 0. Finally, for all strategy
0 inWO2 pv) =EP[vi] = Vg O

Proof of Theorem 4.4. (3) < (4) is equivalenttal) < (4) fori = 0 andB = £2 in
Theorem 3.2.

2 & 4): (4 = (2): we taker” = r" + ¢ that converges to + ¢ > 0 andx” = x".
(2) = (4): There is a real number > 1 such thatr > C. We getVg?" + c(v;9") <
V3" 4 C < € — A" with € — 47" — C — ar < 0 andVi?" > A% with A#" — Ax > 0
o) that(VTW),,eN is a free lunch for¥, p).
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D < 3): (1) = (4): Suppose there is a free lun¢h*),cn: we can assum@ﬁ"
" +eforsomes > 0,V{" < —C.Since ¢*,m*)is optimal, and*+c(VE )+ v 7"
4+ V8 + V" 4+ C < —(VE) < 0, we have(r*, m*) = (%, V&"t?"). So for alln,
(r*,m*) = (r*,¥" + ¢ + V{') because- is increasing and’{" > " + ¢ which gives,
using the fact that preferences are continuadsn) > (r*, x + ¢ +m™): a contradiction.

(3) = (1): We define> by (r, X) = (', x") & r + w(x) > r' + w(x’). Then one can
show that> belongs toA and that (0, 0) is optimal. O

v
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