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Abstract

In this article, we characterize e�cient contingent claims in a con-
text of transaction costs and multidimensional utility functions. The
dual formulation of utility maximization helps us outline the key notion
of cyclic anticomonotonicity. Moreover, after de�ning a utility price in
this multidimensional setting, we provide a measure of strategies inef-
�ciency and a tool allowing to e�ectively compute this measure with
the help of cyclic anticomonotonicity.
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Introduction

We consider a general multivariate �nancial market with transactions costs
as in Kabanov ([11]), and we give tools to understand optimal strategies
when agents are modelled with preferences following stochastic dominance
of order 2. Precisely, an important feature of our analysis is the setting of
multidimensional model of the market as well as utility functions. We pro-
vide a characterization of e�cient contingent claims, i.e. chosen by agents
endowed with a multidimensional utility function U . We also compute the
ine�ciency part of a strategy without specifying any utility function.
In the literature, these questions were studied in the case of a discrete and
complete �nancial market by Dybvig ([4], and [5]); Jouini and Kallal
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([10]) generalizes the results in discrete markets with frictions, and when
agents maximize the expected utility of their terminal wealth with respect
to a numéraire. These papers show in particular the importance of the no-
tion of anticomonotonicity, translating the intuition that e�cient contingent
claims are decreasing functions of Arrow-Debreu prices.
Our setting is more general as we consider a continuous �nancial market,
with an in�nite probability space, where preferences of agents are represented
with the help of a multidimensional utility function, (studied in Deelstra
and al. [6]). This multidimensional model of preferences is in accordance
with the intuition that not only the liquidation value but also the holdings
of the portfolio matters. Moreover, when the preferences of the agent are
not only function of the liquidation value of the portfolio, the notion of an-
ticomonotonicity is not relevant anymore. In the main results of this paper,
we characterize e�cient contingent claims with the notion of cyclic anti-
comonotonicity, introduced by Rockafellar ([14]); this is done with the
help of the dual formulation of the problem of utility maximization. The
paper is organized as follows. Section (1) presents the setting of this paper,
and gives the �rst tools to solve our problem. Section (2) states the princi-
pal result of this paper which gives the characterization of strictly e�cient
contingent claims. We end this paper (section (3)) by the computation of
the ine�ciency size of a trading strategy.

1 The �nancial market

1.1 Assets and trading strategies

Let T be a �nite time horizon and (Ω,F , P) a probability space endowed

with a �ltration F = (Ft)0≤t≤T , satisfying the usual conditions. Let S
∆=

(S0, S1, ..., Sd) be a continuous semimartingale with strictly positive compo-
nents; the �rst component will play the role of numeraire, i.e. is assumed to
be constant over time S0(.) = 1.
In this market, we suppose there exists possibly constant proportional trans-
action costs. These transaction costs are described with a matrix (λij) ∈
Md+1

+ , where Md+1
+ is the set of square matrix with (d+1) lines with non-

negatives entries. Each coe�cient λij is the proportional cost to transfer
value from asset i to asset j. Furthermore, this matrix satis�es the following
condition:

• λii = 0 for all i ∈ 0, ..., d

• (1 + λij) ≤ (1 + λik)(1 + λkj) for all i, j, k ∈ 0, ..., d

These conditions translate the economic hypothesis that transaction costs
can not be saved by an arti�cial transit. Following Kabanov([11]), we
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de�ne the solvency region as the vectors of portfolio holdings such that the
no bankruptcy condition is satis�ed:

K
∆=

x ∈ Rd+1 | ∃a ∈ Md+1
+ , xi +

d∑
j=0

(aji − (1 + λij)aij) ≥ 0; i = 1, ..., d


This closed convex cone induces a partial ordering on Rd as:

x1 � x2 if and only if x1 − x2 ∈ K

We could also introduce the positive polar associated to K, de�ned as

K∗ ∆=
{

y ∈ Rd+1 | 〈x, y〉 ≥ 0, for all x ∈ K
}

and the partial ordering induced by K∗:

y1 �∗ y2 if and only if y1 − y2 ∈ K∗

A trading strategy on this market is a F-adapted, right-continuous, process L
taking values in Md+1. Lij

t is the cumulative net amount of funds transferred
from the asset i to asset j up to the date t. Given an initial holdings vector
x ∈ Rd and a strategy L, the portfolio holdings are de�ned by the dynamics,

Xi
t = xi +

∫ t

0
Xi

s

dSi
s

Si
s−

+
d∑

j=0

(
Lji

t − (1 + λij)Lij
t

)
A trading strategy is said admissible if it satis�es the no bankruptcy condi-
tion, at each time t, i.e.:

Xx,L � 0

and we de�ne the set of positive contingent claims attainable by an admissible
strategy:

X (x) ∆=
{

X ∈ L0(Rd+1
+ ) | X = Xx,L

T for an admissible trading strategy L
}

1.2 Tools of valuation and a Duality result

1.2.1 Valuation functions

In the framework of a market with transaction costs, the valuation of a
portfolio with respect to a given asset is not equivalent to the valuation
with respect to cash. Thus, di�erent functions of valuation are possible. We
could de�ne the liquidation value of a portfolio x0 ∈ K as the maximum cash
endowment that we can get from portfolio x0 when clearing all the positions
in risky assets and paying the transaction costs:

l(x) ∆= sup {w ∈ R | x ≥ w11} .
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This de�nition implies that l(x1) ≥ l(x2) if and only if x1 � x2. Moreover, it

is possible to reformulate the liquidation function with K∗
0

∆=
{
y ∈ K∗ | y0 = 1

}
:

l(x) = inf
y∈K∗

0

xy

To further comment on this function, we refer to Kabanov( [11]), Deel-
stra and al. ([6]) and Bouchard ([2]).
Another function of valuation, which turns out to be very useful in our set-
ting, is the amount of a certain position x0 that we can get from the initial
holdings vector x:

vx0(x) ∆= sup {w ∈ R | wx0 � x}

In the same way as for the liquidation function, we can give a dual formula-
tion of vx0(.) with the set K∗

x0

∆=
{

y ∈ K∗ | y = x0
‖x0‖2 + y⊥

}
. We obtain the

following proposition:

Proposition 1.1 Let x0 ∈ int(K). The set K∗
x0

is compact and K∗ is the
cone generated by K∗

x0
. Moreover, the amount vx0(x) of the portfolio x0 that

can be obtained from the initial holdings vector x is:

vx0(x) = inf
y∈K∗

x0

yx

Proof of the proposition 1.1.
Let x0 ∈ int(K); there exists r0 > 0 such that xλ = x0 ± x⊥0 ∈ K as soon as
|x⊥0 | ≤ r0. In consequence, if we de�ne yβ = x0 + βx⊥0 , then :

yβx+
λ = t(x0)x0 + βt(x⊥0 )x0 < 0 for β > β0

yβx−λ = t(x0)x0 − βt(x⊥0 )x0 < 0 for β < −β0

We deduce that if yβ ∈ K∗, then |β| < |β0| : the set K∗
x0

is compact. The fact that
K∗ is generated by the compact set K∗

x0
is straightforward. Now, for the last item,

take y ∈ K∗
x0

and w ∈ R such that wx0 � x. We have, by de�nition of K∗:

〈y, x〉 − 〈y, wx0〉 ≥ 0

i.e 〈y, x〉 ≥ w and we deduce that

vx0(x) ≤ inf
y∈K∗

x0

yx

To the converse inequality, if w∗ > vx0(x), we have w∗x0 � x. We deduce for
y ∈ K∗

x0
:

〈y, w∗x0〉 = w∗ ≥ 〈y, x〉

This leads to :
vx0(x) ≥ inf

y∈K∗
x0

yx

�.
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We introduce also the function, issued from the partial ordering induced by
K∗:

l∗(y) ∆= inf
x∈K,|x|=1

xy

Before ending this paragraph, let us just recall the following properties:

Proposition 1.2 The functions of valuation verify:

• l∗(y1) ≥ 0 if and only if y1 � 0.

• vx0(x1) ≥ 0 if and only if x1 � 0.

• ∂K∗ = {y ∈ K∗ | l∗(y) = 0}.

• ∂K = {x ∈ K | l(x) = 0}

Proof of the proposition 1.2.
The two �rst items are straightforward. Item (3) and (4) can be found in Deel-

stra and al. ([6]).

1.2.2 Dual formulation of the super-replication price

In this paragraph, we give an important result of Kabanov and Last ([12]),
allowing us to write the pricing function of contingent claims with a dual
formulation.
For some positive contingent claim C ∈ L0(K,FT ), let:

Γ(C) ∆=
{

x ∈ Rd+1 | X � C for some X ∈ X (x)
}

Γ(C) is the set of initial portfolio allowing to construct a strategy which
hedges the contingent claim C. For a probability Q denoting M(Q) the set
of all Q-martingales, we introduce the set:

D ∆=
{

Z ∈M(Q) | Zt

St
∈ K∗, 0 ≤ t ≤ T

}
With these de�nitions we can state the following result.

Theorem 1.1 (Kabanov and Last.) Let S be a continuous process in
M(Q) for some Q ∼ P. Suppose further that int(K∗) 6= ∅, Then:

Γ(C) = D(C) ∆= {x ∈ Rd+1 | E
(
ẐT C

)
− Ẑ0x ≤ 0 for all Z ∈ D}
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We can therefore extend naturally the set D. Let

Y(y) =
{
Y ∈ L0(K∗,FT ) | E (Y X) ≤ xy for all x ∈ K and X ∈ X (x)

}
With this result of duality, we can evaluate the amount of portfolio x0 needed
to hedge the contingent claim X0. Indeed, de�ne

D⊥ =
{
Y ∈ Y(y) for y ∈ K∗

x0

}
We have:

Lemma 1 The amount of portfolio x0 in order to hedge the contingent claim
x0 is given by:

π(X0, x0)
∆= sup

Y ∈D⊥, y∈K∗
0

E (Y X)

Proof of the lemma 1.
Indeed, since K∗

0 generates K∗, we have that X0 can be hedged by the initial
holdings vector λx0 if and only if:

E (Y X) ≤ λx0y0 = λ if and only if Y ∈ D⊥(x0)

i.e.
sup

Y ∈D⊥, y∈K∗
0

E (Y X) ≤ λ

�.

A straightforward implication is that X ∈ X (x0) if and only if supY ∈D⊥(x0) E (XY ) ≤
1.
We end this section by an interesting result, proved in Deelstra and al.
([6]), which give a characterization of attainable contingent claims.

Lemma 2 Let S be a continuous process in M(Q) for some Q ∼ P and
suppose that int(K∗) 6= ∅. Let X0 ∈ L0(K,FT ) and x0 ∈ K be such that:

sup
y∈K∗

sup
Y ∈Y(y)

E(X0Y )− x0y = E(X0Y0)− x0y0 = 0

for some y0 ∈ K∗ and Y0 ∈ Y(y0) with P [Y0 = 0] = 0. Then the contingent
claim is attainable from the initial wealth x0.

2 Characterization of strictly e�cient trading strate-

gies

In a complete and discrete market, where prices of every contingent claims
depend on a vector of density price of states, Dybvig([4] show that e�cient
contingent claims are decreasing functions of the vector of density prices. In
particular, studying the problem in a market with frictions in a �nite space,
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Jouini and Kallal ([10]) prove that this property of anticomonotonicity
can be seen as a derivation of the �rst order condition in the convex opti-
mization problem of maximizing the expected utility of terminal wealth.
In a market with transactions costs, the value of a portfolio is not equiva-
lent to its liquidation value, and it is restrictive to assume that the agents
maximize the expected utility of the liquidation of terminal portfolio. It
is more relevant to consider each agent endowed with a utility function

U ∈ U , being the set of functions mapping Rd+1 into R with e�ective do-
main int(K) ⊂ dom(U) ⊂ K, and satisfying the conditions:

• U is strictly increasing on K, i.e U(x1) > U(x2) for all x1 � x2.

• U is concave on K

Each agent chooses an optimal strategy, depending on his preferences (i.e. on
the utility function U) and on his initial portfolio x0. This optimal strategy
is chosen in order to maximize the expected utility of the terminal holdings
vector.

De�nition 2.1 A strategy L, with a positive initial portfolio x0 ∈ int(K),
is strictly e�cient if and only if there exists an utility function U such that
Xx0,L

T ∈ X (x0) is solution to the problem of maximization:

E
(
U(Xx,L

T )
)

= sup
X∈X 1(x)

E (U(X))

where
X 1(x) ∆= X (x) ∩ L1(K,FT )

In order to avoid problems of de�nition of expected utility for some contin-
gents claims and utility functions U ∈ U , we work with integrable contingent
claims : indeed, our approach is to use minimal technical hypothesis for the
agents, and the use of the space L0(K,FT ) implies that the expected utility
for some contingent claims may be not well de�ned.
As it was already the case in Jouini and Kallal ([10], the basic idea is
to characterize strictly e�cient strategies with results of duality. But in a
context of continuous probability space, duality is more complex to handle.
Maximizing the expected utility in an incomplete market was studied in a
very large setting by Kramkov and Schachermayer ([13]. Hugonnier
and Kramkov ([9]) study this problem with a random endowment at the �-
nal date. In a multidimensional case, the problem was studied by Deelstra
and al.([6]). Nevertheless, these articles focus on some suitable hypothesis
on the utility function, as the one on the asymptotic elasticity, in order to
have a solution for the primal problem. In our setting, we are not interested
in this question of existence and thus we don't need to impose any regularity
hypothesis on the utility function.
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In the following paragraph, we present more precisely the notion of anti-
comonotonicity and introduce cyclic anticomonotonicity, which is more rele-
vant in our setting. Then, we present our principal result, which characterizes
strictly e�cient contingent claims.

2.1 Anticomonotonicity

In the one-dimensional theory of decision, and in the case of stochastic dom-
inance of order 2, anticomonotonicity between a random variable of pric-
ing Y and a contingent claim X derives from duality and the fact that
Y ∈ λ∂U(X), for λ > 0 (see [10]). Let us recall this notion:

De�nition 2.2 Two random variables X1 and X2 de�ned on the same prob-
ability space (Ω,F , P) are anticomonotonic if there exists A in F , with prob-
ability one, such that:[

X1(ω)−X1(ω′)
] [

X2(ω)−X2(ω′)
]
≤ 0 for all (ω, ω′) ∈ A×A.

Thus, one can think �rst that we need the natural extension of one-dimensional
anticomonotonicity to the multidimensional framework: i.e., two random
vectors X and Y of dimension d + 1 are said anticomonotonic if and only
there exists a measurable set A of probability 1 such that(
∀(ω1, ω2) ∈ A2

)
(〈X(ω1)−X(ω2), Y (ω1)− Y (ω2)〉 ≤ 0).

But it turns out in the multidimensional case that this is not enough to
characterize strictly e�cient contingent claims. We use the following notion:

De�nition 2.3 Two random vectors X and Y of dimension d + 1 are said
cyclically anticomonotonic if and only there exists a measurable set A of
probability 1 such that:

(∀p ≥ 2, ∀(ω1, ω2, ..., ωp) ∈ Ap)
(〈X(ω1), Y (ω1)− Y (ω2)〉+ 〈X(ω2), Y (ω2)− Y (ω3)〉+ ... + 〈X(ωp), Y (ωp)− Y (ω1) ≤ 0)

Indeed, more or less, in our setting, we deduce that for a strictly e�-
cient contingent claim X0 ∈ X (x0), there exists, in the same way as the
uni-dimensional framework, a random vector of pricing Y0 ∈ Y such that
Y0 ∈ λ∂U(X0). Rockafellar ([14]) show that this is in fact characterized
by the cyclical anticomonotonicity .
Before continuing this discussion, we would like to stress a little subtlety on
the notion of "almost surely". Indeed, we could have de�ned anticomono-
tonicity with existence of measurable sets A of probability 1 on the product
space. This is in fact equivalent:

Proposition 2.1 Let X and Y two random vectors on the space (Ω,F , P).
For each p ∈ N∗, de�ne P⊗p as the usual propability product on the produce
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space Ω⊗p. The cyclic anticomonotonicity between X and Y is equivalent to:

(∀p ≥ 2)
(
∃A ∈ Ω⊗p | P⊗

p
(A) = 1

)
(∀(ω1, ..., ωp) ∈ A)

(〈X(ω1), Y (ω1)− Y (ω2)〉+ 〈X(ω2), Y (ω2)− Y (ω3)〉+ ... + 〈X(ωp), Y (ωp)− Y (ω1) ≤ 0)

Proof of the proposition 2.1.
It is straightforward that cyclic anticomonotonicity implies the property of the
proposition. Conversely, assume that X and Y verify this property. It is enough
to prove there exists X∗ and Y ∗ with X∗ a.s.= X and Y ∗ a.s.= Y , such that X∗

and Y ∗ are cyclically anticomonotonic. Denoting X = (X1, X2, ..., Xn) and Y =
(Y1, Y2, ..., Yn), we de�ne the set for each vector of I ∈ Nd+1

n2n :

AI =
⋂

0≤l≤d

{
I(l)
2n

≤ Xl <
I(l) + 1

2n

}

BK =
⋂

0≤l≤d

{
I(l)
2n

≤ Yk <
I(l) + 1

2n

}
Step 1 - construction of version X.
We de�ne

Xn
l =

∑
(I,K)∈Pn

I(l)
2n

1AI

⋂
BK

with

Pn =
{

(I, K) ∈
(
Nd+1

n2n

)2 | P (AI ∩BK) 6= 0
}

Nn =C

 ⋃
(I,K)∈Pn

AI

⋂
BK


If ω /∈

⋃
Nn, we have |Xn −X| ≤ 1

2n for all n ∈ N; for all ω ∈ Ω, Xn converge and
we de�ne:

X∗ ∆= lim
n→+∞

Xn

and X∗ p.s.
= X, since P(Nn) → 0.

Step 2 - Construction of version Y ∗.
In the same way, we de�ne:

Y n
l =

∑
(I,K)∈Pn

K(l)
2n

1AI

⋂
BK

If ω /∈
⋃

Nn, we have |Y n (ω)− Y (ω)| ≤ 1
2n+1 for all n ∈ N. Therefore, for all ω,

Y n converge and we de�ne:
Y ∗ ∆= lim

n→+∞
Yn

and Y ∗ p.s.
= Y

The sequence Y n and Xn have been constructed in order to be almost cyclically
anticomonotonic; indeed, let Ωn = Ω \Nn and p ∈ N∗. We have:

(∀(ω1, ..., ωp) ∈ (Ωn)p) 〈Y n(ω1), Xn(ω1)−Xn(ω2)〉+ ... + 〈Y n(ωp), Xn(ωp)−Xn(ω1)〉 −

〈Y (ω1), X(ω1)−X(ω2)〉+ ... + 〈Y (ωp), X(ωp)−X(ω1)〉 ≤ 3p
n

2n
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Therefore:

(∀(ω1, ..., ωp) ∈ (Ωn)p)
(
〈Y n(ω1), Xn(ω1)−Xn(ω2)〉+ ... + 〈Y n(ωp), Xn(ωp)−Xn(ω1)〉 < 3p

n

2n

)
We conclude that if we de�ne A = Ω \ ∩n≥0Nn, we have:

(∀(ω1, ..., ωp) ∈ (A)p) (〈Y ∗(ω1), X∗(ω1)−X∗(ω2)〉+ ... + 〈Y ∗(ωp), X∗(ωp)−X∗(ω1)〉 ≤ 0)

An important corollary of this proposition is:

Corollary 2.1 Let d ∈ N∗ and (Ω,F , P) a probability space. Suppose X and
Y are two vector of dimension d+1 such that we can't �nd a ε > 0 and some
non negligeable measurable sets Ω1,Ω2, ...,Ωn verifying the property:

(∀(ω1, ..., ωn) ∈ Ω1 × ...× Ωn) (〈Y (ω1), X(ω1)−X(ω2)〉+ ... + 〈Y (ωn), X(ωn)−X(ω1)〉 ≥ ε)

Then X and Y are cyclically anticomonotonic.

Indeed, it gives a criterium very tractable to prove that two random vectors
X and Y are cyclically anticomonotonic.

Finally, in the one dimensional case, on discrete probability spaces with
equiprobability states or on probability spaces atomless, we can �nd, for any
two �xed distributions FX and FY , random variables X distributed as FX ,
and Y distributed as FY such that X and Y are anticomonotonic (see [7]).
The next result proves that this result is extendable to the multidimensional
case for the notion of cyclic anticomonotoncity.

Proposition 2.2 Let X ∈ X 1 and Y ∈ Y. There exist a random vector X̃
and a random vector Ỹ , with respectively the same distribution as X and Y ,
such that X̃ and Ỹ are cyclically anticomonotonic.

Proof of the proposition 2.2.
In the following, we denote CX a copula of X, and CY a copula of Y . Consider the
set C(X, Y ) of copula in R2d+2, such that for all C ∈ C(X, Y ), the marginal copula
of the d + 1 �rst variables is the copula CX , and the marginal copula of the d + 1
last variables is the copula of CY :

C(u1, u2, ..., ud+1, 1, ..., 1) = CX(u1, u2, ..., ud+1)
C(1, ..., 1, v1, v2, ..., vd+1) = CY (u1, u2, ..., ud+1)

It is straightforward that the set C(X, Y ) is closed with respect to the topology of
convergence simple in C, the set of copula de�ned on [0, 1]2d+2. But the set of copula
C is compact with respect to this topology (see [3], theorem 2.3, and [1] for the con-
vergence of probability measures). Let Xn a sequence of random vectors distributed
as X such that limn→+∞ E (Y Xn) = inf{E(Y X) | X is distributed as X0}. With
maybe an extraction, we could suppose that the sequence of copula Cn ∈ C(X, Y )
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of the random vector (Xn, Y ) converges to a copula C ∈ C(X, Y ). De�ne then the
random vector X̃ with the same distribution as X0, such that C is a copula of
(X̃, Y ). By construction, 〈Xn, Y 〉 converges in law to 〈X̃, Y 〉, and therefore:

E(〈X̃, Y 〉) ≤ lim
n→+∞

E (〈Xn, Y 〉)

Now, let's prove that X̃ and Y are cyclically anticomonotonic. If it is not the case,
we deduce from the corollary (2.1) the existence of ε > 0, n > 0 and some non
negligeable sets Ω1, ...,Ωn such that:

(∀(ω1, .., ωn) ∈ (Ω1 × ...× Ωn))
(
〈X̃(ω1)− X̃(ω2), Y (ω1)〉+ ... + 〈X̃(ωn)− X̃(ω1), Y (ωn)〉 ≥ ε

)
and, since we have assumed that our space is atomless, we can always choose the sets
Ω1, ...,Ωn with the same probability p. De�ne the random vector X∗, distributed
as X0 with: 

X∗
|Ω\Ω1∪...∪Ωn

= X̃|Ω\Ω1∪...∪Ωn

X∗
|Ωi

distributed as X̃|Ωi+1 for i < n

X∗
|Ωn

distributed as X̃|Ω1

In consequence, we have

E(〈X∗, Y 〉)− E(〈X̃, Y 〉) =
n∑

i=1

E
[
〈Y, (X∗ − X̃)|Ωi

〉
]

But, by construction, we have
∑n

i=1〈Y, (X∗ − X̃)|Ωi
〉 ≤ ε, which implies

E(〈X∗, Y 〉)− E(〈X̃, Y 〉) ≤ −pε

This is a contradiction and conclude the proof �.

2.2 Theorem of characterization of strictly e�cient strate-

gies

We turn now to the problem of characterizing solutions of:

sup
X∈X 1(x0)

E (U(X))

for some utility function U and x0 ∈ int(K). As we have already pointed
out, in markets with transactions costs, it is not only the liquidation value
of the portfolio x0 which matters, but also the whole holdings vector. In
consequence, our problem has a natural direction, and we dualize our prob-
lem with respect to this direction x0, i.e. we consider the perturbed problem
u(λx0) on the line R+

∗ x0:

ux0(λ) = sup
X∈X 1(λx0)

E (U(X))

= sup
X∈X 1

inf
β>0,Y ∈D⊥(x0)

E (U(X))− β(E[XY ]− λ)

11



We then associate the following dual problem:

vx0(β) = inf
Y ∈D⊥(x0)

sup
X∈X 1

E [U(X)]− βE[XY ]

= inf
Y ∈D⊥(x0)

E [V (βY )]

where V is de�ned as the Legendre-Fenchel transform of U :

V (Y ) = sup
X∈K

U(X)−XY

We want to prove now that our dual problem has a solution and that dual
and primal problem have the same value. For this, we need:

Lemma 3 . Let x0 ∈ int(K) and β > 0. The family (V (βY ))− for Y ∈
D⊥(x0) is uniformly integrable.

Proof of the lemma 3.
Let ε > 0 and choose a vector x∗ such that 0 ≺ x∗ ≺ ε

2x0. x∗ ∈ int(K), and
therefore belongs to the e�ective domain of U . If we choose y∗ ∈ ∂U(x∗), by usual
theory of conjugate functions, we have, x∗ ∈ ∂V (y∗), which implies:

V (y)− ≤ (V (y∗) + 〈x∗, y − y∗〉)− ≤ V (y∗)− + 〈x∗, y〉

We deduce �rst that:

sup
Y ∈D⊥(x0)

E (V (Y )) ≤ V (y∗)− + sup
Y ∈D⊥(x0)

E (x∗Y ) < +∞

With Tchebychev, we choose a ∈ R∗+ such that V (y∗)P (V (Y ) ≥ a) = ε
2 . We

conclude:

sup
Y ∈D⊥(x0)

∫
V (Y )≥a

V (Y )−dP ≤ sup
Y ∈D⊥(x0)

V (y∗)−P (V (Y ) ≥ a) + E (x∗Y )

≤ ε

2
+

ε

2
= ε

�.

This uniformly integrability property is a key result to prove the following
lemma which tells us there is no gap between the value of the primal and
dual problem.

Lemma 4 Let U and x0 such that ux0(1) < +∞. Then:

vx0(β) = sup
λ>0

[ux0(λ)− λβ]

Moreover there exists Y0 ∈ D⊥(x0) solution to the dual problem as soon as
vx0(β) < +∞

12



Proof of the lemma 4.
The following proof is slightly adapted from the proof of Kramkov and Schacher-
mayer ([13]). Consider the set D⊥(x0) and de�ne, for n > 0, the sets Bn to be the
positive elements of the ball of radius n of L∞, i.e., Bn

∆= {g | 0 ≤ |g| ≤ n}. The
sets Bn are σ(L∞, L1)-compact, and since D⊥(x0) is closed-convex subset of L1, we
obtain:

sup
g∈Bn

inf
h∈D⊥(x0)

E [U(g)− βgh] = inf
h∈D⊥(x0)

sup
g∈Bn

E [U(g)− βgh]

Moreover, since g ∈ X (x0) if and only if:

sup
h∈D⊥(y0)

E [gh] ≤ 1

we have:
lim

n→+∞
sup

g∈Bn

inf
h∈D⊥(x0)

E [U(g)− βgh] = sup
λ>0

u(λ)− λβ

On the other hand,

inf
h∈D⊥(x0)

sup
g∈Bn

E [U(g)− βgh] = inf
h∈D⊥(x0)

E[Vn(βh)) ∆= vn(β)

Consequently, it is su�cient to prove that limn→+∞ vn(β) = v(β). Evidently, we
have vn ≤ v. Let (hn)n≥1 be a sequence in D⊥(x0) such that:

lim
n→+∞

E [Vn(βhn)] = lim
n→+∞

vn(β)

Since the set D⊥(x0) is bounded in L1, we can apply the lemma of Komlòs (see
[8]) and �nd a sequence fn ∈ conv(hn, hn+1, ...), which converges almost surely to
a random vector h. We have h ∈ D⊥(x0) by closure of D⊥(x0) under convergence
in probability.
However, from the convexity of the function V n, we have:

E [V n(βfn)] ≤ sup
m≥n

E [V m(βhm)]

Moreover, the family V n(fn)− is uniformly integrable. Indeed, let y0 ∈ K∗

such that ∂V (yO) = ∂Vn(y0) = ∂V1(y0). Since the mapping ∂V (.) is cyclically
comonotonic, ∂Vn(y) = ∂V (y) as soon as l(y) ≥ l(y0), i.e. Vn(y) = V (y) as soon as
l(y) ≥ l(y0). We deduce then the property of uniform integrability with the one of
of (V (βfn))−.
This leads to the following inequalities, with the Fatou's Lemma:

lim
n→+∞

E [Vn(βhn)] ≥ lim inf
n→+∞

E [V n(fn)] ≥ E [V (h)] ≥ v(y)

which proves the equality. �.

With this result, we can give a simple characterization of strictly e�cient
strategies, which is one of our principal results:

Theorem 2.2 (Characterization of strictly e�cient contingent claims).
A contingent claim X0 is strictly e�cient if and only if there exists an
Y0 ∈ Y(y0) for some y0 ∈ K∗, such that:

13



• P(Y0 = 0) = 0

• E(X0Y0) = x0y0.

• Random variables X0 and Y0 are cyclically anticomonotonic.

• {
(∃i ∈ {0, ..., d})

(
sup essω∈Ω Y i

0 (ω) = +∞
)
⇒ inf essω∈Ω l (X0(ω)) = 0

(∃i ∈ {0, ..., d})
(
inf essω∈Ω Y i

0 (ω) > 0
)
⇐ sup essω∈Ω l (X0(ω)) < +∞

Proof of the theorem 2.2.
First implication: Let X0 a contingent claim strictly e�cient with the utility
function U , and x0 the initial portfolio. The function λ 7→ u(λ) is concave, and let
β0 ∈ ∂u(1). From the lemma 4, v is the Legendre-Fenchel transform of U , and we
have:

v(β0) = u(1)− β0

This implies in particular v(β0) < +∞ and the existence of Y0 ∈ D⊥(x0) solution
to the dual problem. We deduce that

u(1) = E(U(X0)) ≤ E (V (β0Y0) + β0Y0X0)
≤ v(β0) + β0

The above inequalities become equalities and lead to:

X0 = argmaxX∈X 1E (U(X)−XY0) (1)
E(X0Y0) = x0y0 (2)

P(Y0 = 0) = 0. Suppose the existence of a set A, with probability not equal to zero,
such that (Y0)|A = 0. De�ne X̃ = X0 + 1A, with. We have, by strict increasing of
U ,

E
(
U(X̃)

)
> E (U(X0))

On the other hand, E
(
Y0X̃

)
= E (Y0X0), which is in contradiction with (1).

Y0 and X0 are cyclically anticomonotonic. Indeed, with (1), there exists a proba-
btility set A of measure 1 such that:

Y0(ω) ∈ ∂U (X0(ω)) , ∀ω ∈ A

which is a characterization of cyclic anticomonotonicity (see Rockafellar,[14]),
and give us the result.
(∃i ∈ {0, ..., d})

(
sup essω∈Ω Y i

0 (ω) = +∞
)
⇒ inf essω∈Ω l (X0(ω)) = 0.

Suppose on the contrary there exists i ∈ {0, ..., d} with sup essω∈Ω Y i
0 (ω) = +∞

and inf essω∈Ω l (X0(ω)) > 0. Choose ε > 0 such that for all ω ∈ Ω, X0(ω) � 2ε1i.
Since Y0 ∈ ∂U(X0) a.s., we have:

U(ε)− U(X0) ≤ 〈Y0, ε−X0〉 ≤ 〈Y0, ε1i − 2ε1i〉 = −〈Y0, ε1i〉

and the left side of the inequality tends to −∞, i.e. ε /∈ dom(U), which is in
contradiction with our hypothesis.
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(∃i ∈ {0, ..., d})
(
inf essω∈Ω Y i

0 (ω) > 0
)
⇐ sup essω∈Ω l (X0(ω)) < +∞.

Indeed, if it isn't the case, we could choose x̂ � x∗ with x∗ � X0(ω) for all ω ∈ Ω.
We deduce, since Y0 ∈ ∂U(X0):

U(x̂)− U(x∗) ≤ U(x̂)− U(X0) ≤ 〈Y0, x̂−X0〉 ≤ 〈Y0, x̂〉

and the last term of this inequality tends to 0. We conclude that U(x̂) = U(x∗),
which is in contradiction with the hypothesis of strict increasing of the utility
function U .
Second implication : Let X0 and Y0 which verify the properties of the theorem.
Let A the measurable set of probability one given by the de�nition of cyclical
anticomonotonicity. We �x an ω0 ∈ A and (X∗

0 , Y ∗
0 ) ∆= X0(ω0), Y0(ω0). We de�ne

the utility function U on K by:

U(x) = inf {〈x−X0(ωm), Y0(ωm)〉+ ... + 〈X0(ω1)−X0(ω0), Y0(ω0)〉}

where the in�nimum is taken over all �nite sets (ω0, ω1, ..., ωm) (m arbitrary) of
elements of A.
U is a proper closed concave function. Since U is an in�nimum of a certain collec-
tion of a�ne functions, U is a closed concave function. Moreover, U(X0(ω)) = 0
by cyclic anticomonotonicity of X0 and Y0 and hence U is proper.
For each ω ∈ A, Y0(ω) ∈ ∂U (X0(ω)). Indeed, Let ω ∈ A, it is enough to show
that for any α > U (X0(ω)), and any z ∈ Rd+1, we have:

U(z) < α + 〈Y0(ω), z −X0(ω)〉

Indeed, by de�nition of U , there exists some ωi, i = 1, ...,m such that:

α > 〈Y0(ωm), X0(ω)−X0(ωm)〉+ ... + 〈Y0(ω0), X0(ω1)−X0(ω0)〉

We deduce, by de�nition of U and setting ωm+1 = ω:

U(z) ≤ 〈Y0(ωm), z−X0(ωm+1)〉+...+〈Y0(ω0), X0(ω1)−X0(ω0)〉 < α+〈Y0(ωm), z−X0(ω)〉

and this proves that Y0(ω) ∈ ∂U(X0(ω)).
U is increasing with respect to �. We prove �rst U(ẑ) ≥ U(z) as soon as ẑ � z.
Indeed, let ε > 0 and (z0, y0), ..., (zm, ym) such that:

〈ẑ − zm, ym〉+ ... + 〈z1 − z0, y0〉 ≤ U(ẑ) + ε

Therefore:

U(z) ≤ 〈z − zm, ym〉+ ... + 〈z1 − z0, y0〉 ≤ U(ẑ) + ε + 〈z − ẑ, ym〉

and since ẑ − z ∈ K and ym ∈ K∗, we have:

U(z) ≤ U(ẑ) + ε

and this, for all ε > 0.
int(K) ⊂ dom(U): �rst, since we have always dom(U) ⊂ dom (∂U(.)), U is �nite on
each X0(ω) for ω ∈ Ω. Suppose �rst that infω∈Ω essl(X) = 0. Let z be in int(K).
We can choose an ω0 ∈ Ω, with X0(ω0) � z, and deduce that U (X0(ω0)) ≤ U(z),
i.e. z ∈ dom(U). If, on the contrary, infω∈Ω essl(X) > 0, then, by hypothesis
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supω∈Ω essl∗(Y ) < +∞. This leads to the result.
U is strictly increasing. We take ẑ and z such that ẑ � z.
First, suppose that, a.s. X0(ω) � ẑ. In particular sup essω∈Ωl (X0(ω)) < +∞, and
from the third item, de�ne ε = 1

2|ẑ−z| infω∈Ω l∗ (Y0(ω)) > 0. In the same way, we
can choose ym such that :

U(z) ≤ U(ẑ) + ε + 〈z − ẑ, ym〉

Therefore, by construction 〈ẑ − z, ym〉 > ε and

U(z) < U(ẑ)

Now, suppose there exists ω0 such that X0(ω0) � ẑ. We choose ẑ � z1 � z with
z1 ∈ R (X0(ω0)− ẑ). We have:

U(z1) ≥ U(z) + 〈Y0(ω0), z1 − z〉

But Y0(ω0) ∈ int(K∗) and in consequence 〈Y0(ω0), z1 − z〉 > 0; we conclude that
U (ẑ) ≥ U (z1) > U (z).
X0 is strictly e�cient for U . Let X ∈ X (x0). Since, Y0 ∈ ∂U(X0) almost surely,
we have:

E (U(X))− E((U(X0)) ≤ E(Y0(X −X0)) ≤ 0

Therefore X0 is e�cient for U �.

This theorem give us immediately that the set of strictly contingent claims
is a cone, as it was the case in the discrete setting (see [10]). However, as
Kramkov and Schachermayer (see [13]) remark, there could be here a
"loss of mass", i.e. E ((Y0)1) 6= ((y0)1) and the sum of a strictly contingent
claim with some cash is not necessarily a strictly contingent claim. This
result, which is anti-intuitive, tell us that investing in the cash can change
the strict e�ciency of a strategy. Another di�erence with the discrete setting
is the third condition of the theorem; sup essω∈Ω l(X0) < +∞ implying a
condition on the pricing vector Y comes from the fact the slope of utility
function must be strictly positive on all his domain, even out of the support
of X0. One can see also that the other condition is linked to a question of
support of the utility function. However, we stress that int(K) ⊂ dom(U) is
a key hypothesis for the lemma (3), which is essential to prove theorem (4).

3 Ine�ciency size

In this section, we study the quality of a strategy, leading to X0 ∈ X 1, what-
ever the preferences of the agent are and quantify the eventual ine�ciency.
To introduce our �rst notion, let us note that a strictly e�cient contingent
claim X0 for an utility function U ∈ U with respect to the initial portfolio
x0 can be characterized as the solution of the problem of optimization:

inf
X∈BU (X0)

π(X, x0)
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where we have de�ned the set BU (X0) as the set of contingent claims pre-
ferred to X0 by an agent with a utility function U :

BU (X0) =
{
X ∈ X 1 | E (U(X)) ≥ E (U(X0))

}
Since we now want studying the e�ciency whatever the preferences of the
agent, this leads to the following notion:

De�nition 3.1 Let an admissible trading strategy L with initial value x0

which leads to the contingent claims X0. The utility price of the contingent
claim X0 with respect to the initial portfolio x0 is de�ned as the percentage
of the portfolio x0 for any agent to �nd a strategy giving the same expected
utility as X0 :

PU (X0, x0)
∆= sup

U∈U
inf

X∈BU (X0)
π(X, x0)

The ine�ciency size is then IU (X0, x0) = 1− PU (X0, x0)

Our goal is to use results of duality to evaluate the ine�ciency size with the
di�erence of the liquidated price of X0 and a certain contingent claim X̃ well
chosen. It is not straightforward that this contingent claim exists and the
question of existence is one part of our matter.
A natural set in this setting to consider is the set P(X0) of contingent claims
preferred to X0 by any agent:

P(X0) =
{
X ∈ X 1 | E (U(X)) ≥ E (U(X0)) for all U ∈ U

}
We obtain the following theorem:

Theorem 3.1 (Computation of utility price). The utility price of a
strategy leading to the positive contingent claim X0 from the initial portfolio
x0 satis�es:

1. There exists a contingent claim X̃ ∈ P(X0) attainable from the initial
portfolio of value PU (X0, x0)x0, i.e.:

PU (X0, x0) = min
X∈P(X0)

π(X, x0)

Moreover, X̃ is in the closed convex hull of random vectors distributed
as X0.

2. The utility price can be also computed with each random vector of pric-
ing Y ∈ Y with the formula: PU (X0, x0) = sup

(
P (X0, Y ) | Y ∈ D⊥(x0)

)
and

P (X0, Y ) = min
X∈P(X0)

E(Y X)

= E(Y X̃) with X̃ cyclically anticomonotonic with Y and distributed as X0
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Before proving this theorem, let us comment some of the results obtained and
give some applications. The �rst one is the existence of an e�cient strategy
leading to a contingent claim X̃ and giving at least the same expected utility
as the contingent claim X0 for all utility functions U ∈ U . Nevertheless, this
contingent claim is not necessarily distributed as X0, as it is the case in a
complete and frictionless market ( see [4]). This implies in particular that
for some utility functions U ∈ U , expected utility of X̃ is strictly bigger than
expected utility of X0. Moreover, another problem which can occur is the
fact that supremum in item (2) may be not attained.
However, one can prove that the supremum is a maximum when inf essω∈Ωl(X0) =
0. Indeed, in this case the eventual loss of mass for the vector of pricing Y
is not important:

Lemma 5 Let X0 a random vector in L1
+ and x0 ∈ int(K) such that inf essl(X0) =

0. For each vector Y ∈ D⊥(x0), we denote XaY the random vector dis-
tributed as X0 and cyclically anticomonotonic with Y . Then, the family
(XaY )Y ∈D⊥(x0) of random variables is uniformly integrable.

Proof of the lemma 5.
Let ε > 0. Since inf essω∈ω l(X) = 0, and each composant of X is positive, we can
�nd ω0 such that Xi(ω0) ≤ ε

2 for each i ∈ {0, ..., d}. De�ning Ac
ε = {X � ε10}, we

prove:
There exists m ∈ R, such that each Y ∈ D⊥(x0) is bounded by m on Ac

ε. Indeed,

let A ε
2

=
{
X � ε

210

}
. By hypothesis, p ε

2

∆= P
(
A ε

2

)
> 0. Since the portfolio

l(x0)1 is evidently hedged by a strategy from the initial holdings vector x0, we
have E (Y0) < 1

l(x0)
, for each Y ∈ D⊥(x0). By Tchebychev, we deduce the existence

of m > 0 such that for all i ∈ {0, ..., d}, infω∈A ε
2

Yi ≤ m.
Furthermore, if ω1 ∈ Ac

ε, and ω2 ∈ A ε
2
, we have X(ω1) − X(ω2) � ε

210. By
anticomonotonicity Y (ω1) − Y (ω2) /∈ K∗. Since Yi

Yj
≤ mini∈{0,...,d} λi

maxi∈{0,...,d} λi

∆= β, we
deduce βY (ω2) − Y (ω1) ∈ K∗. In consequence, Yi(ω) ≤ βm for i ∈ {0, ..., d} and
ω ∈ Ac

ε.
conclusion: We have:∫

{XaY≥r}
XaY dP ≤

∫
{XaY≥r}∩Aε

XaY dP +
∫
{XaY≥r}∩Ac

ε

XaY dP

≤ ε

2

∫
{XaY≥r}∩Aε

d∑
i=0

YidP + βm

∫
{XaY≥r}∪Ac

ε

d∑
i=0

XidP

But since for each Y ∈ D⊥(x0),
∑d

i=1 Yi ≤ vx0(1), and Xi is integrable, we can
choose r > 0 such that:∫

{XaY≥r}
XaY dP ≤ ε

2
(1 + vx0((1))

which prove the uniform integrability of the family (XaY )Y ∈D⊥(x0). �.

This uniform integrability helps us to prove the following corollary of theorem
(3.1).
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Corollary 3.2 Let X0 ∈ X 1, a positive contingent claim with inf essω∈Ωl(X0) =
0. The supremum in item (2) of theorem (3.1) is a maximum.

Proof of the corollary 3.2.
Indeed, Let Y a

n cyclically anticomonotonic with X0 and distributed as Yn ∈ D⊥(x0)
such that

lim
n→+∞

E (XY a
n ) = PU (X0, x0)

From the lemma of Komlòs (and the convexity of D⊥(x0)), we could suppose
that Y a

n converges to a random vector Y a distributed as Y ∈ D⊥(x0) and cyclically
anticomonotonic with X0 . Moreover, from the uniform integrability of the sequence
Y a

n X0, we conclude:

E (Y aX) ∆= lim
n→+∞

E (XY a
n ) = PU (X0, x0)

�.

3.1 Demonstration of the computation of ine�ciency size

We split the demonstration of the theorem in several lemmata. We have the
same result as Jouini and al.([10]) which is a characterization of stochastic
dominance of order 2:

Lemma 6 The set P(X0) is closed with respect to the topology of conver-
gence in measure. We have more precisely the following result:

P(X0) = Σ0(X0) + L1 (K,FT )

where Σ0(X0) is the closed convex hull of the contingent claims X distributed
as X0.

Proof of the lemma 6.
Step 1 - P(X0) is closed w.r. to the topology of convergence in measure
Indeed, let Xn ∈ P(X0) which converges almost surely to a random variable X∗.
By the theorem of dominated convergence, we have if an utility function U b is
bounded:

E(U b(X∗)) = lim
n→+∞

E(U b(Xn) ≥ E(U b(X0)

But, now, if U is not bounded, we can construct a sequence U b
n to U , such that,

for all n and x ∈ R∗, we have |U b
n(x)| ≤ |U(x)|. Therefore, with the dominated

convergence theorem:

E(U(X∗)) = lim
n→+∞

E(U b
n(X) ≥ E(U(X0) = lim

n→+∞
E(U b

n(X0)

Step 2 - Characterization of P(X0).
Since P(X0) is closed for the topology of convergence in measure, we deduce
Σ0(X0) + L1(K,FT ) ⊂ P(X0).
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Reciprocally, let X∗ /∈ Σ0(X0) + L1(K,FT ). Since Σ0(X0) + L1(K,FT ) is closed
on the space L1(Rd,FT ), we can �nd an Y0 ∈ L∞(Rd,FT ), such that:

E (X∗Y0) < inf
{
E(XY0) | for all X ∈ Σ(X0) + L1(Rd,FT )

}
This implies in particular that Y ∈ K∗ a.s. Moreover, it is possible to choose a
random vector X̃0 distributed as X0, cyclically anticomonotonic with Y0. There
exists therefore a concave function U (see [14]), not necessarily strictly increasing,
with dom(U) ⊂ K and:

Y ∈ ∂U(X)a.s.

We deduce that

E (U(X∗))− E
(
U(X̃0)

)
≤ E

(
Y0(X∗ − X̃0)

)
< 0

Unfortunately, U may be not in U . Nevertheless, we can choose a sequence of
utility functions Un ∈ U (i.e. in particular strictly increasing) such that Un+1(x) ≤
Un(x), E

(
U1(X̃0)

)
< ∞ and E (U1(X∗)) < ∞. With the theorem of convergence

monotone, we have limn→+∞ E(Un(X̃0)) = E(U(X̃0)), and limn→+∞ E(Un(X∗)) =
E(U(X∗)). And we deduce the existence of Ũ ∈ U , with:

E
(
Ũ(X∗)

)
< E

(
Ũ(X0)

)
= E

(
Ũ(X0)

)
X∗ doesn't belong to P(X0). This proves that P(X0) = Σ0(X0) + L1(K, FT ) �.

As it is suggested in the last item of theorem (3.1), computation of utility
price is done in two steps. First, we look for the contingent claim X̃Y ∈
P(X0) which minimizes E(XY ) for each vector of pricing Y ∈ D⊥(x0). In
a second step, we use duality results to prove that PU (X0, x0) is then the
supremum of these computations.
The following lemma is the �rst step of our demonstration. However, we
need to work with only a part of the set D⊥(x0):

Lemma 7 Let Y ∈ D⊥(x0) with P(Y = 0) = 0. There exists X̃, distributed
as X0, cyclically anticomonotonic with Y , such that:

sup
U∈U

inf
X∈BU (X0)

E(Y X) = min
X∈P(X0)

E(Y X) = E(Y X̃)

Proof of the lemma 7.
Let Xn ∈ P(X0) such that limn→+∞ E(XnY ) = infX∈P(X0) E(XY ). From the
lemma of Komlòs, and the lemma of Fatou, we could suppose, with maybe an
extraction that Xn converges a.s. to X̃ ∈ P(X0) and:

E
(
X̃Y

)
= min

X∈P(X0)
E(XY )

Moreover, from the lemma 6, we have necessarily X̃ ∈ Σ(X0). Then, the demon-
stration of propostion 2.2 tells us that X̃ is distributed as X0 and is cyclically
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anticomonotonic with X0.
The next step is to prove that supU∈U infX∈BU (X0) E (XY ) = minX∈P(X0) E [XY ] =
λopt. We have evidently supU∈U infX∈BU (X0) E (XY ) ≤ minX∈P(X0) E [XY ]. For
the converse inequality, suppose �rst that X0 and Y verify also the last item of
theorem (2.2). This proves that X̃ is solution to the problem for a certain utility
function U ∈ U :

sup
X∈X (λoptx0)

E (U(X))

and this implies in particular that supU∈U infX∈BU (X0) E (XY ) ≥ λopt. However,
it is possible that the last item of theorem (2.2) is not satis�ed. Let ε > 0.
We can choose a random vector εX cyclically anticomonotonic with Y , such that
sup essl(εX) = +∞ and E (Y εX) ≤ ε. Let's de�ne the random vector X̃ with

X̃ = X for ω ∈ Ω1 = {X � x1}
X̃ = x1 for ω ∈ Ωi

X̃ = x2 + εX for ω ∈ Ω2

in such a way that, for all λ ∈ K∗, E
(
〈λ, X̃ −X〉

)
= 0. With this de�nition, it

is easy to see that the random vector X̃ is cyclically anticomonotonic with Y . We
�rst deduce that:

sup
U∈U

inf
X∈BU (X̃)

E (XY ) = E
(
Y X̃

)
Moreover, X is a portfolio preferred by each agent to X̃. To see this, let U ∈ U
and Y ∈ ∂U(X). We have:

E
(
U(X̃)

)
− E (U(X)) ≤ E

(
〈Y, X̃ −X〉

)
Now if we choose λ ∈ K∗ such that sup ess l(Y )|Ω1 < l∗(λ) < l2 = inf ess l(Y )|ω2 .
We have then, a.s., 〈λ, X̃ −X〉 ≥ 〈Y, X̃ −X〉, and we deduce:

E
(
U(X̃)

)
− E (U(X)) ≤ λE

(
X̃ −X

)
= 0

�.

The next element to prove the theorem is to know if it is indeed possible
to work by random vector of pricing. The next lemma is a duality result
which answers this question.

Lemma 8 Let X0 ∈ X 1 and x0 ∈ K. We have

inf
X∈P(X0)

π(X, x) = min
X∈P(X0)

sup
Y ∈D⊥(x0)

E (Y X)

= sup
Y ∈D⊥(x0)

min
X∈P(X0)

E (Y X)

21



Proof of the lemma 8.
Let n > 0 and D⊥n (x0) = D⊥(x0) ∩ {Y | 0 ≤ Y ≤ n}. The set D⊥n (x0) is a
weak convex compact subset of L1. Moreover with the theorem of dominated
convergence, Y 7→ E (Y X) is continuous. By a theorem minimax (see, for example,
theorem 45.8 p. 239, in [15]), we obtain:

sup
Y ∈D⊥n (x0)

inf
X∈P(X0)

E (Y X0)) = inf
X∈P(X0)

sup
D⊥n (x0)

E (Y X) (3)

Moreover, it is easy to see:

lim
n→+∞

sup
D⊥n (x0)

inf
X∈P(X0)

E (Y X) ≤ sup
Y ∈D⊥n (x0)

inf
X∈P(X0)

E (Y X) (4)

On the other hand, since P(X0) is convex and closed for the topology of convergence
in measure, we can �nd, with the help of Komlòs theorem, a sequel Xn ∈ P(X0)
such that:

lim
n→+∞

inf
X∈P(X0)

sup
Y ∈D⊥n (x0)

E (Y X) = lim
n→+∞

sup
Y ∈D⊥n (x0)

E (Y Xn)

and Xn → X̂ almost surely, where X̂ is in P(X0). Moreover, we have:

inf
k≥n

sup
Y ∈D⊥n (x0)

E (Y Xk) ≥ sup
Y ∈D⊥n (x0)

inf
k≥n

E (Y Xk)

≥ sup
Y ∈D⊥n (x0)

E
(

inf
k≥n

Y Xk

)
and, therefore with the theorem of monotone convergence

lim
n→+∞

sup
Y ∈D⊥n (x0)

E
(
ŶT Xn

)
≥ lim

n→+∞
sup

Y ∈D⊥n (x0)

E
(

Y inf
k≥n

Xk

)
= sup

Y ∈D⊥(x0)

E
(
Y X̂

)
As X̂ ∈ P(X0), we conclude that:

inf
X∈P(X0)

sup
Y ∈D⊥(x0)

E (Y X) ≤ sup
Y ∈D⊥(x0)

inf
X∈P(X0)

E (Y X)

The other inequality is straightforward and the result is proved.

With these two results we can prove �nally theorem (3.1).
Proof of the theorem 3.1.
We have:

PU (X0, x0) = sup
U∈U

inf
X∈BU (X0)

π(X, x0) = sup
U∈U

sup
Y ∈D⊥(x0)

inf
X∈BU (X0)

E (Y X)

therefore:
PU (X0, x0) ≥ sup

Y ∈D⊥,∗(x0)

sup
U∈U

inf
X∈BU (X0)

E (Y X)
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where D⊥,∗(x0) = {Y ∈ D⊥(x0) | P(Y = 0) = 0}. From lemma 7:

sup
U∈U

inf
X∈BU (X0)

E(Y X) = min
X∈P(X0)

E(Y X)

for Y ∈ D⊥(x0) and therefore:

PU (X0, x0) ≥ sup
Y ∈D⊥,∗(x0)

min
X∈P(X0)

E (Y X)

Moreover, let Y ∗ ∈ D⊥,∗(x0), Y ∈ D⊥(x0), and Yλ = λY + (1 − λ)Y ∗. We have
Yλ ∈ D⊥,∗(x0) and for all X ∈ P(X0), limλ→1 E (YλX) = E(Y X). We deduce that:

sup
Y ∈D⊥(x0)

min
X∈P(X0)

E (Y X) = sup
Y ∈D⊥,∗(x0)

min
X∈P(X0)

E (XY )

Now, we can use lemma (8), and we obtain:

PU (X0, x0) ≥ min
X∈P(X0)

sup
Y ∈D⊥(x0)

E (Y X) (5)

The other inequality is straightforward and We conclude that:

PU (X0, x0) = − min
X∈P(X0)

sup
Y ∈D⊥(x0)

E (Y X)

= inf
X∈X

{π(X, x0) | E (U(X)) ≥ E (U(X0))}

= min
X∈P(X0)

{π(X, x0) | X is a convex comb. of bundles distributed as X0}

i.e. we have item (1) and (2). But we deduce equally from (5) that :

PU (X0, x0) = sup
Y ∈D⊥(x0)

min
X∈P(X0)

E (Y X)

which gives again with lemma (8) item (3) and concludes the proof. �.

3.2 Characterization of e�cient contingent claims

The notion of ine�ciency size allows us to de�ne a new notion of e�ciency:

De�nition 3.2 Let an admissible trading strategy L with initial value x0

which leads to the positive contingent claim X0. X0 is e�cient with respect
to the initial portfolio x0 if his ine�ciency cost is zero.

With this de�nition, we see evidently that a strictly e�cient contingent claim
is e�cient but the converse is not true in general. To describe correctly the
set of e�cient contingent claims, we would like to have a similar theorem of
characterization as the one for the case of strictly e�cient contingent claims.
First note that this set is stable with the addition of a cash endowment.
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Lemma 9 Let X0 an e�cient contingent claim with respect to the initial
portfolio x0, and l0 a cash endowment. Then the contingent claim X0 + l0 is
e�cient for the initial portfolio x0 + l0.

Proof of the lemma 9.
Indeed, suppose that X0 + l0 is not e�cient. From the theorem (3.1), there exists
a strategy which leads to a contingent claim X̃ belonging to the closed convex set
of random vectors distributed as X0 + l0 from an initial portfolio λ(x0 + l0), with
λ < 1. Let X̃1 = X̃ − l0. X̃ belongs to the set Σ0(X0), and is attainable from an
initial portfolio λx0, and implies in particular that X0 is not e�cient with respect
to the initial portfolio x0.

We prove the following theorem which characterizes e�cient contingent claims:

Theorem 3.3 A positive contingent claim X0 ∈ X 1 with l0
∆= inf essl(X0)

is e�cient if and only if there exists an initial portfolio x0, and y0 ∈ K∗,
Y0 ∈ Y(y0) such that:

• E (Y0(X0 − l0)) = y0(x0 − l0)

• the random vectors X0 and Y0 are cyclically anticomonotonic.

Proof of the Theorem 3.3.
First, we note that, since the cone of e�cient contingent claim is stable with the ad-
dition of a cash endowment, we can restrict ourself to the case where inf ess l(X0) =
0.
First implication. Suppose the existence of Y0 with the properties required by
the theorem. With item (3) of theorem (3.1), we deduce the utility price of X0 with
respect to x0 is 1: X0 is e�cient.
Converse implication. Again, with theorem (3.1) an corollary (3.2) , if X0 is
e�cient, there exists an Y0 cyclically anticomonotone with X0 such that

PU (X0, x0) = 1

i.e. there exists y0 ∈ K∗
x0

such that Y0 ∈ Y(y0) and:

E (X0Y0) = x0y0 = 1

�.
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