Jump processes Session 2

Eduardo Abi Jaber *, Cyril Labbé

December 19, 2017

Exercise 1

Let X be a Lévy process of dimension 1. Let Ψ be the characteristic function of X:

$$\Psi(u) = \mathbb{E}[e^{iuX_1}], \quad u \in \mathbb{R}.$$

- 1. Recall the generic expression of $\Psi.$
- 2. Let c > 0 be fixed. We set $Y_t := X_{ct}$ for all $t \ge 0$. Show that Y is a Lévy process and determine its characteristic function.
- 3. We assume that X is a compound Poisson process. Let T > 0 be fixed. Are the laws of $(X_t, t \in [0, T])$ and of $(X_{ct}, t \in [0, T])$ equivalent ?
- 4. Same question when X is a Brownian motion.

Exercise 2

Let B be a standard Brownian motion of dimension 1 and let N be a Poisson process of intensity $\lambda > 0$ independent of B. We set

$$X_t := B_{N_t} , \quad t \ge 0 .$$

- 1. Compute the characteristic function of X_t for $t \ge 0$.
- 2. Show that X is a Lévy process.
- 3. Identify the law of the process X.
- 4. If B is replaced by an arbitrary Lévy process L, what are the answers to the previous three questions ?

 $^{^{*}}$ eduardo.abi.jaber@gmail.com

Exercise 3

Let X be a Lévy process of dimension 1 of characteristic exponent

$$\eta(u) = \int_{x \in [-1,1]} (e^{iux} - 1 - iux)\nu(dx) , \quad u \in \mathbb{R} ,$$

where ν is a Lévy measure. For any integer $N \ge 1$ and for some parameter $\alpha > 0$, we set

$$X_t^{(N)} := \frac{1}{N^{\alpha}} X_{tN} , \quad t \ge 0 .$$

- 1. Assume that $\nu(dx) = \delta_1(dx) + \delta_{-1}(dx)$. Show that X is a mean zero compound Poisson process.
- 2. Show that $X^{(N)}$ is a Lévy process and identify its characteristic exponent.
- 3. Show that, for some well-chosen parameter α , the finite dimensional marginals of $X^{(N)}$ converge to those of a Brownian motion and determine the variance of this Brownian motion.
- 4. We now assume that $\nu(dx) = f(x)dx$ where $f : [-1,1] \to \mathbb{R}_+$. Show that the finite dimensional marginals of $X^{(N)}$ converge to those of a Brownian motion and determine the variance of this Brownian motion.

Exercise 4

Let $(\Omega, \mathcal{F}, (\mathcal{F})_{t \geq 0}, \mathbb{P})$ denote a filtered probability space and X be a Lévy process on \mathbb{R} with characteristic triplet (γ, A, ν) . Assume that $\int_{|z|>1} z^2 \nu(dz) < \infty$. Denote by J_X the jump-measure of X. The aim is to prove that the following assertions are equivalent:

- (i) $X_t \ge 0$ for every $t \ge 0$ \mathbb{P} -almost surely,
- (*ii*) Sample paths of X are almost surely non-decreasing: $t \ge s \Rightarrow X_t \ge X_s \mathbb{P}$ -almost surely,
- (iii)

$$b := \gamma - \int_0^1 z \nu(dz) \ge 0, \quad A = 0, \quad \nu((-\infty, 0]) = 0, \quad \int_0^\infty (z \land 1) \nu(dz) < \infty.$$

- 1. Prove $(i) \Leftrightarrow (ii)$.
- 2. Prove $(iii) \Rightarrow (i)$.
- 3. Assume (i).
 - (a) Explain why necessarily $\nu((-\infty, 0]) = 0$.
 - (b) Fix $\eta < 0$. Prove that $\int_0^{\cdot} \int_{\mathbb{R}} (e^{\eta z} 1) (J_X(ds, dz) \nu(dz)ds)$ is a square integrable \mathbb{P} -martingale.
 - (c) Define $U^{\eta} := \eta \sqrt{A}W + \int_0^{\cdot} \int_{\mathbb{R}} (e^{\eta z} 1) (J_X(ds, dz) \nu(dz)ds)$ where W is a \mathbb{P} -Brownian motion. Prove that the following equation admits a unique solution

$$dZ_t = Z_{t-} dU_t^{\eta}, \quad Z_0 = 1.$$

Explicit this solution which we denote by Z^{η} .

- (d) Prove that Z^{η} is a positive martingale.
- (e) Define \mathbb{P}^{η} by $\frac{d\mathbb{P}^{\eta}}{d\mathbb{P}}|_{\mathcal{F}_t} = Z_t^{\eta}$. Recall that X is still a Lévy process under \mathbb{P}^{η} and explicit the corresponding triplet $(\gamma^{\eta}, A^{\eta}, \nu^{\eta})$ in terms of (γ, A, ν, η) .
- (f) Justify that $X_t \ge 0$ for every $t \ge 0 \mathbb{P}^{\eta}$ -almost surely.
- (g) Prove that $\int_{|z|>1} z^2 \nu^{\eta}(dz)$ and deduce (*iii*).
- 4. Give a geometric interpretation of (iii).
- 5. Provide a qualitative explanation for the following statement: There exist Lévy processes without diffusion components having no negative jumps that can become negative.