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Kurzfassung

Myxobakterien sind stäbchenförmige sich auf flachen Oberflächen durch Gleiten fortbewegende
Einzeller. Durch ihr kollektives Verhalten sind sie in Paradebeispiel, wie einfache Interaktionen zwis-
chen einzelnen Bakterien zu emergenten, makroskopischen Bewegungsmustern führen können. Von
Biologen beobachtetes Bewegungsverhalten einzelner Zellen ist einerseits das Gleiten mit annähernd
konstanter Bewegungsgeschwindigkeit und Bewegungsrichtung, sofern das Bakterium nicht in Inter-
aktion mit einem anderen Individuum steht. Andererseits, wenn es zu Kollision zwischen Individuen
kommt, dann wurden Umkehrung der Bewegungsrichtung sowie das sich einander Ausrichten der in-
volvierten Bakterien beobachtet. Diese Dissertation lässt sich in vier Abschnitte unterteilen.
Einerseits wird in dieser Doktorarbeit ein neues kinetisches Modell für Kolonien von Myxobakte-

rien hergeleitet und untersucht, das Ähnlichkeit zur Boltzmanngleichung hat. Es wird Existenz und
Eindeutigkeit, sowie, in einem speziellen Setting, exponentielles Abklingen zum Equilibrium für die
räumlich homogene Version der Gleichung gezeigt.
Weiters, wird eine Modellerweiterung mit zusätzlicher Brown’scher Bewegung der Individuen während

der Phase des freien Gleitens betrachtet. Auf dem kinetischen Level drückt sich dies durch einen Dif-
fusionsterm, lediglich in Bewegungsrichtung, aus. Auch hier wird Existenz und Eindeutigkeit einer
Lösung gezeigt, sowie das Bifurkationsverhalten bezüglich des Diffusionsparameters bestimmt.
Ferner ist die kinetische Gleichung, die lediglich die Umkehrreaktionen zwischen zwei Bakterien

separat modelliert, Gegenstand der Untersuchung. Auch hier konnte neben Existenz einer Lösung, ex-
ponentielles Abklingen dieser zu einem symmetrischen Equilibrium bewiesen werden. Dieses Resultat
konnte für eine große Klasse an metrischen Räumen mit einer gewisser Symmetriestruktur abstrahiert
werden.
Die Modellannahme, dass die Zweibakterien-Stöße instant passieren, ist, obwohl Standard in der

kinetischen Modellierung, biologisch nicht ganz korrekt. Dies war Inspiration, eine kinetische Gle-
ichung für nicht-instante Interaktionen zwischen Partikel herzuleiten, was ein komplett neuer Zugang
in der kinetischen Modellierung ist. Das Modell besteht aus zwei Gleichungen: Eine beschreibt die
Dynamik der Teilchen, die sich gerade in der Freiflug-Phase befinden. Die zweite gibt Information
über das Verhalten von Paaren von Partikel, die sich in einem Kollisionsprozess befinden, in dem sie
sich einander ausrichten. Auch hier wurden Existenz einer Lösung des Systems, sowie Konvergenz zu
einem Equilibirum gezeigt. Ferner wurde das Model im instanten Limes untersucht, d.h. das Verhalten
des Systems, wenn man die Kollisionszeit gegen Null konvergieren lässt.
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Abstract

Myxobacteria are rod-shaped, social bacteria that are able to move on flat surfaces by „gliding“ and
form a fascinating example of how simple cell-cell interaction rules can lead to emergent, collective
behavior. Observed movement patterns of individual bacteria include straight runs with approximately
constant velocity, alignment interactions and velocity reversals.
In this doctoral thesis a new kinetic model of Boltzmann-type for colonies of myxobacteria will be

derived and investigated. An existence and uniqueness result is shown for the spatially homogeneous
equation as well as exponential decay to an equilibrium in a special setting.
Further, the model extension with additional consideration of Brownian forcing to the free flight

phase of single bacteria, which then gives rise to a directional diffusion term at the level of the kinetic
equation, is matter of investigation. Besides an existence result, bifurcation behavior with respect to
the diffusion parameter is characterized.
Considering the model with just reversal interactions between agents, existence as well as exponential

convergence to a symmetric equilibrium is proved. This result could be generalized to an abstract
setting for reversal dynamics on a broad class of metric spaces equipped with a suitable symmetry
structure.
Moreover, the urge to overcome the simplification of instantaneous binary bacterial collisions, stan-

dard in kinetic modelling, was inspiration to introduce a kinetic model for time-resolved binary interac-
tions between individuals, a completely novel approach in kinetic theory. The proposed model consists
of a system of two equations, one for the distribution of particles in free flight, one for the distribution
of pairs of particles in an alignment collision process. Existence of solutions as well as convergence to
equilibrium are shown. Further, the instantaneous limit is performed, from which a kinetic equation
modelling instantaneous alignment collisions between particles is recovered and investigated.
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1 General Introduction

I begin with an idea and then it becomes
something else.

Pablo Picasso

Contents

1.1 Biological Motivation: Myxobacteria as an example for emergent phe-
nomena . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Mathematical Framework: Kinetic Theory . . . . . . . . . . . . . . . . . . 5
1.2.1 Derivation of the kinetic equation . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.2 Entropy methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Main Contribution of this Thesis . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3.1 Kinetic Model for Colonies of Myxobacteria . . . . . . . . . . . . . . . . . . 9
1.3.2 Kinetic Model for Myxobacteria with Directional Diffusion . . . . . . . . . . 13
1.3.3 Reversal Collision Dynamics in a General Domain . . . . . . . . . . . . . . . 16
1.3.4 A Kinetic Model for Non-instantaneous Binary Collisions . . . . . . . . . . . 18

1.4 Declaration of Authorship . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

This thesis is dedicated to the derivation and study of mathematical models describing the movement
behavior of colonies of myxobacteria on flat substrates. Proved to be an accurate modelling approach
for such biological phenomena, we choose the kinetic setting as a mathematical framework. Trying to
encompass as many biological aspects as possible, we study four nonlinear kinetic partial differential
equations arising from our considerations.
The first model, which is the subject of Section 1.3.1 in this introduction, resp. Chapter 2 of the

manuscript, is a kinetic transport equation of Boltzmann-type for the distribution function f(x, ϕ, t)
for bacteria at position x ∈ R2, moving in direction ϕ ∈ T1 at time t ≥ 0, and has the form

∂tf + ω(ϕ) · ∇xf = 2
∫

T1
AL

b(ϕ̃, ϕ∗)
`

f̃f∗ − ff̃∗
˘

dϕ∗ +
∫

T1
REV

b(ϕ↓, ϕ↓∗)
´

f↓f↓∗ − ff∗
¯

dϕ∗ , (1.1)

where ω(ϕ) = (cosϕ, sinϕ), ϕ̃ = 2ϕ+ϕ∗, ϕ↓ = ϕ+π and T1 denotes the one-dimensional flat torus of
length 2π. The model describes motion along straight lines with fixed speed in direction ϕ, interrupted
by instantaneous binary collisions with collision cross-section b(ϕ,ϕ∗), giving information about the
collision frequency. As usual, sub- and super-scripts on f indicate evaluation at ϕ with the same
sub- and super-scripts. The two different collision terms on the right hand side correspond to the two
different types of bacterial collisions considered: Alignment and Reversal. T1

AL ⊂ T1 and T1
REV ⊂ T1

denote the sets of alignment- resp. reversal- collision partners of bacteria moving in direction ϕ.
In the second problem, corresponding to Section 1.3.2 of the general introduction and Chapter 3 of

the thesis, we study a model extension of (1.1) featuring Brownian forcing in the free flight phase of
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1 General Introduction

bacteria. This results as a directional diffusion term in the kinetic equation, which then has the form

∂tf +ω(ϕ) ·∇xf = µ∂2
ϕf +2

∫
T1
AL

b(ϕ̃, ϕ∗)
`

f̃f∗ − ff̃∗
˘

dϕ∗+
∫

T1
REV

b(ϕ↓, ϕ↓∗)
´

f↓f↓∗ − ff∗
¯

dϕ∗ . (1.2)

The constant µ > 0 in (1.2) describes the diffusion intensity.
The third equation, detailed out in Section 1.3.3 and further in Chapter 4, we analyze is of the

following shape
∂tf =

∫
x∗∈C[x]

b(x, x∗)
´

f↓f↓∗ − ff∗
¯

dx∗ , (1.3)

which describes the evolution of the distribution function f = f(x, t) of the dynamical states of
individual particles x in a probably abstract metric space S at time t > 0, undergoing reversal
collisions

(x, x∗) −→ (x↓, x↓∗).

We assume S to be equipped with a symmetric structure that allows to define an inclusion x↓ for all
x ∈ S. Also here we use the notation f↓ = f(x↓, t) and f∗ = f(x∗, t). By C[x] ⊂ S we denote the set of
collision partners for a particle x ∈ S. For the case S = T1 equation (1.3) corresponds to the spatially
homogeneous model (1.1) with just the reversal collision operator on the right hand side, where it was
inspired from.
The forth and last problem, corresponding to Section 1.3.4 in this introduction and Chapter 5 of

the manuscript, we consider the following system of two coupled equations:

∂tf + ω(ϕ) · ∇xf(ϕ) = 2
´

γ

∫
R
g(ϕ,ϕ∗) dϕ∗ − λf(ϕ)

∫
R
b(ϕ,ϕ∗)f(ϕ∗) dϕ∗

¯

,

∂tg +∇ · (V (ϕ,ϕ∗)g(ϕ,ϕ∗)) = λb(ϕ,ϕ∗)f(ϕ∗)f(ϕ)− γg(ϕ,ϕ∗) ,
(1.4)

where f = f(x, ϕ, t) describes the distribution function of single particles in free flight at position
x ∈ R2, time t > 0 and moving with constant speed and velocity ω depending on their property ϕ ∈ R.
While b(ϕ,ϕ∗) again describes the collision cross section, the constant λ > 0 stands for the rate at
which binary collisions between individuals happen. The function g(x, ϕ, ϕ∗, t) stands for pairs of
particles with properties ϕ and ϕ∗, which are in a collision process given by the potential V (ϕ,ϕ∗).
Pairs separate with rate γ > 0. Equation (1.4) therefore models dynamics of an ensemble of particles
undergoing non-instantaneous binary collisions, a fairly new approach in kinetic theory.

Main objectives and organization of the manuscript: Once derived or stated, the main driving
question regarding these models (1.1)-(1.4) is on one hand the one of well-posedness of these problems.
On the other hand we aim to qualify the asymptotic behavior of solutions and compare it to the
biological observations in order to to give validation of the proposed models.
The organization of this introductory Chapter is the following: In Section 1.1 we give an overview
over the considered biological phenomenon -myxobacteria- and further about emergence phenomena
in general. The following Section 1.2 is dedicated to introducing the mathematical framework -kinetic
theory- these models are set in, where methods and tools are motivated and explained. In Section 1.3
the equations (1.1)-(1.4) are explained in more detail with emphasis on their mathematical difficulties
and tools to handle them.
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1.1 Biological Motivation: Myxobacteria as an example for emergent phenomena

1.1 Biological Motivation: Myxobacteria as an example for emergent
phenomena

Biological phenomenon myxobacteria: Myxobacteria, from Greek ’myxo’ (slime), are rod-shaped,
social bacteria that live in cultivated soil and feed on insoluble organic substances including bacteria
and eukaryotic microbes. Acting as scavengers cleaning up biological detritus makes them play an
important role in maintaining balance in the environment. They have a fascinating life cycle, similar
to certain amoebae, called cellular slime molds (with Dictyostelium discoideum as the best known
example). During their vegetative growth phase they move as predatory swarms searching and killing
prey collectively, while under starvation conditions they aggregate and form fruiting bodies, which
produce spores that are more likely to survive until nutrients are more plentiful again.
Myxobacteria are specially known for their gliding movement on flat substrates, which was observed

in laboratory conditions (e.g. on agar-agar) [35], leaving a slime-trail behind them. This behavior was
eponymous for these kind of bacteria. The physical mechanism as well as the genetic basis are still
partly a puzzle to microbiologists and have already challenged them for several decades [24,36,44,46].
During their vegetative growth phase, while hunting and killing pray collectively, as well as during

their aggregation phase, bacteria form organized mono- or multi-layered groups called swarms. During
the swarming process the so-called rippling phenomenon is observed, i.e., macroscopic patterns due
to propagating waves of aligned bacteria [27, 28]. From a macroscopic point of view such waves of
aligned bacteria seem to travel unaffectedly through each other when colliding frontally. However,
it was revealed by tracking individual bacteria [40, 45] that most cells reverse their direction in the
collision process, while preserving a nematic alignment order. In other words: Locally myxobacteria
are oriented and move in the same or in opposite directions.
Large scale pattern formation requires signaling between individual cells on a microscopic level.

The signaling mechanism for myxobacteria, which is most important for cell aggregation and rip-
pling is called C-signaling [40]. Unlike many other signaling mechanism based on diffusing chemical
substances, C-signaling relies on the C-factor, a protein bound to the cell surface. These protein is
interchanged between individuals, where it has been observed that direct cell-cell contact is necessary
for C-signaling [29,30].

Emergence phenomena: Myxcobacteria are a fascinating example how simple individual based in-
teractions can lead to large scale collective behavior. This phenomenon is known as emergence (from
Latin ’emergere’ meaning ’to surface’, ’to emerge’) and corresponds to the appearance of macroscopic
structures caused by underlying microscopic dynamics of a huge assemble of individuals. Emergence
is ubiquitous in nature and occurs for example in collective dynamics of bird flocks, fish schools [38],
crowds of pedestrians [23], but also can be seen in network formation [25], opinion dynamics [19] or
tissue growth [37]. All these examples have in common that at the microscopic level single individuals
or agents (e.g. cells, animals, etc.) interact with each other following intrinsic rules. These micro-
scopic fluctuations lead to macroscopic structures, which, however, are not encoded directly in these
individual based dynamics. The main challenge therefore is given by finding an explanation how the
macroscopic or observable dynamics emerge from the microscopic ones.
The kinetic or mesoscopic description of such an assemble often serves as mathematical tool forming

the bridge between the transition from microscopic scale at the level of each agent to the large scale
realized at the level of the whole group. Applying this methodology of kinetic theory to describe
self-organization phenomena in life sciences is still a fairly young discipline, which gained popularity
over the last years. One of the earliest approaches to capture such emergence phenomena on the

3



1 General Introduction

microscopic level is the Vicsek model [41] introduced in 1995 as well as variations of it, which have
received much attention over the years. Although being of minimal structure it gives an accurate
description for a wide range of phenomena in life sciences. The time-dependent Vicsek model describes
motion of self-propelled agents along straight lines with constant speed, interrupted by adjustment
of the agent’s direction towards the mean direction of the individuals in its neighborhood at specific
time steps, subject to some random perturbation. In 2006 a Boltzmann-like model has been proposed
as a kinetic description of the Vicsek particle model [5]. Starting from a microscopic bidimensional
model of self-propelled particles with noisy and local interaction rules tending to align the velocities
the authors analytically performed the phase-transition to hydrodynamic equations for the density
and velocity fields within a Boltzmann approach. Also this model gained much attention in the last
years [4, 5, 10,13] due to its ubiquitousness in its application.

Also the emergence phenomenon specifically in colonies of myxobacteria has been motivation to
formulate kinetic theories for interacting self-propelled rods [2, 3]. In [14] a kinetic model has been
formulated, which produces relaxation to nematically aligned states. The model is of mean field type,
i.e., cell-cell signaling is modeled as a nonlocal process. Simulations with the macroscopic limit do
not produce the rippling phenomenon. Including a waiting time until an individual can reverse again
seems to be necessary to observe the desired behavior [15,26,27,28].

4



1.2 Mathematical Framework: Kinetic Theory

1.2 Mathematical Framework: Kinetic Theory
A typical way to describe dynamics of a many agents-system is by stating ordinary differential equa-
tions for the evolution of the time-dependent state z = z(t), t ≥ 0 of each individual. With Γ we
denote the state-space for the assemble of N agents, which includes usually a non-overlapping con-
strain. For example in the situation of physical particles, where the states z = (x, v) are usually given
by position x ∈ Rd and velocity v ∈ Rd, d = 2, 3, this microscopic description of the system is governed
by Newton’s laws of motion. Although very precise, the disadvantage of this approach is the enormous
number of involved particles, which makes the state of the huge system practically intractable with
respect to time. From a numerical point of view it would involve high computational costs, hardly
performable by modern super computers. On the other hand, the macroscopic description of particles
consists of observable quantities, often position-dependent as the density, mean velocity or in the case
of physical systems also temperature and pressure, which has the disadvantage of loosing precision.
The link between the microscopic laws and the macroscopic behavior is often difficult to establish.
As indicated in Section 1.1 the mathematical tools for studying emergence with aim to overcome the

just mentioned difficulties come from kinetic theory. This builds the bridge between the microscopic
and the macroscopic description of the dynamics of an assemble of particles by stating a statistical
description of the particle system. This kinetic or also called mesoscopic description was originally
developed in the field of mathematical physics, more precisely in the field of gas dynamics. Being
introduced first by Boltzmann [7], in his study of gas dynamics, and Maxwell [33], while investigating
the stability of Saturn’s Rings. After being established, this statistical description of many particle
systems gained popularity soon, although it also was matter of great discussion, criticized mostly by
opponents of the atomic theory in the late 19th century.

1.2.1 Derivation of the kinetic equation
The main concept of kinetics is to introduce a (probability) distribution function f(z, t) ≥ 0 of a single
agent (interpreted as particle), which encodes the density at a state z in the state space (usually a
position-velocity space), at time t ≥ 0. The quantity f(z, t)dz then represents the number of particles
in the volume element dz.
One way to derive an equation for such a quantity f starting from microscopic interaction rules is

following Boltzmann in his formal derivation of the Boltzmann equation for hard sphere dynamics [7],
which is also the method we chose to derive the kinetic model for myxobacteria dynamics (1.1), see
section 1.3.1 of this introduction, or Chapter 2 in the manuscript. In the following we explain the
main ideas in a general framework. In order to place ourselves in an appropriate setting for this
demonstration, we assume a (probably very huge) number of N particles with states of the form
Γ 3 zi = (xi, vi), i ∈ {1, . . . , N}, given by a particle’s position xi and its velocity vi, both from a
position- resp. velocity space, which are subsets of Rd. The individual based dynamics shall be given
by

dxi
dt

= vi,
dvi
dt

= 0,

interrupted by instantaneous binary collisions which cause velocity jumps subject to invertible collision
rules. Let further the state space Γ be such that no overlapping in position between agents is allowed.
Introducing a time-dependent probability density function P (z1, . . . , zN , t) ≥ 0 and deriving P with
respect to time we obtain the following Liouville equation

∂tP (z1, . . . , zN , t) +
N∑
i=1

vi · ∇xiP (z1, . . . , zN , t) = 0. (1.5)

5



1 General Introduction

Integrating (1.5) over Γ1(z) := {(z2, . . . , zN ) : (z, z2, . . . , zN ) ∈ Γ} gives an evolution equation for the
one-particle distribution function

P1(z, t) :=
∫

Γ1(z)
P (z, z2, . . . , zN , t)

N∏
i=2

dzi ,

the first marginal of P . Important to mention here is the indistinguishability property-assumption we
take on the assemble of particles, which means that interchanging two individuals doesn’t effect the
dynamics of the whole system. Therefore, the choice of the particle’s index, with respect to which we
define the first marginal, is insignificant. After additional use of the divergence theorem the equation
for P1 is of the form

∂tP1 + v · ∇xP1 = Q(P2), (1.6)

where Q(P2) denotes an integral over the boundary of Γ, where particles overlap due to a collision.
Since the boundary of Γ consists of an ingoing (post-collisional) and an outgoing (pre-collisional) part,
Q(P2) = G(P2) − L(P2) can be separated into a gain-term G(P2) and a loss-term L(P2). Therefore,
in the gain-term G(P2) the integrand P2 is evaluated at post-collisional states and in the loss-term
L(P2), P2 is evaluated at pre-collisional states. The unknown P2 is defined as the second marginal of
P :

P2(z, z∗, t) :=
∫

Γ2(z,z∗)
P (z, z∗, z3, . . . , zN , t)

N∏
i=3

dzi ,

where Γ2(z, z∗) := {(z3, . . . , zN ) : (z, z∗, z3 . . . , zN ) ∈ Γ}. This makes (1.6) a not closed problem. An
attempt to close this equation by deriving an equation for the two-particle probability density P2 would
include P3, the three-particle probability density, on its right-hand-side, the same way as an evolution
equation for Pk includes Pk+1, k ∈ {3, . . . , N − 1}. This results in a completely coupled system for
the marginals Pk, k ∈ {1, . . . , N}, known as the BBGKY-hierarchy [11]. After rewriting the post-
collisional evaluation of P2 in the gain-term G(P2) in terms of pre-collisional states, which is possible
since we assume invertible collisions, and a proper rescaling of (1.6), we perform the Boltzmann-Grad
limit [20].

Remark 1.1. We may note here, that the representation of G in terms of pre-collisional states is
essential, since otherwise the right-hand-side would formally go to zero in the limit. The question why
this is the correct choice is fairly nontrivial, for further insights we refer the reader to [11].

The Boltzmann-Grad limit is characterized by letting the number of particles go to infinity, i.e.
N → ∞, the size of the particles go to zero, while the ratio of the interaction-range to the mean
free path (average travel-distance between collisions) of particles remains fixed. The derivation of the
Boltzmann equation further involves the molecular chaos assumption, first introduced by Maxwell
in [34], stating that in the limit two colliding particles are uncorrelated, which yields that P2 becomes
a product of the one-particle densities:

P1(z, t) −→ f(z, t), P2(z, z∗, t) −→ f(z, t)f(z∗, t).

Finally, formally performing the limit, equation (1.6) becomes

∂tf + v · ∇xf = Q(f, f), (1.7)
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a kinetic equation, similar to the Boltzmann equation for hard sphere dynamics, and describing the
evolution of the expected particle density function f = f(x, v, t). While the left-hand-side of (1.7)
describes transport of particles with their velocity v, the operator Q on the right-hand-side is an
integral operator and accounts for the interaction between particles, therefore also quadratic in f .
It should be emphasized here that molecular chaos is an assumption, which cannot be produced by

the dynamics of the system of particles itself, since a collision would imply correlation between the
two interacting particles. One major step in performing the above illustrated limit rigorous, is proving
propagation of chaos, i.e. that for an initially chaotic state this property is conserved in time, where
a first result was obtained by Lanford in [31].
For further insight into the derivation of the Boltzmann equation, also in a rigorous manner, in-

cluding several aforesaid remarks, we refer the reader to [11].

1.2.2 Entropy methods

Entropy (from Greek ’entropía’ meaning ’transformation’), describes a measure for energy dispersal
or molecular disorder. Its concept was first introduced by Claudius in 1865 as physical quantity in
a thermodynamcal context measuring the amount of energy no longer usable for work (second law
of thermodynamics) in [9]. Few years later, in the 1870s, statistical descriptions were proposed by
Boltzmann, Gibbs and Maxwell. In 1877 [8] Boltzmann’s statistical interpretation for the second law
of thermodynamics, given by the famous formula

S = k logW,

combined the thermodynamical and the statistical interpretations of entropy. It states that the entropy
S of a system is proportional to the logarithm of W , the number of ways the distribution of particles
can be constructed,
Other than in physics, where the molecular chaos can only increase in time, themathematical entropy

is defined as a nonincreasing function, the negative physical entropy. This concept gained interest as
mathematical tool starting in the mid/end of the 20th century by, e.g., Lax in 1971 who defined
entropy solutions for hyperbolic conservation laws [32], by Bakry and Émry in 1985 for the large time
behavior in stochastic processes [1] and, in the kontext of kinetic equations, Boltzmann’s H-functional
is used for obtaining a priori estimates for solutions of the Boltzmann equation by DiPerna and Lions
in 1989 [17] and for large time behavior of its solutions by Desvillettes [16], just to name a few.

Decay to equilibrium: In order to characterize the asymptotic behavior of the proposed models
(1.1)-(1.4) the crucial ingredients are entropy and entropy/entropy-dissipation inequalities, which in
this section will be presented in a quite general framework. These ideas will be applied in several
aspects and situations to all problems described in this thesis.
The main task is given by finding convex quantities connected to some intrinsic properties of the

considered model, which are nonincreasing along solutions of the corresponding equation or system of
equations. In the optimal case they will serve as Lyapounov functional for the differential equation,
from which decay to a steady state, in a suitable topological framework can be deduced. This can be
optimized by finding explicit decay-rates. To be more precise, for a differential equation of a general
form

∂tf = F (f), t ≥ 0, (1.8)
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1 General Introduction

where the right-hand-side F can be thought of being a sum of differential- and integral-operators, we
are searching for functionals E(t) = E [f(t)]→ R, such that for the entropy dissipation we have

d

dt
E [f(t)] =: −D[f(t)] ≤ 0,

along solutions f(t) to (1.8). Let further f∞ be a unique equilibrium of (1.8), i.e. F (f∞) = 0, then
we may further ask for the condition E [f∞] ≤ E [f(t)], for all t ≥ 0. Interpreting the relative entropy
E rf(t)|f∞s := E [f(t)] − E [f∞] as a measure for distance (in an appropriate topological setting the
problem is posed) between the solution f and the steady state f∞, the relation

d

dt
E [f(t)|f∞] = −D[f(t)] ≤ 0,

already shows that a trajectory f(t) can not move further away from the equilibrium than it was
initially. The optimal situation would be to find an inequality of the form

D[f(t)] ≥ κ pE [f(t)]− E [f∞]q , (1.9)
for a constant κ > 0. Exponential decay of E [f(t)|f∞] to zero with rate κ then follows immediately
from (1.9). In a situation where the relative entropy even controls the distance of f to f∞ in the norm
‖·‖ of the space equation (1.8) is set in, i.e.

‖f − f∞‖≤ c pE [f(t)]− E [f∞]q , c > 0,
inequality (1.9) can be seen as coercivity property of the entropy dissipation D, also called Poincaré
inequality in analogy to diffusion processes. In this case E [f(t)|f∞] serves as Lyapunov functional,
from which decay of f(t) to equilibrium f∞ can be concluded.

Even in absence of this coercivity property of the entropy dissipation some situations allow decay
to equilibrium, a concept which is known as hypocoercivity. This concept, after being first introduced
in [22, 42], recently became matter of high interest in the kinetic community, e.g. see [18], [21]. We
may now demonstrate a standard, but quite general situation of a hypocoercive differential equation.
We write F of the right-hand-side in equation (1.8) as

F = FD + FI ,

sum of a dissipate operator FD, fulfilling
D[f(t)] = −E ′[f ]FD(f)

and an invariant operator FI with
E ′[f ]FI(f) = 0,

where E ′[f ] denotes the Fréchet-derivative of the entropy E . Further we assume that the stationary
state f∞ is a global equilibrium, meaning that it is in the nullspace of both FD and FI , i.e. FD(f∞) =
FI(f∞) = 0. This implies that the entropy E [f ] already stops decaying if f reaches N (FD), the
nullspace of the dissipative part FD, also called the set of local equilibria of (1.8). The information
for convergence to the global equilibrium f∞ therefore also has to come from the invariant part FI ,
supposed that N (FD) is not invariant under FI . The basic idea is that once the solution f reaches
the nullspace of FD it is transported out of it again by action of FI , unless the global equilibrium f∞
is reached. Therefore, the main aim in such a hypocoercivity situation is to find a modification Ẽ of
the ’natural’ entropy E by adding terms having their origin in FI , which are acting on N (FD). More
precisely, we want

d

dt
Ẽ [f(t)] = −D̃[f(t)] ≤ 0, with D̃[f ] = 0⇔ f ≡ f∞.

Exponential decay of f to equilibrium follows then, if Ẽ controls ‖f − f∞‖ and D̃ is coercive.
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1.3 Main Contribution of this Thesis
This thesis is divided into five Chapters. The second consists of a published article, the third of an
article close to submission. The forth chapter contains first results form an ongoing project and the
fifth chapter again consists of an article close to submission and further results of an ongoing project.
Notation might therefore be slightly inconsistent across chapters. The corresponding list of literature
can be found at the end of each chapter separately.

1.3.1 Kinetic Model for Colonies of Myxobacteria
Chapter 2 is a collaboration with S. Hittmeir, A. Manhart and C. Schmeiser in which we formally
derive the main model (1.1) for the movement behavior of colonies of myxobacteria and perform first
steps in its analysis.

Model assumptions: We make the following model assumptions based on the biological behavior
explained in Section 1.1.

• We consider N identical bacteria moving in R2, each being idealized as a rod of thickness zero
and of length l.

• For i = 1, . . . , N xi ∈ R2 describes the center and ωi = ω(ϕi) = (cosϕi, sinϕi) the direction of
movement with direction angle ϕi ∈ T1 of bacterium i.

• Between interactions, bacterium number i glides with constant speed s0 in its longitudinal di-
rection ωi, i.e.

dxi = s0ωidt,

dϕi = 0.
(1.10)

• The free flight is interrupted by instantaneous, binary collisions of bacteria, where we distinguish
two types of interactions between agents (x, ϕ) and (x∗, ϕ∗):
– Alignment of the two agents, if ω · ω∗ > 0 (collision with pre-collisional angles less than
π/2 apart) given by:

(x, ϕ), (x∗, ϕ∗) → (x′, ϕ′), (x′, ϕ′) with x′ = x+ x∗
2 , ϕ′ = ϕ+ ϕ∗

2 .

– Reversal of both bacteria, if ω · ω∗ < 0 (collision with pre-collisional angles greater than
π/2 apart) given by the collision rule:

(x, ϕ), (x∗, ϕ∗) → (x, ϕ+ π), (x∗, ϕ∗ + π).

These model assumptions involve some simplifications, which causes the mathematical description to
be not completely accurate compared to biological observations. This, on one hand is the assumption
that bacteria move with constant velocity in the time between collisions. An attempt to overcome
this simplification can be found in Section 1.3.2 of this introduction, corresponding to Chapter 3 of
the manuscript. On the other hand, the proposal of instantaneous binary collisions between bacteria
corresponds to an adaptation of our setting to the one for hard sphere dynamics. The concept of
noninstantaneous collisions between particles describes, to our best knowledge, a new concept in
kinetic theory, which will be discussed in Section 1.3.4 in the general introduction and Chapter 5 of
the complete thesis.
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1 General Introduction

Model Derivation: In order to perform the phase transition from the above described individual
based dynamics to the mesoscopic scale, we use the Boltzmann’s method [7] described in Section
1.2.1 and adapted to our setting. The main specialty in our setting is that the alignment collisions
are not invertible. This causes the procedure not to be directly applicable, since a pre-collisional
representation of the right-hand-side in (1.6) is needed to be able to perform the Boltzmann-Grad
limit correctly. (See Remark 1.1.) Therfore, a regularization of the alignment collisions is needed:

(x, ϕ), (x∗, ϕ∗) → (x′ε, ϕ′ε), (x′∗ε, ϕ′∗ε)

with
ϕ′ε = 1− ε

2 ϕ+ 1 + ε

2 ϕ∗ , ϕ′∗ε = 1 + ε

2 ϕ+ 1− ε
2 ϕ∗ , ε� 1,

i.e. bacteria are drifting slightly apart from each other after the collision. The post-collisional centers
x′ε and x′∗ε are determined accordingly such that the post-collisional states are on the ingoing boundary
of Γ. The resulting equation is of the form

∂tf + ω · ∇xf = 2
1− ε

∫
TAL→ϕ

b(ϕ̃, ϕ∗)f(x, ϕ̃)f(x, ϕ∗)dϕ∗ +
∫

TREVϕ

b(ϕ,ϕ∗)f(x, ϕ↓)f(x, ϕ↓∗)dϕ∗

−
∫

T1
b(ϕ,ϕ∗)f(x, ϕ)f(x, ϕ∗)dϕ∗ ,

with b(ϕ,ϕ∗) = |ω∗ · ω⊥|= |sin(ϕ− ϕ∗)| and

TREVϕ =
ˆ

ϕ+ π

2 , ϕ+ 3π
2

˙

, TAL→ϕ =
´

ϕ− π

4 , ϕ+ π

4

¯

,

ϕ̃ = 2ϕ− (1 + ε)ϕ∗
1− ε , ϕ↓ = ϕ+ π , ϕ↓∗ = ϕ∗ + π .

Removing the regularization in the alignment collisions, i.e. performing the limit ε → 0, we obtain
the kinetic model for myxobacteria:

∂tf + ω · ∇xf = Q(f, f) := GAL(f, f) +GREV (f, f)− L(f, f)

= 2
∫

TAL→ϕ
b(ϕ̃, ϕ∗)f̃f∗dϕ∗ +

∫
TREVϕ

b(ϕ,ϕ∗)f↓f↓∗dϕ∗ −
∫

T1
b(ϕ,ϕ∗)ff∗dϕ∗ ,

(1.11)

with now ϕ̃ = 2ϕ − ϕ∗, subject to initial condition f(x, ϕ, 0) = fI(x, ϕ). If we also split up the
loss-term in its reversal- and alignment part, we obtain the following representation of the collision
operator:

Q(f, f) = QAL(f, f) +QREV (f, f)

:= 2
∫

T1
AL

b(ϕ̃, ϕ∗)
`

f̃f∗ − ff̃∗
˘

dϕ∗ +
∫

T1
REV

b(ϕ↓, ϕ↓∗)
´

f↓f↓∗ − ff∗
¯

dϕ∗ .

Basic properties of (1.11) are the two conservation laws: Conservation of the number of bacteria,

∂tρ+∇x · (ρu) = 0 , (1.12)

with the usual definition of number density ρ(x, t) :=
∫

T1 f(x, ϕ, t)dϕ and flux ρu(x, t) :=
∫

T1 ω(ϕ)f(x, ϕ, t)dϕ,
and the second one given by

∂t

∫
T1
ϕf dϕ+∇x ·

∫
T1
ϕωf dϕ = 0 . (1.13)
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Equilibria of Q are of the form

f∞(ϕ) = ρ+δ(ϕ− ϕ+) + ρ−δ(ϕ− ϕ↓+) , (1.14)

with arbitrary ρ± ≥ 0, ϕ+ ∈ T1. The factor b(ϕ,ϕ∗) = |ω∗ ·ω⊥|= |sin(ϕ−ϕ∗)| in the collision integrals
is a consequence of the rod shape of the bacteria. It gives the rate of collisions between bacteria
with the directions ϕ and ϕ∗. Assuming instead bacteria with circular shape makes the collision rate
independent from the movement direction. By analogy to a similar simplification in the Boltzmann
equation for the gas dynamics [11], we use the name Maxwellian myxos for this imagined species,
modeled by (1.11) with b(ϕ,ϕ∗) ≡ 1.

Main goals concerning the analysis of (1.11): The two main objectives in the study of (1.11) are

1. to show its well-posedness

2. and characterize its asymptotic behavior.

The task of proving an existence result for the full model (1.11) can be compared to the case of the
original Boltzmann equation [17], but with the lack of an logarithmic entropy, due to the singularity
of the alignment collisions. This is therefore still an open problem. Investigating the asymptotic
behavior, we face the difficulty that there are three free parameters, ρ+, ρ−, ϕ+, in the equilibrium
distribution (1.14) as opposed to only two conservation laws (1.12) and (1.13). In order to overcome
the aforesaid difficulties we investigate the spatially homogeneous version of (1.11) and place ourselves
in a special setting of initial conditions.

Analysis of the spatially homogeneous case: We consider the spatially homogeneous initial value
problem of (1.11):

∂tf = Q(f, f), in T1 × (0,∞) (1.15)
f(ϕ, 0) = fI(ϕ) , ϕ ∈ T1.

Concerning goal 1, we were able to prove the following result:

Theorem (see Chapter 2, Theorem 2.1). For fI ∈ L1
+(T1) the initial value problem (1.15) has a

unique global solution f ∈ C
`

[0,∞), L1
+(T1)

˘

.

The main tool of this proof is a fixed-point argument via Lipschitz-estimates in L1 on the collision
operator Q. We want to emphasize at this point that the boundedness of the collisional cross section
b(·, ·) ≤ 1 plays an important role. In contrast to the case of the spatially homogeneous version of
the original Boltzmann equation, where first truncation of the collision kernel is needed to establish
existence of a solution as weak limit of the solutions of the truncated equations via compactness
arguments.
For the long-time behavior, goal 2, we restrict ourselves to a certain class of initial conditions:

f(x, ϕ, 0) = fI(x, ϕ) , satisfying supp(fI(x, .)) ⊂ T1
+ ∪ T1

−, ∀x ∈ R2 , (1.16)

where T1
+ := pπ/4, 3π/4q and T1

− := p−3π/4, −π/4q, which means that initially the colony of bacteria
is already grouped into two parts, one moving up in a direction with angle between pπ/4, 3π/4q, the
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other moving down with an angle on the opposite part of the torus. Property (1.16) is propagated by
(1.15), which causes mass conservation within each group

ρ+ =:
∫

T1
+

f dϕ, ρ− =:
∫

T1
−

f dϕ.

Further, with the third conserved quantity

ϕ+ = 1
ρ+ + ρ−

˜∫
T1

+

ϕfI dϕ+
∫

T1
−

ϕ↓fI dϕ

¸

∈ T1
+,

we are now able to characterize the equilibrium (1.14) completely. In order to achieve decay to
f∞ we used entropy methods described in Section 1.2.2. Since the alignment operator QAL causes
concentration of direction angles, a natural guess for finding a decaying quantity for the system (1.15)
would be

V[f ] =
∫

T1
+

(ϕ− ϕ+)2f dϕ+
∫

T1
−

(ϕ− ϕ↓+)2f dϕ ,

i.e. the relative variance from the conserved angle ϕ+ in each group. It’s time derivative along solutions
of (1.15) is given by

d

dt
V(f) = −1

4

∫
T1

+

∫
T1

+

b(ϕ,ϕ∗)ff∗(ϕ− ϕ∗)2dϕ∗dϕ

−1
4

∫
T1
−

∫
T1
−

b(ϕ,ϕ∗)ff∗(ϕ− ϕ∗)2dϕ∗dϕ ≤ 0 .

Note that the reversal collisions do not contribute to the right hand side, which vanishes whenever
concentration is reached in both groups, even when the two concentration angles are not opposite each
other. Therefore it is not possible to derive a differential inequality for V(f) as in (1.9), additional
information from the in this context invariant operator QREV is needed. Since the reversal collisions
cause symmetry, a natural extension of V would be the term

ρ+(ϕ̄+ − ϕ+)2 + ρ−(ϕ̄− − ϕ↓+)2,

measuring the quadratic distance between the time-depending mean angles

ϕ̄+ :=
∫

T1
+

ϕf dϕ, ϕ̄− :=
∫

T1
−

ϕf dϕ.

The entropy H is defined as the sum of these two contributions

H[f ] :=
∫

T1
+

(ϕ− ϕ+)2f dϕ+
∫

T1
−

(ϕ− ϕ↓+)2f dϕ+ γρ+(ϕ̄+ − ϕ+)2 + γρ−(ϕ̄− − ϕ↓+)2,

which, for γ > 0 suitably chosen, can be shown to control the 2-Wasserstein distance of the solution
f to equilibrium f∞, i.e. WT1

2 (f(·, t), f∞) ≤ H[f ], which will be the topological framework of our
convergence result. For deeper insights in the concept of Wasserstein spaces we refer the reader to
Chapter 2, Section 2.4, or to [43].

With this preparation, we were able to prove the following result, concerning point 2 of the main
questions:

12



1.3 Main Contribution of this Thesis

Theorem (see Chapter 2, Theorem 2.6). Let fI ∈ L1
+(T1) with supp(fI) ⊂ T1

+ ∪ T1
−, and let f be a

solution of (1.15). Then for Maxwellian myxos, i.e. b(ϕ,ϕ∗) ≡ 1, there exists C > 0, such that

WT1
2 (f(·, t), f∞) ≤ Ce−λt , ∀ t ≥ 0 ,

with f∞ defined in (1.14) and λ > 0 explicitly computable.

Numerical simulations for (1.11) (see Chapter 2, Section 2.5) give evidence for the above result, even
showing the expected behavior for the general case without restrictions on fI as well as b(ϕ,ϕ∗) =
|sin (ϕ− ϕ∗)|. Further, assuming again two group initial data (1.14), a formal macroscopic limit in
(1.11) reveals equations for the three quantities ρ+, ρ− and ϕ+, who resemble the ones obtained in [14],
although having its origin in different microscopic dynamics.

1.3.2 Kinetic Model for Myxobacteria with Directional Diffusion

In Chapter 3, a collaboration with C. Schmeiser, we study a model for the in Section 1.3.1 described
behavior of bacteria with additional consideration of Brownian drift in velocity direction during the
free-flight phase of bacteria. This describes an attempt to overcome the simplification of assuming that
bacteria move on straight lines between interactions, which turned out to be not completely accurate
in biological observations. The microscopic dynamics stated in (1.10) are changed to

dxi = s0ωidt,

dϕi =
a

2µdBt,

where µ > 0 describes the diffusion constant and Bt is the standard Brownian motion. On the kinetic
scale, this leads to a diffusion term just in velocity direction. Therefore, the model considered in this
section of the introduction, corresponding to Chapter 3 of the thesis, is of the form

∂tf + ω · ∇xf = µ∂2
ϕf +Q(f, f)

= µ∂2
ϕf + 2

∫
TAL→ϕ

b(ϕ̃, ϕ∗)f̃f∗dϕ∗ +
∫

TREVϕ

b(ϕ,ϕ∗)f↓f↓∗dϕ∗ −
∫

T1
b(ϕ,ϕ∗)ff∗dϕ∗ ,

f(x, ϕ, 0) = fI(x, ϕ)

(1.18)

using the same notation as in (1.11), but now assuming a bounded velocity- and position-space:
(x, ϕ) ∈ T2

x × T1
ϕ. Also for this model the total mass is conserved and denoted by

M :=
∫

T1×T2
f(x, ϕ, t) dϕdx.

Therefore, the uniform distribution is given by

f0 := M

2π ,

and defines an equilibrium for both this model (1.18) and for the no-diffusion case (1.11). The theorem
stated in the last section (corresponding to Theorem 2.6 in Chapter 2) above as well as numerical
simulations suggest the instability of f0 in absence of directional diffusion.
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Main goals concerning the analysis of (1.18): Regarding the analysis of (1.18) we aim to answer
the following questions:

1. Does a unique solution to (1.18) exist?

2. How does the stability behavior of the equilibrium f0 change with varying diffusivity µ? Are
there other equilibira?

Existence and uniqueness in L2: Due to the regularizing effect of the directional diffusion term the
higher regularity and integrability than in the no-diffusion case (1.11) can be expected. Concerning
objective 1, we managed to prove the following result:

Theorem (see Chapter 3, Theorem 3.1). Let fI ∈ H2
x,ϕ(T2×T1), fI ≥ 0, and let µ/M be large enough

with M =
∫

T2×T1 fIdϕdx. Let furthermore ‖fI − f0‖H2
x,ϕ(T2×T1) be small enough with f0 = M/(2π).

Then equation (1.18) subject to the initial condition f(t = 0) = fI has a unique global solution
f ∈ C([0,∞), H2

x,ϕ(T2 × T1)), satisfying

‖f(t)− f0‖H2
x,ϕ(T2×T1)≤ Ce−λt‖fI − f0‖H2

x,ϕ(T2×T1) , C, λ > 0 .

The proof of this result consists of two steps: First, we show spectral stability of f0 regarding the
linearization around the uniform equilibrium of (1.18)

∂tf + ω(ϕ) · ∇xf = µ∂2
ϕf +Q(f0, f) +Q(f, f0),

by applying the L2-hypocoercivity method established by Dolbeault, Mouhot and Schmeiser in 2015 [18].
Here, the main goal is to find a Lyapunov function, which provides enough control over f and the
involved operators such that existence and exponential decay to f0, with an explicite rate, depending
on the diffusivity µ, can be concluded. More precisely, we will first show that there exist constants
C > 0 and λ > 0, such that

‖et(L+QM−T )fI‖≤ Ce−λt‖fI‖ , ∀t > 0,

where the following notation

L := µ∂2
ϕ, T := ω(ϕ) · ∇x, QM := Q(f0, ·) +Q(·, f0)

for the involved operators was used. The second step involves including the nonlinear remainder of the
collision operator Q(f, f), which is quadratic in f . In order to include Q into the estimates, control
up to second order derivatives of f is needed, which is achieved by applying the same method as for
the linear equation in f iteratively for all derivatives up to order two of f . The obtained decay of f ,
its derivatives and, due to regularity estimates, also Q(f, f), will be used to find time independent
estimates of the mild formulation for the original problem (1.18), form which global existence of a
solution and exponential decay to equilibrium can be concluded.

Bifurcation analysis: The following considerations addressing objective 2 correspond to Chapter 3,
Section 3.3.1.

Inspired by the results for the equation without diffusion (1.11), we expect the uniform steady
state f0 to remain unstable for sufficiently small µ and hope to find stable, non-uniform equilibria in
this collision dominating regime. On the other hand, in an regime with large enough diffusion, f0 is
expected to be stable. Therefore, we aim to determine a concrete diffusion parameter µ∗, at which
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1.3 Main Contribution of this Thesis

the uniform equilibrium changes its stability, i.e. where a bifurcation happens. For further insights
into the concept of bifurcation analysis, we refer the reader to [12].
We perform a linear stability analysis for the spatially homogeneous version of (1.18)

∂tf = µ∂2
ϕf +Q(f, f), ϕ ∈ T1, t > 0,

f(ϕ, 0) = fI(ϕ), ϕ ∈ T1.
(1.19)

We linearize (1.19) around the uniform equilibrium f0 and obtain

∂tf
∗ = µ∂2

ϕf
∗ +QMf

∗,∫
T1
f∗ dϕ = 0,

for the perturbation f∗, which’s average over T1 vanishes to be consistent with mass conservation.
Existence of a solution in L2(T1

ϕ) motivates the Fourier series ansatz

f∗(ϕ, t) =
∑
n≥1

an(t) cos (nϕ) +
∑
n≥1

bn(t) sin (nϕ).

Indeed, it turns out that the operator µ∂2
ϕ · +QM · is diagonal in L2(T1) with respect to the basis

{cos (n ·), sin (n ·)}n≥0. We obtain the following evolution equations for the Fourier modes
ˆ

9an
9bn

˙

= λn(µ, f0)
ˆ

an
bn

˙

,

where {λn(µ, f0)}n≥1 describe the eigenvalues to the eigenfunctions {sin (n·)}n≥1 resp. {cos (n·)}n≥1,
which can be computed explicitly. Quantitatively the following properties are important:

λn(µ, f0) < 0, for all n 6= 2, for all µ > 0, f0 > 0,

and

λ2(µ, f0)
{
> 0, for µ < µ∗,

< 0, for µ > µ∗,

with critical value µ∗ = f0
6 . Therefore, we formally proved that f0 is linearly stable for µ > µ∗, while

for µ < µ∗ it becomes an unstable equilibrium, since the critical eigenvalue λ2 is positive. The point
(µ∗, f0) is a bifurcation point, where a branch of new stationary solutions emerge, which close left to
the bifurcation point is of the form

f(ϕ) = f0 + εf∗(ϕ) = f0 + εa2 sin (2ϕ+ π/2) + εb2 sin (2ϕ),

for some small parameter ε << 1. Determining the bifurcation behavior further, i.e. determining the
Fourier modes a2, b2 reveals the occurrence of a supercritical pitchfork bifurcation, see Figure 3.1 in
Chapter 3, Section 3.3.1, which is already indicated by the flip-symmetry in our equation (1.19).

Remark 1.2. The above described bifurcation analysis can also be carried out with the total mass
M = 2πf0 as bifurcation parameter, depending on the initial condition. The linear stability result
gained in the considerations above can then be interpreted in the following way: If the total mass stays
below the critical threshold M∗ := 12πµ, i.e. M < M∗, then the uniform equilibrium is linearly stable.
For M > M∗ the equilibrium f0 becomes unstable. This means, that a certain amount of bacteria
has to be present such that sufficiently enough collisions take place to overcome the diffusivity, which
causes uniformization.
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Further, for the small diffusion regime, i.e. µ� 1, existence of symmetric solutions of an approxima-
tion of the stationary version of (1.19) is shown. This indicates the existence of nonuniform equilibira
for small diffusion, smooth approximations of the equilibirum (1.14). Numerical simulations for (1.19)
(see Chapter 3, Section 3.4) give evidence for the bifurcation result.

1.3.3 Reversal Collision Dynamics in a General Domain

Chapter 4 is joint work with A. Frouvelle and C. Schmeiser, in which we investigated the dynamics
of QREV , the reversal-part of the collision operator on the right-hand-side of the main model (1.11).
We lifted the framework to higher abstraction and consider QREV acting on a general compact metric
space S, which is endowed with a symmetric structure that allows to define an inclusion x↓ for all
x ∈ S as well as a symmetric measure dx. As the set of collision partners for x ∈ S we define

C[x] :=
{
x∗ ∈ S : x∗ ∈ Bα(x↓)

}
,

for a constant α > 0. Additionally, we assume a more general collision kernel b = b(x, x∗), but bounded
away from zero, 0 < b0 < b(x, x∗), and being consistent with the symmetry structure of the metric
space, i.e. b(x, x∗) = b(x↓, x∗) = b(x, x↓∗) = b(x↓, x↓∗). The problem describing the evolution of the
distribution function f = f(x, t) of the dynamical states of individual particles x ∈ S, undergoing
reversal collisions

(x, x∗) −→ (x↓, x↓∗)

is therefore stated as

∂tf =
∫
x∗∈C[x]

b(x, x∗)
´

f↓f↓∗ − ff∗
¯

dx∗, x ∈ S, t > 0

f(x, 0) = fI(x), x ∈ S,
(1.20)

where the notation f↓ = f(x↓, t) and f∗ = f(x∗, t) is used. One can immediately deduce mass
conservation: ∫

S
f dx =

∫
S
fI dx ≡ 1,

which we assume to be normalized, as well as conservation of the average distribution f̃ , defined as

f̃(x) := f(x) + f(x↓)
2 , (1.21)

and therefore symmetric by its definition. Due to the symmetrizing effect of the reversal collisions,
f̃ will be the candidate for the equilibirum the solution f is expected to approach asymptotically in
time.

Main goals concerning the analysis of (1.20): We aim to answer the following questions regarding
1.20:

1. In which framework do solutions to (1.18) exist?

2. Can we prove decay to a symmetric equilibrium?
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Existence and uniqueness in L1: Question 1 is answered by the following result:

Theorem (Chapter 4, Theorem 4.2). Let b ∈ L∞(S × S) and fI ∈ L1(S). Then (1.20) has a unique
global solution f ∈ C([0,∞), L1

+(S)).

Also in this framework Picard iteration is the basic tool to prove existence and uniqueness of the
solution, since under the assumption of a bounded collision kernel, QREV can be shown to be Lipschitz
continuous on S.

Asymptotic behavior: Concerning objective 2, we aim to show exponential convergence to the sym-
metric equilibrium (1.21). Therefore, we first introduce

h(x) := f(x)− f̃(x)
f̃(x)

, for x ∈ K,

where the compact set K denotes the measure theoretical support of f̃ , defined as

K := supp (f̃) :=
{
x ∈ S :

∫
Bε(x)

f̃ dx > 0, ∀ε > 0
}
.

With setting
H[f ] := 1

2

∫
S
h2f̃ dx = 1

2

∫
S

∫
S
f̃ f̃ ′(h− h′)2 dx′dx, (1.22)

which encodes the distance from f to f̃ , we found a functional, decaying along solutions f to (1.20).
Indeed, taking the time-derivative, we obtain

d
dtH[f ] = −

∫
S

∫
C[x]

b(x, x∗)(h+ h∗)2f̃ f̃∗ dx∗dx := −D[f ]. (1.23)

For the dissipation D[f ] we make the following observation:

D[f ] = 0 ⇔ h(x) + h(x∗) = 0, for a.e. x, x∗ ∈ K s.t. x∗ ∈ C[x],

which implies that once the dissipation is zero, h has the same value for two elements x, x∗ ∈ S, who
have at least one common collision partner. Indeed, we have

h(x)− h(x∗) = h(x) + h(x̄)− h(x̄)− h(x∗) = 0,

for a.e. x̄ ∈ C[x] ∩ C[x∗]. This motivates the following definition of a graph associated to the initial
conditions fI (see also Chapter 4, Definition 4.5):

Definition 1.3. Let x, y ∈ K. We say x and y are connected and write

x←→ y :⇔ ∃x∗ ∈ K, ∃γ > 0 s.t. : Bγ(x∗) ⊂ C[x] ∩ C[y].

This relation defines a graph Γ = {V, E} associated to the initial conditions with vertices V := K
and edges E := {(x, y) ∈ K×K : x←→ y}. By Γi, i = 1, . . . , N , we denote its connected components,
with corresponding set of vertices V i. The crucial property of this graph is that for every i = 1, . . . , N
and arbitrary two points y and z in V i there exists a path {y = x1, x2, . . . , xn = z}, such that
for l = 1, . . . , n each pair xl−1 and xl is connected and therefore has at least one common collision
partner. This property together with a telescopic sum argument will be the key ingredient to estimate
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the right-hand-side of (1.22) further in order to bring it to a shape similar as D[f ] (1.23), from which
exponential decay of H can be deduced via Grönwall’s estimate.

More precisely, we split the representation of H which involves integrals over S × S (1.22) into
several parts. In each of these terms the integration is over subsets T i1 , T i2 ⊂ V i of the set vertices
corresponding to a connected component of Γ, such that x←→ x∗ for all x ∈ T i1 , x∗ ∈ T i2 and

pC[x] ∩ C[x∗]q ∩ K 6= ∅ ∀x ∈ T i1 , x∗ ∈ T i2 ,

i.e. there exists at least one element in set of common collision partners, which is also part of the
support of f̃ . For such a contribution of (1.22) we have∫

T i1

∫
T i2
f̃ f̃ ′(h− h′)2 dx′dx =

∫
T i1

∫
T i2
f̃ f̃ ′(h+ h∗ − h∗ − h′)2 dx′dx

≤ 2 max{ρi1, ρi2}
∫
T i1∪T

i
2

f̃(h+ h∗)2 dx ,

for an arbitrary x∗ ∈ C[T i1 ∪ T i2 ], with ρij :=
∫
T ij
f̃ dx. Integration over C[T i1 ∪ T i2 ] and denoting

ρ∗ :=
∫
C[T i1∪T i2 ] f̃ dx gives∫

T i1

∫
T i2
f̃ f̃ ′(h− h′)2 dx′dx ≤ 2

ρ∗
max{ρi1, ρi2}

∫
T i1∪T

i
2

∫
C[x∗]

f̃ f̃ ′(h+ h∗)2 dx∗dx ,

which resembles, up to the lack of the collision kernel b, the corresponding contribution of the integral
defining the dissipation D. The collision kernel b can be estimated by its lower bound b0, which leaves
us just to use Grönwall’s estimate in order to obtain exponential decay of H.
For the proof that we can always find such a partition of S such that we can split up the integrals on

the right-hand-side of (1.22) in a way described before, we refer the reader to Chapter 4, Lemma 4.7.
In the case, where Γ is connected, the result stating exponential decay of the solution f to f̃ is stated in
Chapter 4, Corollary 4.8. For the situation, where Γ has more than one connected component, decay
to the average, although not symmetric, but weighted accordingly on each connected component, can
be proved (see Chapter 4, Corollary 4.12).
Numerical Simulations (see Chapter 4, Section 4.5) for the special setting S = T1, α = π

2 , corre-
sponding to the spatially homogeneous kinetic model for myxobacteria (1.15) including just reversal
collisions

∂tf =
∫
d(ϕ,ϕ∗)>π

2

b(ϕ,ϕ∗)
´

f↓f↓∗ − ff∗
¯

dϕ∗,

give evidence to the above discussed results.

1.3.4 A Kinetic Model for Non-instantaneous Binary Collisions
Chapter 5 is a collaboration with C. Schmeiser and V. Tora, in which we introduce and investigate
two kinetic models describing non-instantaneous alignment collisions between two agents. The inspi-
ration for proposing a kinetic model with time-resolved binary collisions was the fact that assuming
instantaneous interactions between bacteria (see Section 1.3.1) is a huge simplification in biological
context.
For the first variant of this model, we assume an assemble of particles each equipped with a specific

property ϕ ∈ R, who undergo binary collisions. We suppose that the times at which a collision between
two particles happen as well as the times at which two colliding particles separate again are modeled
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by Poisson processes. On a kinetic scale, the dynamics of these assemble of particles are governed by
the following system of equations:

∂tf = 2
´

γ

∫
R
g(ϕ,ϕ∗) dϕ∗ − λf(ϕ)

∫
R
b(ϕ,ϕ∗)f(ϕ∗) dϕ∗

¯

,

∂tg +∇ · (V (ϕ,ϕ∗)g(ϕ,ϕ∗)) = λb(ϕ,ϕ∗)f(ϕ∗)f(ϕ)− γg(ϕ,ϕ∗) ,
(1.24)

where f = f(ϕ, t) describes the distribution function for the single particles, while g = g(ϕ,ϕ∗, t)
stands for the pairs of particles in collision. The constant λ > 0 is the rate at which collisions take
place, while γ > 0 stands for the rate at which a pair of colliding particles split up. The collision
potential V is chosen to model an alignment collision, i.e. two colliding particles ϕ, ϕ∗ approach their
midpoint ϕ+ϕ∗

2 , and is of the form

V (ϕ,ϕ∗) := 1
2

ˆ

ϕ∗ − ϕ
ϕ− ϕ∗

˙

.

It should be noted that (1.24) allows two conservation laws: Conservation of total mass

M = Mf (t) + 2Mg(t) :=
∫

R
f dϕ+ 2

∫
R2
g dϕ∗dϕ,

and of the total mean value

Mϕ∞ := If (t) + 2Ig(t) :=
∫

R
ϕf dϕ+ 2

∫
R2
ϕg dϕ∗dϕ. (1.25)

Main goals concerning the analysis of (1.24): The main objectives in the analysis of (1.24) are

1. proving existence and uniqueness of solutions to (1.24),

2. showing convergence to equilibrium,

3. and performing the instantaneous limit in (1.24), i.e. letting the collision time go to zero.

Existence and uniqueness in L1: Objective 1 could be achieved by carrying out a fixed-point argu-
ment after rewriting (1.24) in mild formulation (Peano-formulation) by incorporating the drift. Time-
independent estimates of the fixed-point mapping gave global existence of a solution in L1(R × R2).
More precisely, we proved the following result:

Theorem (see Chapter 5, Theorem 5.1). Let f0 ∈ L1
+(R), g0 ∈ L1

+(R× R). Then (1.24) has a unique
global solution (f, g) ∈ Cp[0,∞); L1(R)× L1(R× R)q.

Convergence to equilibrium: Concerning the 2nd of our main goals, we again have to face a hypoco-
ercivity situation. Indeed, searching for equilibria of (1.24) we have to take into account the two
different effects governing the dynamics. One one hand, we have an exchange between single and and
pairs of particles. Functions being uneffected by these exchange dynamics can be described by the set
of local equilibria

Eq :=
{

(f̄ , ḡ) : λf̄ f̄∗ = µḡ
}
. (1.26)
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One can see immediately that, if the system arrives at the set (1.26), it will not remain there, but
instead will be transported away by the drift-term in the g-equation, which produces concentration
of mass at a single point, namely the mean value ϕ∞ defined in (1.25). The interplay between the
transport towards concentration ∇ · (V g) and the exchange dynamics is needed to arrive at the global
equilibrium, given by

(f∞, g∞) := (Mf∞δϕ∞ ,Mg∞δ(ϕ∞,ϕ∞)),

where Mf∞ and Mg∞ can be determined explicitely (see Chapter 5, equation (5.5)). Combining both
the effects of the exchange and the drift we found with

E [f, g, t] := V[f, g] +H[f, g, t],

consisting of the total variance

V[f, g] :=
∫

R
(ϕ− ϕ∞)2f dϕ+ 2

∫
R2

(ϕ− ϕ∞)2g dϕ∗dϕ,

and the logarithmic-type entropy

H[f, g, t] :=
∫

R
(ln (f)− 1)f dϕ+

∫
R2

´

ln
´µg

λ

¯

− 1
¯

g dϕ∗ dϕ−
∫ t

0
Mg(s) ds,

an entropy, with nonpositive dissipation

d
dtE [f, g, t] = −

ĳ

R2

(ϕ− ϕ∗)2g dϕ∗dϕ−
∫

R2
pλff∗ − µgq ln

ˆ

λff∗
µg

˙

dϕ∗dϕ ≤ 0

with the property
d
dtE [f, g, t] ≡ 0⇔ (f, g) = (f∞, g∞).

using these results, weak convergence to equilibirum could be shown (see Chapter 5, Theorem 5.2).

Instantaneous limit: Objective 3 refers to the question about deriving an instantaneous collision
model from (1.24) by performing the limit where the average collision-time goes to zero. After the
rescaling

g 7→ εg, µ 7→ ε−1µ, V 7→ ε−1V

for ε� 1 of (1.24) we obtain a singular perturbed problem of the form

∂tf = 2
´

µ

∫
R
g dϕ∗ − λMff

¯

,

ε∂tg +∇ · (V g) = λff∗ − µg.

The formal limit ε → 0 of this singular perturbed problem yields, after reformulating everything in
terms of the distribution function f (for details see Chapter 5, Section 5.2.4),

∂tf = 4µλ
∫ ∞

0

∫ ∞
0
|u− v|µ−1|u+ v|−µf(ϕ+ u)f(ϕ− v)dudv − 2λf

∫
R
f∗ dϕ∗. (1.27)

Analysis of (1.27) reveals the usual behavior of an instantaneous kinetic midpoint model, which can
also be found in Chapter 5, Section 5.2.4. The instantaneous limit can be performed rigorously, which
is done via compactness arguments (Prokhorov’s theorem, [39]).
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Chapter 5 further contains considerations regarding a non-instantaneous alignment model with
deterministic collision dynamics, i.e. there is no randomness in the duration of the collision process
and the collision only ends once the mean ϕ+ϕ∗

2 of the pre-collisional states ϕ and ϕ∗ is reached. An
instantaneous limit of this model reveals a kinetic equation with collision operator of the same form
as the alignment terms on the right-hand-side of (1.11). Details can be found in Chapter 5, Section
5.3 of this manuscript.
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1.4 Declaration of Authorship
Chapter 2 is joint work with Sabine Hittmeir (University of Vienna), Angelika Manhart (University
College London) and Christian Schmeiser and it has been published in Kinetic and Related Models, 14
(2021), pp. 1-24. Chapter 3 contains an article, joint work with Christian Schmeiser, which is close
to submission. Furthermore, Chapter 4 consists of results, which arose from an ongoing collaboration
with Amic Frouvelle (CEREMADE, Université de PARIS - DAUPHINE) and Christian Schmeiser.
Finally, Chapter 5 summarizes the outcome from joint work with Christian Schmeiser and Veronica
Tora (University of Vienna), where the first part (Chapter 5, Section 5.2) consists of an article close
to submission. All of these works are based on discussions and exchange of ideas with my co-authors.
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2 Kinetic Modelling of Colonies of Myxobacteria

Eleganz sei die Sache der Schuster und
Schneider.

Ludwig Boltzmann
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2.1 Introduction
The goal of this work is the derivation of a new model for the dynamics of myxobacteria colonies on
flat substrates, as well as first steps in its analysis. The model is a kinetic transport equation for the
distribution function f(x, ϕ, t), x ∈ R2, ϕ ∈ T1, t ≥ 0, and has the form

∂tf + ω(ϕ) · ∇xf = 2
∫

TAL→ϕ
b(ϕ̃, ϕ∗)f̃f∗dϕ∗ +

∫
TREVϕ

b(ϕ↓, ϕ↓∗)f↓f↓∗dϕ∗ −
∫

T1
b(ϕ,ϕ∗)ff∗dϕ∗ , (2.1)

where ω(ϕ) = (cosϕ, sinϕ), T1 denotes the one-dimensional flat torus of length 2π. For given ϕ the
integration intervals in the gain terms are given by

TREVϕ =
ˆ

ϕ+ π

2 , ϕ+ 3π
2

˙

, TAL→ϕ =
´

ϕ− π

4 , ϕ+ π

4

¯

,

and the precollisional directions are defined by

ϕ̃ = 2ϕ− ϕ∗ , ϕ↓ = ϕ+ π , ϕ↓∗ = ϕ∗ + π .

The model describes motion along straight lines with fixed speed in direction ϕ, interrupted by hard
binary collisions with collision cross-section b(ϕ,ϕ∗), which quantifies the collision frequency and
depends on the shape of the bacteria. As usual, sub- and super-scripts on f indicate evaluation at
ϕ with the same sub- and super-scripts. The two different gain terms describe two different types of
collisions:
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2 Kinetic Modelling of Colonies of Myxobacteria

• Alignment: (ϕ̃, ϕ∗) → (ϕ,ϕ) with ϕ = (ϕ̃ + ϕ∗)/2, if two myxobacteria moving in directions ϕ̃
and ϕ∗ meet at an angle smaller than π/2. The factor 2 is due to the fact that an alignment
collision produces 2 myxobacteria with the same direction. The set TAL→ϕ describes all angles ϕ∗,
which can produce the angle ϕ upon collision.

• Reversal: (ϕ,ϕ∗) → (ϕ↓, ϕ↓∗), if two myxobacteria with directions ϕ and ϕ∗ meet at an angle
larger than π/2. The set TREVϕ describes all angles ϕ∗ such that a collision involving ϕ can
produce the angle ϕ↓.

Myxobacteria are rod-shaped bacteria that live in cultivated soil. They feed on living and dead
decaying material including bacteria and eukaryotic microbes, which makes them play an important
role as scavengers cleaning up biological detritus in the environment. They have an interesting life
cycle, similar to certain amoebae, called cellular slime molds (with Dictyostelium discoideum as the
best known example). During their vegetative phase they move as predatory swarms searching and
killing prey collectively, while under starvation conditions they aggregate and form fruiting bodies,
which produce spores that are more likely to survive until nutrients are more plentiful again.
Myxobacteria are able to move on flat surfaces by gliding [30], leaving a slime–trail behind them.

The physical mechanism as well as the genetic basis are still partly a puzzle to microbiologists and
have already challenged them for several decades [21,33,38,40].
Moving on solid surfaces, bacteria form organized mono- or multi-layered groups called swarms.

During the swarming process rippling is observed, i.e., macroscopic patterns due to propagating waves
of aligned bacteria. The formation of these waves can be seen during collective hunting as well as in the
aggregation phase [23]. From a macroscopic point of view colliding waves seem to travel unaffectedly
through each other, while tracking of individual bacteria [34, 39] has revealed that most cells reverse
their direction in the collision process preserving, however, a nematic alignment order, i.e. locally
myxobacteria are oriented and move in the same or in opposite directions.
Pattern formation requires signaling between cells. The signaling mechanism most important for

aggregation and rippling is called C-signaling [34]. It relies on the C-factor, a protein bound to the
cell surface and interchanged between individuals. It has been observed that direct cell-cell contact is
necessary for C-signaling [27,28].
The dynamics of myxobacteria has been one of the motivations to formulate kinetic theories for

interacting self-propelled rods [6, 10]. In [18] a kinetic model has been formulated, which produces
relaxation to nematically aligned states. The model is of mean field type, i.e., cell-cell signaling is
modeled as a nonlocal process. Simulations with the macroscopic limit do not produce the rippling
phenomenon. It turns out to be necessary to include a waiting time between reversals [19,22,23].
The model (2.1) is based on local interactions to take into account the experimental evidence on C-

signaling. As a consequence it is structurally similar to the Boltzmann equation of gas dynamics [13,16].
In the following section we present a formal derivation from a stochastic many-particle model, following
the lines of [16] (see [15] for a rigorous derivation of a similar spatially homogeneous equation). The
derivation is facilitated by an approximate version of the alignment collisions, with slightly different
post-collisional directions, allowing inversion of the collisional rules. The final step is the removal
of the approximation. The model with approximate alignment collisions has similarities with the
dissipative Boltzmann equation for granular gases [35], whereas after removal of the approximation it
corresponds to the extreme case of sticky particles. A model with approximate alignment, motivated
by microtubule dynamics, has already been formulated in [4], and the sticky particles case, regularized
by diffusion in the angular direction, has been analyzed in [8].
The theory for the dissipative Boltzmann equation is much less developed than for its conservative

counterpart, mainly because of the lack of an entropy estimate. Global existence results are only
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2.2 Model derivation

known for small data (see, e.g., [1], [36]) or in the one-dimensional situation, where grazing collisions
are almost elastic [7]. The rigorous macroscopic limit towards pressureless gas dynamics has been
carried out in the one-dimensional case [25].
In Section 3 formal properties of the collision operator are collected, by separately considering

the reversal and the alignment collisions. It is shown that the set of equilibria is three-dimensional,
whereas in general there are only two independent collision invariants, which does not allow to identify
equilibria uniquely from initial data. A remedy is to make assumptions on the support of the initial
data, such that the bacteria are split into two groups with alignment collisions only within the groups
and reversal collisions only between members of different groups. In this case the sizes of the groups
are invariant, which provides the missing third collision invariant.
Section 4 is dedicated to the spatially homogeneous case which, for the inelastic Boltzmann equation,

is much better understood than the spatially inhomogeneous case, see for example [12, 31,32]. In our
case a global existence and uniqueness result in L1 for the spatially homogeneous equation is proved.
By the boundedness of the collision cross-section the proof is rather straightforward. A possible
extension to measure solutions as in [2] does not seem feasible because of the jumps from alignment to
reversal collisions. Convergence to equilibrium is only considered for special initial data as described
above, since only in this case we are able to identify the equilibrium in terms of the initial data. It is
shown that a variance type functional, which can be interpreted as the Wasserstein-2 distance from
the equilibrium, is dissipated as an effect of the alignment collisions. However, the dissipation is not
definite, since the convergence to equilibrium also requires the reversal collisions. A full decay result
to equilibrium is only obtained for circular myxobacteria, termed Maxwellian myxos, since in this case
the collision cross-section is constant. Under this assumption a second decaying functional can be
combined with the first, providing exponential decay to equilibrium with respect to the Wasserstein-2
metric, a result similar to [17] (see also [12] for the long time behavior of the inelastic Boltzmann
equation for Maxwellian molecules). For rod shaped myxobacteria convergence could only be shown
for an even smaller set of initial conditions supported in an interval of length π/2 such that only
alignment collisions occur. In this case convergence cannot be expected to be exponential, since the
collision cross-section degenerates close to equilibrium. An algebraic decay estimate is shown as in
Haff’s law [20] for the dissipative Boltzmann equation. Haff’s law has been proved rigorously in the 3-
dimensional homogeneous case for constant restitution in [32]. Further results for the one dimensional
dissipative Boltzmann equation can be found in [2] as well as for viscoelastic hard-spheres in [3]. In
these works it has been shown that the algebraic decay rates are sharp by methods, which do not seem
to be applicable in our situation.
In Section 5 numerical simulations of the spatially homogeneous model are presented, illustrating

the results of Section 4 as well as the conjecture that they remain valid without special assumptions
on initial data and bacteria shape. Finally, a short discussion of the formal macroscopic limit of (2.1)
is presented in Section 6. In a special case the structure of the macroscopic equations is that of
pressureless gas dynamics as for the dissipative Boltzmann equation [25]. A more regular macroscopic
limit including a temperature equation has been formally derived in [11] under the assumption of weak
inelasticity.

2.2 Model derivation

The individual based model: We consider N identical bacteria moving in R2. Each of them is
idealized as a rod of thickness zero and of length l, represented by the parametrization
Bi = {xi + αωi : −l/2 ≤ α ≤ l/2} with center xi ∈ R2, direction ωi = ω(ϕi) = (cosϕi, sinϕi), and
direction angle ϕi ∈ T1, i = 1, . . . , N . As usual in kinetic theory, sub- and superscripts on functions of
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the direction angle indicate evaluation at ϕ with the same sub- and superscripts. Between interactions,
bacterium number i is gliding with constant speed s0 in its longitudinal direction ωi, i.e. its velocity
is given by vi = s0 ωi.

The state space is given by ΓN ⊂ (R2 × T1)N , defined such that the bacteria do not overlap:

ΓN := {(x1, ϕ1, . . . , xN , ϕN ) : (xi, ϕi, xj , ϕj) ∈ Γ2 ∀(i, j)} ,

with

Γ2 :=
{

(x, ϕ, x∗, ϕ∗) : max {|α| , |α∗|} >
l

2 , for α = (x∗ − x) · ω⊥∗
ω · ω⊥∗

, α∗ = (x− x∗) · ω⊥
ω∗ · ω⊥

}
,

with ω = ω(ϕ), ω∗ = ω(ϕ∗), (a1, a2)⊥ = (−a2, a1). Note that α and α∗ are determined such that
x+ αω = x∗ + α∗ω∗.
The collision rules are derived from the biological observations mentioned above. We assume that

collisions between two bacteria B and B∗ with pre-collisional states (x, ϕ) and, respectively, (x∗, ϕ∗)
are instantaneous and can either lead to

• Alignment, if ω · ω∗ > 0 (collision with pre-collisional angles less than π/2 apart), or to

• Reversal of both bacteria, if ω · ω∗ < 0 (collision with pre-collisional angles greater than π/2
apart).

Only binary collisions are considered. As usual in kinetic theory, collisions between three or more
bacteria at the same time are much less likely than binary collisions and are therefore neglected. By
the same argument we neglect the limiting case ω · ω∗ = 0.
For a precise formulation of the collision rules we introduce the set of pre-collisional states,

∂Γout2 :=
{

(x, ϕ, x∗, ϕ∗) ∈ ∂Γ2 : ∃α ∈
„

− l2 ,
l

2



: x+ αω = x∗ + l

2ω∗ or

∃α∗ ∈
„

− l2 ,
l

2



: x+ l

2ω = x∗ + α∗ω∗

}
,

and of post-collisional states, ∂Γin2 := ∂Γ2 \ ∂Γout2 , of a pair of bacteria.
Alignment between (x, ϕ) and (x∗, ϕ∗) happens, if (x, ϕ, x∗, ϕ∗) ∈ ∂Γout2 and

ϕ∗ ∈ TALϕ→ := {ψ ∈ T1 : ω(ϕ) · ω(ψ) > 0} =
´

ϕ− π

2 , ϕ+ π

2

¯

.

The alignment collision rule is (see Fig. 2.1 (a)):

(x, ϕ), (x∗, ϕ∗) → (x′, ϕ′), (x′, ϕ′) with x′ = x+ x∗
2 , ϕ′ = ϕ+ ϕ∗

2 .

Note that the representation of TALϕ→ as an interval around ϕ is necessary for the above formula for
the post-collisional angle ϕ′ to provide the direction ω(ϕ′) lying between the pre-collisional directions
ω(ϕ) and ω(ϕ∗).
Reversal between (x, ϕ) and (x∗, ϕ∗) happens, if (x, ϕ, x∗, ϕ∗) ∈ ∂Γout2 and

ϕ∗ ∈ TREVϕ := {ψ ∈ T1 : ω(ϕ) · ω(ψ) < 0} .
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2.2 Model derivation

The reversal collision rule is (see Fig. 2.1 (b)):

(x, ϕ), (x∗, ϕ∗) → (x, ϕ+ π), (x∗, ϕ∗ + π).

(a) Alignment collisions (b) Reversal collisions

Figure 2.1: Graphic illustration of the collision rules. (a): Alignment collisions with two-step geometric
algorithm to regularize it. (b): Already invertible reversal collisions.

Regularization of the alignment collisions: In both types of collisions the pair of post-collisional
states is in ∂Γin2 . After an alignment event its state space velocity does, however, not point into
the interior of Γ2. Also the collision rule for alignment is obviously not invertible. Since we intend
to formulate a kinetic model following the standard derivation of the Boltzmann equation for hard
spheres [13, 16], where the inverse of the collision rule is used, we shall introduce a regularization of
the alignment collisions, which will be removed again after the derivation. The post-collisional angles
are reformulated such that the bacteria drift slightly apart after the collision:
Regularized alignment: Let (x, ϕ, x∗, ϕ∗) ∈ ∂Γout2 with ϕ∗ ∈ TALϕ→. With a small parameter ε > 0, the
regularized collision rule is given by (x, ϕ), (x∗, ϕ∗) → (x′, ϕ′), (x′∗, ϕ′∗),
with the rule

ϕ′ = 1− ε
2 ϕ+ 1 + ε

2 ϕ∗ , ϕ′∗ = 1 + ε

2 ϕ+ 1− ε
2 ϕ∗ , (2.2)

for the angles. The post-collisional centers are determined such that the post-collisional states are
in ∂Γin2 , according to the following algorithm: First the bacteria are turned to the post-collisional
directions around the pre-collisional centers, and then the centers are shifted towards each other, until
the trailing end of one of them touches the other (see Fig. 2.1 (a)).

This leads to
x′ = 1 + εA

2 x+ 1− εA
2 x∗ , x′∗ = 1− εA

2 x+ 1 + εA

2 x∗ , (2.3)

with 0 < A = O(1) as ε→ 0, depending on the pre-collisional state. There are two different versions
for the formula for A covering the cases where the pre-collisional leading end of B is touching B∗ (and
the post-collisional trailing end of B∗ is touching B) or vice versa.
The inversion of the collision rule is easy for the angles:

ϕ = 1 + ε

2ε ϕ′∗ −
1− ε

2ε ϕ′ , ϕ∗ = 1 + ε

2ε ϕ′ − 1− ε
2ε ϕ′∗ .
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2 Kinetic Modelling of Colonies of Myxobacteria

For the cell centers it can be described by a geometric algorithm as above: First the bacteria are
turned around their post-collisional centers to the pre-collisional directions given above, leading to a
forbidden state, where they cross each other. Then the centers are shifted apart until the leading end
of one of them touches the other.

Probabilistic description: To derive the kinetic equation, we now reformulate the problem in terms
of a probability density P (·, t) on ΓN at time t ≥ 0. We assume indistinguishability of the bacteria,
i.e. P is invariant under permutations of the labels of the bacteria. It satisfies the Liouville equation

∂tP +
N∑
i=1

vi · ∇xiP = 0 ,

where vi = s0ωi, subject to boundary conditions, which are determined by the collision rules:

P (. . . , x′, ϕ′, . . . , x′∗, ϕ′∗, . . . , t) = FinP (. . . , x, ϕ, . . . , x∗, ϕ∗, . . . , t) (2.4)
for (x, ϕ, x∗, ϕ∗) ∈ ∂Γout2 , ω · ω∗ > 0 ,

P (. . . , x, ϕ↓, . . . , x∗, ϕ↓∗, . . . , t) = P (. . . , x, ϕ, . . . , x∗, ϕ∗, . . . , t) (2.5)
for (x, ϕ, x∗, ϕ∗) ∈ ∂Γout2 , ω · ω∗ < 0 ,

where ϕ↓ = ϕ+π, ϕ↓∗ = ϕ∗+π, and the relations between (x, ϕ, x∗, ϕ∗) and (x′, ϕ′, x′∗, ϕ′∗) in (2.4) are
given by (2.2) and (2.3). The factor Fin in (2.4) is determined such that

P (. . . , x′, ϕ′, . . . , x′∗, ϕ′∗, . . . , t)|v∗′ · ω′
⊥|dσ′ = P (. . . , x, ϕ, . . . , x∗, ϕ∗, . . . , t)|v∗ · ω⊥|dσ ,

where dσ and dσ′ are the 5-dimensional surface measures on ∂Γout2 and, respectively, ∂Γin2 . This
guarantees particle conservation. No such factor is needed in (2.5) since the reversal collisions preserve
the surface area as well as the normal component |v∗ · ω⊥| of the flux.

We shall need a formula for Fin for the situation, where the leading end of bacterium B hits
bacterium B∗ in an alignment collision. The corresponding part of ∂Γout2 can be parametrized by
(x, ϕ, ϕ∗, α) with

x∗ = x+ `

2ω − αω∗ .

Similarly, the parameters along the corresponding part of ∂Γin2 can be taken as (x′, ϕ′, ϕ′∗, α′) with

x′∗ = x′ + α′ω′ + `

2ω
′
∗ .

A straightforward computation then gives

Fin = |ω∗ · ω⊥|
ε|∂αα′||ω′∗ · ω

′⊥|
1ω·ω∗>0 .

Since |ϕ′ − ϕ′∗|= ε|ϕ− ϕ∗|, the inflow data vanish, whenever επ/2 < |ϕ′ − ϕ′∗|< π/2.
The k-bacteria marginals (1 ≤ k ≤ N) of the distribution will be denoted by

Pk(x1, ϕ1, . . . , xk, ϕk, t) :=
∫

ΓN
N−k(x1,ϕ1,...,xk,ϕk)

P (x1, ϕ1, . . . , xN , ϕN , t)
N∏

j=k+1
dxjdϕj ,

with
ΓNN−k(x1, ϕ1, . . . , xk, ϕk) = {(xk+1, ϕk+1, . . . , xN , ϕN ) : (x1, ϕ1, . . . , xN , ϕN ) ∈ ΓN}
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2.2 Model derivation

In order to obtain an evolution equation for the one-bacterium marginal P1(x, ϕ, t), we integrate the
Liouville equation (2.2) over ΓNN−1(x, ϕ), which gives

∂tP1 + v · ∇xP1 +
N∑
j=2

∫
ΓNN−1(x,ϕ)

vj · ∇xjP
N∏
i=2

dxidϕi = 0 .

By the indistinguishability property, all the terms in the sum are identical, leading to

∂tP1 + v · ∇xP1 = −(N − 1)
∫

Γ2
1(x,ϕ)

v∗ · ∇x∗P2(x, ϕ, x∗, ϕ∗, t)dx∗dϕ∗ . (2.6)

An application of the divergence theorem gives an integration over

(x∗, ϕ∗) ∈ ∂Γ2
1(x, ϕ) ⇐⇒ (x, ϕ, x∗, ϕ∗) ∈ ∂Γ2 ,

where the splitting

G− L := (N − 1)
∫

T1

∫ `/2

−`/2
|v∗ · ω⊥|P2

ˆ

x, ϕ, x+ αω + `

2ω∗, ϕ∗
˙

dα dϕ∗

−(N − 1)
∫

T1

∫ `/2

−`/2
|v∗ · ω⊥|P2

ˆ

x, ϕ, x+ αω − `

2ω∗, ϕ∗
˙

dα dϕ∗

of the right hand side of (2.6) into a gain term and a loss term corresponds to a splitting into post-
collisional states ((x, ϕ, x∗, ϕ∗) ∈ ∂Γin2 ) and pre-collisional states ((x, ϕ, x∗, ϕ∗) ∈ ∂Γout2 ). Note that
only those post-collisional states contribute, where the trailing end of bacterium B∗ touches bacterium
B, i.e. x∗ − `

2ω∗ = x+ αω, and only those pre-collisional states, where the leading end of B∗ touches
B, i.e. x∗ + `

2ω∗ = x+ αω.
The next step is to write the gain term in terms of pre-collisional states. In the part originating

from reversal collisions it is straightforward to use the boundary conditions (2.5) to obtain

GREV (x, ϕ) = (N − 1)s0

∫
TREVϕ

∫ `/2

−`/2
|ω∗ · ω⊥|P2

ˆ

x, ϕ↓, x+ αω − `

2ω∗, ϕ
↓
∗

˙

dα dϕ∗ ,

where also the coordinate change α → −α has been carried out. For the alignment collisions a little
more care is necessary. For easier use of our earlier notation we write

GAL,ε(x′, ϕ′) = (N − 1)s0

∫
TAL
ϕ′→

∫ `/2

−`/2
|ω′∗ · ω′

⊥|P2

ˆ

x′, ϕ′, x′ + α′ω′ + `

2ω
′
∗, ϕ
′
∗

˙

dα′ dϕ′∗

= (N − 1)s0

∫
TAL
ϕ′→

∫ `/2

−`/2
|ω′∗ · ω′

⊥|FinP2

ˆ

x, ϕ, x+ `

2ω − αω∗, ϕ∗
˙

dα′ dϕ′∗

= 2(N − 1)s0
1− ε

∫
TAL→ϕ′

∫ `/2

−`/2
|ω∗ · ω⊥|P2

ˆ

x, ϕ, x+ `

2ω − αω∗, ϕ∗
˙

dα dϕ∗ ,

where in the last line TAL→ϕ′ = {ϕ∗ : |ϕ′−ϕ∗|≤ (1− ε)π/4} denotes the set of all angles ϕ∗ which, after
an alignment collision with collision partner

ϕ = 2ϕ′ − (1 + ε)ϕ∗
1− ε

(as a consequence of (2.2)) produce the post-collisional angle ϕ′. Also x can be expressed in terms of
x′, ϕ′, α, and ϕ∗, satisfying x = x′+O(`) for small `. Note that this representation is sufficient for the
Boltzmann-Grad limit, which we will perform next and where ` is assumed to be small compared to
a reference length. The computations have involved the use of the boundary conditions (2.4) and the
coordinate change (α′, ϕ′∗)→ (α,ϕ∗), according to the rules for the regularized alignment collisions.
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Scaling and Boltzmann-Grad limit: We choose as macroscopic length scale the total length of N−1
bacteria, L = (N − 1)`, and introduce the nondimensionalization

x→ Lx , t→ L
s0
t , Pk → L−2kPk , α→ `α ,

leading to the dimensionless version of the equation for the one-bacterium marginal:

∂tP1 + ω · ∇xP1 = GAL,ε +GREV − L ,

where

L(x, v) =
∫

T1

∫ 1/2

−1/2
|ω∗ · ω⊥|P2px, ϕ, x+ δ(αω − ω∗/2), ϕ∗qdα dϕ∗ ,

GREV (x, ϕ) =
∫

TREVϕ

∫ 1/2

−1/2
|ω∗ · ω⊥|P2

´

x, ϕ↓, x+ δ(αω − ω∗/2), ϕ↓∗
¯

dα dϕ∗ ,

GAL,ε(x, ϕ) = 2
1− ε

∫
TAL→ϕ

∫ 1/2

−1/2
|ω∗ · ω̃⊥|P2px̃, ϕ̃, x̃+ δ(ω̃/2− αω∗), ϕ∗qdα dϕ∗ ,

with
δ = `

L
, ϕ̃ = 2ϕ− (1 + ε)ϕ∗

1− ε , x̃ = x+O(δ) as δ → 0 .

The Boltzmann-Grad limit is the large particle number limit N → ∞, i.e. δ → 0. As usual, the
molecular chaos assumption [16] will be used. Roughly speaking, it amounts to assuming that initially
the probability distributions of the bacteria are pairwise independent and that any pair of bacteria
collides at most once, such that the independence is still valid for each pre-collisional state. This is the
reason for writing the collision integrals in terms of pre-collisional states. As a consequence, assuming
P1 → f implies P2 → f ⊗ f as N → ∞, wherever it occurs in the equation. In the limit, we obtain
the Boltzmann-type equation

∂tf + ω · ∇xf = GAL,ε(f, f) +GREV (f, f)− L(f, f)

= 2
1− ε

∫
TAL→ϕ

b(ϕ̃, ϕ∗)f(x, ϕ̃)f(x, ϕ∗)dϕ∗ +
∫

TREVϕ

b(ϕ,ϕ∗)f(x, ϕ↓)f(x, ϕ↓∗)dϕ∗

−
∫

T1
b(ϕ,ϕ∗)f(x, ϕ)f(x, ϕ∗)dϕ∗ ,

with b(ϕ,ϕ∗) = |ω∗ · ω⊥|= |sin(ϕ− ϕ∗)|. The collision integrals are now written as bilinear operators
where, abusing notation, we have kept the same names.

Alignment limit: It is now straightforward to remove the regularization of the alignment collisions,
i.e. to carry out the limit ε→ 0, leading to our kinetic model for myxobacteria:

∂tf + ω · ∇xf = Q(f, f) := GAL(f, f) +GREV (f, f)− L(f, f)

= 2
∫

TAL→ϕ
b(ϕ̃, ϕ∗)f̃f∗dϕ∗ +

∫
TREVϕ

b(ϕ,ϕ∗)f↓f↓∗dϕ∗ −
∫

T1
b(ϕ,ϕ∗)ff∗dϕ∗ ,

(2.7)

with
TREVϕ =

ˆ

ϕ+ π

2 , ϕ+ 3π
2

˙

, TAL→ϕ =
´

ϕ− π

4 , ϕ+ π

4

¯

,

ϕ̃ = 2ϕ− ϕ∗ , ϕ↓ = ϕ+ π , ϕ↓∗ = ϕ∗ + π .

Note that ϕ∗ ∈ TAL→ϕ satisfies ω(ϕ̃) · ω(ϕ∗) > 0 and that TREVϕ is a representation of the set of all
ϕ∗ ∈ T1 satisfying ω(ϕ) · ω(ϕ∗) < 0.
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2.3 Properties of the collision operator

’Maxwellian myxos’: The factor b(ϕ,ϕ∗) = |ω∗ · ω⊥|= |sin(ϕ − ϕ∗)| in the collision integrals is a
consequence of the rod shape of the bacteria. It gives the rate of collisions between bacteria with
the directions ϕ and ϕ∗. Assuming instead bacteria with circular shape makes the collision rate
independent from the movement direction. By analogy to a similar simplification of the gas dynamics
Boltzmann equation [16], we use the name Maxwellian myxos for this imagined species, modeled by
(2.7) with b(ϕ,ϕ∗) ≡ 1.

2.3 Properties of the collision operator
Collision invariants and conservation laws: In the following it will be convenient to also split the
loss term of the collision operator into alignment and reversal parts:

Q(f, f) = QAL(f, f) +QREV (f, f)

=
∫

T1

´

2b(ϕ̃, ϕ∗)1ϕ∗∈TAL→ϕ
f̃f∗ − b(ϕ,ϕ∗)1ϕ∗∈TALϕ→

ff∗

¯

dϕ∗

+
∫

TREVϕ

b(ϕ,ϕ∗)(f↓f↓∗ − ff∗)dϕ∗ ,

A weak formulation of the alignment operator is obtained by integration against a test function ψ(ϕ),
the coordinate change ϕ̃ = 2ϕ− ϕ∗ → ϕ, and subsequent symmetrization:∫

T1
QAL(f, f)ψ dϕ =

∫
T1

∫
TALϕ→

b(ϕ,ϕ∗)ff∗
ˆ

ψ

ˆ

ϕ+ ϕ∗
2

˙

− ψ(ϕ) + ψ(ϕ∗)
2

˙

dϕ∗ dϕ (2.9)

This shows that the space of collision invariants of QAL is two-dimensional and spanned by ψ = 1 and
ψ = ϕ. Furthermore, with ψ = ϕ2, we obtain∫

T1
QAL(f, f)ϕ2 dϕ = −1

4

∫
T1

∫
TALϕ→

b(ϕ,ϕ∗)ff∗(ϕ− ϕ∗)2dϕ∗ dϕ ≤ 0 .

Therefore QAL(f, f) = 0 implies that for f(ϕ) 6= 0, f(ϕ∗) vanishes for all ϕ 6= ϕ∗ ∈ TALϕ→. As a
consequence, equilibria are concentrated at isolated angles with a pairwise distance bigger than π/2,
implying that there are at most three of them. Thus, every equilibrium distribution f of QAL can be
written as

f(ϕ) = ρ1δ(ϕ− ϕ1) + ρ2δ(ϕ− ϕ2) + ρ3δ(ϕ− ϕ3) ,

with ρj ≥ 0 and distT1(ϕi, ϕj) > π/2, i 6= j, where

distT1(ϕ,ϕ∗) := min
k∈Z
|ϕ− ϕ∗ + 2kπ|≤ π .

The weak formulation of the reversal operator can be written as∫
T1
QREV (f, f)ψ dϕ = 1

2

∫
T1

∫
TREVϕ

b(ϕ,ϕ∗)ff∗
´

ψ↓ + ψ↓∗ − ψ − ψ∗
¯

dϕ∗ dϕ

= 1
2

∫
T1

∫
TALϕ→

b(ϕ,ϕ∗)ff↓∗
´

ψ↓ + ψ∗ − ψ − ψ↓∗
¯

dϕ∗ dϕ ,

where the first equality is obtained analogously to the treatment of the alignment operator, and the
second equality is due to the coordinate change ϕ∗ ↔ ϕ↓∗. Both forms show that all π-periodic functions
are collision invariants. However, the second representation reveals the additional collision invariant
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2 Kinetic Modelling of Colonies of Myxobacteria

ψ(ϕ) = ϕ. It is obvious that all π-periodic functions are equilibria of QREV . However, the set of
equilibria is larger: Let g : (π/4, 3π/4)→ R+ be arbitrary, λ ≥ 0, and let

f(ϕ) :=


g(ϕ) for ϕ ∈ T1

+ := (π/4, 3π/4) ,
λg(ϕ+ π) for ϕ ∈ T1

− := (−3π/4,−π/4) ,
0 else.

(2.11)

Then it is easily checked that QREV (f, f) = 0. We see that the set of functions unaffected by reversal
collisions contains functions describing bacteria colonies which can be separated into two groups, one
moving upwards with direction ϕ ∈ T1

+, the other downwards with ϕ ∈ T1
− and whose distribution in

each group is equal up to a proportionality constant λ ≥ 0. It is important to note that the boundary
angles of T1

+ and T1
− are π/2 apart, so that reversal collisions can only occur between two individuals

from different groups.
The question of a characterization of the whole set of equilibria of QREV seems rather difficult and is
left open.
Since the collision invariants of QAL are also collision invariants of QREV , solutions of (2.7) satisfy

two conservation laws, conservation of the number of bacteria,

∂tρ+∇x · (ρu) = 0 , (2.12)

with the usual definition of number density and flux:

ρ(x, t) :=
∫

T1
f(x, ϕ, t)dϕ , ρu(x, t) :=

∫
T1
ω(ϕ)f(x, ϕ, t)dϕ ,

and
∂t

∫
T1
ϕf dϕ+∇x ·

∫
T1
ϕωf dϕ = 0 . (2.13)

Note that this second conservation law depends on the representation of T1. However, the differences
are only up to adding a multiple of the bacteria number.
The only equilibria of QAL, which are also equilibria of QREV , are of the form

f∞(ϕ) = ρ+δ(ϕ− ϕ+) + ρ−δ(ϕ− ϕ↓+) , (2.14)

with arbitrary ρ± ≥ 0, ϕ+ ∈ T1. This raises the problem that there are three free parameters, ρ+, ρ−,
ϕ+, in the equilibrium distribution as opposed to only two conservation laws (2.12) and (2.13).

Two group initial data: The form (2.11) of reversal equilibria suggests to consider initial conditions

f(x, ϕ, 0) = fI(x, ϕ) ,

satisfying

supp(fI(x, .)) ⊂ T1
+ ∪ T1

−, ∀x ∈ R2 , (2.15)

i.e., with angles in the opposite groups T1
+ and T1

− (see Fig. 2.2). It is easily seen that the property
(2.15) is propagated by (2.7). Indeed, alignment collisions are only possible between two individuals
from the same group, producing post-collisional angles in the same group. Reversal interactions can
only occur between bacteria from different groups, causing the two individuals to swap groups. These
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2.4 The spatially homogeneous problem

Figure 2.2: Support of two group data (solid lines, purple).

observations imply that in this special situation the bacteria numbers in each group are conserved.
With the notation

ρ± =
∫

T1
±

f dϕ , ρ±u± =
∫

T1
±

ωf dϕ ,

we have
∂ρ± +∇x · (ρ±u±) = 0 ,

where the sum gives (2.12), of course. Thus, there is one additional conservation law, bringing the
total number up to three, the dimension of the set of equilibria. This will allow us to perform the
(formal) macroscopic limit in Section 6.

2.4 The spatially homogeneous problem
Existence and uniqueness of solutions: We consider the initial value problem

∂tf = Q(f, f), in T1 × (0,∞) (2.16)
f(ϕ, 0) = fI(ϕ) , ϕ ∈ T1,

with the collision operator as in (2.7) and no restriction on fI . Existence and uniqueness in L1(T1)
will be shown by the Picard theorem since, by the boundedness of the collision cross-section b, the
collision operator can be shown to be Lipschitz continuous.
Theorem 2.1. Let b ∈ L∞(T1 × T1) and fI ∈ L1

+(T1). Then (2.16) has a unique global solution
f ∈ C

`

[0,∞), L1
+(T1)

˘

.

Proof. Let f, g ∈ L1(T1) with ‖f‖L1(T1), ‖g‖L1(T1)≤ ρ, and b̄ := ‖b‖L∞(T1×T1). We split the collision
operator as in (2.7):

‖GAL(f, f)−GAL(g, g)‖L1(T1)≤ 2b̄
∫

T1

∫
TAL→ϕ
|f̃f∗ − g̃g∗|dϕ∗dϕ = b̄

∫
T1

∫
TALϕ→
|ff∗ − gg∗|dϕ∗dϕ ,

with the change of variables ϕ̃→ ϕ as in the previous section. Further estimation gives

‖GAL(f, f)−GAL(g, g)‖L1(T1) ≤ b̄

∫
T1

∫
TALϕ→

p|f | |f∗ − g∗|+|f − g| |g∗|q dϕ∗dϕ

≤ 2b̄ρ ‖f − g‖L1(T1)
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2 Kinetic Modelling of Colonies of Myxobacteria

For the reversal term we have

‖GREV (f, f)−GREV (g, g)‖L1(T1) ≤ b̄

∫
T1

∫
TREVϕ

|f↓f↓∗ − g↓g↓∗|dϕ∗dϕ

= b̄

∫
T1

∫
TREVϕ

|ff∗ − gg∗|dϕ∗dϕ ≤ 2b̄ρ ‖f − g‖L1(T1) ,

with (ϕ↓, ϕ↓∗)→ (ϕ,ϕ∗). An analogous estimate for the loss term finally gives

‖Q(f, f)−Q(g, g)‖L1(T1)≤ 6b̄ρ‖f − g‖L1(T1) .

Therefore a unique local solution exists by Picard iteration. Nonnegativity and conservation of the
number of bacteria, i.e. of the L1(T1)-norm, are obvious, the latter implying global existence.

Convergence to equilibrium: We study the convergence of solutions of the spatially homogeneous
problem (2.16) to equilibria of the form (2.14) as t → ∞. We have, however, only partial results in
this direction due to two difficulties. The first one is the lack of a third conservation law for general
initial data. We shall therefore restrict our attention to two-group initial data fI satisfying (2.15). In
this case the conservation of∫

T1
+

f dϕ ,

∫
T1
−

f dϕ , and
∫

T1
ϕf dϕ ,

allows to determine the parameters in (2.14) from the initial data:

ρ+ =
∫

T1
+

fI dϕ , ρ− =
∫

T1
−

fI dϕ , ϕ+ = 1
ρ+ + ρ−

˜∫
T1

+

ϕfI dϕ+
∫

T1
−

ϕ↓fI dϕ

¸

.

Note that ϕ+ ∈ T1
+ is an average angle where, however, angles in T1

− are mapped to T1
+ by reversal.

First, we state a preliminary result on the decay of the variance

V [f ] :=
∫

T1
+

(ϕ− ϕ+)2f dϕ

for the even more restricted case of one-group initial data supported in T1
+ = (π/4, 3π/4), where only

alignment collisions occur.

Lemma 2.2. Let fI ∈ L1
+(T1) with supp(fI) ⊂ T1

+ and let f be a solution of (2.16). Then
a) for Maxwellian myxos, i.e. b(ϕ,ϕ∗) ≡ 1,

V [f(·, t)] = e−tρ+/2V [fI ] ,

b) and for rod shaped myxobacteria, i.e. b(ϕ,ϕ∗) = |sin(ϕ− ϕ∗)|,

1
ρ+

´

M−1
1,I + 2t

¯−2
≤ V [f(·, t)] ≤

´

V [fI ]−1/2 + κt
¯−2

,

with
M1,I :=

∫
T1

+

|ϕ− ϕ+|fI dϕ , κ =
?
ρ+

4π .
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2.4 The spatially homogeneous problem

Remark 2.3. The result of Lemma 2.2 b) corresponds to Haff’s law [20] for the spatially homogeneous
dissipative Boltzmann equation, stating that the variance of the distribution decays like t−2. There the
degeneracy of the collision cross section is the same as here. Our proof follows along the lines of [2].

Proof. For the computation of the time derivative of the variance along solutions of (2.16) the formula
(2.9) with ψ(ϕ) = 1T1

+
(ϕ)(ϕ− ϕ+)2 can be used:

dV [f ]
dt

= −1
4

∫
T1

+

∫
T1

+

b(ϕ,ϕ∗)ff∗(ϕ− ϕ∗)2dϕ∗dϕ . (2.17)

a) We compute
dV [f ]
dt

= −1
4

∫
T1

+

∫
T1

+

ff∗(ϕ− ϕ+ + ϕ+ − ϕ∗)2dϕ∗dϕ = −ρ+
2

∫
T1

+

f(ϕ− ϕ+)2dϕ = −ρ+
2 V [f ] .

b) Since |ϕ− ϕ∗|≤ π/2 in the right hand side of (2.17), we have

b(ϕ,ϕ∗) = |sin(ϕ− ϕ∗)|≥
2
π
|ϕ− ϕ∗| ,

and therefore, using the Jensen inequality twice,∫
T1

+

∫
T1

+

b(ϕ,ϕ∗)ff∗(ϕ− ϕ∗)2dϕ∗dϕ ≥
2
π

∫
T1

+

f

˜∫
T1

+

f∗|ϕ− ϕ∗|3dϕ∗

¸

dϕ

≥ 2ρ+
π

∫
T1

+

f

ˇ

ˇ

ˇ

ˇ

ˇ

∫
T1

+

f∗
ρ+

(ϕ− ϕ∗)dϕ∗

ˇ

ˇ

ˇ

ˇ

ˇ

3

dϕ = 2ρ+
π

∫
T1

+

f |ϕ− ϕ+|
3 dϕ

≥
2ρ2

+
π

˜∫
T1

+

f

ρ+
pϕ− ϕ+q

2 dϕ

¸3/2

=
2?

ρ+

π
pV [f ]q3/2 ,

giving
dV [f ]
dt

≤ −
?
ρ+

2π V [f ]3/2 ,

implying the upper bound by solving the corresponding differential equation. A lower bound is first
derived for

M1[f ](t) :=
∫

T1
+

|ϕ− ϕ+|f dϕ .

We again use (2.9), now with ψ(ϕ) = 1T1
+

(ϕ)|ϕ− ϕ+|:

dM1[f ]
dt

= −1
2

∫
T1

+

∫
T1

+

|sin(ϕ− ϕ∗)|ff∗ p|ϕ− ϕ+|+|ϕ∗ − ϕ+|−|ϕ+ ϕ∗ − 2ϕ+|q dϕ∗dϕ .

With the elementary inequalities (see also [2, equ. (3.3)] for the second)

(|a|+|b|−|a+ b|)|sin(a− b)|≤ (|a|+|b|−|a+ b|)|a− b|≤ 4|a| |b| ,

we obtain
dM1[f ]
dt

≥ −2M1[f ]2 ,

implying
M1[f ](t) ≥

´

M−1
1,I + 2t

¯−1
.

An application of the Cauchy-Schwarz inequality M1[f ]2 ≤ ρ+V [f ] concludes the proof.
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2 Kinetic Modelling of Colonies of Myxobacteria

Lemma 2.2 can be interpreted as a convergence result with respect to the Wasserstein distance [37].
In particular, for f, g ∈ P(T1) (the space of probability measures), the Wasserstein distance with
quadratic cost is defined by

WT1
2 (f, g) := inf

π∈Π(f,g)

¨

˝

ĳ

T1×T1

distT1(ϕ1, ϕ2)2 dπ(ϕ1, ϕ2)

˛

‚

1/2

,

where Π(f, g) ⊂ P(T1 × T1) is the set of all transference plans π, satisfying π(·,T1) = f , π(T1, ·) = g.
We shall also use the straightforward extension of the definition to pairs of measures with the same
total mass, not necessarily equal to one. It is well known that for g(ϕ) = mδ(ϕ− ϕ̂) the only possible
transference plan is π = (f ⊗ g)/m and therefore

WT1
2 (f, g)2 =

∫
T1

distT1(ϕ, ϕ̂)2f dϕ ,

implying for distributions with support T1
+ as in Lemma 2.2 that V [f ] = WT1

2 (f, f∞)2.
Since for the two-group case we are dealing with distributions, which are the sums of two point

masses, we shall need the following result.

Lemma 2.4. Let f, g ∈ P(T1), supp(f), supp(g) ⊂ T1
+ ∪ T1

−, f(T1
±) = g(T1

±). Then

WT1
2 (f, g)2 = W

T1
+

2 pf, gq
2 +W

T1
−

2 pf, gq
2 ,

where on the right hand side f, g denote the restrictions to T1
+ and, respectively, T1

−.

Remark 2.5. The result is actually a rather obvious consequence of the fact that the distance between
points within T1

± is never larger than the distance between a point in T1
+ and a point in T1

−, with
the consequence that there always exists an optimal transference plan transferring only within the two
groups.

Proof. We only give a proof for the case where f and g are sums of point measures, since the result
then follows by a density argument. So let

f =
M∑
i=1

fiδϕi , g =
N∑
j=1

gjδψj .

A transference plan is then determined by a matrix π ∈ RM×N with nonnegative entries, such that

N∑
j=1

πij = fi ,
M∑
i=1

πij = gj .

The statement of the lemma means that there exists an optimal π such that

πij > 0 ⇐⇒ ϕi, ψj ∈ T1
+ or ϕi, ψj ∈ T1

− . (2.18)

Let now π be a general transference plan and assume that there exists (i, j) such that ϕi ∈ T1
+,

ψj ∈ T1
−, πij > 0. This means that some mass is transferred from T1

+ to T1
−. Since the total masses

are the same in both groups, the mass balance requires that also some mass is transferred from T1
− to

T1
+, i.e. there exists (i∗, j∗) such that ϕi∗ ∈ T1

−, ψj∗ ∈ T1
+, πi∗j∗ > 0.
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2.4 The spatially homogeneous problem

The idea is that in this situation the transference plan can be improved by moving mass m :=
min{πij , πi∗j∗} in a cheaper way by the changes

πij → πij −m, πi∗j∗ → πi∗j∗ −m, πij∗ → πij∗ +m, πi∗j → πi∗j +m.

This means that the contribution

m
`

distT1(ϕi, ψj)2 + distT1(ϕi∗ , ψj∗)2˘ ≥ mπ2

2
to the total cost is replaced by

m
`

(ϕi − ψj∗)2 + (ϕi∗ − ψj)2˘ ≤ mπ2

2 ,

and in the improved transference plan either πij or πi∗j∗ is replaced by zero. Iterating the procedure,
an improved transference plan satisfying (2.18) is reached in finitely many steps.

For the two-group case with equilibrium f∞ given in (2.14), it seems natural to examine the evolution
of the Wasserstein distance

WT1
2 (f, f∞)2 =

∫
T1

+

(ϕ− ϕ+)2f dϕ+
∫

T1
−

(ϕ− ϕ+ + π)2f dϕ .

For the computation of its time derivative along solutions of (2.16) the formulas (2.9), (2.10) with
ψ(ϕ) = 1T1

+
(ϕ)(ϕ− ϕ̄+)2 + 1T1

−
(ϕ)(ϕ− ϕ̄−)2 can be used:

d

dt
WT1

2 (f, f∞)2 = −1
4

∫
T1

+

∫
T1

+

b(ϕ,ϕ∗)ff∗(ϕ− ϕ∗)2dϕ∗dϕ

−1
4

∫
T1
−

∫
T1
−

b(ϕ,ϕ∗)ff∗(ϕ− ϕ∗)2dϕ∗dϕ ≤ 0 .

Note that the reversal collisions do not contribute to the right hand side which vanishes, whenever
concentration is reached in both groups, even when the two concentration angles are not opposite each
other. Therefore it is not possible to derive a differential inequality for WT1

2 (f, f∞) as in the proof of
Lemma 2.2.
We have been able to overcome this problem only for Maxwellian myxos, where we construct a

Lyapunov function of the form

H[f ] = WT1
2 (f, f̄)2 + γWT1

2 (f̄ , f∞)2 ,

with γ > 0, and where f̄ denotes the partial equilibrium

f̄(ϕ, t) = ρ+δ(ϕ− ϕ̄+(t)) + ρ−δ(ϕ− ϕ̄−(t)) , with ϕ̄±(t) := 1
ρ±

∫
T1
±

ϕf(ϕ, t)dϕ .

This implies
WT1

2 (f, f̄)2 =
∫

T1
+

(ϕ− ϕ̄+)2f dϕ+
∫

T1
−

(ϕ− ϕ̄−)2f dϕ ,

and

WT1
2 (f̄ , f∞)2 = ρ+(ϕ̄+ − ϕ+)2 + ρ−(ϕ̄− − ϕ↓+)2 = ρ+ρ−

ρ+ + ρ−
(ϕ̄+ − ϕ̄− − π)2 , (2.20)
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2 Kinetic Modelling of Colonies of Myxobacteria

where the second equality is due to the conservation law (2.13), i.e.,

ρ+ϕ̄+ + ρ−ϕ̄− = ρ+ϕ+ + ρ−ϕ
↓
+ .

For the time derivative of the first contribution we obtain, similarly to (2.19), but now with b ≡ 1,

d

dt
WT1

2 (f, f̄)2 = −1
4

∫
T1

+

∫
T1

+

ff∗(ϕ− ϕ∗)2dϕ∗dϕ−
1
4

∫
T1
−

∫
T1
−

ff∗(ϕ− ϕ∗)2dϕ∗dϕ

+2ρ+ρ−(ϕ̄+ − ϕ̄− − π)2 ,

where the nonnegative term in the second line results from the reversal collisions. The time derivative
of the second contribution is not influenced by alignment collisions:

d

dt
WT1

2 (f̄ , f∞)2 = −2ρ+ρ−(ϕ̄+ − ϕ̄− − π)2 ,

from which, together with (2.20), exponential decay ofWT1
2 (f̄ , f∞)2, the reversal part of our Lyapunov

function follows. Finally, the identity∫
T1
±

∫
T1
±

ff∗(ϕ− ϕ∗)2dϕ∗dϕ = 2ρ±
∫

T1
±

f(ϕ− ϕ̄±)2dϕ

implies

dH[f ]
dt

= −ρ+
2

∫
T1

+

f(ϕ− ϕ̄+)2dϕ− ρ−
2

∫
T1
−

f(ϕ− ϕ̄−)2dϕ

−2(γ − 1)ρ+ρ−(ϕ̄+ − ϕ̄− − π)2 ≤ 0 ,

for γ ≥ 1. It is easily seen that with the choice γ = 8/7 we have

dH[f ]
dt

≤ −2λH[f ] , with λ = 1
4 min{ρ+, ρ−} . (2.21)

Theorem 2.6. Let fI ∈ L1
+(T1) with supp(fI) ⊂ T1

+ ∪T1
−, and let f be a solution of (2.16). Then for

Maxwellian myxos, i.e. b(ϕ,ϕ∗) ≡ 1, there exists C > 0, such that

WT1
2 (f(·, t), f∞) ≤ Ce−λt , ∀ t ≥ 0 ,

with f∞ defined in (2.14) and λ as in (2.21).

Proof. After using (2.21), it only remains to use the triangle inequality for the Wasserstein distance
to obtain WT1

2 (f, f∞)2 ≤ 2H[f ].

2.5 Numerical Simulations
Discretization: The results of the preceding section will be illustrated by numerical simulations of the
spatially homogeneous model (2.16). Discretization in the angle direction is based on an equidistant
grid

ϕk = (k − n)π
n

, k = 0, . . . , 2n ,

with an even number of grid points, guaranteeing that the grid is invariant under reversal collisions,
i.e., with ϕk also ϕ↓k = ϕk+n is a grid point. Similarly, only those alignment collisions between discrete
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2.5 Numerical Simulations

angles will be allowed, which produce post-collisional angles belonging to the grid. This is facilitated
by rewriting the alignment collision operator (2.8) as

QAL(f, f) = 2
∫

TAL→ϕ
b(ϕ̃, ϕ∗)(f̃f∗ − ff̃∗)dϕ∗ ,

with ϕ̃ = 2ϕ − ϕ∗, ϕ̃∗ = 2ϕ∗ − ϕ, before discretization. Note that in this form mass conservation
is obvious since b(ϕ̃, ϕ∗) = b(ϕ̃∗, ϕ), and the grid is invariant under the map (ϕ,ϕ∗) = (ϕk, ϕk∗) 7→
(ϕ̃, ϕ̃∗) = (ϕ2k−k∗ , ϕ2k∗−k). Finally, we always choose n odd to avoid the angle π/2 between grid
angles and, thus, the ambiguity between alignment and reversal collisions.
Solutions of (2.16) are approximated at grid points by

fn(t) := (f1(t), . . . , f2n(t)) ≈ (f(ϕ1, t), . . . , f(ϕ2n, t)) ,

extended periodically by fk+2n(t) = fk(t). This straightforwardly leads to the discrete model

dfk
dt

= Qn(fn, fn)k ,

with

Qn(fn, fn)k := 2π
n

∑
|k∗−k|<n/4

b2k−k∗,k∗(f2k−k∗fk∗ − fkf2k∗−k) + π

n

∑
|k∗−k|>n/2

bk,k∗(fk+nfk∗+n − fkfk∗) ,

and bk,k∗ := b(ϕk, ϕk∗).
For the time discretization the explicit Euler scheme is used, such that the total mass is conserved

by the discrete scheme, which has been implemented in Matlab.

Numerical simulations with two group initial conditions: Simulations have been carried out with
n = 201 and with the time step ∆t = 0.1. In the first rows of Figures 2.3, 2.4, 2.6, density is color
coded as a function of ϕ (vertically) and t (horizontally). The plots in the second rows show snapshots
of the distribution function f at different times.
Although we only provide a proof for Maxwellian myxos, we expect solutions of (2.16) with ini-

tial data satisfying (2.15) to converge to the equilibrium f∞, given by (2.14), also for rod shaped
myxobacteria. This conjecture is supported by the simulation results depicted in Figures 2.3, 2.4.
On the left side of Figure 2.3 the initial distribution is uniform within both T1

+ and T1
−, but with

zero mass outside. The equilibrium angle is given by ϕ+ = π
2 . The initial data on the right side are

similar, but with no mass in intervals around π/2 and −π/2, which again causes ϕ+ = π
2 .

In the left part of Figure 2.4 the initial data are supported in T1
+, therefore excluding reversal

collisions. The discretization preserves the mass conservation in both T1
+ and T1

− separately. This is
the situation of Lemma 2.2 b). The decay estimate for the variance as t−2 (Haff’s law) is demonstrated
by the left part of Figure 2.5. The simulation has also been carried out for Maxwellian myxos,
demonstrating the exponential decay of the variance in this case (Figure 2.5, right). The right part of
Figure 2.4 shows an example, where the average directions ϕ̄± within the groups change significantly.

Instability of constant steady states: In Figure 2.6 we consider small perturbations of a constant
steady state. On the left side we start with a random perturbation and see mass concentrating at
unpredictable directions ϕ+ and ϕ↓+. On the right side we considered a perturbation at one random
point ϕ̂. We see convergence to f∞, with equilibrium angle ϕ+ = ϕ̂. Both simulations illustrate
instability of the uniform distribution on T1.
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2 Kinetic Modelling of Colonies of Myxobacteria

Figure 2.3: Two group initial conditions with the same mass in T1
+ and T1

−; rod shaped bacteria. Left:
uniform distributions within T1

+ and T1
−. Right: vacuum around ±π/2.

2.6 Formal macroscopic limit
For the simulation of spatial pattern formation phenomena kinetic transport models pose signifi-
cant numerical challenges and contain often unnecessary information on microscopic lengths and time
scales. Therefore such simulations are often based on macroscopic models. For myxobacteria colonies
macroscopic models have been formulated both by a direct continuum approach [19, 22, 23, 24] and
based on microscopic or kinetic descriptions [5, 10, 18]. This section is concerned with the formal
macroscopic limit of the kinetic model (2.7) to demonstrate which features of other models are re-
produced. Similarities can also be found with models for the interaction of microtubules by motor
proteins [4] and for granular gases assuming nonelastic collisions [11, 25, 35]. In the latter case the
macroscopic limit is often combined with the assumption of weakly inelastic collisions, leading to an
energy balance equation describing the cooling of the gas [11, 35]. Since the model (2.7) corresponds
to the other extreme of sticky particles, the macroscopic limit already involves the passage to zero
temperature.
We investigate the behavior at macroscopic position and time scales by introducing the rescaling

x→ x
ε , t→

t
ε , with a Knudsen number ε� 1 in (2.7):

∂tf
ε + ω · ∇xf ε = 1

ε
Q(f ε, fε) .
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2.6 Formal macroscopic limit

Figure 2.4: Left: initial condition with uniform distribution in T1
+ and vacuum everywhere else. Right:

initially two concentrated patches at a distance somewhat bigger than π/2 (yellow at
the left end). Outer stripes created by reversal, then fill-in by alignment, followed by
concentration towards opposite directions. The mean angles ϕ̄+ (red line) and ϕ̄− (dotted
red line) in the two groups change significantly.

Formally, the convergence f ε → f as ε→ 0 implies, by (2.14),

f(x, ϕ, t) = ρ+(x, t)δpϕ− ϕ+(x, t)q + ρ−(x, t)δ
´

ϕ− ϕ+(x, t)↓
¯

.

In Section 2.3 we have seen that in general the collision operator only allows for two independent
collision invariants ψ(ϕ) = 1 and ψ(ϕ) = ϕ, providing only two conservation laws

∂t

∫
T1
fψ dϕ+∇x ·

∫
T1
ωfψ dϕ = 0 ,

for the three unknowns ρ+, ρ−, and ϕ+. However, assuming two group initial data (see again Section
2.3), the mass within the group is a third conserved quantity, closing the macroscopic limit system:

∂tρ+ +∇x · (ρ+ω(ϕ+)) = 0 ,
∂tρ− −∇x · (ρ−ω(ϕ+)) = 0 ,
∂t((ρ+ + ρ−)ϕ+) +∇x · ((ρ+ − ρ−)ϕ+ω(ϕ+)) = 0 .
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2 Kinetic Modelling of Colonies of Myxobacteria

Figure 2.5: Left: The evolution of the inverse square root of the variance V [f ] from the simulation
depicted on the left side of Figure 2.4, supporting the validity of Haff’s law for rod shaped
myxos. Right: Semi-log plot of V [f ] for a simulation with the same initial data, but for
Maxwellian myxos, demonstrating exponential decay to equilibrium as shown in Lemma
2.2 a).

Expanding the derivatives, it can also be written as

∂tρ+ + ω · ∇xρ+ + ρ+ω
⊥ · ∇xϕ+ = 0 ,

∂tρ− − ω · ∇xρ− − ρ−ω⊥ · ∇xϕ+ = 0 ,

∂tϕ+ + ρ+ − ρ−
ρ+ + ρ−

ω · ∇xϕ+ = 0 ,

showing that for ρ+, ρ− > 0 the system is strictly hyperbolic with characteristic velocities ω, −ω,
ρ+−ρ−
ρ++ρ−ω. Although the system is nonlinear, all three characteristic fields are linearly degenerate. On
the other hand, the special case ρ− = 0 leads to

∂tρ+ + ω · ∇xρ+ + ρ+ω
⊥ · ∇xϕ+ = 0 ,

∂tϕ+ + ω · ∇xϕ+ = 0 ,

a non-strictly hyperbolic system with the same structure as the equations for pressureless gas dynamics,
derived as macroscopic limit of the dissipative Boltzmann equation [25].
Furthermore, comparing the equation for ϕ+ in (2.22) with the macroscopic one for the equilibrium
angle in [18], we see that they only differ by a pressure term proportional to (ρ+ − ρ−)ω⊥ · ∇xϕ+ not
occurring in our case. Considering the limit of vanishing diffusion in [18] this term vanishes, which
reveals the fact that the two different microscopic models provide the same macroscopic equations.
The models in [5] and [10] are quite different. They consider only one macroscopic density, coupled
with a nematic polarization vector and an order parameter in [5], and with a mean velocity with
variable speed in [10].
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2.6 Formal macroscopic limit

Figure 2.6: Instability of constant positive steady states. Left: random initial perturbation, leading to
an unpredictable equilibrium direction. Right: initial perturbation at one direction, which
eventually becomes the equilibrium direction. Note that this differs from the simulations
in Figure 2.4, left, by the fact that a positive state is perturbed, and therefore reversal
collisions are active.

Acknowledgments
This work has been supported by the Austrian Science Fund (FWF) project F65 Taming Complexity
in Partial Differential Systems. C.S. acknowledges support by the Austrian Science Fund (grant no.
W1245), by the Fondation Sciences Mathématiques de Paris, and by Paris Science et Lettres. S.H.
acknowledges support via FWF project T-764. The authors also acknowledge the comments of an
anonymous referee, who pointed out a significant number of references.

47





Bibliography

[1] R.J. Alonso, Existence of global solutions to the Cauchy problem for the inelastic Boltzmann equa-
tion with near-vacuum data, JSTOR 58 (2009), pp. 999–1022.

[2] R. J. Alonso, V. Bagland, Y. Cheng, B. Lods, One-Dimensional Dissipative Boltzmann Equation:
Measure Solutions, Cooling Rate, and Self-Similar Profile, SIAM J. Math. Anal. 50 (2015), pp.
1278–1321.

[3] R.J. Alonso, B. Lods, Two proofs of Haff’s law for dissipative gases: The use of entropy and the
weakly inelastic regime, J. Math. Anal. Appl. 397 (2013), pp. 260–275.

[4] I.S. Aranson, L.S. Tsimring, Pattern formation of microtubules and motors: inelastic interaction
of polar rods, Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71 (2005), 050901.

[5] A. Baskaran, M.C. Marchetti, Enhanced Diffusion and Ordering of Self-Propelled Rods, Phys. Rev.
Lett. 101 (2008), 268101.

[6] A. Baskaran, M.C. Marchetti, Nonequilibrium statistical mechanics of self propelled hard rods, J.
Stat. Mech. 2010 (2010), P04019.

[7] D. Benedetto, M. Pulvirenti, On the one-dimensional Boltzmann equation for granular flows,
M2AN 35 (2001), pp. 899–905.

[8] E. Ben-Naim, P.L. Krapivsky, Alignment of rods and partition of integers, Phys. Rev. E Stat.
Nonlin. Soft Matter Phys. 73 (2006), 031109.

[9] E. Bertin, M. Droz, G. Grégoire, Boltzmann and hydrodynamic description for self-propelled par-
ticles. (2006-08-02), Physical Review E. 74 (2): 022101.

[10] E. Bertin, M. Droz, G. Gregoire, Hydrodynamic equations for self-propelled particles: microscopic
derivation and stability analysis, J. Phys. A: Math. Theor. 42 (2009), 445001.

[11] A.V. Bobylev, J.A.Carrillo, I.M. Gamba, On Some Properties of Kinetic and Hydrodynamic Equa-
tions for Inelastic Interactions, J. Stat. Phys. 98 (2000), pp. 743–773.

[12] A.V. Bobylev, C. Cercignani, Self-Similar Asymptotics for the Boltzmann Equation with Inelastic
and Elastic Interactions, J. Stat. Phys. 110 (2003), pp. 333–375.

[13] L. Boltzmann, Weitere Studien über das Wärmegleichgewicht unter Gasmolekülen, Sitzungs-
berichte Akad. Wiss., Vienna, part II, 66 (1872), pp. 275–370.

[14] J. Carrillo, G. Toscani, Contractive probability metrics and asymptotic behavior of dissipative
kinetic equations, Riv. Mat. Univ. Parma (7) 6 (2007), pp. 75–198.

[15] E. Carlen, M. C. Carvalho, P. Degond, B. Wennberg, A Boltzmann model for rod alignment and
schooling fish, Nonlinearity 28 (2015), pp. 1783–1804.

49



Bibliography

[16] C. Cercignani, R. Illner, M. Pulvirenti, The Mathematical Theory of Dilute Gases, Springer-
Verlag, New York, 1994.

[17] P. Degond, A. Frouvelle, G. Raoul, Local stability of perfect alignment for a spatially homogeneous
kinetic model, J. Stat. Phys. 157 (2014), pp. 84–112.

[18] P. Degond, A. Manhart, H. Yu, A continuum model of nematic alignment of self-propelled parti-
cles, DCDS-B 22 (2017), pp. 1295–1327.

[19] P. Degond, A. Manhart, H. Yu, An age-structured continuum model for myxobacteria, M3AS 28
(2018), pp. 1737–1770.

[20] P. Haff, Grain flow as a fluid-mechanical phenomenon, J. Fluid Mech. 134 (1983), pp. 401–30.

[21] J. Hodgkin, D. Kaiser, Genetics of gliding motility in Myxococcus xanthus (Myxobacterales): two
gene systems control movement, Mol. Gen. Genet. 171 (1979), pp. 177–191.

[22] O. A. Igoshin, A. Mogilner, R. D. Welch, D. Kaiser, G. Oster, Pattern formation and traveling
waves in myxobacteria: Theory and modeling, PNAS December 18, 2001 98 (26) 14913-14918

[23] O. A. Igoshin, G. Oster, Rippling of myxobacteria, Math. Biosci. 188 (2004), pp. 221–233.

[24] O. A. Igoshin, R. Welch, D. Kaiser, and G. Oster,Waves and aggregation patterns in myxobacteria,
PNAS 101 (2004), pp. 4256–4261.

[25] P.-E. Jabin, T. Rey, Hydrodynamic limit of granular gases to pressureless Euler in dimension 1,
Quart. Appl. Math. 75 (2017), 155–179.

[26] Y. Jiang, O. Sozinova, M. Alber, On modeling complex collective behavior in myxobacteria, Adv.
in Complex Syst. 9 (2006), pp. 353–367.

[27] L. Jelsbak, L. Sogaard-Andersen, The cell surface-associated intercellular C-signal induces behav-
ioral changes in individual Myxococcus xanthus cells during fruiting body morphogenesis, PNAS 96
(1999), pp. 5031–5036.

[28] S. Kim, D. Kaiser, C-factor: A cell-cell signaling protein required for fruiting body morphogenesis
of M. xanthus, Cell 61 (1990), pp. 19–26.

[29] O. E. Lanford, Time evolution of large classical systems, Lect. Notes Phys. 38 (1975), pp. 1–111.

[30] E. M. F. Mauriello, T. Mignot, Z. Yang, D. R. Zusman, Gliding Motility Revisited: How Do the
Myxobacteria Move without Flagella?, Microbiol. Mol. Biol. Rev. 74 (2010), pp. 229–249.

[31] S. Mischler, C. Mouhot, M. Rodriguez Ricard, Cooling Process for Inelastic Boltzmann Equations
for Hard Spheres, Part I: The Cauchy Problem, J. Stat. Phys. 124 (2006), pp. 655–702.

[32] S. Mischler, C. Mouhot, Cooling Process for Inelastic Boltzmann Equations for Hard Spheres,
Part II: Self-Similar Solutions and Tail Behavior, J. Stat. Phys. 124 (2006), pp. 703–746.

[33] B. Nan, D. R. Zusman, Uncovering the Mystery of Gliding Motility in the Myxobacteria, Annu.
Rev. Genet. 45 (2011), pp. 21–39.

[34] B. Sager, D. Kaiser, Intercellular C-signaling and the traveling waves of Myxococcus, Genes Dev.
8 (1994), pp. 2793–2804.

50



Bibliography

[35] G. Toscani, Hydrodynamics from the dissipative Boltzmann equation, in: G. Capriz, P.M. Mariano,
P. Giovine (eds), Mathematical Models of Granular Matter, Lect. Notes in Math. 1937, Springer,
Berlin–Heidelberg, 2008.

[36] I. Tristani, Boltzmann equation for granular media with thermal force in a weakly inhomogeneous
setting, J. Functional Anal. 270 (2016), pp. 1922–1970.

[37] C. Villani, Topics in Optimal Transportation, Graduate Studies in Math. 58, AMS, 2003.

[38] D. Wall, D. Kaiser, Type IV pili and cell motility, Mol. Microbiol. 32 (1999), pp. 1–10.

[39] R. Welch, D. Kaiser, Cell behavior in traveling wave patterns of myxobacteria, PNAS 98 (2001),
pp. 14907–14912.

[40] C. Wolgemuth, E. Hoiczyk, D. Kaiser, G. Oster, How myxobacteria glide, Curr. Biol. 12 (2002),
pp. 369–377.

51





3 Kinetic Model for Myxobacteria with Directional
Diffusion

I come from Detroit where it’s rough and
I’m not a smooth talker.

Eminem
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This chapter consist of an article together with C. Schmeiser, which is close to submission.

3.1 Introduction

The aim of this work is to investigate a model for the dynamics of myxobacteria colonies moving on
flat substrates. Existence and uniqueness of solutions is studied and in a second step existence of
equilibria as well as their bifurcation behavior. The work is completed with numerical simulations
showing the investigated behavior.

The equation of interest is the kinetic transport equation for the distribution function f(x, ϕ, t) ≥ 0,
where x ∈ T2, ϕ ∈ T1 and t ≥ 0 introduced in [31], which was extended with a diffusion term in velocity
direction and is of the form

∂tf + ω(ϕ) · ∇xf = µ∂2
ϕf +Q(f, f). (3.1)

The velocity is given by ω(ϕ) = (cosϕ, sinϕ) and T1, T2 denotes the one-dimensional flat torus of
length 2π resp. the two-dimensional torus with area 4π2. The positive constant µ describes the
intensity of diffusivity with respect to movement direction. The collision operator is of the form

Q(f, g) = 2
∫

TAL→ϕ
b(ϕ̃, ϕ∗)f̃g∗dϕ∗ +

∫
TREVϕ

b(ϕ↓, ϕ↓∗)f↓g↓∗dϕ∗ −
∫

T1
b(ϕ,ϕ∗)fg∗dϕ∗ , (3.2)
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where
TREVϕ :=

ˆ

ϕ+ π

2 , ϕ+ 3π
2

˙

, TAL→ϕ =
´

ϕ− π

4 , ϕ+ π

4

¯

,

and
ϕ̃ := 2ϕ− ϕ∗ , ϕ↓ = ϕ+ π , ϕ↓∗ = ϕ∗ + π .

The model describes movement along trajectories governed by Brownian motion in velocity direction,
interrupted by hard binary collisions with collision cross-section b(ϕ,ϕ∗), which quantifies the collision
frequency and depends on the shape of the bacteria. In this work we consider two possible types of the
collision kernel b: On one hand we take b(ϕ,ϕ∗) = |ω∗ · ω⊥|= |sin(ϕ− ϕ∗)|, which is a consequence of
the rod shape of the bacteria. It gives the rate of collisions between bacteria with directions ϕ and ϕ∗.
On the other hand, assuming instead bacteria with circular shape, yields a collision rate independent
from the movement direction. By analogy to a similar simplification of the gas dynamics’ Boltzmann
equation [17], we use the name ’Maxwellian myxos’ for this imagined species, modeled by (3.2) with
b(ϕ,ϕ∗) ≡ 1. We may note at this point that in both cases b(ϕ,ϕ∗) = b(ϕ↓, ϕ↓∗) holds. As usual, sub-
and super-scripts on f indicate evaluation at ϕ with the same sub- and super-scripts. The collision
operator (3.2) consists of a loss term and two different gain terms describing two different types of
collisions:

• Alignment: (ϕ̃, ϕ∗) → (ϕ,ϕ) with ϕ = (ϕ̃ + ϕ∗)/2, if two myxobacteria moving in directions ϕ̃
and ϕ∗ meet at an angle smaller than π/2. The factor 2 is due to the fact that an alignment
collision produces 2 myxobacteria with the same direction. The set TAL→ϕ describes all angles ϕ∗,
which can produce the angle ϕ upon collision.

• Reversal: (ϕ,ϕ∗) → (ϕ↓, ϕ↓∗), if two myxobacteria with directions ϕ and ϕ∗ meet at an angle
larger than π/2. The set TREVϕ describes all angles ϕ∗ such that a collision involving ϕ can
produce the angle ϕ↓.

Let us further mention the in [31] introduced and investigated kinetic equation for myxobacteria
colonies without directional diffusion (i.e. µ = 0)

∂tf + ω(ϕ) · ∇xf = Q(f, f), (3.3)

describing bacteria ensembles with individuals following straight runs with constant velocity inter-
rupted by the binary collisions explained above. Its properties will serve as motivation for dynamics
we expect in (3.1) in the small diffusion regime. In both (3.1) and (3.3) the total mass is conserved
and denoted by

M :=
∫

T1×T2
f(x, ϕ, t) dϕdx.

Throughout all of this paper, we denote the uniform distribution by

f0 := M

2π ,

which defines an equilibrium for both (3.1) and (3.3). Investigations in the no diffusion-case show that
f0 is unstable and under special conditions convergence of the solution to the measure equilibrium

f∞(ϕ) := ρ+δ(ϕ− ϕ+) + ρ−δ(ϕ− ϕ↓+) (3.4)

could be proved for the spatially homogeneous equation. Here, ϕ+ ∈ T1
+ describes a mean angle,

where the average is computed after mapping angles in T1
− to T1

+ by reversal. These observations give
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rise to the assumption that for small µ the uniform equilibrium f0 will also be unstable for (3.1) and
other equilibria will occur.
In [11] a similar model, also of Boltzmann-type but just describing alignment interactions, was

introduced as binary collision counterpart of the Vicsek model for swarm dynamics, which on the
other hand is based on nonlocal alignment interactions between agents [44]. It was investigated further
in [12] as well as in [16], where additionally the case of Brownian forcing between binary interactions
was considered. Before, such a diffusive kinetic equation modelling alignment between agents was also
already introduced and studied in [8].
The structure of this paper will be the following: Section 3.2 is dedicated to proving global ex-

istence of a solution subject to initial condition sufficiently close the uniform equilibrium f0 as well
es exponential decay towards this steady state, both in dependence of the diffusivity resp. the total
mass. This result relies on a perturbative approach including the proof of spectral stability of the
equilibrium before extending it to the nonlinear framework, close to equilibrium. We want to mention
at this point that the theory for the dissipative Boltzmann equation is much less developed than the
one of the conservative Boltzmann equation, which is due to the lack of a-priory estimates given by an
entropy. Global existence results for the spatially inhomogeneous Cauchy problem in the inelastic case
are only known for near vacuum data [1] (i.e. the collisions do not have much impact on the dynamics)
inspired by the method using Kaniel & Shinbrot iterates [35]. More recently in [42] existence in the
spatially inhomogeneous framework for inelastic collisions could be established without the closeness
to vacuum restriction. Further, theory in the one-dimensional situation, where grazing collisions are
almost elastic, can be found in [7]. Another important work in the one dimensional case has been done
in [33], carrying out the rigorous macroscopic limit towards pressureless gas dynamics. Much more
results have been established in an homogeneous framework, see e.g. [28] and [40] for investigations
on the existence and uniqueness of solutions. Besides work on the Cauchy problem, a wide amount
of results on existence and further properties of self-similar profiles for diffusively excited inelastic
hard sphere models have been obtained. Among them to mention [13], [28] and [37, 38, 39] for the
case of a constant coefficient of restitution, while we refer the reader to [3] for considerations on the
non-constant case.
All of this stands in contrast to the case for the conservative Boltzmann equation, where the existence

of solutions, known as renormalized solutions was proved by DiPerna and Lions in 1989 [22], used and
developed further ever since then. Other methods arising from a perturbative approach and spectral
study of the linearized operator where developed earlier, starting from Hilbert in the early 20th
century [30], Grad in the late 50’ [25,26] and later also Ukai [43] using semigroup theory to establish
global solutions for the Boltzmann equation.
In the first part of Section 3.3 we investigate stability of the uniform steady state f0 in the depen-

dence of the diffusivity and total mass of the system, using bifurcation theory [18] via Fourier series
expansion of the uniform equilibrium. We establish to show occurrence of a supercritical pitchfork
bifurcation. Although the calculations remain formal, it does provide new insights in the behavior
of the model, while being accurate with already existing results. Indeed, in [16] a rigorous proof of
existence of a pitchfork bifurcation in the noisy version of a Boltzmann-type alignment model for
swarming behavior is stated. In the second part, we investigate the stationary, spatially homogeneous
equation for existence of non-uniform solutions, i.e. spatially homogeneous equilibria different form
the constant one. A result proving the existence of an approximations of such a solution is stated in
the case of Mawellian myxos, i.e. with constant collision kernel b ≡ 1.

In Section 3.4 numerical simulations for the spatially homogeneous equation can be found, giving
evidence for the bifurcation results obtained in Section 3.3.
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3.2 Decay to the uniform equilibrium
The aim of this section is to establish existence and uniqueness of solutions of (3.1), as well as
asymptotic stability of the uniform equilibrium. This can only be expected under the assumption
of large enough diffusivity µ compared to the total mass M .

Theorem 3.1. Let fI ∈ H2
x,ϕ(T2×T1), fI ≥ 0, and let µ/M be large enough withM =

∫
T2×T1 fIdϕdx.

Let furthermore ‖fI − f0‖H2
x,ϕ(T2×T1) be small enough with f0 = M/(2π). Then equation (3.1) subject

to the initial condition f(t = 0) = fI has a unique global solution f ∈ C([0,∞), H2
x,ϕ(T2 × T1)),

satisfying
‖f(t)− f0‖H2

x,ϕ(T2×T1)≤ Ce−λt‖fI − f0‖H2
x,ϕ(T2×T1) , C, λ > 0 .

The rest of this section is dedicated to the proof of Theorem 3.1. The first step will be a proof of
spectral stability by an application of the L2-hypocoercivity method of [23]. Then this result will be
extended to an H2-setting in order to be able to control the quadratic nonlinearities of the collision
operator.

3.2.1 Spectral stability by hypocoercivity
Following the notation of [23], we write the linearization of (3.1) around f0 = M/(2π) in the abstract
form

∂tf + Tf = Lf +QMf , (3.5)
with the dissipative operator L := µ∂2

ϕ, the conservative transport operator T := ω(ϕ) · ∇x, and
the linearized collision operator QMf := Q(f0, f) + Q(f, f0), treated as a perturbation. The linear
operators T , L, and QM are closed on the Hilbert space

H :=
{
f ∈ L2(T2 × T1) :

∫
T2×T1

fdϕdx = 0
}
,

and L+QM − T generates the strongly continuous semigroup e(L+QM−T )t on H. The scalar product
and the norm on H will be denoted by 〈·, ·〉 and, respectively, ‖·‖. The orthogonal projection to the
nullspace N (L) of L is given by the average with respect to the angle:

Πf := 1
2π

∫
T1
fdϕ .

The decay to equilibrium relies on two coercivity properties:

Microscopic coercivity:

−〈Lf, f〉 = µ

∫
T2×T1

(∂ϕf)2dϕdx ≥ µ‖f −Πf‖2 ,

where the last inequality is the Poincaré inequality on T1 with optimal Poincaré constant 1.

Macroscopic coercivity:

‖TΠf‖2= π

∫
T2
|∇xΠf |2dx ≥ 8π3

∫
T2

(Πf)2dx = 4π2‖Πf‖2 ,

where now the Poincaré inequality on T2 with optimal Poincaré constant 8π2 has been used. The
macroscopic coercivity constant 4π2 can be seen as a lower bound for the spectrum of the symmetric
operator (TΠ)∗TΠ on N (L).
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Diffusive macroscopic limit: The method of [23] relies on an algebraic property, which guarantees
that the macroscopic limit, when the dissipative operator L dominates the transport operator T , is
diffusive:

ΠTΠ = 0 . (3.6)

It is easily verified in our situation. The macroscopic limit of (3.5) without the perturbation (QM = 0)
is the heat equation on T2.

The modified entropy: A natural entropy for the unperturbed version of (3.5) is given by the square
of the norm:

d

dt

‖f‖2

2 = 〈Lf, f〉+ 〈QMf, f〉 .

The semidefiniteness of the dissipation 〈Lf, f〉, which vanishes on N (L), can be remedied by intro-
ducing the modified entropy (see [23])

H[f ] := 1
2‖f‖

2+ε〈Af, f〉 ,

with an appropriately chosen small parameter ε > 0, with the operator

A = (1 + (TΠ)∗TΠ)−1(TΠ)∗ .

It has been shown in [23, Lemma 1] that under the assumption (3.6), A and TA are bounded operators
with

‖Af‖≤ 1
2‖(1−Π)f‖ , ‖TAf‖≤ ‖(1−Π)f‖ . (3.7)

For ε < 1, the bound on A implies the equivalence inequalities

1− ε
2 ‖f‖2≤ H[f ] ≤ 1 + ε

2 ‖f‖2 . (3.8)

The time derivative of the modified entropy is written as

d

dt
H[f ] = −D[f ] , (3.9)

where the dissipation is given by

D[f ] := −〈Lf, f〉+ ε〈ATΠf, f〉+ ε〈AT (1−Π)f, f〉 − ε〈ALf, f〉 − ε〈TAf, f〉
− 〈QMf, f〉 − ε〈AQMf, f〉 . (3.10)

We want to note here that the terms −ε〈Af,Lf〉 and −ε〈Af,QMf〉 are not represented in the formu-
lation of D[f ], since they vanish due to the easily checked properties A = ΠA as well as

QM = (1−Π)QM (1−Π) , (3.11)

which the linearized collision operator

QMf = 2f0

∫
TAL→ϕ

b(ϕ̃, ϕ∗)(f̃ + f∗)dϕ∗ + f0

∫
TREVϕ

b(ϕ↓, ϕ↓∗)(f↓ + f↓∗ )dϕ∗

−f0

∫
T1
b(ϕ,ϕ∗)(f + f∗)dϕ∗
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3 Kinetic Model for Myxobacteria with Directional Diffusion

inherits from Q due to mass conservation. Coercivity is provided by the first two terms as a combi-
nation of microscopic and macroscopic coercivity and of the observation that ATΠ can be interpreted
as the application of the map z 7→ z/(1 + z) to the operator (TΠ)∗TΠ:

−〈Lf, f〉+ ε〈ATΠf, f〉 ≥ µ‖(1−Π)f‖2+ε 4π2

1 + 4π2 ‖Πf‖
2 . (3.12)

It remains to show that the last five terms in (3.10) can be controlled by the first two. We start with
the last term of the first line. The property A = ΠA and (3.6) imply TA = (1−Π)TA and therefore,
with (3.7),

|〈TAf, f〉|= |〈TAf, (1−Π)f〉|≤ ‖(1−Π)f‖2 . (3.13)
The operator AT is bounded if and only if its adjoint is bounded which, after using the self-adjointness
of Π and the skew-symmetry of T , can be written as

(AT )∗ = −T 2Π[1 + (TΠ)∗(TΠ)]−1 .

Let us define g := [1 + (TΠ)∗(TΠ)]−1f , giving

(AT )∗f = −T 2Πg .

Furthermore, the definition of g is equivalent to g − Π(v · ∇x(v · ∇xΠg)) = f . After applying Π on
both sides and using the notation ρg := Πg and ρf := Πf , the equation reads

ρg −
1
2∆xρg = ρf .

Testing against ∆xρg implies ‖∆xρg‖L2
x
≤ 2‖ρf‖L2

x
. Therefore

‖(AT )∗f‖2 = ‖T 2ρg‖2≤ π‖∇2
xρg‖2L2

x
= π‖∆xρg‖2L2

x
≤ 4π‖ρf‖2L2

x
= 2‖Πf‖2 ,

implying
|〈AT (1−Π)f, f〉|= |〈(1−Π)f, (AT )∗f〉|≤

?
2 ‖Πf‖ ‖(1−Π)f‖ . (3.14)

Since, by a straightforward computation, ΠTL = −µΠT we have AL = −µA and, thus,

|〈ALf, f〉|= µ|〈Af,Πf〉|≤ µ

2 ‖Πf‖ ‖(1−Π)f‖ . (3.15)

Finally, we deal with the perturbation terms. Using 0 ≤ b ≤ 1 we easily conclude

(QMf)f ≤ f0|f |
ˆ

6
∫

T1
|f∗|dϕ∗ + π|f↓|

˙

,

and therefore, with (3.11) and with the Cauchy-Schwarz inequality,

〈QMf, f〉 ≤ 13πf0‖(1−Π)f‖2= 13
2 M‖(1−Π)f‖2 . (3.16)

Similarly,
|QMf |≤ f0

ˆ

6
∫

T1
|f∗|dϕ∗ + π|f↓|+2π|f |

˙

,

implying

‖QMf‖≤ f0

´

6
?

2π‖f‖+3π‖f‖
¯

= 3M
˜

2
c

2
π

+ 1
¸

‖f‖ .

Combining this with (3.7), A = ΠA, and with (3.11) gives

|〈AQMf, f〉|≤ 3M
˜

c

2
π

+ 1
2

¸

‖Πf‖‖(1−Π)f‖ . (3.17)
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3.2 Decay to the uniform equilibrium

Hypocoercivity: Using our results (3.12), (3.13), (3.14), (3.15), (3.16), (3.17) in (3.9), (3.10) gives

d

dt
H[f ] ≤ −

ˆ

µ− 13
2 M − ε

˙

‖(1−Π)f‖2−ε 8π3

1 + 8π3 ‖Πf‖
2

+ε
˜

?
2 + µ

2 + 3M
˜

c

2
π

+ 1
2

¸¸

‖Πf‖ ‖(1−Π)f‖ .

Obviously for µ > 13M/2 (as requested in Theorem 3.1) and for ε small enough, the right hand side
is negative definite and controls ‖f‖2= ‖Πf‖2+‖(1 − Π)f‖2. With (3.8) we obtain the existence of
λ > 0, such that

d

dt
H[f ] ≤ −2λH[f ] ,

and therefore exponential decay of the modified entropy and also of ‖f‖ by another application of
(3.8). This proves spectral stability of the uniform equilibrium in L2.

Theorem 3.2. Let µ/M > 13/2. Then there exist positive constants λ and C, such that for any
initial datum fI ∈ H, we have

‖et(L+QM−T )fI‖≤ Ce−λt‖fI‖ , t ≥ 0 .

This result can easily be extended to the Sobolev space H2(T2 × T1) ∩ H, which is continuously
imbedded in L∞(T2×T1) and, thus, an algebra. The procedure will only be outlined in the following.

Note that f ∈ H2(T2×T1)∩H implies that the partial derivatives of f lie in H. Therefore Theorem
3.2 immediately carries over to the pure x-derivatives, since the coefficients in (3.5) are x-independent
and the x-derivatives thus solve the same equation. If there is also differentiation with respect to ϕ
on the other hand, we have to proceed recursively. The following crucial, but technical observation
that the collision operator Q factorizes when derived with respect to ϕ, will be used throughout the
following considerations.

Lemma 3.3. Let h1, h2 ∈ H2(T2 × T1), we observe that

∂ϕQ(h1, h2) = Q(∂ϕh1, h2) +Q(h1, ∂ϕh2),

and hence also
∂2
ϕQ(h1, h2) = Q(∂2

ϕh1, h2) + 2Q(∂ϕh1, ∂ϕh2) +Q(h1, ∂
2
ϕh2)

i.e. the collision operator Q(h1, h2) behaves like a pointwise product with respect to the ϕ-derivative.

Proof. This property can be seen easily by rewriting the collision operator in the form

Q(h1, h2) =
∫

T1
bAL(ϕ− ϕ∗)h̃1h2∗ dϕ∗ +

∫
T1
bREV (ϕ− ϕ∗)h↓1h

↓
2∗ dϕ∗ −

∫
T1
b(ϕ− ϕ∗)h1h2∗ dϕ∗ ,

where we defined

bAL(ϕ− ϕ∗) := b(ϕ̃, ϕ∗)1TAL→ϕ
(ϕ∗) = b(ϕ̃, ϕ∗)1{cos (2(·))>0 & cos (·)>0}(ϕ− ϕ∗)

and
bREV (ϕ− ϕ∗) := b(ϕ↓, ϕ↓∗)1TREVϕ

(ϕ∗) = b(ϕ↓, ϕ↓∗)1{cos (·)<0}(ϕ− ϕ∗) ,
with the crucial observation that bAL, bREV and b depend on the difference ϕ−ϕ∗. Deriving the collision
operator with respect to ϕ while using integration by parts to avoid the occurrence of derivatives of
the collision kernel gives the desired result.
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3 Kinetic Model for Myxobacteria with Directional Diffusion

The first ϕ-derivative, g := ∂ϕf , solves the equation

∂tg + (T − L)g = −ω(ϕ)⊥ · ∇xf + 2f0

∫
TAL→ϕ

b(ϕ̃, ϕ∗)(g̃ + g∗)dϕ∗

+f0

∫
TREVϕ

b(ϕ↓, ϕ↓∗)(g↓ + g↓∗)dϕ∗ − f0

∫
T1
b(ϕ,ϕ∗)(g + g∗)dϕ∗ ,

with (ω1, ω2)⊥ = (−ω2, ω1). The first term on the right hand side comes from the ϕ-dependence of
the coefficient in the transport term, whereas the remaining terms are ∂ϕ(QMf), which is derived by
first using the above Lemma 3.3 before linearizing around the uniform equilibrium f0.
By Theorem 3.2 and by the argument above, exponential decay of the first term on the right hand

side is already known. The remaining three terms are given by QM applied to g and therefore can be
treated as a perturbation of L−T as in the proof of Theorem 3.2. For this step again property (3.11)
is important. As a consequence, exponential decay of g follows from the variation-of-constants formula
for µ large enough. The derivatives ∇x∂ϕf (with second order x-derivatives in the inhomogeneity)
and ∂2

ϕf (with ∇xf and ∇x∂ϕf in the inhomogeneity) are treated analogously, proving the following
result.

Corollary 3.4. For µ/M large enough there exist positive constants λ and C, such that for any initial
datum fI ∈ H2(T2 × T1) ∩H, we have

‖et(L+QM−T )fI‖H2(T2×T1)≤ Ce−λt‖fI‖H2(T2×T1) , t ≥ 0 .

Remark 3.5. The exponential rate constant λ in Corollary 3.4 has to be chosen a little smaller than in
Theorem 3.2 because of resonance in the inhomogeneous equations like (3.18). Otherwise an additional
factor t2 would appear as a result of the two-stage recursion process needed for estimating ∂2

ϕf . Also
the ratio µ/M might have to be larger than in Theorem 3.2.

3.2.2 Nonlinear stability of the uniform equilibrium
This section is devoted to the proof of Theorem 3.1. We introduce the perturbation

h := f − f0 ∈ H2(T2 × T1) ∩H ,

satisfying, with the notation introduced above,

∂th+ Th = Lh+QMh+Q(h, h) , h(t = 0) = fI − f0 ,

and consider the mild formulation

h(t) = et(L+QM−T )(fI − f0) +
∫ t

0
e(t−s)(L+QM−T )Q(h(s), h(s))ds .

For the estimation of the semigroup, Corollary 3.4 will be used, and apart from that we need estimates
of the quadratic collision operator.

Lemma 3.6. Let h1, h2 ∈ H2(T2 × T1) ∩ H. Then Q(h1, h2) ∈ H2(T2 × T1) ∩ H and there exists a
constant Q̄ such that

‖Q(h1, h2)‖H2(T2×T1)≤ Q̄ ‖h1‖H2(T2×T1)‖h2‖H2(T2×T1) .
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3.2 Decay to the uniform equilibrium

Proof. Because of the Sobolev inequality

‖h‖L∞(T2×T1)+‖∇xh‖L4(T2×T1)+‖∂ϕh‖L4(T2×T1)≤ cS‖h‖H2(T2×T1) , (3.19)

it will be sufficient to find estimates in terms of the L∞-norms of h1 and h2 or of the L4-norms of the
first order derivatives. We start with the observation

|Q(h1, h2)|≤ 4‖h1‖L∞(T2×T1)

∫
T1
|h2|dϕ ,

implying
‖Q(h1, h2)‖≤ 8π ‖h1‖L∞(T2×T1)‖h2‖ , (3.20)

and similarly,
‖Q(h1, h2)‖≤

a

8π + 33π2 ‖h1‖‖h2‖L∞(T2×T1) ,

Alternatively it is, by the convolution structure of the collision terms, straightforward to show∫
T1
Q(h1, h2)2dϕ ≤ 6π

∫
T1
h2

1dϕ
∫

T1
h2

2dϕ ,

with the consequence
‖Q(h1, h2)‖≤

?
12π‖h1‖L4(T2×T1)‖h2‖L4(T2×T1) . (3.21)

By elliptic regularity, we may use the equivalent norm ‖h‖∗= ‖h‖+‖∆xh‖+‖∂2
ϕh‖ on H2(T2 × T1).

We have

‖∆xQ(h1, h2)‖ ≤ ‖Q(∆xh1, h2)‖+‖Q(h1,∆xh2)‖+2‖Q(∇xh1,∇xh2)‖
≤

a

8π + 33π2 ‖∆xh1‖‖h2‖L∞(T2×T1)+8π ‖h1‖L∞(T2×T1)‖∆xh2‖
+

?
12π‖∇xh1‖L4(T2×T1)‖∇xh2‖L4(T2×T1)

≤ cS(
a

8π + 33π2 + 8π + cS
?

12π)‖h1‖H2(T2×T1)‖h2‖H2(T2×T1) ,

where we have used (3.20)–(3.21) as well as (3.19). It remains to estimate ∂2
ϕQ(h1, h2). Due to the

property stated in Lemma 3.3 we can estimate analogously to the above,

‖∂2
ϕQ(h1, h2)‖≤ cS(

a

8π + 33π2 + 8π + cS
?

12π)‖h1‖H2(T2×T1)‖h2‖H2(T2×T1) ,

completing the proof.

Lemma 3.6 implies local Lipschitz continuity of Q, considered as a map on H2(T2 × T1) ∩ H and
therefore local existence and uniqueness of a mild solution. Corollary 3.4 and Lemma 3.6 imply

‖h(t)‖H2(T2×T1)≤ Ce−λt‖fI − f0‖H2(T2×T1)+CQ̄
∫ t

0
eλ(s−t)‖h(s)‖2H2(T2×T1)ds .

It is easily checked that for
‖fI − f0‖H2(T2×T1)≤

λ

4C2Q̄
,

Picard iteration preserves the inequality

‖h(t)‖H2(T2×T1)≤ 2Ce−λt‖fI − f0‖H2(T2×T1) ,

completing the proof of Theorem 3.1.
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3.3 Existence and Stability of Equilibria for the Spatially Homogeneous
Equation

This section focuses on finding nonuniform, spatially homogeneous equilibria of (3.1), i.e. stationary
solutions of the equation

∂tf = µ∂2
ϕf +Q(f, f), ϕ ∈ T1, t > 0,

f(ϕ, 0) = fI(ϕ), ϕ ∈ T1,
(3.22)

and further investigate their stability. We expect the uniform distribution f0 to be a stable equilib-
rium for sufficiently large diffusion and hope to find other stable equilibria in the collision dominating
regime. Therefore, we aim to find a concrete diffusion parameter µ∗, which defines the threshold from
which on the uniform equilibrium becomes stable.

We approach this problem form two sides. On one hand, in Section 3.3.1 we find a branch of constant
homogeneous solutions different from the uniform one, which are existing for sufficiently small but
moderate diffusion. We perform the corresponding computations in a formal way, with the remark
that they can easily be made rigorous following the theory for bifurcations from a simple eigenvalue
by Crandall and Rabinowitz, [18].
On the other hand, in Section 3.3.2, our aim is to show existence of a stationary solution to (3.22) for
µ� 1, which can be seen as regularization of the measure solution f∞(ϕ) := ρ+δ(ϕ−ϕ+)+ρ−δ(ϕ−ϕ↓),
which is a stable equilibrium of the model without directional diffusion (3.3), i.e. µ = 0. In [31] this
problem was discussed and it could be shown that for a constant collision kernel and special initial
conditions the spatially homogeneous solution decays exponentially to f∞ in the Wasserstein space
P(T1).

3.3.1 Bifurcation Analysis

We start with analyzing the stability of f0 = M
2π by linearizing the problem (3.22) around f0. We

search for stationary, spatially homogeneous solutions close to f0 and set

f = f0 + εf∗,

for a small parameter ε > 0 and a perturbation function f∗ satisfying∫
T1
f∗(ϕ) dϕ = 0,

in order to be consistent with mass conservation. We plug f = f0 + εf∗ into (3.22), which gives due
to Q(f0, f0) = 0

ε∂tf
∗ = εµf∗

′′ + εQ(f0, f
∗) + εQ(f∗, f0) + ε2Q(f∗, f∗),

where the prime now denotes the derivative with respect to ϕ. Looking at order ε, we obtain the
linearized equation for the perturbation f∗

∂tf
∗ = µf∗

′′ +QM (f∗),∫
T1
f∗ dϕ = 0, f∗(ϕ) = f∗(−ϕ), ∀ϕ ∈ T1,

(3.23)
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where, as in Section 3.2, QM describes the linearization of Q around f0 defined as

QM (f) := Q(f0, f) +Q(f, f0).

Since we expect our solution to be in L2(T1), we make the Fourier series ansatz for the function f∗
and write

f∗(ϕ) =
∑
n≥1

an cos (nϕ) +
∑
n≥1

bn sin (nϕ) (3.24)

=
∑
n≥1

an sin (nϕ+ π/2) +
∑
n≥1

bn sin (nϕ)

We calculate −µf∗′′ + QMf
∗ in order to obtain equations for the Fourier modes. Indeed, plugging

(3.24) into (3.23) we see that the operator µ∂2
ϕ ·+QM (·) is diagonal in L2(T1) with respect to the basis

{cos (n ·), sin (n ·)}n≥0 and we obtain the following evolution equations for the Fourier modes
ˆ

9an
9bn

˙

= λn(µ, f0)
ˆ

an
bn

˙

where {λn(µ, f0)}n≥1 describe the eigenvalues to the eigenfucntions {sin (n·)}n≥1 resp. {cos (n·)}n≥1,
which can be computed explicitly and are given by

λ1(µ, f0) = −µ+ f0
3 p1− 8 sin (π/4)q ,

λ2(µ, f0) = −4µ+ 2f0
3 ,

λn(µ, f0) = −n2µ+ 2f0

ˆ

4n sin (nπ/4)− 8
n2 − 4 + n sin (nπ/2) + (−1)n

n2 − 1 + (−1)n − 2
˙

.

For n 6= 2 we observe strict negativity of the eigenvalues, independent from the value of µ, i.e.
λn < 0,∀µ > 0. Other than that, the second eigenvalue λ2 passes zero for changing diffusion constant:

λ2(µ) = −4µ+ 2f0
3

{
> 0 for µ < f0

6
< 0 for µ > f0

6

At the critical value

µ = µ∗ := f0
6 (3.25)

we have λ2 = 0. These observations reveal the following linear stability result for the uniform equilib-
rium f0:
The uniform equilibrium is linearly stable for µ > µ∗, while for µ < µ∗ the f0 becomes an unstable
equilibrium, since the critical eigenvalue λ2 is positive. The point (µ∗, f0) is a bifurcation point, where
a branch of new stationary solutions emerge, which close left to the bifurcation point is of the form

f(ϕ) = f0 + εf∗(ϕ) = f0 + εa sin (2ϕ+ π/2) + εb sin (2ϕ),

for some small parameter ε << 1. We renamed the second Fourier modes a := a2 and b := b2. The
rotational symmetry of the problem (3.22) causes ker

`

∂2
ϕ ·+QM (·)

˘

to be two dimensional, spanned
by {sin (2·), cos (2·)}. Since we are able to express one direction with respect to the other, we will only
focus on the sin-part of the

`

ker
`

∂2
ϕ ·+QM (·)

˘˘

, which corresponds to fixing f∗ at 0, i.e. f∗(0) = 0 in
this case.
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Determining the type of Bifurcation: The flip-symmetry in our equation indicates the occurrence
of a pitchfork bifurcation. Having in mind that in the no-diffusion-regime the equilibrium f∞(ϕ) :=
ρ+δϕ+(ϕ) + ρ−δϕ−(ϕ), consisting of two Dirac-deltas with masses concentrated exactly opposite of
each other, is stable (see [31]), we also expect to find stable, non-constant equilibria, with two peaks
exactly opposite from each other for small values of µ. Therefore, we search left of µ∗ and make the
ansatz

µ = µ∗ − δ, (3.26)

f(ϕ) = f0 +
?
δf∗(ϕ) + δg(ϕ) +O

´

δ
3
2

¯

,

for δ := ε2 > 0 and
f∗(ϕ) := b sin (2ϕ),

with Fourier mode a ∈ R to be determined. Due to mass conservation the perturbation g also fulfills∫
T1
g(ϕ, t) dϕ = 0.

Plugging (3.26) into (3.22) yields, after dividing by
?
δ,

∂tf
∗ +

?
δ∂tg =µ∗∂2

ϕf
∗ +QM (f∗) +

?
δ
`

µ∗∂2
ϕg +Q(f∗, f∗) +QM (g)

˘

+ δ
`

−∂2
ϕf
∗ +Q(f∗, g) +Q(g, f∗)

˘

+ δ
3
2
“

−∂2
ϕg +Q(g, g)

‰

.

δ ∈ O(1): Ignoring terms up from order
?
δ, we get the following equation

∂tf
∗ = µ∗f∗

′′ +QM (f∗) = 0,

which of course was matter of investigation while considering the linearized equation in the chapter
before. Hence, we already know that f∗ ∈ ker

`

µ∗∂2
ϕ ·+QM (·)

˘

, which gives the shape of the non-
uniform stationary solutions emerging at µ∗ close to the bifurcation point. The constant b determines
how these branch of nonuniform solutions look like.
O(

?
δ): In order to obtain information on these unknowns, we go up to higher order in the stationary

version of problem (3.3.1) and compare coefficients of
?
δ.

0 = µ∗g′′ +Q(f∗, f∗) +QM (g).

The second term on the right hand side, i.e. collision operator applied to f∗, can be computed in
terms of b, which yields

Q(f∗, f∗) = −4
3b

2 cos (4ϕ).

Next we search for a solvability condition, which we want to apply to the equation above in order to
get rid of its dependence on the unknown g. This is equivalent to searching for left-eigenvectors to the
eigenvalue 0 of the already known operator µ∗∂2

ϕ · +QM (·). One can see easily that it is symmetric,
from which we conclude that the solvability condition is given by multiplication of sin (2ϕ), which
is spanning the nullspace of µ∗∂2

ϕ · +L · after we turned off the rotational symmetry of (3.22), and
integration over T1. Carrying out these computations yields

0 =
∫

T1
sin (2ϕ)(µ∗∂2

ϕg +QM (g) +Q(f∗, f∗)) dϕ

= −4
3b

2
∫

T1
sin (2ϕ) cos (4ϕ) = 0,

64



3.3 Existence and Stability of Equilibria for the Spatially Homogeneous Equation

which gives no information about b. But from (3.3.1)

µ∗g′′ +QM (g) = 4
3b

2 cos (4ϕ)

we can calculate g in terms of b again using the Fourier series Ansatz

g(ϕ) =
∑

n≥1,n 6=2
an cos (nϕ) +

∑
n≥1,n 6=2

bn sin (nϕ).

Having in mind that the operator µ∗∂2
ϕ·+QM (·) is diagonal with respect to the basis {cos (n ·), sin (n ·)}n≥0

and using the formula for the eigenvalue λ4, we obtain

4
3b

2 = −16
ˆ

µ∗ + f0
5

˙

a4,

which is equivalent to

a4 = − b2

12(µ∗ + f0
5 )
.

Therefore, g can be expressed as

g(ϕ) = −cb
2

2 cos (4ϕ),

where we defined c := (6(µ∗ + f0
5 ))−1 > 0 for simplicity.

O(δ): We we compare coefficients in (3.3.1) of the next higher order of δ and obtain

0 = −f∗′′ +Q(f∗, g) +Q(g, f∗).

Using the expressions of f∗ and g, we calculate the terms of the above equation and obtain

0 =
ˆ

4b− 3cb3
10

˙

sin (2ϕ).

Now, we again want to apply our solvability condition in order to get information on b. By multipli-
cation with sin (2 ·) and integrating over T1 yields after division by π

0 = 4b− 3c
10b

3.

From here, one can already recognize easily that this equation for b describes the normal form of a
supercritical pitchfork bifurcation. The solution b = 0 refers to the uniform equilibrium, while the two
nonzero solutions to b2 = 40

3c give rise to two branches of non-constant equilibria, symmetric around
f0. Linear stability of these branches left of µ∗ is proved by investigating the eigenvalues λn, n 6= 2,
for the operator on the right-hand-side of (3.3.1). For n 6= 4, the eigenvalues are again of the form

λn = −n2µ∗ + 2f0

ˆ

4n sin (nπ/4)− 8
n2 − 4 + n sin (nπ/2) + (−1)n

n2 − 1 + (−1)n − 2
˙

,

and strictly negative, as we proved above. For the case n = 4 we have

λ4 = −
ˆ

16µ∗ + f0
16
5 + 4

3b
2
˙

< 0.
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Hence, the branches of equilibria f(ϕ) = f0 ±
b

δ 40
3c sin (2ϕ), δ � 1, are linearly stable and we can

conclude that at µ = µ∗ a supercritical pitchfork bifurcation occurs, see Figure 3.1.

Figure 3.1: Bifurcation diagram of a supercritical pitchfork bifurcation with branches to the left; solid
lines represent stable points, while dotted line represents unstable ones

Remark 3.7. The above calculations were carried out for b(ϕ,ϕ∗) = |sin (ϕ− ϕ∗)|, modelling the
case of rod-shaped myxobacteria. We want to mention here that our method yields the same type of
bifurcation result for Maxwellian myxos, i.e. b ≡ 1. Although qualitative analogous, the bifurcation
point at which the pitchfork bifurcation happens is in this case given by

µ∗ = f0

´

1− π

4

¯

= M

2

ˆ

1
π
− 1

˙

.

3.3.2 Existence of Equilibria for Small Diffusivity
Having in mind that f∞(ϕ) := ρ+δ(ϕ − ϕ+) + ρ−δ(ϕ − ϕ↓+) as in (3.4) is a stationary, homogeneous
(measure) solution to the kinetic equation for myxobacteria (3.3) (see [31]), we now want to investigate
existence of equilibria for (3.1) with very small directional diffusion, i.e. µ � 1, which we expect to
find close to f∞. The bifurcation result from the above Section 3.3.1, which formally shows existence
of nonuniform π-symmetric solutions for sufficiently small µ, suggest that nonuniform equilibria have
the form of two equally weighted peaks, which are with distance π apart. Therefore, different from
the problem without diffusion (3.3), where the equilibrium f∞ could possibly consist of two different
weighted Dirac deltas situated opposite from each other, we expect the equilibrium for the equation
with directional diffusion to be symmetric. In fact, performing numerical simulations (see Section
3.4) we could observe that in the presence of directional diffusion no asymmetrical equilibrium can be
reached. More precisely, simulations show that wo exactly opposite, but differently weighted peaks
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are destroyed by diffusion, which equals them out.
For the search of such equilibria we restrict ourselves to the case of ’Maxwellian myxos’, whose dy-
namics are characterized by the collision operator Q with constant collision kernel b(ϕ,ϕ∗) ≡ 1. This
can be seen as an analogy to a similar simplification of the gas dynamics Boltzmann equation known
as ’Maxwellian molecules’ [17]. For ϕ ∈ T1, t > 0 equation (3.22) then has the following simple form

∂tf(ϕ) = µ∂2
ϕf(ϕ) + 2

∫ ϕ+π
4

ϕ−π4
f(2ϕ− ϕ∗)f(ϕ∗) dϕ∗ + f(ϕ+ π)

∫ ϕ+π
2

ϕ−π2
f(ϕ∗) dϕ∗ −Mf(ϕ).(3.27)

Motivated by the discussions above, we seek for an equilibrium which is π-symmetric and regularizes
the measure equilibrium concentrated around 0 and π with equally weighted peaks, i.e.

f∞(ϕ) = M

2 δ(ϕ) + M

2 δ(ϕ− π).

Therefore, we aim to find a solution to (3.27) with significant values only close to 0 and π and
investigate its behavior close to these values separately. We introduce the local variables:

• ξ := ϕ
b

M
2µ close to 0,

• η := (ϕ− π)
b

M
2µ close to π.

Now, we make the symmetry ansatz

F (ξ) := 1
2

c

32µ
M3 f

˜

ξ

c

2µ
M

¸

= 1
2

c

32µ
M3 f(ϕ) (3.28)

equivalent to

f(ϕ) =

d

M3

32µ

«

F

˜

ϕ

d

M

2µ

¸

+ F

˜

(ϕ− π)

d

M

2µ

¸ff

=

d

M3

32µ rF pξq + F pηqs = 2

d

M3

32µF (ξ),

having in mind that F (ξ) ↘ 0 for ξ → ±∞ should hold. Plugging now (3.28) into the stationary
version of (3.27), the equation for F reads

0 = F ′′(ξ) + 2
∫ ξ+π

4

b

M
2µ

ξ−π4
b

M
2µ

F (2ξ − ξ∗)F (ξ∗) dξ∗ + F (η)− 2F (ξ),

where the primes denote derivatives with respect to ξ. After approximating the integral with an
integral over R, since we consider solutions which decay to zero for |ξ|→ ∞, as well the symmetry
assumption F (η) = F (ξ) we obtain the following equation for F

0 = F ′′(ξ) + 2
∫

R
F (2ξ − ξ∗)F (ξ∗) dξ∗ − F (ξ). (3.29)

Fixed-point argument The question now has simplified to searching for functions F that fulfill (3.29).
Having in mind to apply a fixed-point argument we write

G(ξ) := −2
∫

R
F (2ξ − ξ∗)F (ξ∗) dξ∗,
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with which the equation in (3.29) can be reformulated as

F ′′ − F = G.

For solving this ODE, we take G as given datum and find that the solution is given by

F (ξ) = −1
2

∫
R
e−|ξ−ξ∗|G(ξ∗) dξ∗.

Having in mind (3.3.2), a solution to (3.29) has therefore to fulfill the equation

F (ξ) =
∫

R

∫
R
e−|ξ−ξ∗|F (2ξ∗ − ξ̃)F (ξ̃) dξ̃ dξ∗.

Our aim now is to prove that the mapping

S : B → B, F
S7→
∫

R

∫
R
e−|ξ−ξ∗|F (2ξ∗ − ξ̃)F (ξ̃) dξ̃ dξ∗ (3.30)

with

B :=
{
F ∈ B1(L1(R)) :

∫
R
ξ2F (ξ) dξ ≤ 4

}
.

has a fixed-point. First, we make the following observations:

1. Calculating the L1-norm of G(F ) yields

‖G(F )‖L1 = 2
∫

R

∫
R
F (2ξ − ξ∗)F (ξ∗) dξ∗ dξ =

∫
R

∫
R
F (ξ̂)F (ξ∗) dξ∗ dξ̂ = ‖F‖2L1 ,

and therefore for S(F ) we obtain

‖S(F )‖L1 = 1
2

∫
R

∫
R
e−|ξ−ξ∗|G(F )(ξ∗) dξ∗ dξ

= 1
2

∫
R

∫
R
e−|ξ|G(F )(ξ∗) dξ∗ dξ = ‖G(F )‖L1= ‖F‖2L1 .

2. The L∞-norm of S(F ) can be estimated as follows

‖S(F )‖L∞ = sup
ξ∈R

∫
R

∫
R
e−|ξ−ξ∗|F (2ξ∗ − ξ̃)F (ξ̃) dξ̃ dξ∗

≤ sup
ξ

∫
R

∫
R
F (2ξ∗ − ξ̃)F (ξ̃) dξ̃ dξ∗ = 1

2‖F‖
2
1.

3. Further, we calculate for the variance∫
R
ξ2S(F )(ξ) dξ =

∫
R

∫
R

∫
R
ξ2e−|ξ−ξ∗|F (2ξ∗ − ξ̃)F (ξ̃) dξ̃ dξ∗ dξ

= −1
2

∫
R
e−|ξ| dξ

∫
R
ξ2
∗G(F )(ξ∗) dξ∗ −

∫
R

∫
R
ξ∗ξe

−|ξ∗|G(F )(ξ∗) dξ∗ dξ + 1
2‖G(F )‖1

∫
R
ξ2e−|ξ| dξ

= −
∫

R
ξ2
∗G(F )(ξ∗) dξ∗ + 2‖G(F )‖1.
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In order to obtain also a formulation for F , we further write∫
R
ξ2S(F )(ξ) dξ = 2

∫
R

∫
R
ξ2F (2ξ − ξ∗)F (ξ∗) dξ∗ dξ + 2‖F‖21

= 1
4

∫
R

∫
R
(ξ̂ + ξ∗)2F (ξ̂)F (ξ∗) dξ∗ dξ̂ + 2‖F‖21= 1

2

∫
R
ξ2F (ξ) dξ + 2‖F‖21,

where we used that the integrals with integrand containing the product ξξ∗ vanish since F , G
as well as e−|·| are even functions.

With this ingredients we can prove the following theorem:

Theorem 3.8. The fixed-point equation (3.29) has a positive solution F ∈ B, i.e. satisfying∫
R
F (ξ) dξ = 1 and

∫
R
ξ2F (ξ) dξ ≤ 4.

Proof. In the following we show the existence of a solution to (3.29) by finding a fixed-point of the
mapping (3.30), using Schauder fixed-point theorem.
From 1. and 3. one can easily deduce that S : B → B holds. The continuity of the mapping S follows
immediately from its integral representation.
Boundedness of S(B) follows from observation 1., while due to estimate 2. we can calculate for a set
A ⊂ R and F ∈ B ∫

A
|S(F )(ξ)| dξ ≤ |A|‖S(F )‖L∞(R)≤

|A|
2 ‖F‖L1(R)≤

|A|
2 ,

which implies uniform integrability of the set S(B). Furthermore, due to the bounded variance 3. we
are able to deduce that S(B) is tight. Due to the Dunford-Pettis criterion we obtain from the uniform
integrability and tightness that S(B) is weakly relatively compact in L1(R). This concludes the proof,
since we now have all ingredients for applying Schauder fixed-point theorem.

Remembering the derivation of the fixed-point equation (3.29), its solution F can be seen as sym-
metric approximate solution to the stationary problem (3.27). Up to this point, we just have a formal
approximation for symmetric equilibria in the small diffusion regime. The validity of this approxima-
tion remains an open problem.

3.4 Numerical Simulations
Discretization: The results of the preceding Section 3.3 will be illustrated by numerical simulations
of the spatially homogeneous model (3.22). Discretization in velocity direction ϕ ∈ T1 is based on an
equidistant grid

ϕk = (k − n)π
n

, k = 0, . . . , 2n ,

with an even number of grid points, guaranteeing that the grid is invariant under reversal collisions,
i.e., with ϕk also ϕ↓k = ϕk+n is a grid point. Similarly, only those alignment collisions between discrete
angles will be allowed, which produce post-collisional angles belonging to the grid.
Solutions of (3.22) are approximated at grid points by

fn(t) := (f0(t), . . . , f2n(t)) ≈ (f(ϕ0, t), . . . , f(ϕ2n, t)) ,
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extended periodically by fk+2n(t) = fk(t). We consider collision operator Q with collision kernel
b(ϕ,ϕ∗) = |sin (ϕ− ϕ∗)| and rewrite it by splitting also the loss term into its alignment and reversal
part, which results in the following representation of (3.2)

Q(f, f) = 2
∫

TAL→ϕ
b(ϕ̃, ϕ∗)(f̃f∗ − ff̃∗)dϕ∗ +

∫
TREVϕ

b(ϕ,ϕ∗)(f↓f↓∗ − ff∗)dϕ∗ ,

with ϕ̃ = 2ϕ − ϕ∗, ϕ̃∗ = 2ϕ∗ − ϕ, before discretization. Note that in this form mass conservation
is obvious since b(ϕ̃, ϕ∗) = b(ϕ̃∗, ϕ), and the grid is invariant under the map (ϕ,ϕ∗) = (ϕk, ϕk∗) 7→
(ϕ̃, ϕ̃∗) = (ϕ2k−k∗ , ϕ2k∗−k). Finally, we always choose n odd to avoid the angle π/2 between grid
angles and, thus, the ambiguity between alignment and reversal collisions. Accordingly, the discrete
representation of the collision operator is then of the form

Qn(fn, fn)k := 2π
n

∑
|k∗−k|<n/4

b2k−k∗,k∗(f2k−k∗fk∗ − fkf2k∗−k) + π

n

∑
|k∗−k|>n/2

bk,k∗(fk+nfk∗+n − fkfk∗) ,

with bk,k∗ := b(ϕk, ϕk∗). For the diffusion term we use the following finite difference discretization

fn
′′

k := n2

π2 pfk−1 − 2fk + fk+1q , k /∈ {0, 2n},

fn
′′

0 := n2

π2 pf2n − 2f0 + f1q ,

fn
′′

2n := n2

π2 pf2n−1 − 2f2n + f0q .

Combining this straightforwardly leads to the discrete model

dfk
dt

= µfn
′′ +Qn(fn, fn)k .

Time discretization is done by using the explicit Euler scheme, such that the total mass is conserved
by the discrete scheme, which has been implemented in Matlab.
Simulations have been carried out with n = 51 , the time stepsize ∆t as well as the number of
time steps are chosen accordingly. The solution f has been normalized with respect to the L1-norm.
Therefore, the value of the diffusion constant at the bifurcation point, µ∗, is the same for all of the
following simulations and can be calculated explicitly (see (3.25))

µ∗ = 1
12π ≈ 0.0265.

Simulations in the bifurcation regime: Hereinafter we aim to illustrate the bifurcation result from
Section 3.3.1 on one hand with simulations showing convergence to the uniform equilibirum f0 for
µ > µ∗ and convergence to the nonuniform equilibirum for µ < µ∗.
The plots show the distribution function f at three different times: Initial distribution at t = 0 (small
dotted, red), at an intermediate time t ∈ (0, tEND) (dashed, blue) as well as close to equilibrium
t = tEND (solid line, black).
In Figure 3.2 we see the effect of different strong diffusion starting with randomly distributed initial
conditions. On the left we chose µ = 0.02 and performed 25000 time steps each of size ∆t = 0.01. The
solution converges to the nonuniform steady state with peaks centered around two unpredictable, but
always opposite points. The plot on the right side shows simulations for a bigger diffusion constant,
namely µ = 0.03. After 2500 timesteps of size ∆t = 0.1 the constant equilibrium is reached.
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In Figure 3.3 one can see dynamics for different diffusion intensities starting with data close to the
uniform equilibrium, where a small perturbation at a random point was added. On the left, again the
choice µ = 0.02 was made, which leads to convergence of the solution to the nonuniform equilibrium.
This state was reached after 25000 timesteps of size ∆t = 0.01. On the right side one can observe
that with µ = 0.03 diffusion is strong enough such that the solution converges to the constant steady
state. 2500 time steps with size ∆t = 0.1 were carried out.

Figure 3.2: Random distributed initial conditions.
Left: With sufficiently small diffusivity (µ = 0.02) the solution converges to the nonuniform
equilibrium with peaks at predictable positions. Right: Under presence of strong diffusion
(µ = 0.03) the random initial distribution equals out to the constant steady state f0 = 1

2π .

Figure 3.3: Uniform distributed initial condition, perturbed at a random point.
Left: Convergence to the symmetric nonuniform equilibrium for weak diffusion (µ = 0.02).
Right: Convergence to the uniform equilibrium for diffusion being strong enough (µ =
0.03).

Simulations in the small diffusion regime: In the following, simulations are presented for very weak
diffusion in velocity direction, mimicking the regime investigated in Section 3.3.2. The value for
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diffusion constant was chosen as µ = 0.001. For even smaller µ the necessity of numerical calculations
with very expansive costs makes it unpractical. In our moderate small regime we could observe
emergence of equally weighted peaks, even if staring with initial data very close to the nonuniform
equilibrium, i.e. opposite peaks, but weighted differently (see especially, Figure 3.5). In Figures 3.4
and 3.4 we presented the simulation result in three different plots. In the up left corner the distribution
function f is color coded w.r.t. the angle ϕ (vertical axis) and time t (horizontal axis). The graphic
in the up right part shows f plotted against ϕ at three different times: Initial distribution at t = 0
(small dotted, red), at an intermediate time t ∈ (0, tEND) (dashed, blue) as well as close to equilibrium
t = tEND (solid line, black). The plot in the second row shows the masses in the positive ‖f‖L1([0,π])
(dashed, red) and negative ‖f‖L1([−π,0]) (small dotted, blue) part of the torus approaching each other
with time. The black, solid, vertical lines indicate the times at which the graph of f is displayed in
the up right corner of the figure.
In Figure 3.4 initial conditions of the form

fI(ϕ) = 2
7π

{
1 for ϕ ∈ [−3π/4, π/4]
6 for ϕ ∈ [π/4, 3π/4]

as well as diffusivity constant µ = 0.001 were chosen. A number of 50000 timesteps with size ∆t = 0.1
were performed. The solution approximates two equally weighted, smooth peaks around −π

2 and π
2 .

One can further observe that the concentration of angles due to the alignment part of the collision
operator takes place on a faster time scale than the equalization of the masses of the emerging peaks.
Moreover, we can conclude that the equalization of masses is only caused by the presence of diffusion,
since velocity reversal doesn’t have any effect in this case (see [31]).
Different from this, in Figure 3.5, one can observe that starting with initial conditions given by

fI(ϕ) =
{

1 for ϕ = π
2

7 for ϕ = −3π
4
,

where mass is concentrated at two Diracs, not exactly opposite from each other, additionally to the
diffusion, also this time with intensity µ = 0.001 and the alignment also the reversal part of Q is acting.
A number of 12500 timesteps of size ∆t = 0.01 were performed. Again one can observe the solution
converging to the symmetric equilibrium with peaks centered exactly opposite from each other.
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Figure 3.4: Initial conditions with different mass in T1
+ := [−3π/4,−π/4] and T1

− := [π/4, 3π/4],
diffusion constant µ = 0.001.
Up left: f color coded as a function of ϕ with respect to time. Up right: Distribution
function plotted at three different times: Initial distribution at t = 0 (small dotted red),
at t = 25000 (dashed blue) and at the end of the simulation at t = 50000 (solid, black).
Down: Masses of f in the positive part of T1 (dashed, red) and in the negative part of T1

(small dotted, blue) plotted separately.
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Figure 3.5: Initial conditions consisting of differently weighted Diracs concentrated at −3π
2 and π

2 ,
diffusion constant µ = 0.001.
Up left: f color coded as a function of ϕ with respect to time. Up right: Distribution
function plotted at three different times: Initial distribution at t = 0 (small dotted, red),
at t = 100 (dashed, blue) and at the end of the simulation at t = 25000 (solid, black).
Down: Masses of f in the positive part of T1 (dashed, red) and in the negative part of T1

(small dotted, blue) plotted separately.

Remark 3.9. These observations as well as the bifurcation analysis in Section 3.3 gives rise to the
following conjecture, which already motivated the ansatz (3.28) in Section 3.3.2: We expect the solution
always to converge to a symmetric equilibrium. In the case for sufficiently strong diffusion, it is the
uniform equilibrium f0, while for small diffusion it will be two smooth peaks, exactly with distance π
apart from each other. To be more precise, we write f in the form f = ρ+f+ + ρ−f−, i.e. splitting it
up in its contributions on the positive and negative part of T1 with notation

f±(ϕ, t) := f(ϕ, t)
ρ

1ϕż0(ϕ), and ρ±(t) :=
∫
ϕż0

f(ϕ, t) dϕ,

where we expect
|ρ+(t)− ρ−(t)|→ 0 for t→∞.

This is due to interplay between the reversal operator and the diffusion. While the reversal collision
operator has a symmetrizing effect (see Chapter 4), the diffusion distributes mass over the torus such
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that the domain of the reversal operator is big enough. We aim to rigorously proof this conjecture by
performing exponential asymptotics.
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4 Reversal Collision Dynamics

Symmetry is what we see at a glance; based
on the fact that there is no reason for any
difference.
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This chapter contains results of an ongoing collaboration with A. Frouvelle and C. Schmeiser.

4.1 Introduction
We study reversal collision dynamics on a compact metric space S, which is endowed with a symmetric
structure that allows to define an inclusion x↓ for all x ∈ S as well as a symmetric measure dx. Further,
we assume that Br(x) ⊂ BR(y) implies d(x, y) ≥ R− r, for 0 < r < R. For a subset T ⊂ S we define
T ↓ :=

{
x↓ ∈ S : x ∈ T

}
. The dynamics are given by the following kinetic equation

∂tf =
∫
x∗∈C[x]

b(x, x∗)
´

f↓f↓∗ − ff∗
¯

dx∗ =: QREV (f, f), x ∈ S, t > 0

f(x, 0) = fI(x), x ∈ S,
(4.1)

which describes the evolution of the distribution function f = f(x, t) of the dynamical states of
individual particles x ∈ S, undergoing reversal collisions

(x, x∗) −→ (x↓, x↓∗).

As usual in kinetic theory, we use the notation f↓ = f(x↓, t) and f∗ = f(x∗, t). As the set of collision
partners for x ∈ S we define

C[x] :=
{
x∗ ∈ S : x∗ ∈ Bα(x↓)

}
,

for a constant α > 0. Obviously it holds

x↓ ∈ C[x], and C[x↓] = C[x]↓.
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4 Reversal Collision Dynamics

Although we allow the collision kernel b be quite general, we have to make the following symmetry
assumption

b(x, x∗) = b(x∗, x) = b(x↓, x∗) = b(x↓∗, x),

as well as boundedness from below away from zero, i.e. b(x, x∗) ≥ b0 > 0, for all x, x∗ ∈ S. Further,
we suppose normalization of the initial mass, i.e.∫

S
fI dx = 1.

Remark 4.1. For the case S = T1, d(·, ·) defining the distance between two angles on the torus and
α = π

2 this simplifies to

∂tf =
∫
d(ϕ,ϕ∗)>π

2

b(ϕ,ϕ∗)
´

f↓f↓∗ − ff∗
¯

dϕ∗, (4.2)

which corresponds to the spatially homogeneous kinetic model for myxobacteria (2.16) (Chapter 2),
where just reversal collisions between bacteria are considered.

4.2 Properties of the collision operator
In this section, we summarize results directly obtained from the structure of the collision operator
QREV .

Weak formulation and conservation laws: For a suitable test-function ψ = ψ(x) the weak formula-
tion of the reversal-collision operator has the from∫

S
QREV (f, f)ψ dx = 1

2

∫
S

∫
C[x]

b(x, x∗)ff∗
´

ψ↓ + ψ↓∗ − ψ − ψ∗
¯

dx∗dx. (4.3)

Choosing ψ ≡ 1 in (4.3) we immediately obtain mass conservation, i.e.:∫
S
f dx =

∫
S
fI dx ≡ 1.

For taking ψ(x) = δ(x−x0)+δ(x↓−x0) with x0 ∈ S fixed but arbitrary, we can further observe easily
that the right-hand-side of (4.3) vanishes.
At each point x ∈ S we define the average f̃ of f at x and its opposite x↓ by

f̃(x) := f(x) + f(x↓)
2 ,

which is symmetric by definition. Further, if we choose ψ(x∗) = 1
2

´

δ(x∗ − x) + δ(x↓∗ − x)
¯

in (4.3) we
immediately observe that

∂tf̃ = ∂t

∫
S
fψ dx∗ =

∫
S
QREV (f, f)ψ dx∗ = 0,

and therefore time-independence of f̃ , which implies

f̃ = fI + f↓I
2 .
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4.3 Asymptotic behavior

This also yields ∫
S
f̃ dx = 1

2

ˆ∫
S
f dx+

∫
S
f↓ dx

˙

= 1.

By rewriting the collision operator we obtain for the time evolution of f in terms of f̃

∂tf = −2
∫
C[x]

b(x, x∗)
´

f̃∗(f − f̃) + f̃(f∗ − f̃∗)
¯

dx∗. (4.4)

We further observe that this describes a linear problem for f − f̃ , since the average f̃ is a function
fully determined by the initial conditions. The evolution of g := f − f̃ is therefore given by

∂tg = −2
∫
C[x]

b(x, x∗)
´

f̃∗g + f̃g∗)
¯

dx∗ =: QLREV g. (4.5)

Existence and uniqueness of solutions: Existence and uniqueness in L1(S) will be shown by the
Picard theorem under the additional assumption of a bounded collision kernel, since then the collision
operator can be shown to be Lipschitz continuous.

Theorem 4.2. Let b ∈ L∞(S × S) and fI ∈ L1(S). Then (4.1) has a unique global solution f ∈
C([0,∞), L1

+(S)).

Proof. We use the linear representation (4.5) of the collision operator. Let therefore g1, g2 ∈ L1(S).
Straight forward estimation gives:

‖QLREV g1 −QLREV g2‖L1(S) ≤ −2
∫
S

∫
C[x]

b(x, x∗)|f̃∗g1 + f̃g1∗ − f̃∗g2 − f̃g2∗ | dx∗dx

≤ 2‖b‖L∞(S×S)‖g1 − g2‖L1(S),

hence global Lipschitz continuity of QLREV . Therefore a unique local solution exists by Picard iteration.
Nonnegativity and conservation of the mass are obvious, the latter implying global existence of a
solution g to (4.5) and hence existence of a solution f for the original problem (4.1).

4.3 Asymptotic behavior
In order to get information about the asymptotic behavior of the solution f to (4.1) we make the
following preliminary observations:
We first denote by K the support of f̃ regarding the definition coming from measure theory

K := supp (f̃) :=
{
x ∈ S :

∫
Bε(x)

f̃ dx > 0, ∀ε > 0
}
,

which is compact, since it is a closed subspace of the compact space S. We further define

h(x) := f(x)− f̃(x)
f̃(x)

, for a.e. x ∈ K (4.6)

and notice that h ∈ [−1, 1] is bounded a.e. and hence well-defined in L1(S). Moreover, h fulfills the
important property ∫

S
hf̃ dx = 0.
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4 Reversal Collision Dynamics

The normalized quadratic distance from the average is then defined as

H[f ] = 1
2

∫
S
h2f̃ dx = 1

2

∫
S

∫
S
f̃ f̃ ′(h− h′)2 dx′dx. (4.7)

Computing its time-derivative, we obtain using (4.4)

d
dtH[f ] = −2

∫
S
h

∫
C[x]

b(x, x∗)
`

(f − f̃)f̃∗ + (f∗ − f̃∗)f̃
˘

dx∗dx

= −2
∫
S

∫
C[x]

b(x, x∗)h(h+ h∗)f̃ f̃∗ dx∗dx (4.8)

= −
∫
S

∫
C[x]

b(x, x∗)(h+ h∗)2f̃ f̃∗ dx∗dx =: −D[f ],

where the last equality is due to symmetry. From here we can see that

D[f ] = 0 ⇔ h(x) + h(x∗) = 0, for a.e. x, x∗ ∈ K s.t. x∗ ∈ C[x], (4.9)

which will be our equilibrium condition. We further notice that H is coercive. Indeed, due to Jensen
inequality we have

H[f ] ≥ 1
2‖f − f̃‖

2
L1(S). (4.10)

General framework for cells on S: We suppose to have a finite covering of S by measurable subsets
{Tk}k and by ρk :=

∫
Tk f̃ dx we denote their associated masses w.r.t. f̃ .

Definition 4.3. 1. Let T ⊂ S, then

C[T ] := {x∗ ∈ S : x∗ ∈ Bα(x↓), ∀x ∈ T } =
⋂
x∈T
C[x]

defines the set of common collision partners of all elements in T .

2. We say that two subsets Tj and Tk are linked, iff

ρk, ρj , ρ
∗
j,k > 0, where ρ∗j,k :=

∫
C[Tj∪Tk]

f̃ dx.

We want to note that if two subsets are linked, their set of common collision partners is of positive
mass. This relation defines a finite graph G = {V, E}, with vertices V := {Tk : ρk > 0}k and edges
E := {(Tj , Tk) : Tj and Tk are linked.}. Furthermore, we note the important property∫

Tj∪Tk

∫
T ∗
j,k

(h+ h∗)2f̃ f̃∗ dx∗dx ≤
∫
Tj∪Tk

∫
x∗∈C[x]

(h+ h∗)2f̃ f̃∗ dx∗dx, (4.11)

with T ∗j,k := C[Tj ∪ Tk]. With this ingredient, we are able to proof the following theorem:

Theorem 4.4. We suppose to have a covering {Tk}k of S such that the graph G defined by this covering
is connected. Then there exists a constant c > 0 such that we have exponential decay of H along the
solution f to (4.1)

H[f(·, t)] ≤ e−ctH[fI ].
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4.3 Asymptotic behavior

Proof. By splitting the integration domain S × S regarding the subsets {Tk}k, we rewrite (4.7), i.e.

H[f ] ≤
∑
j,k

1
2

∫
Tj

∫
Tk
f̃ f̃ ′(h− h′)2 dx∗dx =: 1

2
∑
j,k

Hj,k[f ]

and estimate each component Hj,k[f ] separately. Since Tj and Tk are connected, we find a path
{j = i0, i1, . . . , in = k} such that Til−1 and Til are linked for 1 ≤ l ≤ n. We write Hj,k[f ] as telescopic
sum in l:

Hj,k[f ] = 1
2

∫
Ti0

∫
Tin

f̃i0 f̃in

˜

n∑
l=1

`

hil−1 − hil
˘

¸2

dxi0dxin (4.12)

≤ n

2

∫
Ti0

∫
Tin

f̃i0 f̃in

n∑
l=1

`

hil−1 − hil
˘2
dxi0dxin ,

where we use the notation hil , fil for h resp. f evaluated at a points in Til . We estimate for 1 ≤ l ≤ n
`

hil−1 − hil
˘2 ≤ 2

´

(hil−1 + h∗il−1,il)
2 + (hil + h∗il−1,il)

2
¯

, (4.13)

where we write h∗il−1,il
for h evaluated at points in T ∗il−1,il

. We multiply (4.13) now with f̃ evaluated
at xil−1 ∈ Til−1 , xil ∈ Til and x∗ ∈ T ∗il−1,il

before integrating over Til−1 × Til × T ∗il−1,il
and obtain, by

noting that ρ∗il−1,il
> 0 since Til−1 and Til are linked,∫

Til−1×Til
(hil−1 − hil)2f̃il−1 f̃il dxil−1dxil ≤ 2

ρil−1 − ρil
ρ∗il,il−1

∫
x∈Til∪Til−1

∫
x∗∈T ∗il−1,il

(h+ h∗)2f̃ f̃∗ dx∗dx.

Using (4.11) we can further estimate∫
Til−1×Til

(hil−1 − hil)2f̃il−1 f̃il dxil−1dxil ≤ 2
ρil−1 − ρil
ρ∗il,il−1

∫
Til∪Til−1

∫
x∗∈C[x]

(h+ h∗)2f̃ f̃∗ dx∗dx.

If we now multiply (4.12) by f̃ evaluated at all the points xil for 1 ≤ l ≤ n and using the last inequality,
we obtain

˜

n∏
m=1

ρim

¸

Hj,k[f ] ≤ n
n∑
l=1

∫∏n

m=0 Til

˜

n∏
m=1

f̃im

¸

(hil−1 − hil)2
n∏

m=0
dxim

≤ n
n∑
l=1

∏
m6=il−1,il

ρim(ρil−1 + ρil)
ρ∗il,il−1

∫
Til∪Til−1

∫
x∗∈C[x]

(h+ h∗)2f̃ f̃∗ dx∗dx.

The desired result is obtained by combining this estimate with (4.8), using b > b0 and performing
Gronwall’s estimate.

We now aim to use this abstract result to prove exponential convergence to equilibrium for our
solution f to (4.1). In order to provide the setting needed for Theorem 4.4 and characterize the
equilibrium we make the following definition.

Definition 4.5. 1. We say x and y are connected and write

x←→ y :⇔ ∃x∗ ∈ K s.t x∗ ∈ C[x] ∩ C[y].

This relation defines the graph Γ = (V, E), where V = K and the edges given by E := {(x, y) ∈
K ×K : x←→ y}
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4 Reversal Collision Dynamics

2. Let γ > 0 and x, y ∈ K. We say x and y are γ-connected and write

x←→γ y :⇔ ∃x∗ ∈ K : Bγ(x∗) ⊂ C[x] ∩ C[y].

Also this relation defines a graph Γγ = {V,Eγ} associated to the initial conditions with vertices
V := K and edges Eγ := {(x, y) ∈ K ×K : x←→γ y}.

Looking at the dissipation D and at the equilibrium condition (4.9) we can make the following
observation

Lemma 4.6. If D[f ] = 0, then h is a.e. constant on connected components of Γ.

Proof. Assume xj ←→ xk, then by definition ∃ x∗ ∈ K s.t. x∗ ∈ C[xj ] ∩ C[xk], which together with
(4.9) implies

h(xj)− h(xk) = h(xj) + h(x∗)− h(x∗)− h(xk) = 0, almost surely.

The graph associated to the initial conditions is connected: We assume that ∃γ > 0 such that
Γγ is connected. We choose a finite covering of S by {Tk}1≤k≤n with Tk := Bγ/2(xk), with xk ∈ K
such that x1, . . . , xn is a connected subgraph of Γγ . This is possible by first choosing a finite covering,
which can be done since K is compact, and then adding possibly missing connecting paths.

Lemma 4.7. If xj ←→γ xk then Tj and Tk are linked.

Proof. Let xj ←→γ xk, therefore ∃x∗ ∈ K with Bγ(x∗) ⊂ Bα(x↓j ) ∩Bα(x↓k). Let x ∈ Tj ∪ Tk. W.l.o.g.
assume x ∈ Tj = Bγ/2(xj). For any y ∈ B ∈ Bγ(x∗) we have

d(x↓, y) ≤ d(y, x∗) + d(x∗, x↓j ) + d(x↓j , x↓) = d(y, x∗) + d(x∗, x↓j ) + d(xj , x) < γ

2 + (α− γ) + γ

2 ,

which implies Bγ/2(x∗) ⊂ C[x] and therefore

Bγ/2(x∗) ⊂ C[Tj ∪ Tk].

The claim follows by noticing that the mass of Bγ/2(x∗) is positive, since x∗ ∈ K.

As a direct consequence from the above lemma and Theorem 4.4 and the coercivity property of the
entropy (4.10) we can state the following Corollary:

Corollary 4.8. Assume that ∃γ > 0 such that the graph Γγ defined in Definition 4.5 is connected.
Then H defined as in (4.7) decays exponentially along solutions f to (4.1), i.e.

H[f ] ≤ H[fI ]e−ct,

for a constant c > 0, which implies exponential decay of f to the symmetric equilibrium f̃ , i.e.

‖f − f̃‖L1(S)≤
a

2H[fI ]e−ct/2, t > 0.
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4.3 Asymptotic behavior

The graph associated to the initial conditions has more connected components: Since S and
therefore, since it is closed, also K is compact, Γ form Definition 4.5, 1.) has a finite number of
connected components N ≥ 1, denoted by {Γi}i∈{1,...,N} with their corresponding set of vertices V i.
We make the following observations:

Lemma 4.9. For any x, y ∈ K it holds

x←→ y ⇔ x↓ ←→ y↓.

Proof. Regarding Definition 4.5 ct that ∃x∗ ∈ K s.t. x∗ ∈ Bα(x↓) ∧ x∗ ∈ Bα(y↓) implies due to
symmetry x↓∗ ∈ Bα(x) ∧ x↓∗ ∈ Bα(y), which implies x↓ ←→ y↓, since also x∗↓ ∈ K.

Lemma 4.10. Let Γi be a connected component of Γ and x ∈ V i arbitrary. Let Γi↓ be the component
which contains x↓. Then y↓ ∈ V i↓ for all y ∈ V i.

Proof. Since x, y ∈ V i there exists a connecting path x = xi0 , . . . , xin = y with xil−1 ←→ xil , for
l ∈ {1, . . . , n}. This implies due to Lemma 4.9 x↓il−1

←→ x↓il , for l ∈ {1, . . . , n}, with which we found
a path connecting x↓ and y↓.

Lemma 4.11. For all x ∈ V i it holds that C[x] ∩ Vj = ∅, whenever Γj 6= Γi↓.

Proof. Assume ∃z ∈ C[x]∩Vj . By definition of C[x] this implies z ∈ Bα(x↓), which leads to x↓ ←→ z,
which is a contradiction.

This last observation implies that elements in V i only interact with elements of V i↓. Therefore, for
xi ∈ V i, our model (4.1) reads

∂tfi =
∫
Vi↓∩C[xi]

b(xi, x∗)
´

f↓i f
↓
∗ − fif∗

¯

dx∗.

By choosing ψ ≡ 1Vi in (4.3) one can see easily that mass is conserved in each component. We use
the following notation

ρi :=
∫
Vi
f dx, ρ↓i :=

∫
Vi↓

f dx, i ∈ {1, . . . , N}. (4.14)

Obviously ∑N
i=1 ρi = 1 has to hold. Further, we have∫

Vi
f̃ dx =

∫
Vi↓

f̃ dx = ρi + ρ↓i
2 . (4.15)

Considering Lemma 4.6, we see that the dissipation D is already zero a.e., if

f(x) = (1 + ci)f̃(x), x ∈ V i, i ∈ {1, . . . , N}, (4.16)

for constants ci ∈ R, which gives us the candidate for the equilibrium. For the case Γi = Γi↓ we
have ci = −ci = 0 and we are in the one-component case like in the last section. Using (4.14) and
(4.15), we obtain ci = −c↓i = ρi−ρ↓i

ρi+ρ↓i
, where we again use the ↓-notation for the quantities corresponding

to the opposite connected component. In order to construct a suitable Lyapunov functional for the
more-component case we precede analogous to the two-component case. We first define

hi(x) := 1
f̃(x)

˜

f(x)− 2 ρi

ρi + ρ↓i
f̃(x)

¸

, for x ∈ Vi, i ∈ {1, . . . , N},
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which can also be written in terms of h (4.6)

h(x) = hi(x) + ρi − ρ↓i
ρi + ρ↓i

, for x ∈ V i.

The normalized quadratic distance from the equilibrium (4.16) w.r.t. each component of Γ is then
defined as

H̄[f ] =
N∑
i=1
Hi[f ],

with

Hi[f ] := 1
2

∫
Vi
h2
i f̃ dx. (4.17)

Computing its time-derivative we obtain using (4.4)

d
dtHi[f ] =

∫
Vi
hi∂tf dx = −2

∫
Vi

∫
Vi↓∩C[x]

b(x, x∗)
`

f̃∗(f − f̃) + f̃(f∗ − f̃∗)
˘

hi dx∗dx

= −2
∫
Vi

∫
Vi↓∩C[x]

b(x, x∗)
`

f̃∗(f − f̃) + f̃(f∗ − f̃∗)
˘

˜

h− ρi − ρ↓i
ρi + ρ↓i

¸

dx∗dx.

Pairwise adding contributions from opposite components Γi and Γi↓ of Γ, we obtain

d
dt

´

Hi[f ] +H↓i [f ]
¯

=
„∫
Vi
hi∂tf dx+

∫
Vi↓

h↓i ∂tf dx


= −2
„∫
Vi

∫
Vi↓∩C[x]

b(x, x∗)
`

f̃∗(f − f̃) + f̃(f∗ − f̃∗)
˘

hi dx∗dx

+
∫
Vi↓

∫
Vi∩C[x]

b(x, x∗)
`

f̃∗(f − f̃) + f̃(f∗ − f̃∗)
˘

h↓i dx∗dx



= −2
«∫
Vi

∫
Vi↓∩C[x]

b(x, x∗)
`

f̃∗(f − f̃) + f̃(f∗ − f̃∗)
˘

˜

h− ρi − ρ↓i
ρi + ρ↓i

¸

dx∗dx

+
∫
Vi

∫
Vi↓∩C[x]

b(x, x∗)
`

f̃∗(f − f̃) + f̃(f∗ − f̃∗)
˘

˜

h+ ρi − ρ↓i
ρi + ρ↓i

¸

dx∗dx

ff

= −2
∫
Vi

∫
Vi↓∩C[x]

b(x, x∗)f̃ f̃∗(h+ h∗) dx∗dx,

where we first performed the coordinate change x → x↓, x∗ → x↓∗ and used the symmetry properties
Lemma 4.9 and Lemma 4.10. From here we can conclude

d
dtH̄[f ] = −D[f ], (4.18)

and therefore, that the dissipation of H̄ coincides with the one from H. Moreover, we can see that H̄
serves as Lyapunov functional. Further, we notice, again by applying Jensen inequality, that

Hi[f ] ≥ 1
ρi + ρ↓i

‖f − f̃‖L(Vi),
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4.3 Asymptotic behavior

and therefore that H̄[f ] controls the L1-distance of f to f̃ by

H̄[f ] ≥
n∑
i=1

1
ρi + ρ↓i

‖f − f̃‖2L1(S). (4.19)

Also here we try to establish a convergence rate for the decay of H̄ by first observing∫
Vi
hif̃ dx = 0 =

∫
Vi↓

hif̃ dx,

obtained by straight forward computations. Next, we use these identities in order to reformulate and
estimate H̄, which will be done component-wise:

Hi[f ] = 1
2

∫
Vi
h2
i f̃ dx = 1

2

∫
Vi

˜

hi −
2

ρi + ρ↓i

∫
Vi
h′if̃
′ dx′

¸2

f̃ dx

= 1
2

∫
Vi

˜∫
Vi

(hi − h′i)
2

ρi + ρ↓i
f̃ ′ dx′

¸2

f̃ dx

≤ 1
2

∫
Vi

∫
Vi

(hi − h′i)2 2
ρi + ρ↓i

f̃ ′ dx′f̃ dx

= 1
ρi + ρ↓i

∫
Vi

∫
Vi

(h− h′)2f̃ ′f̃ dx′dx,

where in the second line we could use Jensen’s inequality, since 2
ρi+ρ↓i

f̃ is a measure on V i. In the
last inequality we rewrote hi again in terms of h. We now have all ingredients to formulate the
convergence result, which will be a Corollary from Theorem 4.4 and Corollary 4.8 by using the result
on each connected component of Γ separately. Convergence in L1(S) follows by the coercivity property
(4.19) of Hi[f ], i ∈ {1, . . . , N}.

Corollary 4.12. There exists a constant c > 0 such that for the solution f to (4.1) we have

H̄[f(·, t)] ≤ e−ctH̄[fI ],

for all t > 0, which implies exponential decay of f to 2ρi
ρi+ρ↓i

f̃ on each connected component of the graph
Γ, i.e.

‖f − f̃‖L1(Vi)≤
b

(ρi + ρ↓i )Hi[fI ]e−ct/2, i = {1, . . . , N}.

Proof. In order to be able to perform the Gronwall estimate in (4.18) we need to find the proper
inequalities for each of the terms ∫

Vi

∫
Vi

(h− h′)2f̃ ′f̃ dx′dx,

similar as in the proof of Theorem 4.4, but restricted to the integration domain V i. The Definition 4.5
2.) of the graph allows to find a constant γi > 0 for all its connected components such that Γi = Γγi
regarding Definition 4.5 2.). We now choose a finite covering B γi

2
(x1), . . . , B γi

2
(xn) of Vi, such that

x1, . . . , xn are the edges of a connected subgraph of Γi regarding Definition 4.5. This is possible by
first choosing a finite covering B γi

4
(x∗1), . . . , B γi

4
(x∗m) of K, since K is compact, an then extracting the

balls {B γi
4

(x∗il)}
n
l=1, which contain at least one xl ∈ Vi. The set B γi

2
(x1), . . . , B γi

2
(xn) is then a finite

covering og V i, where xl−1 ←→γi xl can be obtained by adding possible missing points. From Lemma
4.7 we can conclude that B γi

2
(xl−1) and B γi

2
(xl) are linked whenever xl−1 ←→γi xl. The claim follows

now by applying Theorem 4.4 and estimate (4.19).
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4 Reversal Collision Dynamics

4.4 Reversal collisions on the torus T1

For the setting in Remark 4.1, we can characterize the asymptotic behavior of the solution f to (4.2)
completely. The the definition of the edges of the graph Γ associated to the initial conditions fI reads:

Definition 4.13. Let ϕ1, ϕ2 ∈ K. We say that

ϕ1 is connected to ϕ2 and write ϕ1 ←→ ϕ2 :⇔ ∃ϕ∗ ∈ K : d(ϕ1, ϕ∗) ≥
π

2 and d(ϕ2, ϕ∗) ≥
π

2 .

It is easy to see that the graph Γ has the following properties:

Lemma 4.14. For ϕ1, ϕ2 ∈ K it holds:

d(ϕ1, ϕ2) ≤ π

2 ⇒ ϕ1 ←→ ϕ2.

Proof. Since π = d
´

ϕ1, ϕ
↓
1

¯

= d(ϕ1, ϕ2) + d
´

ϕ↓1, ϕ2

¯

< π
2 + d

´

ϕ↓1, ϕ2

¯

we can deduce d
´

ϕ↓1, ϕ2

¯

> π
2 .

Taking ϕ∗ = ϕ↓1 we found a ϕ∗ ∈ Ω such that d(ϕ1, ϕ∗) ≥ π
2 and d(ϕ2, ϕ∗) ≥ π

2 .

Lemma 4.15. Γ has at most 2 connected components.

Proof. Assume Γ1, Γ2 and Γ3 are three different connected components of Γ and let ϕ1 ∈ Γ1, ϕ2 ∈ Γ2
as well as ϕ3 ∈ Γ3. Since ϕ1, ϕ2 and ϕ3 are pairwise not connected, it holds:

d(ϕ1, ϕ3) < π

2 ∨ d(ϕ2, ϕ3) < π

2 ,

which is a contradiction to Lemma 4.14.

Lemma 4.16. If Γ has two connected components Γ1 and Γ2, then

ϕ ∈ Γ1 ⇒ ϕ↓ ∈ Γ2.

Proof. Contrary, let us assume ϕ,ϕ↓ ∈ Γ1. Furthermore, let ϕ2 ∈ Γ2. Then ϕ,ϕ↓ and ϕ2 can be
located in 3 possible ways.
Either d(ϕ,ϕ2) < π

2 , or d(ϕ↓, ϕ2) < π
2 , which, again thanks to Lemma 4.14, both lead to contradiction

ϕ←→ ϕ2 or ϕ↓ ←→ ϕ2.
Or they can be located such that d(ϕ,ϕ2) = d(ϕ↓, ϕ2) = π

2 , which implies that ϕ ←→ ϕ2, as well as
ϕ↓ ←→ ϕ2, both contradicting the assumption.

Lemma 4.17. If Γ has 2 connected components Γ1,Γ2 and ϕ,ϕ∗ ∈ Γ1 (resp. Γ2) such that d(ϕ,ϕ∗) ≥
π
2 , then d(ϕ,ϕ∗) = π

2 .

Proof. If d(ϕ,ϕ∗) > π
2 , then d(ϕ,ϕ↓∗) < π

2 , which, by Lemma 4.14 implies ϕ ←→ ϕ↓∗. This together
with Lemma 4.16 contradicts our assumption of Γ having two different connected components.

Remark 4.18. The graph associated to fI := {ϕ,ϕ + π/2, ϕ↓, ϕ + 3π/2}, for ϕ ∈ T1 has therefore
only one connected component.

With this characterization of the graph Γ we are able to state the asymptotic behavior as follows,
which then directly follows from the results in Section 4.3:
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4.5 Numerical simulations

Corollary 4.19. 1. If Γ has one connected component, then H (4.7), the quadratic distance of
from f , solution to (4.2), to the average f̃ converges to zero exponentially fast, i.e. ∃c > 0 such
that

H[f(·, t)] ≤ e−ctH[fI ].

2. If Γ has two connected components Γ1, Γ2, then the quadratic distance of from f , solution to
(4.2), to the weighted average 2ρif̃ converges to zero on each component Γi exponentially fast,
i.e. ∃ci > 0 such that

Hi[f(·, t)] ≤ e−citHi[fI ], i ∈ {1, 2},

for Hi defined as in (4.17), which in this special setting is of the form

Hi[f(t)] = 1
2

∫
Vi

(f − 2ρif̃)2

f̃
dϕ i ∈ {1, 2}.

Remark 4.20. Convergence in norm again is implied by the coercivity property of H (4.10) in the
one-component case reps. Hi, i ∈ {1, . . . , n} (4.19) in the two-component case.

4.5 Numerical simulations
Discretization: The results of the preceding section will be illustrated by numerical simulations for
the simple problem (4.2) on the torus with b ≡ 1. Discretization is based on an equidistant grid

ϕk = (k − n)π
n

, k = 0, . . . , 2n ,

with an even number of grid points, guaranteeing that the grid is invariant under the reversal collisions,
i.e., with ϕk also ϕ↓k = ϕk+n is a grid point. Solutions of (4.2) are approximated at grid points by

fn(t) := (f1(t), . . . , f2n(t)) ≈ (f(ϕ1, t), . . . , f(ϕ2n, t)) ,

extended periodically by fk+2n(t) = fk(t). This straightforwardly leads to the discrete model

dfk
dt

= QnREV (fn, fn)k ,

with
QnREV (fn, fn)k := π

n

∑
|k∗−k|>n/2

bk,k∗(fk+nfk∗+n − fkfk∗) ,

and bk,k∗ := b(ϕk, ϕk∗). For the time discretization the explicit Euler scheme is used, such that the
total mass is conserved by the discrete scheme, which has been implemented in Matlab.

Γ has one connected component: Simulations have been carried out with grid-size n =201. The
left row of Figures 4.1, 4.3 show snapshots of the distribution function f at different times together
with the symmetric equilibrium f̃ . In the second row the total mass

∫
T1 f dx = 1 as well as

∫ 0
−π f dx

and
∫ π

0 f dx are plotted against time. In Figure 4.2 displays the log-plot of H[f ] belonging to the
simulations of Figure 4.1, which shows its exponential decay.
In Figure 4.1 we started with asymmetric data, positive everywhere, which makes it clear that the as-
sociated graph Γ has only one connected component and hence the solution converges to the symmetric
equilibrium f̃ by Corollary 4.19, 1.). For this simulation the time-stepsize was chosen as k = 0.01 for
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4 Reversal Collision Dynamics

1000 time-steps.
Figure 4.3 shows the evolution with initial conditions chosen positive from in the intervals (−3π/4,−π/4)
and (π/4, 3π/4), although weighted differently. Furthermore, a perturbation in the interval [−π/4, π/4]
was added, which serves as connecting point for the else wise not connected graph. Also here con-
vergence to the symmetric equilibrium f̃ can be observed. For this simulation the time-stepsize was
chosen as k = 0.1 for 5000 time-steps.

Figure 4.1: Initial conditions positive everywhere, Γ has one connected component. Left: Initial con-
dition (solid dark blue), f after 500 time-steps (dashed red), f after 1000 time-steps (solid
black) and f̃ (dotted light blue). Right: Total mass conservation (black), masses of the
positive (dark blue) and negative (red) part of the torus are different initially, but converge
to the same value.

Γ has two connected components: For the simulations corresponding to Figure 4.4 initial data only
positive in the intervals (−3π/4,−π/4) and (π/4, 3π/4) was chosen. This causes the graph Γ to have
two connected components Γ−, supported in (−π, 0) and Γ+, supported in (0, π). The masses in V±
were chosen differently.
Again, the left part of Figure 4.4 shows snapshots of the distribution function f at different times
together with the equilibrium

f̄ = 2
{
f̃
∫ 0
−π f dx, ϕ ∈ (−π, 0]

f̃
∫ π
0 f dx, ϕ ∈ [0, π].

In the second row the total mass
∫

T1 f dx = 1 as well as
∫ 0
−π f dx and

∫ π
0 f dx are plotted against time,

which shows mass conservation in V±.
The simulation was carried out for k = 0.01 and 250 time-steps.
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4.5 Numerical simulations

Figure 4.2: log-plot of the Lyapunov functional H corresponding to the simulations of Figure 4.1,
showing exponential decay.

Figure 4.3: Initial conditions supported on (−3π/4,−π/4) and (π/4, 3π/4), as well as in a very small
interval contained in (−π/4, π/4). Γ has one connected component. Left: Initial condition
(solid dark blue), f after 2500 time-steps (dashed red), f after 5000 time-steps (solid black)
and the equilibrium f̃ (dotted light blue). Right: Total mass conservation (black), masses
of the positive (dark blue) and negative (red) part of the torus, which are also conserved
quantities.

93



4 Reversal Collision Dynamics

Figure 4.4: Initial conditions supported on (−3π/4,−π/4) and (π/4, 3π/4), vacuum else. Γ has two
connected components Γ− with V− ⊂ (−π, 0) and Γ+ with V+ ⊂ (0, π) . Left: Initial
condition (solid dark blue), f after 125 time-steps (dashed red), f after 250 time-steps
(solid black) and the equilibrium (dotted light blue). Right: Total mass conservation
(black), masses of the positive (dark blue) and negative (red) part of the torus, which are
different initially, but converge to the same value.
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5 A Kinetic Model for Non-instantaneous Binary
Collisions

’How long is forever?’
’Sometimes, just one second.’

Lewis Carroll (’Alice’s Adventures in
Wonderland’)

Contents

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.2 Kinetic Equation for Time-resolved Alignment Collisions with Stochastic

Collisions Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.2.1 Conservation laws and equilibria . . . . . . . . . . . . . . . . . . . . . . . . 98
5.2.2 Existence and uniqueness of solutions . . . . . . . . . . . . . . . . . . . . . 101
5.2.3 Convergence to equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.2.4 Instantaneous limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.3 Kinetic Equation for Time-resolved Alignment Collisions with Determin-
istic Collisions Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.3.1 Conservation laws and equilibria . . . . . . . . . . . . . . . . . . . . . . . . 115
5.3.2 Instantaneous limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

This chapter contains results of an ongoing collaboration with C. Schmeiser and V. Tora. The first
part consists of an article close to submission, while in the second part preliminary results of ongoing

work are stated.

5.1 Introduction
The main aim of this work is to derive and investigate a kinetic model for an assemble of particles
undergoing binary, non-instantaneous, alignment collisions. The motivation to study such dynamics
was inspired by the fact that the assumption of instantaneous interactions between two agents, stan-
dard in kinetic theory, is in some context not an accurate description of reality, especially when it
comes to the modelling of biological phenomena. A first idea to introduce a kinetic model for non-
instantaneous collisions can be found in [25], which was inspired by heavy-ion reactions, involving
scatterings, which is shown not to happen in an instant [16]. The model is of Boltzmann-type, where
the non-instantaneity of the collisions is encoded in a time-delay in the involved scattering matrix.
This novel concept was not investigated much further and -to our best knowledge- no more modelling
attempts were made to overcome this simplification of particle interactions.
The common approach in kinetic theory is modelling interactions between agents via a jump process

on the microscopic level. More precisely, the dynamics at the individual based level are determined by
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5 A Kinetic Model for Non-instantaneous Binary Collisions

interactions, happening between particles at a random time with a specific rate and causing jumps from
their pre-collisional states to their post-collisional ones. The collision-process itself is not described
and assumed to happen in an instant.

In contrast to this, we aim to model also the collision process itself, for which’s duration we therefore
will assume a positive time. The dynamics of the whole assemble of particles will be split up into the
ones for single particles as well as, since we just consider binary collisions for the moment, pairs of
particles, which are in a collision process. The assumption that only interactions between two agents
can happen is accurate in a framework where the interaction process is instantaneous. This is the
case since, e.g., for hard collisions between particles in rarefied gases, it was proved that the amount
of non-binary interactions happening at each time is negligible from a probabilistic point of view [15].
In the framework of non-instantaneous particles this does not apply, since generally speaking, there
is no reason why the probability of a third particle hitting a pair of colliding particles would differ
from the one of two single agents colliding. Nevertheless, as a first modelling attempt for the sake of
simplification, we restrict ourselves to dynamics just involving binary collisions.
In this chapter we consider two cases of time-resolved binary interactions between agents, modeled

by an alignment potential. On one hand, in Section 5.2 collisions between agents are assumed to be
determined by two Poisson processes. A collision of two individuals happens at a specific rate λ, which
makes 1

λ that average waiting time for a collision to happen, and ends with rate γ, whereas 1
γ describes

the average duration of collision. Therefore, the interaction ends before the alignment process of the
involved individuals is complete. On the other hand, in Section 5.3 the rate at which interactions
happen is modeled the same but the collision itself is assumed to be fully deterministic and only ends
when the alignment process is completed.
The main objectives analyzing the proposed models was proving existence and uniqueness of a

solution, determining equilibria and showing convergence of the solution towards them. Further,
carrying out the instantaneous limit in the equations, both formally and rigorously, is of interest. This
is the case since by letting the collision time go to zero, we should be able to recover a traditional
kinetic equation modelling instantaneous alignment collisions. Another important aim of this Chapter
is to compare the dynamics of this time-resolved stochastic and time-resolved deterministic collision
dynamics. While in the model for stochastic collisions treated in Section 5.2 we were able to complete
the full analysis, with the model with deterministic alignment dynamics in Section 5.3 difficulties arise
due to the singularity caused by the non-invertibility of the alignment collisions.

5.2 Kinetic Equation for Time-resolved Alignment Collisions with
Stochastic Collisions Dynamics

We assume an assemble of particles moving freely in R2 interrupted by binary, "non-instantaneous"
collisions following stochastic processes. Each particle is described by its position x ∈ R2 and a
property ϕ ∈ R. We suppose that the times at which a binary collision between two particles happens
as well as the duration of such a collision are modeled by Poisson processes in the following way.

• Let λ > 0 be the rate of collision events, therefore 1
λ describes the average waiting time of

particles in free flight until a collision takes place.

• Let further γ > 0 be the rate of splitting of a pair of particles, which are in collision. The factor
1
γ then has the meaning of an average duration of a collision process.

We suppose the following collision-dynamics. Let tc > 0 be the time at which two particles, with
pre-collisional states ϕ and ϕ∗, meet.
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Pre-collisional: ϕ = ϕ(tc) and ϕ∗ = ϕ∗(tc)

In-collision: Let s ∈ rtc, tc + tγs. We denote the states of the two involved particles during a collision
with ϕ̃(s) and ϕ̃∗(s), which can be calculated as

ϕ̃(s) = ϕ+ ϕ∗
2 + e−s+tc

ϕ− ϕ∗
2 ,

ϕ̃∗(s) = ϕ+ ϕ∗
2 + e−s+tc

ϕ∗ − ϕ
2 .

For the duration of the collision we assume tγ ∼ E(γ), i.e. being an exponentially distributed
random variable with parameter γ. Therefore having expected time a collision takes is 1

γ . One
can see easily that the Hamiltonian for these dynamics are given by

ˆ

9ϕ
9ϕ∗

˙

= V (ϕ,ϕ∗) with V (ϕ,ϕ∗) := 1
2

ˆ

ϕ∗ − ϕ
ϕ− ϕ∗

˙

. (5.1)

Post-collisional: As usual in kinetic theory, we denote the post-collisional states with a prime. There-
fore, the states after collision ϕ′ and ϕ′∗ are given by

ϕ′ = ϕ̃ ptc + tγq = ϕ+ ϕ∗
2 + e−tγ

ϕ− ϕ∗
2 ,

ϕ′∗ = ϕ̃∗ ptc + tγq = ϕ+ ϕ∗
2 + e−tγ

ϕ∗ − ϕ
2 ,

The transition form pre-collisional states to post-collisional ones is invertible and it holds

ϕ = 1
2
``

1 + etγ
˘

ϕ′ +
`

1− etγ
˘

ϕ′∗
˘

,

ϕ∗ = 1
2
``

1− etγ
˘

ϕ′ +
`

1 + etγ
˘

ϕ′∗
˘

.

Having now the collision process set, we aim to formulate a kinetic model describing the above in-
troduced dynamics of the particles, which results in two distinct-coupled partial differential equations
that concern respectively the evolution of the distribution function of the dynamical states of an
individual particle

f = f(x, ϕ, t), x ∈ R2, ϕ ∈ R, t > 0,

and the evolution of the distribution function of the the pairs

g = g(x, ϕ, ϕ∗, t), x ∈ R2, ϕ, ϕ∗ ∈ R, t > 0.

whose states at time t and position x are ϕ and ϕ∗. The dynamics of the distribution functions f and
g are then governed by the following equations

∂tf + ω · ∇xf = 2
´

γ

∫
R
g(ϕ,ϕ∗) dϕ∗ − λf(ϕ)

∫
R
b(ϕ,ϕ∗)f(ϕ∗) dϕ∗

¯

,

∂tg +∇ · (V g) = λb(ϕ,ϕ∗)f(ϕ∗)f(ϕ)− γg(ϕ,ϕ∗),

with prescribed initial data

f(x, ϕ, 0) = f0(x, ϕ), x ∈ R, ϕ ∈ R, g(x, ϕ, ϕ∗, 0) = g0(x, ϕ, ϕ∗), x ∈ R, ϕ∗, ϕ∗ ∈ R.
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Therefore, being in free flight, particles are transported in the state space regarding ω = ω(ϕ) ∈ R2,
with ω being some function of the particle’s property ϕ. The left-hand-side of the equation for single
particles consist of a gain term describing the separation of two colliding particles with rate γ from
a collision with all possible collision partners ϕ∗. On the other hand, single particles are lost with
collision rate λ by hitting all possible free-flight particles. The non-instantaneous collisions occur in
dependence of the collision-cross-section b(ϕ,ϕ∗) = B(|ϕ−ϕ∗|), a function we assume to depend only
on the difference between the two states. Similar, the drift-term of the g-equation describes how a pair
of particles in collision is transported towards the midpoint of the states (ϕ,ϕ∗) regarding the potential
V . The gain- and the loss-term represent the respective counterpart of the ones in the f -equation.

Spatially homogeneous model: In this work, we will focus on investigating the above introduced
model after considering two simplifications. One one hand, we assume the particles moving only along
lines in R2 and therefore the system being spatially homogeneous. On the other hand, we consider
Maxwellian particles, i.e. the collision-cross-section is constant, especially independent from |ϕ− ϕ∗|,
and given by

b(ϕ,ϕ∗) ≡ 1.

The resulting system of coupled equations concerning respectively the evolution of individual bacteria
and the evolution of the collision-pairs then has the form:

∂tf = 2
´

γ

∫
R
g dϕ∗ − λf

∫
R
f∗ dϕ∗

¯

,

∂tg +∇(ϕ,ϕ∗) · (V g) = λff∗ − γg,
(5.2)

where as usual in kinetic theory we omitted the arguments and for t > 0 denote f = f(ϕ, t), f∗ =
f(ϕ∗, t) and g = g(ϕ,ϕ∗, t). The model is completed by prescribing initial data

f(ϕ, 0) = f0(ϕ), ϕ ∈ R, g(ϕ,ϕ∗, 0) = g0(ϕ,ϕ∗), ϕ∗, ϕ∗ ∈ R.

5.2.1 Conservation laws and equilibria

The aim of this section is to establish and investigate ODE systems for the moments up to second
order of solutions to (5.2).

Mass: We define the the time-dependent masses of the single particles and the pairs of colliding
particles as follows

Mf (t) :=
∫

R
f dϕ and Mg(t) :=

∫
R2
g dϕ dϕ∗.

Since the drift-term in the g-equation vanishes due to the Divergence theorem one can see immediately
from (5.2) that total mass conservation holds

M := Mf (t) + 2Mg(t) = const. (5.3)

In order to investigate the dynamics of Mf (t) and Mg(t) we integrate the first equation of (5.2) over
R and the second equation over R2, from which we obtain the following system of ordinary differential
equations for Mf and Mg:
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9Mf = 2γMg − 2λM2
f

9Mg = λM2
f − γMg.

(5.4)

Having in mind mass conservation (5.3), we can reduce (5.4) to the following ODE for Mg

9Mg = F (Mg) := 4λM2
g − (4λM + γ)Mg + λM2,

equipped with initial condition Mg(0) = Mg0 =
∫

R2 g0 dϕ∗dϕ. Further we have to take into account
that Mg is bounded from above by M

2 and from below by zero due to (5.3). Possible equilibria of Mg

are found by calculating the roots of the polynomial F , which are given by

M±g := M

2 + γ

8λ ±
1

8λ
a

8λγM + γ2.

Due to total mass conservation it is clear that just M−g is relevant for our dynamics. Moreover,
noticing that F (Mg) > 0 for Mg ∈ [0,M−g ) and F (Mg) < 0 for Mg ∈ (M−g ,M/2] gives us convergence
to M−g := Mg∞ for t→∞. Using again (5.3) to calculate the equilibrium Mf∞ of Mf , we obtain from
the system (5.4)

(Mf (t), Mg(t))→ (Mf∞ , Mg∞) = 1
4λ

ˆ

a

8λγM + γ2 − γ, 2Mλ+ γ

2 −
1
2
a

8λγM + γ2
˙

, (5.5)

for t→∞.

Mean value: For the time-dependent first moments of f resp g we introduce the notation

If (t) :=
∫

R
ϕf dϕ, Ig(t) :=

∫
R2
ϕg dϕ∗dϕ.

Again, one can conclude easily that the total mean

Mϕ∞ := If (t) + 2Ig(t) (5.6)

is a conserved quantity of the above system. For obtaining an ODE system for the the single momenta
If and Ig we multiply (5.2) by ϕ and again integrate over R and R2 respectively, which yields

9If = 2γIg − 2λIfMf

9Ig = λIfMf − γIg.
(5.7)

Using our second conservation law, i.e. conservation of the mean (5.6) Mϕ∞ = If + 2Ig = const., we
can again reduce the system to a single ODE for Ig, which is given by

9Ig = −(2λMf + γ)Ig + λϕ∞MMf ,

with initial conditions Ig(0) = Ig0 :=
∫

R2 ϕg0 dϕ∗dϕ. Variation of constants yields

Ig(t) = e−2λ
∫ t

0 Mf ds−γt
ˆ

Ig0 + λϕ∞M

∫ t

0
e2λ
∫ s

0 Mf dr+γsMf (s) ds
˙
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and therefore

If (t) = ϕ∞M − 2e−2λ
∫ t

0 Mf ds−γt
ˆ

Ig0 + λϕ∞M

∫ t

0
e2λ
∫ s

0 Mf dr+γsMf (s) ds
˙

,

noticing that Mf , the mass of f , is a given bounded function. Directly from the differential equation
for Ig we can further see that an equilibrium is reached whenever

Īg = λMf
ϕ∞M

2λMf + γ
, Īf = γ

ϕ∞M

2λMf + γ
.

From (5.7) or the ODE describing just the dynamics of Ig one can see that the equilibrium

(If∞ , Ig∞) = 2ϕ∞M
a

8λγM + γ2 + γ

ˆ

1
4
a

8λγM + γ2, γ

˙

is linearly stable, where we also considered (5.5).

Variance: Analogously, we define the (relative) variance of f and g separately by

Vf (t) :=
∫

R
(ϕ− ϕ∞)2f dϕ, Vg(t) :=

∫
R
(ϕ− ϕ∞)2g dϕ∗dϕ.

Investigating the dynamics of the variance we multiply (5.2) by (ϕ − ϕ∞)2 before integration over
R and R2 respectively. Different from the total mass and the mean, the total variance

V[f, g] :=
∫

R
(ϕ− ϕ∞)2f ϕ+ 2

∫
R2

(ϕ− ϕ∞)2g dϕ∗dϕ,

is decreasing in time. Indeed, computing the time-derivative of V[f, g] we obtain

d
dtV[f, g] = −2

∫
R2

(ϕ− ϕ∗)2g dϕ∗dϕ∗, (5.8)

a fact that is not surprising, since we deal with alignment collisions, producing concentration of
mass at the mean value, see [17, 22]. We further observe that V stops decaying whenever there
are no pairs of particles, i.e. g = 0, or if the states are already concentrated along the diagonal
D := {(ϕ,ϕ∗) ∈ R2 : ϕ = ϕ∗}.
The dynamics of the single variances Vf and Vg are given by

9Vf = 2γVg − 2λMfVf

9Vg = λMfVf − γVg −
∫

R2
(ϕ− ϕ∗)2g dϕ∗dϕ.

Equilibria: Searching for equilibria of (5.2) we have to take into account the two different effects
governing the dynamics. One one hand, we have an exchange between single particles and and pairs
of particles, given by the collision operator on the right hand side of the system. Functions being
uneffected by these collision dynamics, so-called collision invariants, can be described by the set of
local equilibria

Eq :=
{

(f̄ , ḡ) : λf̄ f̄∗ = γḡ
}
, (5.9)
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which we will call ’exchange equilibria’ in the following. One can see immediately that, if the system
arrives at the set (5.9), it will not remain there, but instead will be transported away by the drift-term
in the g-equation, which produces concentration of mass at a single point, namely the mean value
ϕ∞ defined in (5.6). Therefore, we observe a hypocoercivity problem, where the interplay between the
transport towards concentration ∇ · (V g) and the exchange dynamics is needed to arrive at the global
equilibrium, given by

(f∞, g∞) := (Mf∞δϕ∞ ,Mg∞δ(ϕ∞,ϕ∞)), (5.10)
with Mf∞ and Mg∞ as in (5.5).

5.2.2 Existence and uniqueness of solutions
We aim to show existence and uniqueness of a solution to the system (5.2) using a fixed-point argument.
Therefore, we rewrite (5.2) in mild formulation (Peano-formulation) by incorporating the drift

f(ϕ, t) = f0(ϕ) + 2
∫ t

0

ˆ

γ

∫
R
g(ϕ,ϕ∗, s) dϕ∗ − λ

∫
R
f(ϕ, s)f(ϕ∗, s) dϕ∗

˙

ds

g(ϕ,ϕ∗, t) = g0
`

Φ(t)0,Φ∗(t)0˘ +
∫ t

0
rλf pΦ(t)s, sq f pΦ∗(t)s, sq− (γ − 1)g pΦ(t)s,Φ∗(t)s, sqs ds,

(5.11)
where the flux of the collision dynamics is given by

Φ(s)t = ϕ+ ϕ∗
2 + e−s+t

ϕ− ϕ∗
2

Φ∗(s)t = ϕ+ ϕ∗
2 + e−s+t

ϕ∗ − ϕ
2 .

We define the fixed-point mapping as
pf(t), g(t)q 7→ FP(f(t), g(t)),

where FP is given by

FP(f(t), g(t)) =
ˆ

f0 + 2γ
∫ t

0
∫

R g dϕ∗ ds− 2λ
∫ t
0
∫

R ff
∗ dϕ∗

g0(Φ(t)0,Φ∗(t)0) + λ
∫ t

0 f pΦ(t)sq f pΦ∗(t)sq ds− (γ − 1)
∫ t
0 g pΦ(t)s,Φ∗(t)sq ds

˙

.

We can prove the following theorem:
Theorem 5.1. Let f0 ∈ L1

+(R), g0 ∈ L1
+(R2). Then (5.11) has a unique global solution (f, g) ∈

Cp[0,∞); L1(R)× L1(R2)q.
Proof. Let (f, g), (f̃ , g̃) ∈ L1(R)× L1(R2). In the follwoing, we want to find a Lipschitz estimate for

‖FP(f, g)(t)−FP(f̃ , g̃)(t)‖L1(R)×L1(R2)

≤ 2γ
∫

R2

∫ t

0
|g(ϕ,ϕ∗, t)− g̃(ϕ,ϕ∗, t)| ds dϕ dϕ∗

+ 2λ
∫

R2

∫ t

0

ˇ

ˇf(ϕ, s)f(ϕ∗, s)− f̃(ϕ, s)f̃(ϕ∗, s)
ˇ

ˇ ds dϕ dϕ∗

+ λ

∫
R2

∫ t

0

ˇ

ˇf pΦ(t)s, sq f pΦ∗(t)s, sq− f̃ pΦ(t)s, sq f̃ pΦ∗(t)s, sq
ˇ

ˇ ds dϕ dϕ∗

+ |γ − 1|
∫

R2

∫ t

0
|g pΦ(t)s,Φ∗(t)s, sq− g̃ pΦ(t)s,Φ∗(t)s, sq| ds dϕ dϕ∗

=
∫ t

0
(I + II + III + IV ) ds,
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and deal with each term separately in order to obtain L1-estimates, uniform in time.

I = 2γ‖g − g̃‖L1(R2).

For the following three terms we have to use on one hand total mass conservation (5.3) as well as the
simple estimate 2|ab− ãb̃|≤ |a− ã||b+ b̃|+|a+ ã||b− b̃|, for a, b > 0.

II = 2λ
∫

R2

ˇ

ˇf(ϕ, s)f(ϕ∗, s)− f̃(ϕ, s)f̃(ϕ∗, s)
ˇ

ˇ dϕ dϕ∗

≤ 4Mλ

∫
R

ˇ

ˇf(ϕ, s)− f̃(ϕ, s)
ˇ

ˇ dϕ

= 4Mλ‖f − f̃‖L1(R)

Next we estimate term III as follows

III ≤ λ
∫

R2

ˇ

ˇf pΦ(t)sq f pΦ∗(t)sq− f̃ pΦ(t)sq f̃ pΦ∗(t)sq
ˇ

ˇ dϕ dϕ∗.

After performing the coordinate change (Φ(t)s,Φ∗(t)s) 7→ (ϕ,ϕ∗) with Jacobian determinant e−t+s we
obtain

III ≤ λes−t
∫

R2

ˇ

ˇf(ϕ, s)f(ϕ∗, s)− f̃(ϕ, s)f̃(ϕ∗, s)
ˇ

ˇ dϕ dϕ∗

≤ 2λMes−t
∫

R2
|f(ϕ, s)− f̃(ϕ, s)| dϕ

≤ 2λM‖f − f̃‖L1(R),

since s < t. After first performing the coordinate change and then estimating the last term yields

IV = |γ − 1|
∫

R2

∫ t

0
|g(ϕ,ϕ∗, s)− g̃(ϕ,ϕ∗, s)| ds dϕ dϕ∗

= |γ − 1|‖g − g̃‖L1(R2)

Combining these estimates of the terms I-IV for fixed but arbitrary t > 0 provide the following estimate
for the fixed-point mapping S:

‖FP(f, g)(t)−FP(f̃ , g̃)(t)‖L1(R)×L1(R×R)

≤ max {6Mλ, 2γ + |γ + 1|}
∫ t

0
‖(f, g)− (f̃ , g̃)‖L1(R)×L1(R2) ds,

which yields

‖FP(f, g)−FP(f̃ , g̃)‖Cp[0,t]; L1(R)×L1(R2)q

≤ tmax {6Mλ, 2γ + |γ + 1|}‖(f, g)− (f̃ , g̃)‖Cp[0,t]; L1(R)×L1(R2)q.

Choosing first t small enough in order to make S a contraction and then apply Banach’s fixed-point
theorem gives a unique solution (f, g) ∈ Cp[0, t]; L1(R)× L1(R2)q. Starting now from t and iterating
this argument finally yields global existence and therefore a solution

(f, g) ∈ Cp[0,∞); L1(R)× L1(R2)q.
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5.2.3 Convergence to equilibrium
We study the convergence of solutions of the spatially homogeneous problem (5.2) to equilibria of the
form (5.10) as t → ∞. As already indicated in Section 5.2.1, due to the hypocoercivity structure of
the problem it is that we need both the effects of exchange and drift in order to find an apropraite
entropy functional.

Exchange dynamics: We first consider the exchange between single particles f and collision-pairs g
only. The corresponding system has the form

∂tf = 2
´

γ

∫
R
g dϕ∗ − λfMf

¯

,

∂tg = λff∗ − γg,
(5.12)

whose equilibria are given by the set Eq defined in (5.9). Inspired by the Boltzmann’s H-theorem, we
define the following logarithmic entropy

Hex[f, g] :=
∫

R
(ln (f)− 1)f dϕ+

∫
R2

´

ln
´γg

λ

¯

− 1
¯

g dϕ∗ dϕ. (5.13)

Computing the time-derivative of Hex along solutions to (5.13), we obtain

d
dtHex[f, g] =

∫
R

ln (f)∂tf dϕ+
∫

R2
ln
´γg

λ

¯

∂tg dϕ∗ dϕ

= 2γ
∫

R2
ln (f)g dϕ∗ dϕ− 2λ

∫
R2

ln (f)ff∗ dϕ∗ dϕ

+ λ

∫
R2

ln
´γg

λ

¯

ff∗ dϕ∗ dϕ− γ
∫

R2
ln
´γg

λ

¯

g dϕ∗ dϕ

=
∫

R2

´

γg − λff∗
¯

ln (ff∗) dϕ∗ dϕ+
∫

R2

´

λff∗ − γg
¯

ln
´γg

λb

¯

dϕ∗ dϕ

=
∫

R2

´

γg − λff∗
¯

ln
ˆ

λff∗
γg

˙

dϕ∗ dϕ ≤ 0.

Moreover, we can see easily that

d
dtHex[f, g] ≡ 0 ⇔ λff∗ = γg, ∀ϕ,ϕ∗ ∈ R.

Therefore, we found with Hex a quantity for the system (5.12), which is decaying in time until the
dynamics hit the set of local equilibria Eq.
Incorporating now also the drift term in the equation for g, which causes concentration of mass at the
mean value ϕ∞, makes it clear that the logarithmic entropy (5.13) will not work in this case. Indeed,
computing it’s time derivative along a solution (f, g) yields

d
dtHR[f, g] =

∫
R2

´

γg − λff∗
¯

ln
ˆ

λff∗
γg

˙

dϕ∗ dϕ+Mg(t),

where the blowing up factor Mg(t) comes from the drift term ∇ · pV gq. In order to control Mg(t) we
modify the logarithmic entropy to

H[f, g, t] :=
∫

R
(ln (f)− 1)f dϕ+

∫
R2

´

ln
´γg

λ

¯

− 1
¯

g dϕ∗ dϕ−
∫ t

0
Mg(s) ds. (5.14)
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Performing basic computations, one can see that

H[f, g, t] =
∫

R

„

ln
ˆ

exp
ˆ

− 1
M

∫ t

0
Mg(s) ds

˙

f

˙

− 1


f dϕ

+
∫

R2

„

ln
ˆ

γ

λ
exp

ˆ

− 2
M

∫ t

0
Mg(s) ds

˙

g

˙

− 1


g dϕ∗ dϕ

which, together with the fact that we expect convergence to Dirac deltas of the form (5.10), motivates
to introduce the following change of coordinates (ϕ,ϕ∗) 7→ (ψ,ψ∗) given by

ψ = exp

ˆ

1
M

∫ t

0
Mg(s) ds

˙

(ϕ− ϕ∞), ψ∗ = exp

ˆ

1
M

∫ t

0
Mg(s) ds

˙

(ϕ∗ − ϕ∞), (5.15)

f(ϕ, t) = exp

ˆ

1
M

∫ t

0
Mg(s) ds

˙

f̃(ψ, t), g(ϕ,ϕ∗, t) = exp

ˆ

2
M

∫ t

0
Mg(s) ds

˙

g̃(ψ,ψ∗, t). (5.16)

We further notice that the masses remain unaffected by this coordinate transform

Mf̃ (t) :=
∫

R
f̃(ψ, t) dψ = Mf (t) as well as Mg̃(t) :=

∫
R2
g(ψ,ψ∗, t) dψ∗ dψ = Mg(t). (5.17)

Computing now the time-derivative of H[f, g, t] (5.14) along a solution (f, g) to the problem (5.2) we
obtain

d
dtH[f(t), g(t), t] =

∫
R2

´

γg̃ − λf̃ f̃∗
¯

ln
ˆ

λf̃ f̃∗
γg̃

˙

dψ∗ dψ ≤ 0,

which yields decay to the set of local equilibria Eq, since we can see easily from (5.16) that
γg̃ = λf̃ f̃∗ ∀ϕ,ϕ∗ ∈ R ⇔ (f, g) ∈ Eq

holds.
In order to obtain decay to the global equilibrium (5.10) we now combine the last result for the
logarithmic entropy with the decay of the variance established in (5.8). We define the total entropy
functional by

E [f, g, t] := V[f, g] +H[f, g, t],
whose time derivative along solutions to (5.2) is decreasing in the following way

d
dtE [f, g, t] = −

∫
R2

(ϕ− ϕ∗)2g dϕ∗dϕ−
∫

R2
pλff∗ − γgq ln

ˆ

λff∗
γg

˙

dϕ∗dϕ ≤ 0.

Furthermore, we have that
d
dtE [f, g, t] = 0 ⇔ g(ϕ,ϕ∗) = 0, ∀ϕ 6= ϕ∗ ∈ R ∧ λf(ϕ)f(ϕ∗) = γg(ϕ,ϕ∗), ∀ϕ,ϕ∗ ∈ R,

which implies
∀ϕ 6= ϕ∗ : f(ϕ) = 0 ∨ f(ϕ∗) = 0 ⇒ ∃ ϕ̃ s.t. f = Mfδϕ̃.

Since the mean value ϕ∞ is a conserved quantity (see (5.6)), this implies
f(ϕ) = Mfδϕ∞(ϕ), ϕ ∈ R,

from which we can further deduce
g(ϕ,ϕ∗) = Mgδ(ϕ∞,ϕ∞)(ϕ,ϕ∗), ϕ, ϕ∗ ∈ R.

All together, we have that E is decreasing and stops decreasing as soon as the equilibrium
(f∞, g∞) :=

`

Mf∞δϕ∞ , Mg∞δ(ϕ∞,ϕ∞)
˘

is reached, where Mf∞ , Mg∞ are determined explicitly by (5.5).

104
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Weak convergence to equilibrium: The construction of the coordinate change (5.15), (5.16) indicates
already convergence of f and g towards Dirac deltas for large time. Indeed, we can prove the following
result:

Theorem 5.2 (Weak convergence to equilibrium). Let (f(t), g(t)), t ≥ 0 be the solution to (5.2). Then

(f(t), g(t)) −→
`

Mf∞δϕ∞ ,Mg∞δ(ϕ∞,ϕ∞)
˘

, for t→∞, (5.18)

in the sense of distributions, where the weights Mf∞ and Mg∞ are given by (5.5).

Proof. For smooth and bounded test-functions h1, h2 ∈ C∞b we aim to show∫
R
f(ϕ, t)h1(ϕ) dϕ t→∞−→ Mf∞h1(ϕ∞),∫

R2
g(ϕ,ϕ∗, t)h2(ϕ,ϕ∗) dϕ∗dϕ t→∞−→ Mg∞h2(ϕ∞, ϕ∞),

(5.19)

which this is equivalent to (5.18). We use the coordinate change (5.15) and (5.16) to compute∫
R
f(ϕ, t)h1(ϕ) dϕ =

∫
R
f̃(ψ, t)h1

ˆ

exp
ˆ

− 1
M

∫ t

0
Mg(s) ds

˙

ψ + ϕ∞

˙

dψ,∫
R2
g(ϕ,ϕ∗, t)h2(ϕ,ϕ∗) dϕ

=
∫

R2
g̃(ψ,ψ∗, t)h2

ˆ

exp
ˆ

− 2
M

∫ t

0
Mg(s) ds

˙

ψ + ϕ∞, exp
ˆ

− 2
M

∫ t

0
Mg(s) ds

˙

ψ∗ + ϕ∞

˙

dψdψ∗.

We first notice that
h1

ˆ

exp
ˆ

− 1
M

∫ t

0
Mg(s) ds

˙

ψ + ϕ∞

˙

t→∞−→h1(ϕ∞),

h2

ˆ

exp
ˆ

− 2
M

∫ t

0
Mg(s) ds

˙

ψ + ϕ∞, exp
ˆ

− 2
M

∫ t

0
Mg(s) ds

˙

ψ∗ + ϕ∞

˙

t→∞−→h2(ϕ∞, ϕ∞)

for every ψ ∈ R. Further we use the relations (5.17) and (5.3) for concluding L1-boundedness of f̃ and
g̃ for all times t ≥ 0. Moreover, due to (5.5) we further observe

Mf̃ (t) = Mf (t)t→∞−→Mf∞ ,

Mg̃(t) = Mg(t)t→∞−→Mg∞

from which (5.19) and hence the claim follows.

5.2.4 Instantaneous limit

In this section we tackle the question about deriving an instantaneous collision model from (5.2) by
performing the limit where the average collision-time goes to zero. We start with the assumption that
the collision dynamics are much faster than the free flight dynamics under which we introduce the
small parameter ε << 1 and perform the scaling

g 7→ εg, γ 7→ ε−1γ, V 7→ ε−1V.
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We obtain the singular perturbed problem of the from

∂tf = 2
´

γ

∫
R
g dϕ∗ − λMff

¯

,

ε∂tg +∇ · (V g) = λff∗ − γg.
(5.20)

The formal limit ε→ 0 of this singular perturbed problem yields

∂tf = 2
´

γ

∫
R
g dϕ∗ − λMff

¯

,

∇ · (V g) = λff∗ − γg,
(5.21)

where the equation for particles pairs in collision is not time dependent, allowing us to compute g
explicitly and incorporate it into the right hand side of the f -equation with the aim to obtain an
alignment collision operator.
We use (5.1) and write the second equation of (5.21) as

1
2(ϕ∗ − ϕ)∂ϕg(ϕ,ϕ∗) + 1

2(ϕ− ϕ∗)∂ϕ∗g(ϕ,ϕ∗) = (1− γ)g(ϕ,ϕ∗) + λf(ϕ)f(ϕ∗),

which has a singularity on the manifold Γ :=
{

(ϕ,ϕ∗) ∈ R2 : ϕ = ϕ∗
}
.

Solving the ODE for g: In (5.21), we perform the following coordinate transformation

p = 1
2(ϕ+ ϕ∗) , q = 1

2(ϕ− ϕ∗) ,

giving
−q∂qg = (1− γ)g + λf(p+ q)f(p− q) ,

an equation symmetric under q → −q. Noting that |q|γ−1 solves the homogeneous equation and is not
integrable, we obtain by variation of constants

g = λ|q|γ−1
∫ ∞
|q|
|q′|−γf(p+ q′)f(p− q′) dq′

= 21−γλ|ϕ− ϕ∗|γ−1
∫ ∞
|ϕ−ϕ∗|/2

|q′|−γf
ˆ

ϕ+ ϕ∗
2 + q′

˙

f

ˆ

ϕ+ ϕ∗
2 − q′

˙

dq′ ,
(5.22)

as the only solution having a chance to be integrable. In the integral
∫
g dϕ∗ we introduce the new

coordinates
u = q′ + ϕ∗ − ϕ

2 , v = q′ − ϕ∗ − ϕ
2 ,

satisfying |ϕ− ϕ∗|= |u− v| and

q′ >
|ϕ− ϕ∗|

2 ⇔ u, v > 0 .

Therefore, we obtain∫ ∞
−∞

g(ϕ,ϕ∗)dϕ∗ = 2λ
∫ ∞

0

∫ ∞
0
|u− v|γ−1|u+ v|−γf(ϕ+ u)f(ϕ− v)dudv .

Inserting this into the governing equation for the single particles f , yields the following kinetic model

∂tf = 4γλ
∫ ∞

0

∫ ∞
0
|u− v|γ−1|u+ v|−γf(ϕ+ u)f(ϕ− v)dudv − 2λf

∫
R
f∗ dϕ∗. (5.23)

106



5.2 Kinetic Equation for Time-resolved Alignment Collisions with Stochastic Collisions Dynamics

Weak formulation: The right-hand-side of (5.23) defines the collision operator and is denoted by

Q(f, f)(ϕ) = G(f, f)(ϕ)− L(f, f)(ϕ)

= 4γλ
∫ ∞

0

∫ ∞
0
|u− v|γ−1|u+ v|−γf(ϕ+ u)f(ϕ− v) dudv

− 2λf(ϕ)
∫

R
f(ϕ∗) dϕ∗,

for every ϕ ∈ R. The weak formulation of the collision operator is obtained by first integrating against
a test-function h = h(ϕ) and then performing coordinate changes as well as using symmetrization
arguments. More precisely we write∫

R
Q(f, f)h(ϕ)dϕ = 4λγ

∫
R

∫ ∞
0

∫ ∞
0
|u− v|γ−1|u+ v|−γf(ϕ+ u)f(ϕ− v)h(ϕ)dudv dϕ

− 2λ
∫

R2
f(ϕ)f(ϕ∗)h(ϕ)dϕ∗ dϕ

and calculate the gain and the loss-term separately. In the gain-term we perform the coordinate
change

x = ϕ+ u− v
2 ∈ R, y = u+ v

2 ∈ [0,∞), z = u− v
u+ v

∈ [−1, 1],

with Jacobian D(u,v,ϕ)→(x,y,z) = 2y, which yields∫
R
G(f, f)h(ϕ)dϕ =4λγ

∫
R

∫ ∞
0

∫ ∞
0
|u− v|γ−1|u+ v|−γf(ϕ+ u)f(ϕ− v)h(ϕ)du dv dϕ

= 4λγ
∫

R

∫ ∞
0

∫ 1

−1
|z|γ−1f(x+ y)f(x− y)h(x− zy)dz dy dx

= 2λγ
∫

R2

∫ 1

−1
|z|γ−1f(x+ y)f(x− y)h(x− zy)dz dy dx,

where the last equality is due to symmetry of (x, y, z)↔ (x,−y,−z). Starting from this formulation,
we further introduce the new coordinates

ϕ = x+ y ∈ R, and ϕ∗ = x− y ∈ R,

whose corresponding Jacobian is given by D(x,y)→(ϕ,ϕ∗) = 1
2 . The gain term in weak formulation then

has the shape∫
R
G(f, f)h(ϕ)dϕ = λγ

∫
R2

∫ 1

−1
|z|γ−1h

´ϕ+ ϕ∗
2 + z

ϕ∗ − ϕ
2

¯

f(ϕ∗)f(ϕ)dz dϕ∗ dϕ.

In the loss term we use the usual symmetrization argument and obtain∫
R
L(f, f)h(ϕ)dϕ = λ

∫
R2
f(ϕ)f(ϕ∗)(h(ϕ) + h(ϕ∗))dϕ∗ dϕ.

Putting the contributions from the gain- and the loss term together we are able to write the weak
formulation of the collision operator as∫

R
Q(f, f)h(ϕ)dϕ

= λ

∫
R2
f(ϕ)f(ϕ∗)

ˆ

γ

∫ 1

−1
|z|γ−1h

´ϕ+ ϕ∗
2 + z

ϕ∗ − ϕ
2

¯

dz − h(ϕ)− h(ϕ∗)
˙

dϕ∗ dϕ.
(5.24)

107



5 A Kinetic Model for Non-instantaneous Binary Collisions

Conservation laws: Choosing the test-function h in the weak formulation (5.24) accordingly, we can
deduce the following conservation laws:
For h ≡ 1 in (5.24) we obtain∫

R
Q(f, f)dϕ = λ

∫
R2
ff∗

ˆ

2γ
∫ 1

0
zγ−1dz − 2

˙

dϕ∗ dϕ = 0,

by using ∫ 1

−1
|z|γ−1dz = 2

∫ 1

0
zγ−1dz = 2

γ
.

This observation yields that the mass of the system

M = Mf :=
∫

R
fdϕ ≡ const

is constant with respect to time.
Similar calculations yield for h(ϕ) = ϕ,∀ϕ ∈ R∫

R
Q(f, f)ϕdϕ = λ

∫
R2
ff∗

ˆ

γ

∫ 1

−1
|z|γ−1

ˆ

ϕ+ ϕ∗
2 + z

ϕ∗ − ϕ
2

˙

dz − ϕ∗ − ϕ
˙

dϕ∗ dϕ

= λ

∫
R2
ff∗

ˆ

γ(ϕ+ ϕ∗)
∫ 1

0
zγ−1dz + γ

2 (ϕ∗ − ϕ)
∫ 1

−1
z|z|γ−1dz − ϕ∗ − ϕ

˙

dϕ∗ dϕ

= 0,

due to the same argument as above and the observation that∫ 1

−1
z|z|γ−1dz = 0.

This shows that also the mean value ∫
R
ϕfdϕ := Mϕ∞

is a conserved quantity.
Last, we choose h(ϕ) = (ϕ− ϕ∞)2, ∀ϕ ∈ R in (5.24), which yields∫

R
Q(f, f)(ϕ− ϕ∞)2dϕ

= λ

∫
R2
ff∗

˜

γ

∫ 1

−1
|z|γ−1

ˆ

ϕ+ ϕ∗
2 + z

ϕ∗ − ϕ
2 − ϕ∞

˙2
dz − (ϕ− ϕ∞)2 − (ϕ∗ − ϕ∞)2

¸

dϕ∗ dϕ

= λ

∫
R2
ff∗

¨

˚

˝

´

(ϕ− ϕ∞) + (ϕ∗ − ϕ∞)
¯2

2 + γ

γ + 2
(ϕ− ϕ∗)2

2 − (ϕ− ϕ∞)2 − (ϕ∗ − ϕ∞)2

˛

‹

‚

dϕ∗ dϕ

= λ

∫
R2
ff∗

¨

˚

˝

−

´

(ϕ− ϕ∞)− (ϕ∗ − ϕ∞)
¯2

2 + γ

γ + 2
(ϕ− ϕ∗)2

2

˛

‹

‚

dϕ∗ dϕ

= − λ

γ + 2

∫
R2

(ϕ− ϕ∗)2ff∗dϕ∗ dϕ ≤ 0.
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First, one can deduce from this formulation that Q(f, f)(ϕ) = 0 implies either f(ϕ) = 0 or f(ϕ∗) = 0
for all ϕ∗ 6= ϕ, from which one can further conclude that an equilibrium can only be concentrated at
one point, i.e.

f∞ = δϕ∞

which is given by the mean value ϕ∞ := 1
M

∫
R ϕfdϕ due to conservation of the first moment.

By
V[f ] :=

∫
R
(ϕ− ϕ∞)2fdϕ

we define the (relative) variance of the system. In the following we compute the time derivative along
a solution trajectory. We obtain

d
dtV[f ] =

∫
R
Q(f, f)(ϕ− ϕ∞)2dϕ = − λ

γ + 2

∫
R2

(ϕ− ϕ∗)2ff∗dϕ∗ dϕ

= − λ

γ + 2

∫
R2

((ϕ− ϕ∞)− (ϕ∗ − ϕ∞))2ff∗dϕ∗ dϕ

= − 2λM
γ + 2

∫
R
(ϕ− ϕ∞)2fdϕ∗ +

ˆ

2λ
γ + 2

∫
R
(ϕ− ϕ∞)f dϕ

˙2

= − 2λM
γ + 2V[f ],

which shows exponential decay of V in time. The variance only stops decreasing if f(ϕ) = f(ϕ∗) for
all ϕ 6= ϕ∗ ∈ R, which means f ≡ δϕ∞ .

Existence and uniqueness of solutions:

Theorem 5.3. Equipped with initial conditions fI ∈ L1
+(R), the model (5.23) has a unique global

solution f ∈ C
´

[0,∞);L1
+(R)

¯

.

Proof. Let f, h ∈ L1(R) with ‖f‖L1(R), ‖h‖L1(R)≤ M . In the following we aim to show Lipschitz-
continuity of the collision operator Q by estimating

‖Q(f, f)−Q(h, h)‖L1(R)≤ ‖G(f, f)−G(h, h)‖L1(R)+‖L(f, f)− L(h, h)‖L1(R),

where we will treat the gain- and loss-term separately.

‖G(f, f)−G(h, h)‖L1(R)

≤ 4λγ
∫

R

∫ ∞
0

∫ ∞
0

ˇ

ˇ

ˇ

ˇ

u− v
u+ v

ˇ

ˇ

ˇ

ˇ

γ−1 1
u+ v

|f(ϕ+ u)f(ϕ− v)− h(ϕ+ u)h(ϕ− v)| dudv dϕ

= 4λγ
∫

R

∫ ∞
0

∫ ∞
0

ˇ

ˇ

ˇ

ˇ

u− v
u+ v

ˇ

ˇ

ˇ

ˇ

γ−1 1
u+ v

|f(ϕ+ u)||f(ϕ− v)− h(ϕ− v)| dudv dϕ

+ 4λγ
∫

R

∫ ∞
0

∫ ∞
0

ˇ

ˇ

ˇ

ˇ

u− v
u+ v

ˇ

ˇ

ˇ

ˇ

γ−1 1
u+ v

|h(ϕ− v)||f(ϕ+ u)− h(ϕ+ u)| dudv dϕ.

Performing now the coordinate transformation

x = ϕ+ u− v
2 ∈ R, y = u+ v

2 ∈ [0,∞), z = u− v
u+ v

∈ [−1, 1],
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5 A Kinetic Model for Non-instantaneous Binary Collisions

we obtain

‖G(f, f)−G(h, h)‖L1(R)

≤ 4γλ
∫

R

∫ ∞
0

∫ 1

−1
zγ−1|f(x+ y)||f(x− y)− h(x− y)|dz dy dx

+ 4γλ
∫

R

∫ ∞
0

∫ 1

−1
zγ−1|h(x− y)||f(x+ y)− h(x+ y)| dz dy dx.

After making use of the symmetry y ↔ −y as well as performing yet another coordinate change

ϕ = x+ y ∈ R, and ϕ∗ = x− y ∈ R,

the right hand side of the above estimate can be reformulated as

‖G(f, f)−G(h, h)‖L1(R)

≤ λ
∫

R2
p|f(ϕ)||f(ϕ∗)− h(ϕ∗)|+|h(ϕ∗)||f(ϕ)− h(ϕ∗)|q dϕ∗ dϕ,

where also the identity ∫ 1

−1
zγ−1 dz = 2

γ

was taken into account. From assumption ‖f‖L1(R), ‖h‖L1(R)≤M we can conclude

‖G(f, f)−G(h, h)‖L1(R)≤ 2λM‖f − h‖L1(R).

Estimating the loss-term yields

‖L(f, f)− L(h, h)‖L1(R) ≤ 2λ
∫

R2
|f(ϕ)f(ϕ∗)− h(ϕ)h(ϕ∗)| dϕ∗ dϕ

= 2λ
∫

R2
p|f(ϕ)||f(ϕ∗)− h(ϕ∗)|+|h(ϕ∗)||f(ϕ)− h(ϕ)|q dϕ∗ dϕ

≤ 4λM‖f − g‖L1(R),

from which together with the estimate of the gain-term we can conclude the desired Lipschitz estimate
of the whole collision operator

‖Q(f, f)−Q(h, h)‖L1(R)≤ 6Mλ‖f − h‖L1(R).

Therefore, a unique local solution exists by Picard iteration. Maintenance of positivity as well as mass
conservation are obvious, where the latter implies global existence.

Rigorous instantaneous limit:

Theorem 5.4 (Rigorous instantaneous limit). Let (fε, gε), be the solution to (5.20). Then

(fε, gε) −→ (f, g), for ε→ 0 (5.25)

in the sense of distributions, where (f, g) is the solution to (5.21).
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Proof. We start from the scaled equations (5.20)

∂tfε = 2γ
∫

R
gε dϕ∗ − 2λMfεfε,

ε∂tgε +∇(ϕ,ϕ∗) · (V gε) = λfεfε∗ − γgε,

where we denote its solution by (fε, gε). We aim to rigorously prove convergence in the sense of
distributions of

(fε, gε) −→ (f, g), as ε→ 0,
where (f, g) is the solution to (5.23) with g given by (5.22). We first make the following observations
on the masses Mfε and Mgε :
From total mass conservation

Mfε + 2εMgε = M = const.

we obtain boundedness of Mfε ≤ M, independent of ε. Further, by integrating the equation for gε
over R2 we obtain

9Mgε = λ

ε
M2
fε −

γ

ε
gε ≤

λ

ε
M2 − γ

ε
Mgε ,

from which we can conclude

Mgε ≤ e−
γt
ε Mg0 + λM2

γ

´

1− e−
γt
ε

¯

≤Mg0 + λM2

γ
,

and hence, also boundedness of Mgε independent of ε. Moreover, from the uniform bound on gε we
can conclude convergence

Mfε = M − 2εMgε →M, for ε→ 0. (5.26)

Similarly we observe the following for the variances:

Vfε ≤ Vfε + 2εVgε ↘ 0, for t→∞,

due to (5.8). For investigating Vgε we multiply the equation of gε by (ϕ− ϕ∞)2 and integrate w.r.t ϕ
and ϕ∗.

9Vgε = −
∫

R2
(ϕ− ϕ∗)2gε dϕ∗dϕ+ λ

ε
MfεVfε −

γ

ε
Vgε ≤

λ

ε
MV0 −

γ

ε
Vgε ,

from which we can conclude

Vgε ≤ e−
γt
ε Vg0 + λMV0

γ

´

1− e−
γt
ε

¯

≤ Vg0 + λMV0
γ

,

where we used the notation V0 := Vf0 + 2εVg0 .
Due to the boundedness of the masses as well as variances we know that { fε

Mfε
}ε and { gε

Mgε
}ε are tight

sets of probability measures on P(R) and P(R2). Due to Prokhorov’s theorem [27] this is equivalent
to weak sequentially compactness of fε

Mfε
and gε

Mgε
, which implies that there exist sequences, denoted

by {εn}n, with εn → 0 for n → ∞, and a probability measures f
M on P(R) and g

M̃
on P(R2), such

that
{

fεn
Mfεn

}
n

n→∞
⇀ f

M and
{

gεn
Mgεn

}
n

n→∞
⇀ g

M̃
, i.e.

1
Mfεn

∫
R
fεn(ϕ)h1(ϕ) dϕ −→ 1

M

∫
R
f(ϕ)h1(ϕ) dϕ,

111



5 A Kinetic Model for Non-instantaneous Binary Collisions

and
1

Mgεn

∫
R2
gεn(ϕ,ϕ∗)h2(ϕ,ϕ∗) dϕ∗dϕ −→

1
M̃

∫
R2
g(ϕ,ϕ∗)h2(ϕ,ϕ∗) dϕ∗dϕ,

for all bounded, continuous test functions h1 on R, h2 on R2. By M̃ we denoted the limit of Mgε for
ε → 0. By matters of simplicity, the above mentioned subsequences will again be denoted as { fε

Mfε
}ε

and { gε
Mgε
}ε. Next, we need to show that the limit (f, g) also fulfills (5.21) in a weak sense, i.e.

2
∫

R

ˆ

γ

∫
R
gε(ϕ,ϕ∗) dϕ∗ − λMfεfε(ϕ)

˙

h1(ϕ) dϕ ε→0−→ 2
∫

R

ˆ

γ

∫
R
g(ϕ,ϕ∗) dϕ∗ − λMf(ϕ)

˙

h1(ϕ) dϕ,

(5.27)
and ∫

R2

`

−∇(ϕ,ϕ∗) · (V gε)(ϕ,ϕ∗) + λfε(ϕ∗)fε(ϕ)− γg + ε(ϕ,ϕ∗)
˘

h2(ϕ,ϕ∗) dϕdϕ∗ ε→0−→∫
R2

`

−∇(ϕ,ϕ∗) · (V g)(ϕ,ϕ∗) + λf(ϕ∗)f(ϕ)− γg(ϕ,ϕ∗)
˘

h2(ϕ,ϕ∗) dϕdϕ∗.

The fact that we can interpret h1(ϕ) = h̃1(ϕ,ϕ∗) as bounded continuous test-function in both variables
allows us to go to the limit in the gain-term of (5.27). For the loss term we have to use (5.26).
We let ε → 0 in the gε-equation. While the passage to the limit in the loss-term is straight forward,
for the gain-term we first have to restrict ourselves to test-functions which factorize, i.e.

h2(ϕ,ϕ∗) = h1
2(ϕ)h2

2(ϕ∗), ∀ϕ,ϕ∗ ∈ R, (5.28)

with h1
2 and h2

2 are bounded continuous functions on R. Indeed, for such test-functions we have

λ

∫
R2
fε(ϕ)fε(ϕ∗)h2(ϕ,ϕ∗) dϕ∗dϕ = λM2

fε

∫
R

fε(ϕ)
Mfε

h2
2(ϕ) dϕ

∫
R

fε(ϕ∗)
Mfε

h2
2(ϕ∗) dϕ∗.

Due to Prokhorov’s theorem convergence of the two factors hold∫
R

fε(ϕ)
Mfε

h1
2(ϕ) dϕ ε→0−→

∫
R

f(ϕ)
M

h1
2(ϕ) dϕ,∫

R

fε(ϕ)
Mfε

h2
2(ϕ) dϕ ε→0−→

∫
R

f(ϕ)
M

h2
2(ϕ) dϕ,

which implies, together with Mfε →M as ε→ 0,

λ

∫
R2
fε(ϕ)fε(ϕ∗)h2(ϕ,ϕ∗) dϕ∗dϕ ε→0−→λ

∫
R
f(ϕ)h1

2(ϕ) dϕ
∫

R
f(ϕ∗)h2

2(ϕ∗) dϕ∗

=λ
∫

R2
f(ϕ)f(ϕ∗)h2(ϕ,ϕ∗) dϕ∗dϕ.

We now consider test-functions of the form:

h2(ϕ,ϕ∗) = h1
2(ϕ) + h2

2(ϕ∗), ∀ϕ,ϕ∗ ∈ R, (5.29)

with h1
2 and h2

2 are bounded continuous functions on R, which yields

λ

∫
R2
fε(ϕ)fε(ϕ∗)h2(ϕ,ϕ∗) dϕ∗dϕ

= λMfε

ˆ∫
R2

fε(ϕ)fε(ϕ∗)
Mfε

h1
2(ϕ) dϕ dϕ∗ +

∫
R2

fε(ϕ)fε(ϕ∗)
Mfε

h2
2(ϕ∗) dϕdϕ∗

˙

ε→0−→ λ

∫
R2
f(ϕ)f(ϕ∗)h2(ϕ,ϕ∗) dϕ∗dϕ..
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We further consider polynomials on a compact set K of R2 as test-functions which are a subset of
continuous and bounded function and whose general expression is given by

p(ϕ,ϕ∗) =
k1∑
n=0

k2∑
m=0

an,mϕ
nϕm∗ an,m ∈ R, ϕ, ϕ∗ ∈ K

These are combinations of test-functions of the form (5.28) and (5.29) with h1
2(ϕ) = ϕn and h2

2(ϕ∗) =
ϕm∗ .
Therefore, for any polynomial p(ϕ,ϕ∗) ∈ P(K ⊂ R2,R)

λ

∫
R2
fε(ϕ)fε(ϕ∗)p(ϕ,ϕ∗) dϕ∗dϕ ε→0−→ λ

∫
R2
f(ϕ)f(ϕ∗)p(ϕ,ϕ∗) dϕ∗dϕ.

As a consequence of the Stone-Weierstrass Theorem we have that the algebra of all polynomials in
P(K ⊂ R2,R) is dense in C(K ⊂ R2,R) w.r.t. supremum norm. Thus, any function
h2(ϕ,ϕ∗) ∈ C(K ⊂ R2,R) can be approximated by polynomials, which is implying that the convergence∫

R2
fε(ϕ)fε(ϕ∗)h2(ϕ,ϕ∗) dϕ ε→0−→

∫
R2
f(ϕ)h2(ϕ,ϕ∗) dϕ, ∀h2 ∈ C0

c (R2)

follows by a density argument. Next, we consider the drift term:∫
R2
∇(ϕ,ϕ∗) · (V gε)(ϕ,ϕ∗)h2(ϕ,ϕ∗) dϕ∗dϕ = −

∫
R2

(V gε)(ϕ,ϕ∗)∇h2(ϕ,ϕ∗) dϕ∗dϕ

= 1
2

∫
R2
gε(ϕ,ϕ∗)(ϕ− ϕ∗)(∂ϕ∗h2(ϕ,ϕ∗)− ∂ϕh2(ϕ,ϕ∗)) dϕ∗dϕ,

where in the first equality we performed integration by parts. We consider test-functions h2, which
together with their fist partial derivatives multiplied by linear polynomials are in C0

c (R2), which is
fulfilled if, for example, we take a test-function h2 from the Schwartz space S(R2). Therefore, h2,
(ϕ−ϕ∗)∂ϕ∗h2 and −(ϕ−ϕ∗)∂ϕh2 are bounded and continuous, we have due to Prokhorov’s theorem∫

R2
∇(ϕ,ϕ∗) · (V gε)(ϕ,ϕ∗)h2(ϕ,ϕ∗) dϕ∗dϕ

= 1
2

∫
R2
gε(ϕ,ϕ∗)(ϕ− ϕ∗)(∂ϕ∗h2(ϕ,ϕ∗)− ∂ϕh2(ϕ,ϕ∗)) dϕ∗dϕ,

ε→0−→ 1
2

∫
R2
g(ϕ,ϕ∗)(ϕ− ϕ∗)(∂ϕ∗h2(ϕ,ϕ∗)− ∂ϕh2(ϕ,ϕ∗)) dϕ∗dϕ

=
∫

R2
∇(ϕ,ϕ∗) · (V g)(ϕ,ϕ∗)h2(ϕ,ϕ∗) dϕ∗dϕ

From the observation C∞c (R2) ⊂ C0
c (R2) and C∞c (R2) ⊂ S(R2) we can finally conclude (5.25), which

closes the proof.

5.3 Kinetic Equation for Time-resolved Alignment Collisions with
Deterministic Collisions Dynamics

Similar to the model introduced and investigated in Section 5.2, we aim to derive equations describing
particles performing binary alignment collisions, this time right away in a spatially homogeneous
environment. The difference will be that this time we will not allow randomness in the collision
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5 A Kinetic Model for Non-instantaneous Binary Collisions

dynamics themselves. Indeed, on one hand we still assume the collision events to to take place
following a Poisson-process with rate λ > 0, but the collisions themselves are deterministic in the
sense that two colliding particles ϕ, ϕ∗ approach their midpoint ϕ+ϕ∗

2 with constant speed 1. The
collision ends as soon as the midpoint is reached. According to this, we define the collision potential

V (ϕ,ϕ∗) := 1
2

ˆ

sgn(ϕ∗ − ϕ)
sgn(ϕ− ϕ∗)

˙

, ϕ 6= ϕ∗. (5.30)

The dynamics are then given by the following system of equations
∂tf = Sf − 2λMff, ϕ ∈ R

∂tg +∇ · (V g) = λff∗, (ϕ,ϕ∗) ∈ R2 \D

where again f describes the distribution function of the single particles with mass Mf :=
∫

R f dϕ and
g the one for the pairs of particles in collision with mass Mg :=

∫
R2 g dϕ∗dϕ.. Further, we denote by

D the diagonal in R2, i.e. D := {(ϕ,ϕ∗) ∈ R2 : ϕ = ϕ∗}. The source term Sf arises from the outflow
and has to be computed out of mass balance, since the total mass of the system

M =
∫

R
f dϕ+ 2

∫
R2
g dϕ∗dϕ

also has to be a conserved quantity in this case. Derivation w.r.t. time gives
d
dtM =

∫
R
Sf dϕ− 2

∫
R2
∇ · (V g) dϕ∗dϕ

=
∫

R
Sf dϕ− 2

ˆ∫
D+

(V+g) · ν+ dS +
∫
D−

(V−g) · ν− dS
˙

,

where D± describes the limit approaching the diagonal D from above resp. below and ν± denotes the
corresponding unit outward normal. One can see easily that

ν+ = 1
?

2

ˆ

1
−1

˙

, ν− = 1
?

2

ˆ

−1
1

˙

as well as
V+ := lim

(ϕ,ϕ∗)→D+
V (ϕ,ϕ∗) = 1

?
2
ν+, V− := lim

(ϕ,ϕ∗)→D−
V (ϕ,ϕ∗) = 1

?
2
ν−

has to hold. Since the diagonal can be parametrized by ϕ with functional determinant
?

2, we can
further calculate

d
dtM =

∫
R
Sf dϕ− 2

?
2
ˆ∫

R
(V+ · ν+)g(ϕ,ϕ) dϕ+

∫
R
(V− · ν−)g(ϕ,ϕ) dϕ

˙

=
∫

R
Sf dϕ− 2

∫
R
(g+(ϕ,ϕ) + g−(ϕ,ϕ)) dϕ,

where we denote by g± the limit
g±(ϕ̃) := lim

(ϕ,ϕ∗)→D± (ϕ̃,ϕ̃)
g(ϕ,ϕ∗).

Since we assume g to be symmetric, we have g+ = g− =: ḡ. From here we can conclude that the
gain-term for the single particles has to be of the shape

Sf (ϕ) = 4ḡ(ϕ), ϕ ∈ R.

Therefore, the deterministic model for time-resolved binary alignment collisions is given by
∂tf = 4ḡ − 2λMff, ϕ ∈ R

∂tg +∇ · (V g) = λff∗, (ϕ,ϕ∗) ∈ R2 \D.
(5.31)

114



5.3 Kinetic Equation for Time-resolved Alignment Collisions with Deterministic Collisions Dynamics

5.3.1 Conservation laws and equilibria
We first observe that the total mass

M :=
∫

R
f dϕ+ 2

∫
R2
g dϕdϕ∗ (5.32)

is conserved by construction. Further, we can see easily that the mean value

I :=
∫

R
ϕf dϕ+ 2

∫
R2
ϕg dϕdϕ∗

is conserved by the equation. Indeed, if we calculate its time-derivative we obtain
d
dtI(t) = 4

∫
R
ϕḡ(ϕ) dϕ− 2

∫
R2
ϕ∇ · (V g)(ϕ,ϕ∗) dϕ∗dϕ

= 4
∫

R
ϕḡ(ϕ) dϕ−

ˆ∫
D+

ϕ (V+g) · ν+ dS +
∫
D−

ϕ (V−g) · ν− dS
˙

= 0,

where we used the same arguments and notation as in the derivation of the model. This allows us to
define the mean

ϕ∞ := I

M
.

Similarly, we define the total (relative) variance of the system by

V[f, g](t) :=
∫

R
(ϕ− ϕ∞)2f dϕ+ 2

∫
R2

(ϕ− ϕ∞)2g dϕdϕ∗.

Computing the time-derivative yields
d
dtV(t) = 4

∫
R
(ϕ− ϕ∞)2ḡ(ϕ) dϕ−

∫
R2

“

(ϕ− ϕ∞)2 + (ϕ∗ − ϕ∞)2‰∇ · (V g)(ϕ,ϕ∗) dϕ∗dϕ

= 4
∫

R
(ϕ− ϕ∞)2ḡ(ϕ) dϕ+ 2

∫
R2

ˆ

ϕ− ϕ∞
ϕ∗ − ϕ∞

˙

·
ˆ

sgn (ϕ∗ − ϕ)
sgn (ϕ− ϕ∗)

˙

g(ϕ,ϕ∗) dϕ∗dϕ

− 4
∫

R
(ϕ− ϕ∞)2ḡ(ϕ) dϕ

= −2
∫

R2
|ϕ− ϕ∗|g(ϕ,ϕ∗) dϕ∗dϕ,

i.e. decay of variance. One further notices that, as in the previous model, the variance stops decaying
as soon as g, the function of pairs of particles in a collision, is only concentrated on the diagonal, i.e.

g(ϕ,ϕ∗) = 0, for all ϕ 6= ϕ∗.

The difference to the previous model with collisions modeled by a stochastic process is, that the decay
does not involve the quadratic factor (ϕ − ϕ∗)2, but the linear one |ϕ − ϕ∗|. This is due to the fact
that we chose the potential in such a way that the mean-value of two colliding particles is reached
with constant speed 1 during a collision.

Since we deal with an alignment model, we again expect mass concentrated at a single point for
t→∞, given by the mean value ϕ∞. One can easily verify that

(f∞(ϕ), g∞(ϕ,ϕ∗)) :=
˜

Mf∞δϕ∞(ϕ),
λM2

f∞

2 δϕ(ϕ∗)δϕ∞(ϕ)
¸

,
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with

Mf∞ = − 1
2λ +

c

1
4λ2 + 1

λ

given by total mass conservation (5.32)

M = Mf∞ + 2Mg∞ ,

is an equilibrium of the system (5.31).

5.3.2 Instantaneous limit

Under the assumption that the collision dynamics are much faster than the free flight dynamics, we
introduce the small parameter ε� 1. Performing the scaling

V 7→ 1
ε
V, g 7→ εg,

yields the singular perturbed problem

∂tf = 4ḡ − 2λMff,

ε∂tg +∇ · (V g) = λff∗.

The formal limit ε→ 0 of this singular perturbed problem leads to the system

∂tf = 4ḡ − 2λMff,

∇ · (V g) = λff∗.

As in section 5.2.4 the time-independence of the g-equation allows us to solve it explicitly for given f
in order to incorporate it into the f -equation for single particles. Using (5.30) we can write the second
equation from (5.31) as

sgn (ϕ∗ − ϕ)∂ϕg + sgn (ϕ− ϕ∗)∂ϕ∗g = 2λff∗,

which can be transformed to

∂qg = −2λ sgn (q)f(p+ q)f(p− q),

via introducing the new coordinates

q = ϕ− ϕ∗
2 , and p = ϕ+ ϕ∗

2 .

Integrating this ODE from |q| to ∞ yields

g(p, q) = 2λ
∫ ∞
|q|

f(p+ q′)f(p− q′) dq′

and after rewriting it in the old coordinates one obtains the following formula for g

g(ϕ,ϕ∗) = 2λ
∫ ∞
|ϕ−ϕ∗|

2

f

ˆ

ϕ+ ϕ∗
2 + q′

˙

f

ˆ

ϕ+ ϕ∗
2 − q′

˙

dq′. (5.33)
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5.3 Kinetic Equation for Time-resolved Alignment Collisions with Deterministic Collisions Dynamics

The limit of (5.33) for (ϕ,ϕ∗)→ D is given by

ḡ(ϕ) = 2λ
∫ ∞

0
f
`

ϕ+ q′
˘

f
`

ϕ− q′
˘

dq′

Plugging this into the equation for f yields the following instantaneous alignment model arising from
deterministic collision dynamics:

∂tf = Qd(f, f) = Gd(f, f)− Ld(f, f)

:= 2λ
„

4
∫ ∞

0
f(ϕ+ q′)f(ϕ− q′) dq′ −Mf



= 2λ
„

2
∫

R
f(ϕ+ q′)f(ϕ− q′) dq′ −Mf



= 2λ
„

2
∫

R
f(2ϕ+ ϕ∗)f(ϕ∗) dϕ∗ −Mf



,

(5.34)

where from the middle to the last line we made first use of the fact that the gain term is symmetric
w.r.t q′ in order to the grid of the additional factor 2 and second performed the coordinate change
ϕ∗ = ϕ+ q′. We denoted the collision operator by Qd, quadratic in f and consisting of its gain-term,
Gd, and loss-term, Ld. We observe that the model obtained after performing the instantaneous limit
corresponds to the usual midpoint/alignment-model, recent matter of investigation in [17,22] and with
additional noise term in [14].

Weak formulation and properties of the collision operator: Also here, the weak formulation of Qd
is obtained by first multiplying it with a suitable test-function h before integrating it over R. Doing
this yields ∫

R
Qd(f, f)(ϕ)h(ϕ) dϕ =

∫
R
Gd(f, f)(ϕ)h(ϕ) dϕ−

∫
R
Ld(f, f)(ϕ)h(ϕ) dϕ

= 2λ
„

2
∫

R2
f(ϕ′ + q′)f(ϕ′ − q′)h(ϕ′) dq′dϕ′ −

∫
R2
f(ϕ)f(ϕ∗)h(ϕ) dϕ∗dϕ



(5.35)

= 2λ
„∫

R2
ff∗

ˆ

h

ˆ

ϕ+ ϕ∗
2

˙

− h(ϕ) + h(ϕ∗)
2

˙

dϕ∗dϕ


,

where in the integral with the gain-term the transform (ϕ′ + q′, ϕ′ − q′)→ (ϕ,ϕ∗) was performed and
the change in the loss-term is due to symmetrization.
Choosing h ≡ 1 in (5.35), we can deduce immediately that mass conservation

M :=
∫

R
f dϕ = const.

has to hold. Further, by setting h(ϕ) = ϕ, we obtain that the mean value of the system (5.34) has to
be a conserved quantity, i.e.

Mϕ∞ :=
∫
ϕf dϕ = const.

Again, we define the variance of the system by

V[f ](t) :=
∫

R
(ϕ− ϕ∗)2f dϕ.
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5 A Kinetic Model for Non-instantaneous Binary Collisions

Computing its time-derivative by choosing h(ϕ) = (ϕ−ϕ∞)2 in (5.35), we see that it decays exponen-
tially:

d
dtV[f ](t) = −λ2

∫
R2

(ϕ− ϕ∗)2ff∗ dϕ∗dϕ = −λM
∫

R
(ϕ− ϕ∞)2f dϕ = −λMV[f ].

Existence and uniqueness of solutions to the instantaneous limit problem: Using the standard
method of performing uniform Lipschitz-estimates on the collision operator Qd before applying the
Picard-Lipschitz theorem allows us to obtain existence of unique solutions in L1, global in time.

Theorem 5.5. Let fI ∈ L1
+(R), then the model (5.34) has a unique global solution

f ∈ C
´

[0,∞);L1
+(R)

¯

.

Proof. Let f, h ∈ L1(R) with ‖f‖L1(R), ‖h‖L1(R)≤ M . In the following we aim to show Lipschitz-
continuity of the collision operator Qd by estimating

‖Qd(f, f)−Qd(h, h)‖L1(R)≤ ‖Gd(f, f)−Gd(h, h)‖L1(R)+‖Ld(f, f)− Ld(h, h)‖L1(R),

where we will treat the gain- and loss-term separately.

‖G(f, f)−G(h, h)‖L1(R)≤ 2λ
∫

R2
|f(2ϕ− ϕ∗)f(ϕ∗)− h(2ϕ− ϕ∗)h(ϕ∗)| dϕ∗dϕ

Performing now the coordinate transform 2ϕ− ϕ∗ 7→ ϕ in the ϕ-integral, we obtain

‖Gd(f, f)−Gd(h, h)‖L1(R)≤ λ
∫

R2
|f(ϕ)f(ϕ∗)− h(ϕ)h(ϕ∗)|dϕ∗dϕ

≤ λ
∫

R2

´

|f(ϕ∗)− h(ϕ∗)|f(ϕ) + |f(ϕ)− h(ϕ)|h(ϕ∗)
¯

dϕ∗dϕ

≤ 2λM‖f − h‖L1(R).

Estimating the loss-term is trivial

‖Ld(f, f)− Ld(h, h)‖L1(R)≤ 2λM‖f − h‖L1(R),

which gives in total

‖Qd(f, f)−Qd(h, h)‖L1(R)≤ 4λM‖f − h‖L1(R),

which gives the desired Lipschitz-estimate for the collision operator Qd. The existence of a unique
solution to (5.34) follows by Picard-iteration. It is obvious that positivity as well as mass is conserved,
where from the last global existence follows.
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