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Main motivation

Convexity constraint in shape optimization

We are interested in problems of the form :

min {J(Q), Q is convex, Qefad}

where J is a shape functional.
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Main motivation
Convexity constraint in shape optimization
We are interested in problems of the form :

min {J(Q), Q is convex, Qefad}

where J is a shape functional.

Examples of constraints :

o Faq={Q, B(0,a) Cc QcC B(0,b)},

o Foy= {’Q‘ = Vp, and Q C B(O, b)}
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Outline

@ Convexity constraint
e Old, new, open problems
@ Case of concave functionals
@ Applications

© Shape derivatives
@ Previous results (2-dim)
@ New results (N-dim)
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Outline

@ Convexity constraint
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Old, new, open problems
Outline

@ Convexity constraint
e Old, new, open problems
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Convexity constraint Old, new, open problems

Example |

Newton’s problem of the body of minimal resistance [1685]

1
min{/Dl—i—|Vf|2 / f:D—[0,M],f concave}

D= {xcR? |x] <1}
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Convexity constraint Old, new, open problems

Example |

Newton’s problem of the body of minimal resistance [1685]

1
min{/Dl—i—|Vf|2 / f:D—[0,M],f concave}

D= {xcR? |x] <1}
Numerical computations : Lachand-Robert, Oudet, 2004 :
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Convexity constraint Old, new, open problems

Example Il
Mabhler's conjecture [1939]

Conjecture : is the cube Qy := [~1,1]" solution of

min{l\/l(K) = |K||K°|, K convex of R, —K:K}?

where

Ke = {geR’V, (€,x) <1, Vxe K}.
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Convexity constraint Old, new, open problems

Example Il
Mahler's conjecture [1939]

Conjecture : is the cube Qy := [~1,1]" solution of
min {I\/I(K) = |K||K°|, K convex of RV, —K = K} ?
where

Ke = {geR’V, (€,x) <1, Vxe K}.

Theorem (Mabhler, 1939)
If N =2, ok. J
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Example [l

Pélya-Szegd's conjecture [1951]

The electrostatic capacity of a set Q C R3 is defined by

Aug = 0 in R3\K
Cap(K) 3:/ \VUK|2 where Uk = 1 on 0K
R3\K lim ug = 0
Ix[—=+o00
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Convexity constraint Old, new, open problems

Example [l
Pélya-Szegd's conjecture [1951]

The electrostatic capacity of a set Q C R3 is defined by

Aug = 0 in R3\K
Cap(K) ::/ \VUK|2 where UK = 1 on 0K
R3\K lim ug = 0
Ix[—=+o00

Is the disk D  R3 solution of :

min { Cap(K), K convex of R, P(K) =Py} ?
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Example [l

Pélya-Szegd's conjecture [1951]

The electrostatic capacity of a set Q C R3 is defined by

Aug = 0 in R3\K
Cap(K) 3:/ |Vuk|? where Uk = 1 on 0K
R3\K lim ug = 0
Ix|—++00

Is the disk D c R3 solution of :
min { Cap(K), K convex of R, P(K) =Py} ?

or equivalently solution of

2
min {Ca;((é())) K convex} & min { Cap(K)? — uP(K), K convex}
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e el
Example IV

Variations on the charged liquid drop problem [Goldman, Novaga, Ruffini, 2016]

min{P(Q) + Q*hh(Q), Q convex c RN, |Q| = W}

_ 1 1
0 =l [0 8 (1) 0990 = 1y
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Example IV

Variations on the charged liquid drop problem [Goldman, Novaga, Ruffini, 2016]

min{P(Q) + Q*hh(Q), Q convex c RN, |Q| = W}

1

: 1 -

@ Existence ok
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Example IV

Variations on the charged liquid drop problem [Goldman, Novaga, Ruffini, 2016]

min{P(Q) + Q*hh(Q), Q convex c RN, |Q| = W}

_ 1 !

@ Existence ok

o If N =2, Cl1-regularity of solutions
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Example IV

Variations on the charged liquid drop problem [Goldman, Novaga, Ruffini, 2016]

min{P(Q) + Q*hh(Q), Q convex c RN, |Q| = W}

1

: 1 -

@ Existence ok

If N =2, Cl1-regularity of solutions

Ball if @ is small enough

Convergence to a segment if Q — oo (after rescaling).
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Convexity constraint Old, new, open problems

Example V : Reverse isoperimetry
[Bianchini-Henrot 2012]

min {,u\Q] — P(Q), Qconvex Cc RN B(0,a) c Q c B(0, b)}
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Convexity constraint Old, new, open problems

Example V : Reverse isoperimetry

[Bianchini-Henrot 2012]

min {,u\Q] — P(Q), Qconvex Cc RN B(0,a) c Q c B(0, b)}

If N =2,
e Big ball if u small,

o Small ball if u big,
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Convexity constraint Old, new, open problems

Example V : Reverse isoperimetry
[Bianchini-Henrot 2012]

min {,u\Q] — P(Q), Qconvex Cc RN B(0,a) c Q c B(0, b)}

If N =2,
e Big ball if u small,

o Small ball if 1 big,
e Polygonal inside B(0, b) \ B(0, a) [L-Novruzi 2008]
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Convexity constraint Old, new, open problems

Example V : Reverse isoperimetry
[Bianchini-Henrot 2012]

min {,u\Q] — P(Q), Qconvex Cc RN B(0,a) c Q c B(0, b)}

If N =2,
e Big ball if u small,

o Small ball if 1 big,
e Polygonal inside B(0, b) \ B(0, a) [L-Novruzi 2008]

e Complete description available [Bianchini-Henrot] : 'true’ polygons
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e el
Example VI

Variation on the Cheeger inequality [Parini, 2015]

[ () N
min {hl(Q)Z’ Q convex C R
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e el
Example VI

Variation on the Cheeger inequality [Parini, 2015]

[ () N
—= R
min {hl(Q)z’ Q convex C

If N =2,

@ Existence ok

J. Lamboley (University Paris-Dauphine) Optimal convex shapes

11/ 28



Example VI

Variation on the Cheeger inequality [Parini, 2015]

[ () N
min {hl(Q)z’ Q convex C R

If N =2,

@ Existence ok

@ every connected component of 9Q* \ JC is made of two segments
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Example VI

Variation on the Cheeger inequality [Parini, 2015]

[ () N
min {hl(Q)z’ Q convex C R

If N =2,

o Existence ok
@ every connected component of 9Q* \ JC is made of two segments

@ understanding 9Q* N 9C 7 Can it be strictly convex?
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Convexity constraint Old, new, open problems

Few formal remarks/results

@ Existence of a minimizer is usually easy.

J. Lamboley (University Paris-Dauphine) Optimal convex shapes 12 /28



Convexity constraint Old, new, open problems

Few formal remarks/results

@ Existence of a minimizer is usually easy.

'Non-existence’ may be difficult

J. Lamboley (University Paris-Dauphine) Optimal convex shapes 12 /28



Convexity constraint Old, new, open problems

Few formal remarks/results

@ Existence of a minimizer is usually easy.

'Non-existence' may be difficult (Marini's talk about 7 and Aq,

J. Lamboley (University Paris-Dauphine) Optimal convex shapes 12 /28
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Few formal remarks/results

@ Existence of a minimizer is usually easy.

'Non-existence' may be difficult (Marini's talk about 7 and Aq,
Fundamental Gap Theorem [Andrews-Clutterbuck 2011]).
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Convexity constraint Old, new, open problems

Few formal remarks/results

@ Existence of a minimizer is usually easy.

'Non-existence' may be difficult (Marini's talk about 7 and Aq,
Fundamental Gap Theorem [Andrews-Clutterbuck 2011]).

e To get geometrical /analytical informations on minimizers is usually
difficult (optimality conditions ?)
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Convexity constraint Old, new, open problems

Few formal remarks/results

@ Existence of a minimizer is usually easy.

'Non-existence' may be difficult (Marini's talk about 7 and Aq,
Fundamental Gap Theorem [Andrews-Clutterbuck 2011]).

e To get geometrical /analytical informations on minimizers is usually
difficult (optimality conditions ?)

o If J= P+ G where G is ‘smooth enough’, then we expect Q* to be

smooth (C1), [LNP 2011, GNR 2016, L. 201X ?]
Example IV : the charged drop like problem
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Convexity constraint Old, new, open problems

Few formal remarks/results

@ Existence of a minimizer is usually easy.

'Non-existence' may be difficult (Marini's talk about 7 and Aq,
Fundamental Gap Theorem [Andrews-Clutterbuck 2011]).

e To get geometrical /analytical informations on minimizers is usually
difficult (optimality conditions ?)

o If J= P+ G where G is ‘smooth enough’, then we expect Q* to be
smooth (C1), [LNP 2011, GNR 2016, L. 201X ?]
Example IV : the charged drop like problem
o If Jis 'weakly concave’, then we expect Q* to be 'weakly extremal’

Examples L1111V, maybe VI
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Convexity constraint Old, new, open problems

Few formal remarks/results

@ Existence of a minimizer is usually easy.

'Non-existence' may be difficult (Marini's talk about 7 and Aq,
Fundamental Gap Theorem [Andrews-Clutterbuck 2011]).

e To get geometrical /analytical informations on minimizers is usually
difficult (optimality conditions ?)

o If J= P+ G where G is ‘smooth enough’, then we expect Q* to be
smooth (C1), [LNP 2011, GNR 2016, L. 201X ?]
Example IV : the charged drop like problem

o If Jis 'weakly concave’, then we expect Q* to be 'weakly extremal’
Examples L1111V, maybe VI
Use second order optimality condition !
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Case of concave functionals
Outline

@ Convexity constraint

@ Case of concave functionals
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OO PG
The gauge function

If N >2,and u: SV~ — (0,00) is given, we define

Q, = {(r, ) € [0,00) x SN r< u(le)}'
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OO PG
The gauge function

If N >2,and u: SV~ — (0,00) is given, we define

Q, = {(r, ) € [0,00) x SN r< u(le)}'

Then

Q. is convex if and only if u is convex on SN=1.
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Convexity constraint Case of concave functionals

Reformulation of the problem

min {J(Q), Q convex, Q € Faq}

<= min {j(u) = J(Q2,), u convex, u € Sad}
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Convexity constraint Case of concave functionals

Reformulation of the problem

min {J(Q), Q convex, Q € Faq}

<= min {j(u) = J(Q2,), u convex, u € Sad}

For example,

53d:{u:SN_1—>]R, agl/ugb}
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Convexity constraint Case of concave functionals

Minimization of locally concave functionals

Let up such that :

J(up) = min {j(u), u convex, u € Sad}
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Convexity constraint Case of concave functionals

Minimization of locally concave functionals

Let up such that :

J(up) = min {j(u), u convex, U € Sad}
Theorem (L.,Novruzi,Pierre 2015)
Assume, for any v € WhHo(SN—1),

J(u0) (v, v) < —alvBugnoty + BlvIBeen-1y- (H)

for some o > 0,s € [0,1).
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Convexity constraint Case of concave functionals

Minimization of locally concave functionals

Let up such that :
J(up) = min {j(u), u convex, u € Sad}
Theorem (L.,Novruzi,Pierre 2015)
Assume, for any v € Wl’OO(SN_l),
J"(uo)(v,v) < *04|V‘?41(SN—1) + 5||V”?4s(stl)- (H)
for some o > 0,s € [0,1).Then the set

Ty = {v/EIs > 0,V|t| < e, up+ tv is convex and € Sad},

is a linear vector space of finite dimension.
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Convexity constraint Case of concave functionals

Consequences

Let ug such that T,, is of finite dimension.
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Consequences
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Convexity constraint Case of concave functionals

Consequences

Let ug such that T,, is of finite dimension.

@ N =2, ug can be seen as a 2mw-periodic function.

Lemma (Lachand-Robert Peletier, L. Novruzi Pierre)

Then ug + ug is a sum of Dirac masses,
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Convexity constraint Case of concave functionals

Consequences

Let ug such that T,, is of finite dimension.

@ N =2, ug can be seen as a 2mw-periodic function.

Lemma (Lachand-Robert Peletier, L. Novruzi Pierre)

Then uf + up is a sum of Dirac masses, or equivalently Q,, is polygonal,
inside B(0, b) \ B(0, a).
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Convexity constraint Case of concave functionals

Consequences

Let ug such that T,, is of finite dimension.

@ N =2, ug can be seen as a 2mw-periodic function.

Lemma (Lachand-Robert Peletier, L. Novruzi Pierre)

Then uf + up is a sum of Dirac masses, or equivalently Q,, is polygonal,
inside B(0, b) \ B(0, a).

o N>3

Lemma (easy)
Then if w C 0y, is C?, then the Gauss curvature vanishes on w J
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Convexity constraint Case of concave functionals

Consequences

Let ug such that T,, is of finite dimension.

@ N =2, ug can be seen as a 2mw-periodic function.

Lemma (Lachand-Robert Peletier, L. Novruzi Pierre)

Then uf + up is a sum of Dirac masses, or equivalently Q,, is polygonal,
inside B(0, b) \ B(0, a).

o N>3

Lemma (easy)
Then if w C 0y, is C?, then the Gauss curvature vanishes on w J

Problem : Q,, is not necessarily a polyhedra.
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Applications
Outline

@ Convexity constraint

@ Applications

J. Lamboley (University Paris-Dauphine) Optimal convex shapes

18 / 28



Convexity constraint Applications

Results

min {J(Q) =—P(Q)+ F(Q), Q convex}
where F(K) = f(|K|, \1(K)).
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Applications
Results

min {J(Q) =—P(Q)+ F(Q), Q convex}
where F(K) = f(|K|, \1(K)).

Theorem (L.-Novruzi-Pierre 2011-2015)
J satisfies (H). J

@ Example V, reverse isoperimetry

min{J(Q) := —P(Q) + u|Q| ; Q convex in R"}.
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Convexity constraint Applications

Results
min {J(Q) =—P(Q)+ F(Q), Q convex}
where F(K) = f(|K|, \1(K)).

Theorem (L.-Novruzi-Pierre 2011-2015)
J satisfies (H). J

@ Example V, reverse isoperimetry
min{J(Q) := —P(Q) + u|Q| ; Q convex in R"}.
@ Example V bis

min{J(Q) := —P(Q) + uA1(Q) ; Q convex in RN, |Q| = V}.
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Convexity constraint Applications

Results
min {J(Q) =—P(Q)+ F(Q), Q convex}
where F(K) = f(|K|, \1(K)).

Theorem (L.-Novruzi-Pierre 2011-2015)
J satisfies (H). J

@ Example V, reverse isoperimetry
min{J(Q) := —P(Q) + u|Q| ; Q convex in R"}.
@ Example V bis
min{J(Q) := —P(Q) + uA1(Q) ; Q convex in RN, |Q| = V}.

e Example VI (Enea's problem)?
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Outline

© Shape derivatives
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Previous results (2-dim)
Outline

© Shape derivatives
@ Previous results (2-dim)
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Shape derivatives Previous results (2-dim)

2-dim result

The perimeter, the volume
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Shape derivatives Previous results (2-dim)

2-dim result

The perimeter, the volume

2 12 1 1
p(u):P(Qu):/ VU g a(u) = ] = / do
St u 2 S

g
For any wug such that a < 1/up < b,

o p"(uo)(v,v) = alv[fy — BllvIZ

o [a"(uwo)(v,v)| < BlIvIE
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SENNIIOVETVCM  Previous results (2-dim)

2-dim result
PDE functional

(u) == M(Qy)

Theorem (L., Novruzi, Pierre, 2011)

Let Q, be convex in R%. Then for any € > 0, there exist 3 such that

[ () (v, I < BllvE ..

Applications :
e Example V bis in R2.
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New resuts (N-dim)
Outline

© Shape derivatives

@ New results (N-dim)
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SELERIIGVET O New results (N-dim)

N-dim result

The perimeter, the volume

2+ VP 1 1
p(u) /SNI ulN » m(u) N/SNI uN ="’
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Shape derivatives New results (N-dim)

N-dim result

The perimeter, the volume

VIZ+ [Vl 1 1
= [ VETIVAUE 4 SR
p(u) /SNI ulN » m(u) /va1 ulV ="’

N

For any up such that a < 1/ug < b,

o p"(uo)(v,v) > alv]z, — B|v|2,

o [a"(uwo)(v, V)| < BlvIE
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SELERIIGVET O New results (N-dim)

N-dim result

PDE functional, convex domains

(for example)

Theorem (L., Novruzi, Pierre, 2015)

Let Q, be semi-convex in RN (exterior ball condition). Then there exist /3
such that

1" 2
[ (u)(v, VI < BIVIE 4
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SELERIIGVET O New results (N-dim)

N-dim result

PDE functional, convex domains

(for example)

Theorem (L., Novruzi, Pierre, 2015)

Let Q, be semi-convex in RN (exterior ball condition). Then there exist /3
such that

1" 2
[ (u)(v, VI < BIVIE 4

Main tools for the proof :
o New way to estimate shape derivative

o WP regularity theory for elliptic PDE in semi-convex domains (valid
for any p € (1,00)).
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SELERIIGVET O New results (N-dim)

N-dim result

PDE functional, lipschitz domains

Theorem (L., Novruzi, Pierre, 2015)

Let Q, be Lipschitz in R?. Then there exist 3 and € > 0 such that

[ (u)(v, )] < BllvFa-..
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N-dim result

PDE functional, lipschitz domains

Theorem (L., Novruzi, Pierre, 2015)

Let Q, be Lipschitz in R?. Then there exist 3 and € > 0 such that

[ (u)(v, )] < BllvFa-..

@ Allows to deal with Exterior PDE problems
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SELERIIGVET O New results (N-dim)

N-dim result

PDE functional, lipschitz domains

Theorem (L., Novruzi, Pierre, 2015)

Let Q, be Lipschitz in R?. Then there exist 3 and € > 0 such that

[ (u)(v, )] < BllvFa-..

@ Allows to deal with Exterior PDE problems

@ Estimate available in RN, but too weak to handle Example Il
(Pdlya-Szégo)
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SELERIIGVET O New results (N-dim)

Perspectives - More open problems

@ Reverse Faber-Krahn inequality

max{A1(K) / K convex C B(0, b), |K| = W}
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SELERIIGVET O New results (N-dim)

Perspectives - More open problems

@ Reverse Faber-Krahn inequality

max{A1(K) / K convex C B(0, b), |K| = W}

@ Polyhedra in dimension > 37
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