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Abstract

This paper studies foundational issues in securities markets models with fixed costs of trading, i.e.
transactions costs that are bounded regardless of the transaction size, such as fixed brokerage fees,
investment taxes, operational, and processing costs or opportunity costs. We show that the absence
of free lunches in such models is equivalent to the existence of a family of absolutely continuous
probability measures for which the normalized securities price processes are martingales. This is a
weaker condition than the absence of free lunch in frictionless models, which is equivalent to the
existence of an equivalent martingale measure. We also show that the only arbitrage-free pricing
rules on the set of attainable contingent claims are those that are equal to the sum of an expected
value with respect to any absolutely continuous martingale measure and of a bounded fixed cost
functional. Moreover, these pricing rules are the only ones to be viable as models of economic
equilibrium. © 2001 Elsevier Science B.V. All rights reserved.

Keywords:Arbitrage; Fixed costs; Absolutely continuous martingale measure; Contingent claims pricing;
Viability

1. Introduction

The Fundamental Theorem of Asset Pricing, which originates in the Arrow–Debreu
model (Debreu (1959)) and is further formalized in (among others) Cox and Ross (1976),
Harrison and Kreps (1979), Harrison and Pliska (1981), Duffie and Huang (1986), Dybvig
and Ross (1987), Dalang et al. (1989), Back and Pliska (1990), and Delbaen and Schacher-
mayer (1994), asserts that the absence of free lunch in a frictionless securities market model
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is equivalent to the existence of an equivalent martingale measure for the normalized secu-
rities price processes. The only arbitrage-free and viable pricing rule on the set of attainable
contingent claims, which is a linear space, is then equal to the expected value with respect
to any equivalent martingale measure.

In this paper, we study some foundational issues in the theory of asset pricing in securities
markets models with fixed trading costs. Transaction costs are said to be fixed in the sense
that they are bounded regardless of the transaction size. Such fixed costs include for exam-
ple fixed brokerage fees, brokerage arrangements where marginal fees go to zero beyond
a given volume that is reset periodically (such arrangements are common in the industry),
fixed investment taxes to gain access to a market (such as a foreign market), operational and
processing costs that typically exhibit strong economies of scale (e.g. through automation),
fixed costs involved in setting up an office and obtaining access to information, and the
opportunity cost of looking at a market or of doing a specific trade. We find that the absence
of free lunch in models with fixed trading costs is equivalent to the existence of a family of
“absolutely continuous” probability measures2 for which the normalized (by a numeraire)
securities price processes are martingales. Note that this is a weaker condition than the
existence of an equivalent martingale measure (as in frictionless markets), because in this
case the martingale measures are only required to be absolutely continuous. As in the Fun-
damental Theorem of Asset Pricing, we find that the absence of free lunch is also equivalent
to the existence of a family of nonnegative state price densities and to the existence of a
family of continuous weakly-positive linear operators. We define admissible pricing rules
on the set of attainable contingent claims as the price functionals that are arbitrage-free
and are lower than or equal to the superreplication cost (i.e. the lowest cost of dominating
a given payoff). Indeed, no rational agent would pay more than its superreplication cost
for a contingent claim, since there is a cheaper way to achieve at least the same payoff
using a trading strategy. We then show that the only admissible pricing rules on the set of
attainable contingent claims are those that are equal to the sum of an expected value with
respect to any absolutely continuous martingale measure and of a bounded fixed cost func-
tional. Moreover, these pricing rules are the only ones to be viable as models of economic
equilibrium.

A simple example can illustrate our main result. Consider a model where two securities,
denoted byA andB, can be traded at two dates 0 and 1 and in two possible states of the
world s1 ands2 at date 1. SecurityA, the numeraire, is normalized to be always worth
one unit of account and securityB has a value of 1 at date 0 and a value of 1 or 2 at
date 1 in states1 or s2, respectively (all in numeraire units). In the perfect market case,
this model yields an arbitrage opportunity which consists in buying one unit ofB and
selling one unit ofA at date 0 at a zero investment cost, and closing the position at date
1 at a profit in states1 and at no loss in states2. If we introduce fixed trading costs, this
arbitrage opportunity disappears, since the investment required at date 0 by the strategy is
not zero anymore but is equal to the fixed cost. According to the Fundamental Theorem
of Asset Pricing, there cannot exist an equivalent martingale measure. Nevertheless, the

2 Let (Ω, F, P) be a given probability space. We say that another probability measureQ defined on the same
probability space (Ω, F, P) is absolutely continuous with respect toP, and we shall writeQ � P , if for all event
A in F satisfyingP(A) = 0 we haveQ(A) = 0.
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probabilityQ defined on the setS = {s1, s2} of the possible states of the world at date 1 by
Q(s1) = 1 andQ(s2) = 0 is an absolutely continuous martingale measure for securitiesA
andB.

There is an existing body of literature that studies transaction costs and other market
frictions. For instance, Jouini and Kallal (1995a) studies proportional transaction costs and
finds that a bid–ask price process is arbitrage-free if and only if there exists an equiva-
lent probability measure that transforms some process between the normalized bid and
ask price processes into a martingale. Jouini and Kallal (1995b) studies the case of short
sales constraints and shortselling costs (as well as different borrowing and lending rates)
and finds that the absence of arbitrage is equivalent to the existence of an equivalent su-
permartingale measure. The set of expected values of the payoff of a contingent claim
with respect to all the martingale (respective supermartingale) measures is an interval and
coincides with the set of its possible prices compatible with arbitrage and economic equi-
librium. The characteristic of this class of frictions is that they lead to a pricing rule that
is sublinear, i.e. positively homogeneous and subadditive, and since this is not the case
for fixed transaction costs they require a specific analysis. Also, Cvitanic and Karatzas
(1993, 1996) study the optimal hedging problem in a diffusion model with portfolios
constrained to belong to a given convex set and proportional transaction costs, respec-
tively. Pham and Touzi (1996) study the case of constraints that take the form of closed
convex cones in finite discrete time.3 As far as fixed transaction costs are concerned
Duffie and Sun (1990), Grossman and Laroque (1990) and Morton and Pliska (1995),
among others, have studied the optimal portfolio problem with transaction fees that are
proportional to the size of the overall portfolio (as opposed to the size of the specific
transaction).

The remainder of the paper is organized as follows. Section 2 describes our securities
markets model with fixed trading costs. Section 3 characterizes the absence of free lunch
in such a model. Section 4 characterizes the arbitrage-free and viable pricing rules. Section
5 concludes.

2. The model with fixed costs

The securities market model consists of a setT– = [0, T ] of trading dates, whereT de-
notes the terminal date for all economic activity; a complete probability space (Ω, F, P),
where the setΩ represents all possible states of the world; an information structure which
describes how information is revealed to agents, given by a filtrationF = {Ft }t∈ T– with
F0 = {∅,Ω} andFT = F ; n + 1 traded securities 0,. . . , n and a (n + 1)-dimensional,
F-adapted processZ = {Zt ; t ∈ T–} with component processesZ0, . . . , Zn whereZk

t

represents the price of securityk at time t. We assume that for allt, Z0
t = 1, which

means that the riskless rate is equal to zero. Note that this assumption amounts to a
normalization of all securities prices by a numeraire, and can be made without any loss

3 Other papers on market frictions include Magill and Constantinides (1976), Constantinides (1986), Dybvig and
Ross (1986), Prisman (1986), Ross (1987), Taksar et al. (1988), He and Pearson (1991), Bensaid et al. (1992),
Hindy (1995), and Jouini and Kallal (1999).
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of generality as long as at least one of the securities has a positive price at any time.
In the remainder of the paper, we shall refer to the 0th security as the riskless asset.
We also make the technical assumption4 that for any trading datet in T–, Zt is in L1

(Ω, Ft , P).
A trading strategy is a (n + 1)-dimensionalF-adapted processθ = {θt ; t ∈ T–} with

component processesθ0
t , . . . , θn

t , whereθk
t represents the quantity of securityk held at

time t. The vectorθ t represents the agent’s portfolio at timet and its components may take
negative as well as positive values. Hence,V θ

t = θtZt is5 the market value of the portfolio
θ t at datet and we call the processV θ = {V θ

t ; t ∈ T–} the value process for the strategyθ .
Let θ̄t denote for each datet the vector (θ1

t , . . . , θn
t ) of quantities of risky securities held at

time t. As in Harrison and Kreps (1979), we only consider simple strategies, i.e. strategies
such that for allt, θZt is in L1(Ω, Ft , P); agents may trade only at a finite number of dates
(although that number can be arbitrarily large) that must be specified in advance.6 Note
that simple strategies are natural in our context because we shall assume that agents incur
a fixed transaction cost each time they trade.

We denote byct , the positive fixed transaction cost paid at datet if trading has occurred
in any of the risky securities andc = {ct ; t ∈ T–}. If agents do not trade in any of the
risky securities at timet, then we assume that they do not incur any transaction cost. The
transaction cost is fixed in the sense that it is bounded regardless of the amount of securities
traded. We assume that the processc is F-adapted, which means that agents only know at
time t the past and current values of the fixed trading cost but nothing more. We also allow
the fixed transaction costs to depend upon the trading strategy (and not to be necessarily
strictly positive at each trading date), i.e. to each simple strategyθ with trading dates
t0, . . . , tN = T is associated a nonnegative transaction cost processcθ = (cθ

t )t∈{t0,... ,tN }
with cθ

t = C(t, (θt ′)t ′≤t ) such that

• for any simple trading strategiesθ andθ ′, such that̄θ = θ̄ ′, we havecθ = cθ ′
and agents

do not pay any fixed transaction cost if they do not trade the risky securities, i.e. for any
simple strategyθ with trading datest0, . . . , tN ,

cθ
ti
1(θ̄ti

=θ̄ti−1) = 0, for all i with 1 ≤ i ≤ N

cθ
t0

1(θ̄t0=0) = 0, cθ
T 1(θ̄T =0) = 0

cθ
t = 0, for all t /∈ {t0, . . . , tN }

• for any datet, there exists a positive random variableccct such that for any simple strategy
θ with trading datest0, . . . , tN ,

cθ
t 1(θ̄t 6=0,θ̄ti

=0 for all ti<t) ≥ ccct1(θ̄t 6=0,θ̄ti
=0 for all ti<t), for all i with 1 ≤ i ≤ N,

4 We recall thatL1(Ω, F, P) denotes the set of measurable random variables with finite expected value with
respect toP.

5 For all (x, y) in Rd × Rd for somed ∈ N∗, we letxy = ∑d
i=1xiyi .

6 The extension to trading dates that are stopping times (instead of being specified in advance) is straightforward.
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i.e. the first time real trading occurs, the fixed cost must be positive. Alternatively we can
assume that there exists a positive real numberε such that for any simple strategyθ with
trading datest0, . . . , tN ,

N∑
i=0

cθ
ti

≥ ε,

i.e. the cumulative transaction cost from the first to the last trading date must be greater
than some positive constant;

• for all t, there exists a positive real numberCCCt such that for any simple strategyθ ,

cθ
t ≤ CCCt ,

i.e. the transaction cost is bounded at each date. This implies that for any simple strategy
θ with trading datest0, . . . , tN , the cumulative transaction cost

∑N
i=0c

θ
ti

is smaller than
or equal to some constant (that only depends on the datest0, . . . , tN involved in the
strategyθ ). Alternatively we can assume that for any simple strategyθ and any trading
datet, the transaction cost at timet is such that(cλθ

t /λ)|λ→∞ → 0, which means that the
transaction cost per unit of security traded goes to zero as the amount traded becomes
arbitrarily large.

Note that these conditions are consistent with a large class of transaction costs that can
be identified in financial markets. As mentioned in Section 1, they include fixed brokerage
fees or brokerage arrangements where marginal fees go to zero beyond a given volume that
is reset periodically (such arrangements are common in the industry), and fixed investment
taxes to gain access to a market such as a foreign market. They also include operational and
trade processing costs that typically exhibit strong economies of scale (especially if these
tasks have been automated), and fixed costs incurred in setting up an office and obtaining
access to price or other relevant information. Also, the opportunity cost of focusing on a
market or of doing a specific trade can be viewed as a fixed cost.

In order to get some of our results, we shall need the following additional assumption7

(that we shall mention each time it is needed).

Assumption A. There exists a real numberC such that for every strategyθ ,
∑

t∈ T–cθ
t < C.

This means that, under Assumption A, the cumulative transaction costs of any trading
strategy are assumed to be bounded by a constant. Note that this condition is automatically
satisfied in a discrete time model with a finite or infinite number of states of the world (as
long as transaction costs are bounded at each time), but a finite number of possible trading
dates. It is also automatically satisfied in a model where there is a fixed cost to access a
market such as a fixed investment tax, a fixed cost for setting up information technology
or a trade processing department, or a fixed opportunity cost of looking at a market. We
emphasize that it is also consistent with a situation where the fixed transaction costs consist

7 For instance, we shall need Assumption A when using the same definition of free lunch as in Kreps (1981).
However, we shall also introduce an alternative definition of free lunch for which Assumption A is not required
for any of our results.
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in brokerage fees with a brokerage arrangement where transactions go free beyond a certain
volume which is reset on a periodical basis.

Agents transfer wealth from all dates and events (for contingent wealth) to the terminal
date using the traded securities, subject to paying the fixed transaction costs. In doing so,
they use self-financing strategies defined as follows. Leti be a date inT–and letBbe an event
in the information set at datei, Fi (in the remainder of the paper we shall always suppose
thatP(B) 6= 0). We then have the following Definition 2.1.

Definition 2.1. A self-financing simple strategy from the datei and the eventB is a strategy
θ that is null before the datei and satisfyingB = {θ̄i 6= 0} and such that there exist trading
datest0, . . . , tN , with i = t0 ≤ . . . ≤ tN = T , for which θ (t, ω) is a.s. constant over each
interval [tk−1; tk[ and satisfies

θtkZtk + cθ
tk

≤ θtk−1Ztk , for k = 1, . . . , N − 1

and
θT ZT + cθ

T = θtN−1ZT .

This means that a self-financing simple strategy does not require any additional investment
beyond what is required at the initial date: purchases of securities as well as transaction
costs after the initial date are financed by the sale of other securities. LetSi ,B denote the
set of such strategies. We also have the following Definition 2.2.

Definition 2.2. A frictionless self-financing simple strategy from the datei and the event
B is a strategyθ that is null before the datei and outsideB and such that there exist trading
datest0, . . . , tN with i = t0 ≤ . . . ≤ tN = T for which θ (t, ω) is a.s. constant over each
interval [tk−1; tk[ and satisfiesθtkZtk = θtk−1Ztk a.s.P for k = 1, . . . , N .

This means that a frictionless self-financing simple strategy is a self-financing simple
strategy in an otherwise identical economy where there is no transaction cost. LetWi ,B

denote the set of such strategies.

3. Arbitrage opportunities and free lunches

3.1. Arbitrage opportunities

An arbitrage opportunity is a trading strategy that yields a positive gain in some circum-
stances without a countervailing threat of loss in any other circumstances. A free lunch is
the possibility of getting arbitrarily close to an arbitrage opportunity. We shall define two
concepts of arbitrage opportunities as follows.

Definition 3.3.

1. An arbitrage opportunity with fixed costs (AO1) is a strategyθ such that there exist (i, j)
in T–, 0 ≤ i ≤ j ≤ T , an eventB in Fi , for which θ̄ is null after datej, θ belongs toSi ,B ,
V θ

i + cθ
i ≤ 0 onB, V θ

j ≥ 0 and eitherV θ
i + cθ

i orV θ
j is different from 0.
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2. A frictionless strong arbitrage opportunity (AO2) is a strategyθ such that there exist (i,
j) in T–, 0 ≤ i ≤ j ≤ T , an eventB in Fi , for which θ̄ is null after datej, θ belongs to
Wi ,B , V θ

i < 0 onB andV θ
j ≥ 0.

This means that an AO1 is a trading strategy that yields, in our model with fixed transaction
costs, a positive gain in some circumstances without a threat of loss in other circumstances.
An AO2 is a trading strategy that yields a positive gain at the starting date and event of
the trading strategy without a countervailing threat of loss in other circumstances. We then
have the following Proposition 3.1.

Proposition 3.1.

1. There exists an AO1 if and only if there exists a net gain arbitrage opportunity with fixed
trading costs, i.e. a strategyθ such that there exists a date i in T– and an event B in Fi
for whichθ belongs to Si,B and[V θ

T − V θ
i − cθ

i ] ≥ 0, 6= 0 on B.
2. There exists an AO2 if and only if there exists a frictionlessε-net gain arbitrage oppor-

tunity, i.e. a strategyθ such that there exists a date i in T–, an event B in Fi and a positive
real numberε for whichθ belongs to Wi,B andV θ

T − V θ
i ≥ ε on B.

3. There exists an AO1 if and only if there exists an AO2.

This means that the two notions of arbitrage opportunities that we have introduced are
equivalent. Also, an arbitrage opportunity in our model with fixed transaction costs cor-
responds to the possibility of achieving a positive net gain. An arbitrage opportunity in
the otherwise identical frictionless model corresponds to a net gain that is greater than
some positive constant in all states of the world. Let us recall that a frictionless arbitrage
opportunity in the classical sense consists in a strategyθ such thatV θ

0 ≤ 0, V θ
T ≥ 0 and

P(V θ
T −V θ

0 > 0) > 0. Notice that the main difference with an AO2 is that the strict inequality
is on the net gain and not on the initial gain. It is hence clear that the set of arbitrage oppor-
tunities in our model with fixed transaction costs is strictly smaller than the set of arbitrage
opportunities in the frictionless model, or equivalently that the assumption of no arbitrage
in our model with fixed transaction costs is less stringent than in the frictionless model.

3.2. Free lunches

As in Kreps (1981), we define a free lunch as the possibility of getting arbitrarily close
to an arbitrage opportunity. More precisely, we have the following Definition 3.4.

Definition 3.4.

1. A free lunch with fixed costs (FL1) is a sequence(θn)n∈N of trading strategies such
that there existi in T–, B in Fi , sequences(xn)n∈N and(εn

i )n∈N of random variables,
respectively, inL1(Ω, F, P) andL1(Ω, Fi , P) and converging inL1(Ω, F, P), respectively,
to x ≥ 0 andεi ≥ 0 onB with x + εi 6= 0 for which for alln,

θn is inSi,B, V θn

i + cθn

i ≤ −εn
i onB andV θn

T ≥ xn.

2. A frictionless strong free lunch (FL2) is a sequence(θn)n∈N of trading strategies such
that there existi in T–, B in Fi and sequences(xn)n∈N and(rn)n∈N of random variables,
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respectively, inL1(Ω, F, P) andL1(Ω, Fi , P) and converging inL1(Ω, F, P), respectively,
to x ≥ 0 andr > 0 onB for which for alln,

θn is inWi,B and satisfiesV θn

i ≤ −rn andV θn

T ≥ xn.

3. An “asymptotic free lunch” (AsFL) is a sequence(θn)n∈N of strategies such that there
existi in T–, B in Fi , a sequence(λn)n≥0 of positive real numbers and sequences(xn)n∈N

and (εn
i )n∈N of random variables, respectively, inL1(Ω, F, P) andL1(Ω, Fi , P) and

converging inL1(Ω, F, P), respectively, tox ≥ 0 andεi > 0 onB for which for alln,

θn is inSi,B,
V θn

i + cθn

i

λn

≤ −εn
i onB and

V θn

T

λn

≥ xn.

This means that a free lunch is a sequence of strategies with a payoff that converges to
an arbitrage opportunity. A frictionless strong free lunch is a sequence of strategies with
a payoff that converges to a frictionless strong arbitrage opportunity. An “asymptotic free
lunch” is a sequence of strategies that are strong free lunches when renormalized by a
sequence of scaling factors. We introduce this notion in order to avoid using Assumption A
in our characterization Theorems in the next section.

Note that as in the definition of arbitrage opportunities, we could replace the dateT with
any datej, satisfying 0≤ i ≤ j ≤ T for which θ̄ n is null after the datej. We then have the
following Proposition 3.2.

Proposition 3.2.

1. There exists a FL1 if and only if there exists a net gain free lunch with fixed costs, i.e.
a sequence(θn)n∈N of strategies such that there exist i in T–, B in Fi , and a sequence
(xn)n∈N of random variables belonging to L1(Ω, F, P) and converging in L1(Ω, F, P)
to somex ≥ 0, 6= 0 on B for which for all n,θn is in Si,B andV θn

T − (V θn

i + cθn

i ) ≥ xn.
2. There exists a FL2 if and only if there exists a frictionlessε-net gain free lunch, i.e. a

sequence(θn)n∈N of strategies such that there exist i in T–, B in Fi , a positive real number
ε and a sequence(xn)n∈N of random variables belonging to L1(Ω, F, P) and converging
to somex ≥ ε on B for which for all n,θn is in Wi,B and satisfiesV θn

T − V θn

i ≥ xn.

This means that a free lunch corresponds to a sequence of trading strategies with a payoff
that converges to a positive net gain. Similarly, a frictionless strong free lunch corresponds
to a sequence of trading strategies with a payoff that converges to a net gain that is strictly
positive in all states of the world. We then have the following characterization of the absence
of frictionless strong free lunches.

Corollary 3.1. LetKi,B = {V θ
T −V θ

i ; θ ∈ Wi,B} ⊂ L1(Ω, F, P ), the set of possible gains

from date i and event B in the frictionless model, andCi,B = Ki,B − L1+(Ω, F, P ), where
the closure is taken in L1. Let

AB = {f ∈ L1
+(Ω, F, P ), ∃ε > 0such thatf ≥ ε onB}.

The assumption of no frictionless strong free lunch (NFL2) is equivalent to the condition
that for all i in T– and B in Fi , the two convex sets Ci,B and AB have an empty intersection.
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We also have the following Lemma 3.1.

Lemma 3.1.

1. The absence of frictionless strong free lunch (NFL2) implies the absence of free lunch
in our model with fixed trading costs (NFL1).

2. Under Assumption A, the absence of free lunch in our model with fixed costs (NFL1) and
the absence of frictionless strong free lunch (NFL2) are equivalent.

3. The absence of “asymptotic free lunch” (NAsFL) in our model with fixed trading costs
and the absence of frictionless strong free lunch (NFL2) are equivalent.

It is easy to see that the absence of frictionless strong free lunch implies the absence of
free lunch with fixed trading costs. But, unlike for arbitrage opportunities, the converse is
not necessarily true. Indeed, although the number of trading dates for each trading strategy
θn is finite, it can be arbitrarily large, and therefore so can the cumulative trading costs (see
Example 3.1 in the Appendix A for an example of a NFL1, securities market with a FL2).
Hence the need to bound the total trading costs of any simple strategy as in Assumption
A or to consider the notion of “asymptotic free lunch”. In both the cases, we obtain the
equivalence between the absence of strong frictionless free lunches and the absence of free
lunch in our model with fixed trading costs.

3.3. Absolutely continuous martingale measures

With the notations of Corollary 3.1, it is easy to see, using the definition of the set of
self-financing simple trading strategies in the frictionless modelWi ,B and the fact that
Z0

t = 1, thatKi,B = {V θ
T − V θ

i ; θ ∈ Wi,B}, the set of possible gains from datei and
eventB in the frictionless model, is a vector space and thatKi,B = Lin{θs(Z̄t − Z̄s); θs ∈
Ps,B, i ≤ s ≤ t}, where for alls ≥ i, Z̄s = (Z1

s , . . . , Zn
s ) and wherePs ,B denotes the set

of n-dimensional random variablesθs = (θ1
s , . . . , θn

s ) that areFs-measurable, null outside
B and beforei and such thatθsZ̄s is in L1(Ω, Fs , P).

The use of Corollary 3.1 and of a separation Theorem will now enable us to obtain our
main result: the characterization of the absence of frictionless strong free lunches in terms
of absolutely continuous martingale measures.

Theorem 3.1. There exists no frictionless strong free lunch if and only if for all i in T– and
all B in Fi , there exists a probability measure Pi,B on (Ω, F), absolutely continuous with
respect to P and weighted by B, with bounded density, and such thatEP i,B

[Zt |Fs ] = Zs

for all (s, t) such thati ≤ s ≤ t .

We then obtain the Fundamental Theorem of Asset Pricing for securities markets models
with fixed trading costs.

Theorem 3.2. The following are equivalent.

1. There exists no “asymptotic free lunch” in our model with fixed trading costs.
2. There exists a family of absolutely continuous martingale measures: for all i in T– and

for all B in Fi , there exists an absolutely continuous probability measure with bounded
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density Pi,B defined on (Ω, F) such that Pi,B(B) = 1 and satisfying

EP i,B

[Zt |Fs ] = Zs, for all (s, t) with i ≤ s ≤ t.

3. There exists a family of nonnegative state price densities: for all i in T– and for all B in
Fi , there exists a random variable gi,B in L∞(Ω, F, P) withgi,B ≥ 0, 6= 0, on B and
such that for all (s, t) withi ≤ s ≤ t ,

E[gi,BZt1A∩B ] = E[gi,BZs1A∩B ], for all A in Fs.

4. There exists a family of weakly-positive8 continuous linear operators: let Ri,B denote
the set of random variables null outside B and belonging to L1(Ω, Fi , P). For all i in T–,
for all B in Fi , there exists a weakly-positive continuous linear operatorπi,B defined on
RT ,B and taking values in Ri,B , such that there exists A in Fi with A ⊂ B and P(A) 6= 0
for which

πi,B(V θ
T ) = V θ

i onA, for all θ in Wi,B.

Under Assumption A, these statements are all equivalent to the following part.
5. There exists no free lunch in our model with fixed trading costs.

This means that the absence of free lunch in our model with fixed trading costs (or
equivalently the absence of strong free lunch in the otherwise identical frictionless model)
is equivalent to the existence of a family of absolutely continuous martingale probability
measures. Note the difference with the frictionless case where the absence of free lunch
(a weaker condition than the absence of free lunch in the model with fixed trading costs)
is equivalent to the existence of an equivalent martingale probability measure (a stronger
condition, since a family of absolutely continuous martingale measures can be derived from
any equivalent martingale measure) as shown in Harrison and Kreps (1979).

We can also obtain the slightly more general results in the spirit of Yan’s (1980) Theorem
(also see Ansel and Stricker (1990) as well as Stricker (1990) among others for an application
of Yan’s Theorem).

Theorem 3.3. Let K be a convex set in L1(Ω, F, P) containing 0. The following conditions
are equivalent.

1. For all η in L1 such thatη > 0, there exists a positive real number c for which cη is not

in K − L1+.

2. There exists a positive real number c such thatc1Ω is not inK − L1+.
3. There exists a random variable Z in L∞(Ω, F, P) satisfyingZ ≥ 0, 6= 0andsupζ∈KE[Zζ ]

< ∞.

We also have the following Corollary 3.2.

8 Let X denote the set of random variables on (Ω, F, P). A functionalp defined onX is said to be weakly positive
if for all x in X such thatP(x ≥ 0) = 1, we havep(x) ≥ 0.
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Corollary 3.2. Let K denote K0,Ω with

Ki,B = {V θ
T − V θ

i , θ ∈ Wi,B} = Lin{θs(Z̄t − Z̄s); θs is inPs,B, t ≥ s ≥ i},
where for alls ≥ i, Z̄s = (Z1

s , . . . , Zn
s ) and Ps,B denotes the set of n-dimensional random

variablesθs = (θ1
s , . . . , θn

s ) that are Fs-measurable, null outside B and before i, and such
thatθsZs is in L1(Ω, Fs , P). Also, let AB denote{f ∈ L1+, ∃ε > 0 such thatf ≥ ε on B}.
The following conditions are equivalent.

1. The intersectionAΩ ∩ K − L1+ is empty.

2. The random variable1Ω does not belong toK − L1+.
3. There exists an absolutely continuous martingale measure for Z.

This concludes our characterization of processes that admit an absolutely continuous
martingale measure — which relates to the Theorem of Asset Pricing in securities markets
models with fixed trading costs (note that the implications(2) ⇒ (1) in Theorem 3.3 and
Corollary 3.2 are quite general and can be useful in other contexts as well). The charac-
terization of processes that admit an equivalent martingale measure (or the Fundamental
Theorem of Asset Pricing in frictionless securities markets models) can be found in Harrison
and Kreps (1979), Yan (1980), Kreps (1981), Duffie and Huang (1986), Stricker (1990), or
Delbaen and Schachermayer (1994, 1998), as well as Back and Pliska (1988) and Dalang
et al. (1980) for the discrete time case.

In discrete time, it is easy to construct processes that are martingales under some abso-
lutely continuous probability measure, but are not martingales under any equivalent proba-
bility measure. It suffices, for instance to consider the two dates and two states of the world
example given in Section 1. In continuous time, the construction of such examples is more
delicate, and we provide below a process that admits a family of absolutely continuous
martingale probability measures but does not admit any equivalent martingale probability
measure.

Example. (Delbaen and Schachermayer (1994)) LetWbe a standard Wiener process, with
its natural filtration(Gt )0≤t≤1. We define a local martingale of exponential type by

Lt = exp

(
−

∫ t

0
f (u) dW (u) − 1

2

(∫ t

0
f 2(u) du

))
, if t < 1 andL1 = 0,

wheref (t) = 1/(
√

1 − t). We define the stopping timeT by T = inf {t, Lt ≥ 2}. We then
define the price processSt by

dSt = dWt + 1√
1 − t

dt, if t ≤ T , and dSt = 0 if t ≤ T , and dSt = 0 if t ≥ T ,

and the filtration(Ft )0≤t≤1 = (Gmin(t,T ))0≤t≤1.

According to Delbaen and Schachermayer (1994), there exists a unique probability mea-
sureQ that is absolutely continuous with respect toP and makes the processSa martingale.
It is given by dQ = LT dP . Since,P [LT = 0] > 0, Q is not equivalent toP. Moreover,
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for all t < 1, the measuresQ andP are equivalent onFt since the densityLt∧T is positive.
It is now easy to see that for any datet and for all eventB at that date, there exists a proba-
bility measureQt ,B given by dQt,B = (LT 1B/E[LT 1B ]) dP such thatQt,B(B) = 1 and
EQt,B

[Sv|Fu] = Su for all (u, v) with t ≤ u ≤ v.

4. Pricing and viability with fixed costs

4.1. Admissible pricing rules

A contingent claimB to consumption at the terminal dateT is a random variable belonging
to L1(Ω, F, P). A contingent claimB is said to be attainable (in the model without fixed
cost) if there exists some frictionless self-financing strategyθ in W0,Ω such thatV θ

T = B.
Note that the setM of all attainable contingent claims is a linear space. We shall now define
and characterize pricing rulesp(B) onM that are admissible.

Definition 4.5. An admissible pricing rule onM is a functionalp defined onM such that

1. p induces no arbitrage, i.e. it is not possible to find strategiesθ1,. . . ,θn in W0,Ω for which∑n
i=1p(V

θi

T ) ≤ 0,
∑n

i=1V
θi

T ≥ 0 and one of the two is nonnull;
2. p(B) ≤ πs(B), whereπs(B) := inf {V θ

0 + cθ
0, θ ∈ S0,Ω, V θ

T ≥ B}, for all B in M.

Part 1 is the usual no-arbitrage condition. Part 2 says that an admissible price for the
contingent claimB must be smaller than its superreplication price: if it is possible to obtain
a payoff at least equal toB at a costπs(B), then no rational agent (who prefers more to
less) will accept to pay more thanπs(B) for the contingent claimB. Note that sinceB is
attainable by a frictionless self-financing strategy, if the total trading costs incurred by any
strategy are bounded, there always exists at least a self-financing (inclusive of transaction
costs) strategy dominatingB, i.e.B is also attainable (in the superreplication sense) in our
model with fixed trading costs.

The following Proposition 4.3 characterizes the admissible pricing rules onM through
the use of the absolutely continuous martingale measures obtained in Theorem 3.2.

Proposition 4.3. Under Assumption A and the assumption of NFL1, or under the assump-
tion of NAsFL, any admissible pricing rule p on M can be written as

p(B) = EP ∗
[B] + c(B), for all B in M,

where P∗ is any absolutely continuous martingale measure andc(λB)/λ →λ→∞ 0.

This means that ifB = V θ
T thenp(B) = V θ

0 + c(B), sinceEP ∗
(V θ

T ) = V θ
0 for any

absolutely continuous martingale measureP∗. Moreover, it is easy to show that ifp(λx) ≤
λ[p(x)] for any real numberλ large enough, then the fixed cost functionalc obtained
in Proposition 4.3 is nonnegative. And if there existsε > 0, such that for anyλ large
enough, and for allx, p(λx) ≤ λ[p(x) − ε], then the fixed costc is greater than or equal
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to this positive constantε. Notice that under Assumption A, i.e. if the cumulative fixed
costs incurred by any strategy are bounded by a positive real numberC, thenc(B) :=
p(B) − EP ∗

(B) ≤ πs(B) − EP ∗
(B) ≤ C, for any absolutely continuous martingale

measureP∗. Also, Proposition 4.3 implies thatp(λB)/λ →λ→∞ EP ∗
[B] for any attainable

contingent claimB, whereP∗ is any absolutely continuous martingale measure. This means
that the unit price of any attainable contingent claimB is equal toEP ∗

[B] in the limit of
large quantities.

As usual, we say that the market is complete in the frictionless model if any contingent
claim is attainable. If the market is complete, there exists a unique admissible pricing rule.
However, in incomplete markets (i.e. if there are some nonattainable contingent claims),
even in a frictionless model there is no universal pricing concept. We can only find arbitrage
bounds and the pricing rules are sublinear9 lower semicontinuous functionals (see Jouini
and Kallal (1995a, 1999)). By analogy with the case of attainable contingent claims, we
define an admissible pricing rule on the set of contingent claims in the following way.

Definition 4.6. A pricing rule onL1(Ω, F, P) is admissible if it is of the formp(B) =
π(B) + c(B) for all B in L1(Ω, F, P), where

1. π is a sublinear lower semicontinuous functional, andc is such thatc(λB)/λ →λ→∞ 0;
2. p(B) ≤ πs(B), whereπs(B) := inf {V θ

0 + cθ
0, θ ∈ S0,Ω, V θ

T ≥ B}.

We then obtain the following characterization of the admissible pricing rules.

Proposition 4.4. Under Assumption A and the assumption of NFL1, or under the assump-
tion of NAsFL, any admissible pricing rule p on L1(Ω, F, P) can be written as

p(B) = sup
P ∗∈K

EP ∗
[B] + c(B), for all B in M,

where K denotes a convex subset of the set of all absolutely continuous martingale measures,
and c the fixed cost given in Definition 4.6.

This means that any admissible sublinear lower semicontinuous functionalπ can be
written as the supremum of a subset of all continuous linear functionalsl̃, which lie below
π , are weakly positive and such thatl̃(V θ

T ) = V θ
0 for all θ in W0,Ω . It also means that

p(λB)/λ →λ→∞ supP ∗∈KEP ∗
[B] for any contingent claimB, whereK is a convex subset

of the set of absolutely continuous martingale measures. This means that the unit price of any
attainable contingent claimBmust belong to an interval [infP ∗∈KEP ∗

[B], supP ∗∈KEP ∗
[B]]

in the limit of large quantities.
Note that since the absence of free lunch in our model with fixed trading costs is weaker

than the absence of free lunch in a frictionless model, these theorems enable us to price
contingent claims in a wider class of models. We shall now turn to the study of the viability
of such admissible pricing rules.

9 A functionalπ is sublinear ifπ(λx) = λπ(x) andπ(x + y) ≤ π(x) + π(y) for all contingent claimsx, y, and
nonnegative real numbersλ.
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4.2. Viability

Agents are assumed to be characterized by their preferences on the space of net trades
R ×X, whereX = L1(Ω, F, P). A pair (r, x) representsr units of consumption today andx
units of consumption tomorrow. Preferences are modeled by complete and transitive binary
relations� onR × X. In the usual fashion,� denotes the strict preference defined from�.
We also make the following Assumption P.

Assumption P. Preferences are assumed to satisfy the following three requirements.

1. For all(r, x) ∈ R × X, the set{(r ′, x′) ∈ R × X : (r ′, x′) � (r, x)} is convex.
2. For all(r, x) ∈ R × X, the set{(r ′, x′) ∈ R × X : (r ′, x′) � (r, x)} as well as the set

{(r ′, x′) ∈ R × X : (r, x) � (r ′, x′)} are closed.
3. For all(r, x) ∈ R × X, r ′ > 0 andx′ ∈ L1+ such that there exists a real numberε > 0

with x′ ≥ ε, (r + r ′, x) � (r, x) and(r, x + x′) � (r, x).

Part 1 says that agents are risk averse. Part 2 says that their preferences are continuous.
Part 3 says that agents prefer more to less.

A price system (M, p) is a subspaceM of Xand a linear functionalponM. In the economy
associated to this price system, agents can buy and sell any contingent claimm ∈ M at a
pricep(m) + c(m) in terms of date 0 consumption, wherec(m) is a bounded nonnegative
fixed trading cost satisfyingc(0) = 0 and for allm 6= 0, c < c(m) < C for some positive
scalarsc andC.

Definition 4.7. A price system (M, p) is said to be viable if there exists some binary
relation� satisfying Assumption P and (r∗, m∗) in R ×M such thatc(m∗)+ r∗ +p(m∗) ≤
0 and

(r∗, m∗) � (r, m)

for all (r, m) in R × M such thatc(m) + r + p(m) ≤ 0.

This definition is analogous to the definition in Harrison and Kreps (1979) and Kreps
(1981). It means that a price system is viable if there is some agent with preferences satisfying
Assumption P who can find an optimal net trade subject to his budget constraint. Note that
if we assume that the fixed cost functionc is subadditive, i.e.c(m1 +m2) ≤ c(m1)+ c(m2)

for all m1, m2 ∈ M, a natural assumption to make about fixed costs, then a price system
is viable if and only if there are some agents with preferences satisfying Assumption P for
whom (0, 0) is an optimal trade,10 i.e. who are happy with their initial endowment. This
means that a price system is viable if and only if it is compatible with economic equilibrium.

10 Indeed, suppose that there exists an agent with preferences� satisfying Assumption P and such that (r∗, m∗)
is an optimal net trade (i.e.c(m∗) + r∗ + p(m∗) ≤ 0 and(r∗, m∗) � (r, m) for all (r, m) in R × M such that
c(m)+r +p(m) ≤ 0). Define the preferences̃� by (r1, m1)�̃(r2, m2) if (r1+r∗, m1+m∗) � (r2+r∗, m2+m∗).
They satisfy Assumption P. Also note thatc(0) + 0 + p(0) = 0. Now suppose thatc(m̃) + r̃ + p(m̃) ≤ 0 and
(r̃, m̃)�̃(0, 0), i.e. (r̃ + r∗, m̃ + m∗) � (r∗, m∗). We havec(m̃ + m∗) + r̃ + r∗ + p(m̃ + m∗) = [c(m̃ + m∗) −
c(m̃) − c(m∗)] + c(m̃) + r̃ + p(m̃) + c(m∗) + r∗ + p(m∗) ≤ c(m̃ + m∗) − c(m̃) − c(m∗) ≤ 0 by subadditivity
of the fixed cost functionalc.
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Definition 4.8. A free lunch for a price system (M, p) is a sequence(mn)n∈N in M, such that
there exist sequences(rn)n∈N , (xn)n∈N in L1(Ω, F, P) converging, respectively, tor ≥ 0
andx ≥ 0 with r + x 6= 0, for which for alln in N,

mn ≥ xn and c(mn) + rn + p(mn) ≤ 0.

We shall now consider the case whereM = {V θ
T ; θ in W0,Ω}, the set of attainable contin-

gent claims in the frictionless economy, and where the pricing rule is the linear functional
p defined onM by p (V θ

T ) = V θ
0 for all θ in W0,Ω . As we have seen in Proposition 4.3,

if we want a price system (M, π ) to be compatible with the assumption of no arbitrage —
which must be the case for viable price systems as well as for price systems that admit no
free lunch — then we must haveπ = p. We shall now investigate the converse, i.e. the
conditions under which this price system is a viable one and the conditions under which it
admits no free lunch. But first let us have the following Definition 4.9.

Definition 4.9. A strong free lunch from time 0 in the frictionless securities market model is
a sequence(θn)n∈N of simple strategies such that there exist sequences(x̃n)n∈N of random
variables belonging toL1(Ω, F, P) and(r̃n)n∈N in RN converging, respectively, tox ≥ 0
in L1(Ω, F, P) andr > 0 in R for which for alln,

θn is inW0,Ω, V θn

0 ≤ −r̃n and V θn

T ≥ x̃n.

We then have the following Theorem 4.4.

Theorem 4.4. The following conditions are equivalent.

1. (M, p) is viable.
2. (M, p) admits no free lunch.
3. There exists a weakly positive continuous linear functionalπ on L1(Ω, F, P) such that

π |M = p and such that for all f inA = {f ∈ L1, ∃ε > 0such thatf ≥ ε}, we have
π(f ) > 0.

4. There is no strong free lunch from time0.

Therefore, the price system we have obtained in Section 4.1 through Proposition 4.3 is
viable and admits no free lunch if there is no free lunch in the initial model with fixed
trading costs.

5. Conclusion

In this paper, we have shown that a securities markets model with fixed trading costs
admits no free lunch if and only if there exists a family of absolutely continuous probability
measures for which the normalized (by a numeraire) price processes are martingales, condi-
tional on any possible future event. The main difference with the frictionless case is that the
martingale measures only need to be absolutely continuous instead of equivalent (but we
need a whole family of martingale measures). Since, the absence of arbitrage opportunity
or free lunch is a weaker condition in the presence of fixed trading costs than in the fric-
tionless case, this result will allow future research to consider a wider class of models. The
transaction costs are assumed to be fixed in the sense that they are bounded (regardless of
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the transaction size). This is compatible with fixed brokerage fees, brokerage arrangements
where marginal fees go to zero beyond a given volume (a common arrangement in the in-
dustry), fixed investment taxes to gain access to a market, operational and processing costs,
fixed costs involved in setting up an office and information technology, and the opportunity
cost of looking at a market or of doing a specific trade. We also show that the only arbitrage
free pricing rules on the set of attainable contingent claims are those that are equal to the
sum of an expected value with respect to any absolutely continuous martingale measure
and of a bounded fixed cost functional. Moreover, these pricing rules are the only ones to
be viable as models of economic equilibrium.
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Appendix A

Proof of Proposition 3.1. We will write EAO for existence of an arbitrage opportunity
and NAO for no arbitrage opportunity. We will denote a net gain arbitrage opportunity with
fixed costs by AO3 and a frictionlessε-net gain arbitrage opportunity by AO4. We shall
prove that the four notions of NAO are equivalent. We first treat the case where the fixed
costs do not depend upon the strategy.

1. NAO3 ⇔ NAO1 : EAO1 ⇒ EAO3 is immediate. EAO3 ⇒ EAO1: we consider the
strategyθ̃ null beforei and outsideB such that for allt ≥ i

θ̃0
t = θ0

t + (−ci − V θ
i ) onB andθ̃ k

t for all k 6= 0.

It is easy to check that̃θ is in Si ,B , V θ̃
i + ci = 0 andV θ̃

T ≥ 0, 6= 0 onB.
2. NAO2 ⇔ NAO1 : EAO1 ⇒ EAO2: we consider the strategỹθ null beforei and outside

B such that

θ̃t = θi and for allt > i

θ̃0
t = θ0

t − ∑t
j=i+1(θj − θj−1)Zj onB and

θ̃ k
t = θk

t , for all k 6= 0.

Then θ̃ is in Wi ,B , V θ̃
T ≥ 0 and asci > 0, we haveV θ̃

i < 0 on B. EAO2 ⇒ EAO1:

notice that, by considering someB ′ ⊂ B, one can replace the conditionV θ̃
i < 0 onB

by either the condition “V θ
i ≤ 0, 6= 0 onB” or by the condition “there exists a positive

real numberε such thatV θ
i ≤ −ε on B” becauseV θ

i is Fi-measurable. So there exists

λ ≥ 1 satisfyingλV θ
i ≤ −C whereC = ∑T

k=iCk andCk = supω∈Bck(ω). We consider
the strategỹθ null beforei and outsideB such that for allt ≥ i

θ̃0
t = λθ0

t + C − ∑t
j=icj and

θ̃ k
t = λθk

t for all k 6= 0.

Thenθ̃ is in Si ,B and satisfiesV θ̃
i + ci = λV θ

i + C ≤ 0 onB, V θ̃
T ≥ 0.
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3. NAO2 ⇔ NAO4 : EAO2 ⇒ EAO4 is easy with the technical remark made for the proof
of EAO2 ⇒ EAO1. EAO4 ⇒ EAO2: we consider the strategỹθ null beforei and outside
B and such that for allt ≥ i

θ̃0
t = θ0

t − V θ
i − ε

2
onB and

θ̃ k
t = θk

t for all k 6= 0.

Then θ̃ is in Wi ,B and satisfiesV θ̃
i = −(ε/2) < 0 onB. We haveV θ̃

T = 0 outsideB,

and V θ̃
T 1B = (V θ̃

T − V θ̃
i )1B + V θ̃

i 1B = (V θ
T − V θ

i )1B − (ε/2)1B soV θ̃
T ≥ ε/2 onB

andV θ̃
T ≥ 0.

If the costs depend upon the strategy, then EAO1 ⇒ EAO3 is immediate. For EAO3 ⇒
EAO4, we easily get the existence of a strategyθ ∈ Wi,B , V θ

T − V θ
i ≥ ccci on B. Then

there existsa > 0, such that forB ′≡{ccci > a}, P(B ′) > 0 andθ ′≡θ1B ′ is an AO4. The
proof of EAO4 ⇒ EAO2 remains the same as above, as well as EAO2 ⇒ EAO1, replacing
C = ∑T

k=iCk byC′ = ∑T
k=iC

θ
k . �

Proof of Proposition 3.2. We adopt the same notations as in the proof of
Proposition 3.1.

1. NFL3 ⇔ NFL1: we shall treat here the case where the fixed cost do not depend upon the
strategy. The case where the cost depends upon the strategy is an immediate extension,
replacingci with cθn

i each time it is needed. EFL1 ⇒ EFL3: there exists a sequence
(θn)n≥0 in Si ,B for which V θn

T − (V θn

i + ci) ≥ xn + (kn
i − ci) that converges to

x + (ki − ci) ≥ 0, 6= 0. For EFL3 ⇒ EFL1, we consider the sequenceθ̃ of strategies̃θn

null beforei and outsideB such that for alln in N, for all t ≥ i

(θ̃n)0
t = (θn)0

t + (−ci − V θn

i ) onB and
(θ̃n)kt = (θn)kt for all k 6= 0.

It is then easy to check that for alln in N, θ̃ n is in Si ,B , V θ̃n

i + ci = 0 andV θ̃n

T =
V θn

T − (V θn

i + ci) ≥ xn → x ≥ 0, 6= 0 on B. Notice that in the case where the cost

depends upon the strategy, we use the fact thatcθ = cθ ′
whenθ̄ = θ̄ ′.

2. NFL2 ⇔ NFL4 : EFL2 ⇒ EFL4 is immediate since we can indifferently assumer ≥
0, 6= 0 or r > 0 or there exists a positive real numberε such thatr ≥ ε by considering
for all n in N the random variables̃rn = rn1r>0 and r̂n = rn1r≥ε and the following
corresponding strategies̃θn andθ̂ n such that for allt, θ̃ n

t = θn
t 1r>0, θ̂

n
t = θn

t 1r≥ε. For
EFL4 ⇒ EFL2, we consider the sequenceθ̃ of strategies̃θn null beforei and outsideB
and such that for alln in N, for all t ≥ i

(θ̃n)0
t = (θn)0

t − V θn

i − ε

2
onB and

(θ̃n)kt = (θn)kt for all k 6= 0.

Then for all n in N, θ̃ n is in Wi ,B and satisfies(V θ̃n

T − V θ̃n

i )1B = (V θn

T − V θn

i )1B so

V θ̃n

T ≥ xn → ε/2 onB. As V θ̃n

i = −ε/2 < 0 onB andV θ̃n

T = 0 outsideB, this completes
the proof. �
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Proof of Corollary 3.1. Immediate using Proposition 3.2. �

Proof of Lemma 3.1.

1. For NFL2 ⇒ NFL1, we prove the implication NFL2 ⇒ NFL3, which is immediate
using the fact thatci > 0 (or thatcθn

i ≥ ccci > 0 in the case where the cost depends
upon the strategy) and changing a strategy belonging toSi ,B into a strategy belonging
to Wi ,B by proceeding like in the proof of Proposition 3.1.

2. Under Assumption A, NFL1 ⇒ NFL2: suppose there is a FL2, in the form of a sequence
(θn)n∈N of simple strategies like in Definition 3.4. As we have seen in the proof of
Proposition 3.2, we can indifferently assume thatr ≥ 0, 6= 0 or r > 0 or there exists a
positive real numberε such thatr ≥ ε by considering for alln in N the random variables
r̃n = rn1r>0 and r̂n = rn1r≥ε and the following corresponding strategiesθ̃ n and θ̂ n

such that for allt, θ̃ n
t = θn

t 1r>0, θ̂n
t = θn

t 1r≥ε. So there exists a real numberλ ≥ 1
such thatλr > C whereC denotes the real number in the additional Assumption A. We
consider a sequencẽθ of strategies̃θn such thatθ̃ n is inSi,B

(θ̃n)kt = λ(θn)kt for all k 6= 0 and for allt ≥ i

(θ̃n)0
i = λ(θn)0

i + C − ci .

We then have for alln

V θ̃n

i = λV θn

i + C − ci

soV θ̃n

i + (λrn − C + ci) ≤ 0 with (λrn − C + ci) − ci → λr − C > 0. We can choose
θ̃ such that for alln

V θ̃n

T ≥ λV θn

i ≥ λxn with λxn → λx ≥ 0

so the sequencẽθ constitutes a free lunch with fixed costs.
3. NAsFL ⇔ NFL2 : EFL2 ⇒ EAsFL: here again, we can assume thatr is (strictly)

greater than some positive real numberε on B. The fixed cost at each date is supposed
to be bounded (ct < Ct in the case where the fixed cost does not depend on the strategy
andcθ

t < CCCt in the case where the fixed cost depends upon the strategy). Then for all
n, there existsλn such thatλnε is greater than the cumulative fixed costs of any simple
strategy with the same trading dates asθn so that for alln, there exists a strategỹθn in
Si ,B for which

V θ̃n

i = λnV
θn

i + λnε − CCCi

V θ̃n

T ≥ λnV
θn

T ≥ λnx
n.

We get

V θ̃n

i + cθ̃n

i

λn

= V θn

i + ε + cθ̃n

i − CCCi

λn

≤ −rn + ε → −r + ε < 0,
V θ̃n

T

λn

≥ xn → x

EAsFL ⇒ EFL2: by investing at each date the fixed cost in the riskless asset, we obtain a
sequence(θ̃n)n≥0 of strategies inWi ,B . Letting for alln, θ ′n:=θn/λn, we obtain a sequence
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(θ ′n)n≥0 of strategies inWi ,B such that

V θ ′n
i ≤ −εn

i → −εi < 0 onB

V θ ′n
T ≥ xn → x ≥ 0. �

Example 3.1. We give an example of a securities market where the NFL1 assumption is
satisfied and where there exists a FL2.

Let us consider a market with a bond with constant price equal to 1 and a stock with a
price process defined as followswhere the price att = 0 is 1/2 and the two possible prices

at tn = 1–1/2n , for n > 0, are 1 with a probability 1–1/2n and 1/2n+1 with a probability
1/2n . It is easy to see that a buy and hold strategy between date 0 and datetn on this asset
with an initial investment equal to 1/2 leads to a positive terminal payoff, equal to 1 with a
probability 1–1/2n . A FL2 between date 0 and date 1 is then obtained considering a sequence
of such buy and hold strategies.

Let us now introduce a fixed costcn = 4n at datetn. Since the transaction costs are
increasing withn, it is easy to see that it is optimal to liquidate the portfolio when the stock
price reaches 1. Consequently, a strategyθ between 0 andtN is completely determined
by the quantity of risky asset held in the portfolio in the states of the world where the
stock price is different from 1. Therefore, such a strategy can be represented by a sequence
(θ0, . . . , θN ).

Let us now consider(θn)n∈N a FL1 and let us assume that all these strategies are inS0,Ω ,
i.e. all these strategies start at date 0. Since the initial fixed cost is equal to 1, it suffices to
replace this free lunch by(2θn)n∈N in order to haveV θn

T −V θn

0 −c0 ≥ xn → x∗ ≥ 1. Since,
there is a riskless asset with a constant price equal to 1, it is possible to assume without loss
of generality thatV θn

0 = −c0 for all n and then thatV θn

T ≥ xn → x∗ ≥ 1. Forn sufficiently
large, we have||xn − x∗||1 ≤ 1 and the terminal payoff of the strategyθn is smaller than
θ0–c1 with a probability 1/2 and thenθ0 ≥ c1 − 1 = 3. The terminal payoff is also smaller
than 3θ1 − 1/2θ0 − c2 with a probability 1/4 and thenθ1 ≥ c2 − 3 + 1/2θ0 = 14.5. If
we denote byNn the last trading date for strategyθn, the terminal payoff of this strategy is
smaller than(2p+1 − 1)θp − 1/2

∑p−1
i=0 θi − cp+1 with a probability 1/2p+1 for all p ≤ Nn.

It is easy to prove by induction thatθp ≥ 4p for p ≤ Nn. Finally, this terminal payoff is also

smaller than−1/2
∑Nn−1

i=0 θi − cNn with a probability 1/2Nn+1 and we have then||xn||1 ≥
4Nn−1/(2Nn+2). Remark that, for alln, there exists an equivalent martingale measure for
our price process between dates 0 andtn Consequently, there is no FL1 between 0 andtn
and the sequence(Nn)n∈N is necessarily unbounded. The sequence(xn)n∈N is then also
unbounded and this contradicts the convergence ofxn to x∗ for theL1-norm.

Proof of Theorem 3.1. First notice that the existence of such a family of probability
measures is equivalent to the existence of a family of random variables denoted bygi ,B in
L∞(Ω, F, P) satisfyinggi,B ≥ 0, 6= 0 onB and such that for all (s, t) with i ≤ s ≤ t and
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for all A in Fs , E[gi,BZt1A∩B ] = E[gi,BZs1A∩B ]: the equivalence is easily obtained by
takinggi,B = dP i,B/dP and by definingPi ,B by

P i,B(A) = E[gi,B1A∩B ]

E[gi,B1B ]
for all A in Fs. �

1. Assume first the existence of such a family of martingale measures and of a sequence
(θn)n∈N of strategies such that there existi in T– andB in Fi for which for alln, θn is in
Wi ,B . Let (i = tn0 , tn1 , . . . , tnNn

= T ) denote the trading dates of the simple strategyθn.

Then using the definition ofV θn
, the fact thatθn is a frictionless self-financing strategy,

the martingale property ofPi ,B and the fact thatθn is null outsideB, we have for alln

EP i,R

[V θn

T |Fi ] = EP i,R

[θn
T ZT |Fi ]

= EP i,R

[θn
tnNn−1

ZT |Fi ]

= EP i,R

[θn
tnNn−1

EP i,B

[ZT |FtnNn−1
]|Fi ]

= EP i,R

[V θn

tnNn−1
|Fi ]

so that for alln

EP i,B

[V θn

T |Ft ] = . . . = EP i,B

[V θn

i |Fi ] = V θn

i onB a.s. P i,B

and

EP i,B

[(V θn

T − V θn

i )1B |Fi ] = 0.

Then for allA in Fi , for all n in N, E[gi,B(V θn

T − V θn

i )1B∩A] = 0. Now it is impossible
to haveV θn

T − V θn

i ≥ xn with xn →L1 x ≥ ε on B because this would lead to 0=
E[gi,B(V θn

T − V θn

i )1B ] ≥ E[gi,Bxn1B ] andE[gi,Bxn1B ] → E[gi,Bx1B ] > 0 because
gi ,B is assumed to be bounded: there exists no frictionlessε-net gain free lunch, which
using Proposition 3.2, completes the proof of the first implication.

2. Conversely, assume there exists no frictionless strong free lunch. As we have seen in

Corollary 3.1, ifCi,B = Ki,B − L1+ and

AB = {f ∈ L1
+, ∃ε > 0 such thatf ≥ ε onB}

the condition of no frictionless strong free lunch is equivalent to the condition that for alli
in T– and for allB in Fi ,

Ci,B ∩ AB = ∅.

For each fixed (i, B), we apply a Hahn–Banach strict separation theorem (see e.g. Schaefer
(1999), Theorem II, 9-2)L1(Ω, F, P) to the closed convex setCi ,B and{1B} to find gi ,B

in L∞(Ω, F, P) and two real numbersα andβ with α < β such that

gi,B |Ci,B ≤ α < β < 〈1B, gi,B〉.
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The random variablegi ,B is bounded from above onCi ,B and therefore, onL1−, sogi,B ≥ 0.
As 0 belongs toCi ,B andCi ,B is a convex cone, we can takeα = 0. Then〈1B, gi,B〉 >

0 sogi,B 6= 0 onB. As 0 belongs toL1+, we havegi,B |Ki,B ≤ 0 and we even get the equality
becauseKi ,B is a vector space. For alls ≥ i for all A in Fs , we consider for allk in
{1, . . . , n}, then-dimensional random variableθs,A,k ∈ Ps,B given by

θk
s,A,k = 1A∩B

θl
s,A,k = 0 for all l 6= k.

As Ki,B= Lin{θs(Z̄t − Z̄s); θs ∈ Ps,B, i ≤ s ≤ t}, we get that for allk in {0, . . . , n}, for
all (s, t) with i ≤ s ≤ t and for allA in Fs , we have

Zk
t 1A∩B − Zk

s 1A∩B ∈ Ki,B.

Then for all (s, t) with i ≤ s ≤ t , for all A in Fs we obtain

E[gi,B(Zt − Zs)1A∩B ] = 0

or E[gi,BZt1A∩B ] = E[gi,BZs1A∩B ].

Proof of Theorem 3.2. (1) ⇒ (2): See Theorem 3.1.
(2) ⇒ (3): Considergi,B = dP i,B/dP .
(3) ⇒ (4): Let i in T– andB in Fi be fixed. We will writeg for gi ,B andπ for, πi,B .

We can assumeg = 0 outsideB. As g ≥ 0, 6= 0, onB, the same is true for the random
variableE[g|Fi ] and there exists a positive real numberα such thatP(E[g|Fi ] ≥ α) > 0.
Let A = {E[g|Fi ] ≥ α}. ThenA belongs toFi , A ⊂ B andP(A) 6= 0. We define an
operatorπ onRT ,B by

π(C) = E[gC|Fi ]

E[g|Fi ]
1A for all C ∈ RT,B.

The linear operatorπ is linear, continuous and takes values inRi ,B . If C ≥ 0, gC ≥ 0 so
π is weakly positive. Only the last condition remains to be checked.

Notice first that for alli ≤ s ≤ t , E[gZt |Fs ]1A = ZsE[g|Fs ]1A. Now, for all θ in Wi ,B

with trading dates denoted by (i = t0, t1, . . . , tN = T ), we have

π(V
q
T ) = E[gθT ZT |Fi ]

E[g|Fi ]
1A

= E[θTN−1E[gZT |FTN−1]|Fi ]

E[g|Fi ]
1A

=
E[V θ

TN−1
E[g|FTN−1]|Fi ]

E[g|Fi ]
1A

soπ (V θ
T ) = π(V θ

TN−1
) = . . . = V θ

i 1A.

(4) ⇒ (1): consider a sequence(θn)n∈N of strategies such that there existi in T– andB in
Fi such that for alln, θn is in Wi ,B . For alln in N, we then have 1Aπi,B(V θn

T − V θn

i ) = 0.
Now it is impossible to haveV θn

T − V θn

i ≥ xn with xn →L1 x ≥ ε on B because this
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would lead to 0= 1Aπi,B(V θn

T − V θn

i ) ≥ 1Aπi,B(xn) becauseπi,B is linear and weakly
positive; asπi,B is continuous, 1Aπi,B(xn) → 1Aπi,B(x) ≥ 1Aπi,B(ε1A) ≥ ε1A because
1Aπi,B(1A) = 1A: a contradiction.

(1) ⇔ (5): See Lemma 3.1. �

Proof of Theorem 3.3. (1) ⇒ (2) is immediate.
(2) ⇒ (3): using a strict separation theorem exactly like in the proof of our main theorem,

we get that there exists a random variableZ in L∞(Ω, F, P) such that

ζ ∈ K, α ∈ L1
+ sup

ζ∈K,α∈L1+
E[Z(ζ − α)] < cE[Z1Ω ].

Since 0 belongs toK, replacingα by aα with a ≥ 0, we getZ ≥ 0. We haveZ 6= 0,
because ifZ = 0, thencE [Z1Ω ] = 0 and we would get 0< 0. Takingα = 0, we obtain
supζ∈KE[Zζ ] < cE[Z1Ω ] < ∞.

(3) ⇒ (1): Suppose 1) does not hold; then there existsη in L1, η > 0 such that for alln

in N∗, nη is in K − L1+. Sincenη is in K − L1+ for all n in N∗, there is a sequence(ηp
n )p∈N

such thatnη = limL1η
p
n and for alln, for all p, there isζp

n in K satisfyingη
p
n ≤ ζ

p
n . Then

E[Zη
p
n ] ≤ E[Zζ

p
n ] and asZ is uniformly bounded,E[Zη

p
n ] → pE[Znη] = nE[Zη] → ∞

so condition (3) is not satisfied. �

Proof of Corollary 3.2. (1) ⇒ (2) is obvious.(2) ⇒ (3) and(3) ⇒ (1) are in the proof
of our main Theorem. �

Proof of Proposition 4.3. We have assumed that there is no arbitrage in the primitive
market, so that if two frictionless self-financing strategiesθ andθ ′ are such thatV θ

T = V θ ′
T ,

thenV θ
0 = V θ ′

0 . We define onM a linear functionall given byl(V θ
T ) = V θ

0 . Now it is easy
to see that for allB in M

lim
λ→+∞

πs(λB)

λ
= lim

λ→+∞
−πs(−λB)

λ
= l(B)

Since there is no arbitrage, we must havep(B) > −p(−B) so that

−πs(−B) ≤ −p(−B) ≤ p(B) ≤ πs(B)

and the price functionalp can be written as the sum of a continuous linear functional and a
fixed cost, i.e. for allB, p(B) = l(B) + c(B) wherec(λB)/λ →λ→∞ 0.

If we assume thatp(λx) < λ[p(x)], then the fixed cost is nonnegative; moreover, if we
assume that there existsε > 0, such that for a large enoughλ, p(λx) < λ[p(x) − ε], then
the fixed costc is greater than or equal to this positive constantε. Notice thatc(B) :=
p(B) − l(B) ≤ πs(B) − l(B) ≤ C.

Consequently, the fair pricep(B) associated with any attainable contingent claimB is
given by

p(B) = EP ∗
[B] + a fixed cost

whereP∗ is any absolutely continuous martingale measure. �
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Proof of Proposition 4.4. Sinceπ is a sublinear lower semicontinuous functional defined
on a vector space, it can be written as the supremum of all continuous linear functionals
lying below it

π(x) = sup
l̃≤π,l̃ cont. lin. funct.

l̃(x).

We first show that̃l(V θ
T ) = V θ

0 for θ ∈ W0,Ω . LetTθ denote the set of trading dates involved
in θ and letC(Tθ ) denote the upper bound for the cumulated cost of any strategy with same
trading dates asθ , i.e.C(Tθ ) = ∑

t∈Tθ
CCCt . Sincel̃ + c lies below the superreplication price,

it satisfiesl̃(V θ
T ) + c(V θ

T ) ≤ V θ
0 + C(Tθ ).

For all positive real numberλ, T(λθ) = T (θ) hencel̃(V λθ
T )/λ + c(V λθ

T )/λ ≤ V λθ
0 /λ +

C(Tθ )/λ and lettingλ go to∞, l̃(V θ
T ) ≤ V θ

0 . In the same way, we obtaiñl(−V θ
T ) ≤ −V θ

0 ,
which gives us̃l(V θ

T ) = V θ
0 .

It is easy to see that̃l is weakly positive. Indeed, for allB ≤ 0, πs(B) ≤ 0 so that
l̃(B) ≤ 0 and for allB ≥ 0, l̃(B) ≥ 0.

According to the following Lemma, there is a one-to-one correspondence between ab-
solutely continuous martingale measures with bounded densityP∗ and weakly positive
continuous linear functionals̃l such that̃l(V θ

T ) = V θ
0 . The functionalπ can therefore, be

written in the formπ(x) = supP ∗∈KEP ∗
[x] whereK denotes a convex subset of the set of

all absolutely continuous martingale measures. �

Proof of the Lemma. Let P∗ be such that for allB in F, P∗(B) = p(1B). As there exists
a strategy inW0,Ω with terminal valueV θ

T = 1Ω and initial valueV θ
0 = 1, we have

p(1Ω) = 1; asp is assumed to be weakly positive and sublinear,P∗ takes values in [0, 1]; as
according to the remark preceding the lemma-p is continuous and linear,P∗ is a probability
measure. Asp(0) = 0, we getP ∗ � P . As p is a continuous linear functional onL1(Ω,
F, P) there existsg in L∞(Ω, F, P) such that for allb in L1(Ω, F, P), p(b) = E[gb]. Then
EP ∗

[b] = E[gb] = p(b) so for all strategyθ in W0,Ω EP ∗
[V θ

T ] = p(V θ
T ) = V θ

0 so for all
(s, t) with s ≤ t

EP ∗
[(Zt − Zs)1A] = 0 for allA in Fs

or Z is aP∗-martingale.
Conversely letp be defined byp(b) = EP ∗

[b] for all b in L1(Ω, F, P). Thenp is linear,
continuous because dP∗/dP belongs toL∞(Ω, F, P), weakly positive because, asP∗ is
absolutely continuous with respect toP, we haveg = dP ∗/dP ≥ 0. Finally, for all strategy
θ in W0,Ω , p(V θ

T ) = EP ∗
[V θ

T ] = V θ
0 . �

Proof of Theorem 4.4. (3) ⇔ (4) is equivalent to(1) ⇔ (4) for i = 0 andB = Ω in
Theorem 3.2.

(2) ⇔ (4): (4) ⇒ (2): we taker̃n = rn + c that converges tor + c > 0 andx̃n = xn.
(2) ⇒ (4): There is a real numberλ ≥ 1 such thatλr > C. We getV λθn

0 + c(V λθn

T ) ≤
V λθn

0 + C ≤ C − λr̃n with C − λr̃n → C − λr < 0 andV λθn

T ≥ λx̃n with λx̃n → λx ≥ 0
so that(V λθn

T )n∈N is a free lunch for (M, p).
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(1) ⇔ (3): (1) ⇒ (4): Suppose there is a free lunch(θn)n∈N : we can assumeV θn

T ≥
x̃n+ε for someε > 0,V θn

0 ≤ −C. Since (r∗,m∗) is optimal, andr∗+c(V θn+θ∗
T )+V θn+θ∗

0 ≤
r∗ + V θ∗

0 + V θn

0 + C ≤ −c(V θ∗
T ) ≤ 0, we have(r∗, m∗) � (r∗, V θn+θ∗

T ). So for alln,
(r∗, m∗) � (r∗, x̃n + ε + V θ∗

T ) because� is increasing andV θn

T ≥ x̃n + ε which gives,
using the fact that preferences are continuous, (r∗, m∗) � (r∗, x + ε + m∗): a contradiction.

(3) ⇒ (1): We define� by (r, x) � (r ′, x′) ⇔ r + π(x) ≥ r ′ + π(x′). Then one can
show that� belongs toA and that (0, 0) is optimal. �
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