# New results about shape derivatives and convexity constraint

#### Jimmy LAMBOLEY University Paris-Dauphine

with A. Novruzi, M. Pierre

29/04/2016, Cortona Geometric aspects of PDE's and functional inequalities

# Main motivation

Convexity constraint in shape optimization

We are interested in problems of the form :

$$\mathsf{min}\left\{J(\Omega), \ \Omega \ \textit{is} \ \textit{convex}, \ \Omega \in \mathcal{F}_{\textit{ad}}\right\}$$

where J is a shape functional.

# Main motivation

Convexity constraint in shape optimization

We are interested in problems of the form :

$$\mathsf{min}\left\{J(\Omega), \quad \Omega \ \textit{is convex}, \ \Omega \in \mathcal{F}_{\mathsf{ad}}\right\}$$

where J is a shape functional.

Examples of constraints :

• 
$$\mathcal{F}_{ad} = \{\Omega, B(0,a) \subset \Omega \subset B(0,b)\},\$$

• 
$$\mathcal{F}_{ad} = \{ |\Omega| = V_0, \text{ and } \Omega \subset B(0, b) \}.$$

#### Convexity constraint

- Old, new, open problems
- Case of concave functionals
- Applications

- Previous results (2-dim)
- New results (N-dim)

#### Convexity constraint

- Old, new, open problems
- Case of concave functionals
- Applications

- Previous results (2-dim)
- New results (N-dim)

#### Convexity constraint

#### • Old, new, open problems

- Case of concave functionals
- Applications

- Previous results (2-dim)
- New results (N-dim)

Newton's problem of the body of minimal resistance [1685]

$$\min\left\{\int_{D} \frac{1}{1+|\nabla f|^2} / f: D \to [0, M], f \text{ concave}\right\}$$
$$D = \{x \in \mathbb{R}^2, |x| \le 1\}$$

Newton's problem of the body of minimal resistance [1685]

$$\min\left\{\int_{D} \frac{1}{1+|\nabla f|^2} / f: D \to [0, M], f \text{ concave}\right\}$$
$$D = \{x \in \mathbb{R}^2, |x| \le 1\}$$

Numerical computations : Lachand-Robert, Oudet, 2004 :



#### Example II Mahler's conjecture [1939]

Conjecture : is the cube  $Q_N := [-1, 1]^N$  solution of

$$\min\left\{M(K):=|K||K^{\circ}|, K \text{ convex of } \mathbb{R}^{N}, -K=K\right\}?$$

where

$$\mathcal{K}^{\circ} := \left\{ \xi \in \mathbb{R}^{\mathcal{N}}, \ \langle \xi, x 
angle \leq 1, \ \forall x \in \mathcal{K} 
ight\}.$$

#### Example II Mahler's conjecture [1939]

Conjecture : is the cube  $Q_N := [-1, 1]^N$  solution of

$$\min\left\{M(K):=|K||K^{\circ}|, K \text{ convex of } \mathbb{R}^{N}, -K=K\right\}?$$

where

$$\mathcal{K}^\circ := \left\{ \xi \in \mathbb{R}^{\mathcal{N}}, \; \left< \xi, x \right> \leq 1, \; \; orall x \in \mathcal{K} 
ight\}.$$

Theorem (Mahler, 1939) If N = 2, ok.

#### Example III Pólya-Szegö's conjecture [1951]

The electrostatic capacity of a set  $\Omega \subset \mathbb{R}^3$  is defined by

$$Cap(K) := \int_{\mathbb{R}^3 \setminus K} |\nabla u_K|^2 \quad \text{where} \quad \begin{cases} \Delta u_K = 0 \quad \text{in} \quad \mathbb{R}^3 \setminus K \\ u_K = 1 \quad \text{on} \quad \partial K \\ \lim_{|x| \to +\infty} u_K = 0 \end{cases}$$

#### Example III Pólya-Szegö's conjecture [1951]

The electrostatic capacity of a set  $\Omega \subset \mathbb{R}^3$  is defined by

$$Cap(K) := \int_{\mathbb{R}^3 \setminus K} |\nabla u_K|^2 \quad \text{where} \quad \begin{cases} \Delta u_K = 0 \quad \text{in} \quad \mathbb{R}^3 \setminus K \\ u_K = 1 \quad \text{on} \quad \partial K \\ \lim_{|x| \to +\infty} u_K = 0 \end{cases}$$

Is the disk  $D \subset \mathbb{R}^3$  solution of :

min 
$$\left\{ \mathsf{Cap}(\mathsf{K}), \ \mathsf{K} \ \mathsf{convex} \ \mathsf{of} \ \mathbb{R}^3, \ \mathsf{P}(\mathsf{K}) = \mathsf{P}_0 
ight\}$$
 ?

#### Example III Pólya-Szegö's conjecture [1951]

The electrostatic capacity of a set  $\Omega \subset \mathbb{R}^3$  is defined by

$$Cap(K) := \int_{\mathbb{R}^3 \setminus K} |\nabla u_K|^2 \quad \text{where} \quad \begin{cases} \Delta u_K = 0 \quad \text{in} \quad \mathbb{R}^3 \setminus K \\ u_K = 1 \quad \text{on} \quad \partial K \\ \lim_{|x| \to +\infty} u_K = 0 \end{cases}$$

Is the disk  $D \subset \mathbb{R}^3$  solution of :

min 
$$\{Cap(K), K \text{ convex of } \mathbb{R}^3, P(K) = P_0\}$$
?

or equivalently solution of

$$\min\left\{\frac{Cap(K)^2}{P(K)}, \ K \ convex\right\} \Leftrightarrow \min\left\{Cap(K)^2 - \mu P(K), \ K \ convex\right\}$$

Variations on the charged liquid drop problem [Goldman, Novaga, Ruffini, 2016]

$$\min\{P(\Omega) + Q^2 I_0(\Omega), \ \Omega \ convex \ \subset \mathbb{R}^N, \ |\Omega| = V_0\}$$

$$I_0(\Omega) = \inf_{\mu \in \mathcal{P}(\Omega)} \int_{\Omega imes \Omega} \log\left(rac{1}{|x-y|}
ight) d\mu(x) d\mu(y) = rac{1}{Lcap(\Omega)}$$

Variations on the charged liquid drop problem [Goldman, Novaga, Ruffini, 2016]

$$\min\{P(\Omega) + Q^2 I_0(\Omega), \ \Omega \ convex \ \subset \mathbb{R}^N, \ |\Omega| = V_0\}$$
$$I_0(\Omega) = \inf_{\mu \in \mathcal{P}(\Omega)} \int_{\Omega \times \Omega} \log\left(\frac{1}{|x - y|}\right) d\mu(x) d\mu(y) = \frac{1}{Lcap(\Omega)}$$

...

• Existence ok

Variations on the charged liquid drop problem [Goldman, Novaga, Ruffini, 2016]

$$\min\{P(\Omega) + Q^2 I_0(\Omega), \ \Omega \ convex \ \subset \mathbb{R}^N, \ |\Omega| = V_0\}$$
$$I_0(\Omega) = \inf_{\mu \in \mathcal{P}(\Omega)} \int_{\Omega \times \Omega} \log\left(\frac{1}{|x - y|}\right) d\mu(x) d\mu(y) = \frac{1}{Lcap(\Omega)}$$

Existence ok

• If N = 2,  $C^{1,1}$ -regularity of solutions

Variations on the charged liquid drop problem [Goldman, Novaga, Ruffini, 2016]

$$\min\{P(\Omega) + Q^2 I_0(\Omega), \ \Omega \ convex \ \subset \mathbb{R}^N, \ |\Omega| = V_0\}$$
$$I_0(\Omega) = \inf_{\mu \in \mathcal{P}(\Omega)} \int_{\Omega \times \Omega} \log\left(\frac{1}{|x - y|}\right) d\mu(x) d\mu(y) = \frac{1}{Lcap(\Omega)}$$

- Existence ok
- If N = 2,  $C^{1,1}$ -regularity of solutions
- Ball if Q is small enough
- Convergence to a segment if  $Q o \infty$  (after rescaling).

$$\min\left\{\mu|\Omega|-P(\Omega), \ \Omega \ convex \ \subset \mathbb{R}^N, \ B(0,a)\subset \Omega\subset B(0,b)\right\}$$

$$\min\left\{\mu|\Omega|-P(\Omega), \ \Omega \ convex \ \subset \mathbb{R}^N, \ B(0,a)\subset \Omega\subset B(0,b)\right\}$$

- If N = 2,
  - Big ball if  $\mu$  small,
  - Small ball if  $\mu$  big,

$$\min\left\{\mu|\Omega|-P(\Omega), \ \Omega \ convex \ \subset \mathbb{R}^N, \ B(0,a)\subset \Omega\subset B(0,b)\right\}$$

If N = 2,

- Big ball if  $\mu$  small,
- Small ball if  $\mu$  big,
- Polygonal inside  $B(0, b) \setminus B(0, a)$  [L-Novruzi 2008]

$$\min\left\{\mu|\Omega|-P(\Omega), \ \Omega \ convex \ \subset \mathbb{R}^N, \ B(0,a)\subset \Omega\subset B(0,b)\right\}$$

If N = 2,

- Big ball if  $\mu$  small,
- Small ball if  $\mu$  big,
- Polygonal inside  $B(0, b) \setminus B(0, a)$  [L-Novruzi 2008]
- Complete description available [Bianchini-Henrot] : 'true' polygons

$$\min\left\{\frac{\lambda_1(\Omega)}{h_1(\Omega)^2}, \ \Omega \ convex \ \subset \mathbb{R}^N\right\}$$

$$\min\left\{\frac{\lambda_1(\Omega)}{h_1(\Omega)^2}, \ \Omega \ convex \ \subset \mathbb{R}^N\right\}$$

If 
$$N = 2$$
,

• Existence ok

$$\min\left\{\frac{\lambda_1(\Omega)}{h_1(\Omega)^2}, \ \Omega \ convex \ \subset \mathbb{R}^N\right\}$$

If N = 2,

- Existence ok
- $\bullet$  every connected component of  $\partial \Omega^* \setminus \partial {\mathcal C}$  is made of two segments

$$\min\left\{\frac{\lambda_1(\Omega)}{h_1(\Omega)^2}, \ \Omega \ convex \ \subset \mathbb{R}^N\right\}$$

If N = 2,

- Existence ok
- $\bullet$  every connected component of  $\partial \Omega^* \setminus \partial {\mathcal C}$  is made of two segments
- understanding  $\partial \Omega^* \cap \partial C$ ? Can it be strictly convex?

• Existence of a minimizer is usually easy.

- Existence of a minimizer is usually easy.
  - 'Non-existence' may be difficult

- Existence of a minimizer is usually easy.
  - 'Non-existence' may be difficult (Marini's talk about au and  $\lambda_1$ ,

• Existence of a minimizer is usually easy.

'Non-existence' may be difficult (Marini's talk about  $\tau$  and  $\lambda_1$ , Fundamental Gap Theorem [Andrews-Clutterbuck 2011]).

• Existence of a minimizer is usually easy.

'Non-existence' may be difficult (Marini's talk about  $\tau$  and  $\lambda_1$ , Fundamental Gap Theorem [Andrews-Clutterbuck 2011]).

• To get geometrical/analytical informations on minimizers is usually difficult (optimality conditions?)

• Existence of a minimizer is usually easy.

'Non-existence' may be difficult (Marini's talk about  $\tau$  and  $\lambda_1$ , Fundamental Gap Theorem [Andrews-Clutterbuck 2011]).

- To get geometrical/analytical informations on minimizers is usually difficult (optimality conditions?)
- If J = P + G where G is 'smooth enough', then we expect Ω\* to be smooth (C<sup>1,1</sup>), [LNP 2011, GNR 2016, L. 201X ?]
   Example IV : the charged drop like problem

• Existence of a minimizer is usually easy.

'Non-existence' may be difficult (Marini's talk about  $\tau$  and  $\lambda_1$ , Fundamental Gap Theorem [Andrews-Clutterbuck 2011]).

- To get geometrical/analytical informations on minimizers is usually difficult (optimality conditions?)
- If J = P + G where G is 'smooth enough', then we expect Ω\* to be smooth (C<sup>1,1</sup>), [LNP 2011, GNR 2016, L. 201X?]
   Example IV : the charged drop like problem
- If J is 'weakly concave', then we expect  $\Omega^*$  to be 'weakly extremal' Examples I,II,III,V, maybe VI

• Existence of a minimizer is usually easy.

'Non-existence' may be difficult (Marini's talk about  $\tau$  and  $\lambda_1$ , Fundamental Gap Theorem [Andrews-Clutterbuck 2011]).

- To get geometrical/analytical informations on minimizers is usually difficult (optimality conditions?)
- If J = P + G where G is 'smooth enough', then we expect Ω\* to be smooth (C<sup>1,1</sup>), [LNP 2011, GNR 2016, L. 201X?]
   Example IV : the charged drop like problem
- If J is 'weakly concave', then we expect  $\Omega^*$  to be 'weakly extremal' Examples I,II,III,V, maybe VI

Use second order optimality condition !

#### Convexity constraint

- Old, new, open problems
- Case of concave functionals
- Applications

- Previous results (2-dim)
- New results (N-dim)

#### The gauge function

If  $N \geq 2$ , and  $u: \mathbb{S}^{N-1} \rightarrow (0,\infty)$  is given, we define

$$\Omega_u := \left\{ (r, heta) \in [0, \infty) imes \mathbb{S}^{N-1}, \quad r < rac{1}{u( heta)} 
ight\}.$$

#### The gauge function

If  $N \geq 2$ , and  $u: \mathbb{S}^{N-1} \to (0,\infty)$  is given, we define

$$\Omega_u := \left\{ (r, heta) \in [0, \infty) imes \mathbb{S}^{N-1}, \quad r < rac{1}{u( heta)} 
ight\}.$$

Then

 $\Omega_u$  is convex if and only if u is convex on  $\mathbb{S}^{N-1}$ .

#### Reformulation of the problem

$$\begin{split} \min \Big\{ J(\Omega), \ \Omega \ \textit{convex}, \ \Omega \in \mathcal{F}_{ad} \Big\} \\ \iff \min \Big\{ j(u) := J(\Omega_u), \ u \ \textit{convex}, \ u \in S_{ad} \Big\} \end{split}$$

## Reformulation of the problem

$$\min \left\{ J(\Omega), \ \Omega \ convex, \ \Omega \in \mathcal{F}_{ad} \right\} \\ \iff \min \left\{ j(u) := J(\Omega_u), \ u \ convex, \ u \in S_{ad} \right\}$$

For example,

$$S_{ad} = \left\{ u : \mathbb{S}^{N-1} \to \mathbb{R}, \ a \le 1/u \le b \right\}$$

#### Minimization of locally concave functionals

Let  $u_0$  such that :

$$j(u_0) = \min\left\{j(u), u \text{ convex}, u \in S_{ad}\right\}$$

#### Minimization of locally concave functionals

Let  $u_0$  such that :

$$j(u_0) = \min \left\{ j(u), u \text{ convex}, u \in S_{ad} \right\}$$

Theorem (L., Novruzi, Pierre 2015)

Assume, for any  $v \in W^{1,\infty}(\mathbb{S}^{N-1})$ ,

$$j''(u_0)(v,v) \leq -lpha |v|^2_{H^1(\mathbb{S}^{N-1})} + \beta ||v||^2_{H^s(\mathbb{S}^{N-1})}.$$

for some  $\alpha > 0, s \in [0, 1)$ .

(H)

#### Minimization of locally concave functionals

Let  $u_0$  such that :

$$j(u_0) = \min\left\{j(u), u \text{ convex}, u \in S_{ad}\right\}$$

Theorem (L., Novruzi, Pierre 2015)

Assume, for any  $v \in W^{1,\infty}(\mathbb{S}^{N-1})$ ,

$$j''(u_0)(v,v) \leq -lpha |v|^2_{H^1(\mathbb{S}^{N-1})} + \beta ||v||^2_{H^s(\mathbb{S}^{N-1})}.$$

for some  $\alpha > 0, s \in [0, 1)$ . Then the set

$$T_{u_0} = \left\{ v/\exists \varepsilon > 0, \forall |t| < \varepsilon, \ u_0 + tv \text{ is convex and } \in S_{ad} \right\},$$

is a linear vector space of finite dimension.

(H)

Let  $u_0$  such that  $T_{u_0}$  is of finite dimension.

Let  $u_0$  such that  $T_{u_0}$  is of finite dimension.

• N = 2,  $u_0$  can be seen as a  $2\pi$ -periodic function.

Let  $u_0$  such that  $T_{u_0}$  is of finite dimension.

• N = 2,  $u_0$  can be seen as a  $2\pi$ -periodic function.

Lemma (Lachand-Robert Peletier, L. Novruzi Pierre) Then  $u_0'' + u_0$  is a sum of Dirac masses,

Let  $u_0$  such that  $T_{u_0}$  is of finite dimension.

• N = 2,  $u_0$  can be seen as a  $2\pi$ -periodic function.

Lemma (Lachand-Robert Peletier, L. Novruzi Pierre)

Then  $u_0'' + u_0$  is a sum of Dirac masses, or equivalently  $\Omega_{u_0}$  is polygonal, inside  $B(0, b) \setminus B(0, a)$ .

Let  $u_0$  such that  $T_{u_0}$  is of finite dimension.

• N = 2,  $u_0$  can be seen as a  $2\pi$ -periodic function.

Lemma (Lachand-Robert Peletier, L. Novruzi Pierre)

Then  $u_0'' + u_0$  is a sum of Dirac masses, or equivalently  $\Omega_{u_0}$  is polygonal, inside  $B(0, b) \setminus B(0, a)$ .

N ≥ 3

Lemma (easy)

Then if  $\omega \subset \partial \Omega_{u_0}$  is  $C^2$ , then the Gauss curvature vanishes on  $\omega$ 

Let  $u_0$  such that  $T_{u_0}$  is of finite dimension.

• N = 2,  $u_0$  can be seen as a  $2\pi$ -periodic function.

Lemma (Lachand-Robert Peletier, L. Novruzi Pierre)

Then  $u_0'' + u_0$  is a sum of Dirac masses, or equivalently  $\Omega_{u_0}$  is polygonal, inside  $B(0, b) \setminus B(0, a)$ .

N ≥ 3

Lemma (easy)

Then if  $\omega \subset \partial \Omega_{u_0}$  is  $C^2$ , then the Gauss curvature vanishes on  $\omega$ 

Problem :  $\Omega_{u_0}$  is not necessarily a polyhedra.

#### Convexity constraint

- Old, new, open problems
- Case of concave functionals
- Applications

- Previous results (2-dim)
- New results (N-dim)

#### Results

$$\min \left\{ J(\Omega) := -P(\Omega) + F(\Omega), \ \Omega \ convex 
ight\}$$
  
where  $F(K) = f(|K|, \lambda_1(K)).$ 

### Results

$$\min \left\{ J(\Omega) := -P(\Omega) + F(\Omega), \ \Omega \ convex \right\}$$
  
where  $F(K) = f(|K|, \lambda_1(K)).$ 

# Theorem (L.-Novruzi-Pierre 2011-2015) J satisfies (H).

# Results

where

$$\min \left\{ J(\Omega) := -P(\Omega) + F(\Omega), \ \Omega \ convex \right\}$$
$$F(K) = f(|K|, \lambda_1(K)).$$

# Theorem (L.-Novruzi-Pierre 2011-2015)

J satisfies (H).

• Example V, reverse isoperimetry

$$\min\{J(\Omega) := -P(\Omega) + \mu|\Omega| ; \ \Omega \text{ convex in } \mathbb{R}^N\}.$$

# Results

where

$$\min \left\{ J(\Omega) := -P(\Omega) + F(\Omega), \ \Omega \ convex \right\}$$
$$F(K) = f(|K|, \lambda_1(K)).$$

# Theorem (L.-Novruzi-Pierre 2011-2015)

J satisfies (H).

• Example V, reverse isoperimetry

$$\min\{J(\Omega) := -P(\Omega) + \mu|\Omega| ; \ \Omega \text{ convex in } \mathbb{R}^N\}.$$

• Example V bis

$$\min\{J(\Omega) := -P(\Omega) + \mu\lambda_1(\Omega) ; \ \Omega \text{ convex in } \mathbb{R}^N, \ |\Omega| = V_0\}.$$

# Results

where

$$\min \left\{ J(\Omega) := -P(\Omega) + F(\Omega), \ \Omega \ convex \right\}$$
$$F(K) = f(|K|, \lambda_1(K)).$$

# Theorem (L.-Novruzi-Pierre 2011-2015)

J satisfies (H).

Example V, reverse isoperimetry

$$\min\{J(\Omega) := -P(\Omega) + \mu|\Omega| ; \ \Omega \text{ convex in } \mathbb{R}^N\}.$$

• Example V bis

$$\min\{J(\Omega) := -P(\Omega) + \mu\lambda_1(\Omega) ; \ \Omega \text{ convex in } \mathbb{R}^N, \ |\Omega| = V_0\}.$$

• Example VI (Enea's problem)?

2

#### Convexity constraint

- Old, new, open problems
- Case of concave functionals
- Applications

- Previous results (2-dim)
- New results (N-dim)

#### Convexity constraint

- Old, new, open problems
- Case of concave functionals
- Applications

- Previous results (2-dim)
- New results (N-dim)

# 2-dim result

The perimeter, the volume

$$p(u)=P(\Omega_u)=\int_{\mathbb{S}^1}rac{\sqrt{u^2+u'^2}}{u^2}d heta, \quad a(u)=|\Omega_u|=rac{1}{2}\int_{\mathbb{S}^1}rac{1}{u^2}d heta$$

# 2-dim result

The perimeter, the volume

$$p(u)=P(\Omega_u)=\int_{\mathbb{S}^1}rac{\sqrt{u^2+u'^2}}{u^2}d heta, \quad a(u)=|\Omega_u|=rac{1}{2}\int_{\mathbb{S}^1}rac{1}{u^2}d heta$$

For any  $u_0$  such that  $a \leq 1/u_0 \leq b$ ,

• 
$$p''(u_0)(v,v) \ge \alpha |v|_{H^1}^2 - \beta ||v||_{L^2}^2$$

• 
$$|a''(u_0)(v,v)| \leq \beta ||v||_{L^2}^2$$

#### 2-dim result PDE functional

$$\ell(u) := \lambda_1(\Omega_u)$$

# Theorem (L., Novruzi, Pierre, 2011) Let $\Omega_u$ be convex in $\mathbb{R}^2$ . Then for any $\varepsilon > 0$ , there exist $\beta$ such that $|\ell''(u)(v,v)| \leq \beta ||v||^2_{H^{\frac{1}{2}+\varepsilon}}.$

Applications :

• Example V bis in  $\mathbb{R}^2$ .

#### Convexity constraint

- Old, new, open problems
- Case of concave functionals
- Applications

Shape derivatives
 Previous results (2-dim)

• New results (N-dim)

## N-dim result

The perimeter, the volume

$$p(u) = \int_{\mathbb{S}^{N-1}} \frac{\sqrt{u^2 + |\nabla_{\tau} u|^2}}{u^N} d\theta, \quad m(u) = \frac{1}{N} \int_{\mathbb{S}^{N-1}} \frac{1}{u^N} d\theta,$$

# N-dim result

The perimeter, the volume

$$p(u) = \int_{\mathbb{S}^{N-1}} \frac{\sqrt{u^2 + |\nabla_{\tau} u|^2}}{u^N} d\theta, \quad m(u) = \frac{1}{N} \int_{\mathbb{S}^{N-1}} \frac{1}{u^N} d\theta,$$

For any  $u_0$  such that  $a \leq 1/u_0 \leq b$ ,

• 
$$p''(u_0)(v,v) \ge \alpha |v|_{H^1}^2 - \beta ||v||_{L^2}^2$$

•  $|a''(u_0)(v,v)| \leq \beta ||v||_{L^2}^2$ 

#### N-dim result PDE functional, convex domains

 $\ell(u) := \lambda_1(\Omega_u)$ 

(for example)

Theorem (L., Novruzi, Pierre, 2015)

Let  $\Omega_u$  be semi-convex in  $\mathbb{R}^N$  (exterior ball condition). Then there exist  $\beta$  such that

$$|\ell''(u)(v,v)| \leq \beta ||v||_{H^{\frac{1}{2}}}^2.$$

# N-dim result

 $\ell(u) := \lambda_1(\Omega_u)$ 

(for example)

Theorem (L., Novruzi, Pierre, 2015)

Let  $\Omega_u$  be semi-convex in  $\mathbb{R}^N$  (exterior ball condition). Then there exist  $\beta$  such that

$$|\ell''(u)(v,v)| \leq \beta ||v||_{H^{\frac{1}{2}}}^2.$$

Main tools for the proof :

- New way to estimate shape derivative
- W<sup>1,p</sup> regularity theory for elliptic PDE in semi-convex domains (valid for any p ∈ (1,∞)).

#### N-dim result PDE functional, lipschitz domains

# Theorem (L., Novruzi, Pierre, 2015) Let $\Omega_u$ be Lipschitz in $\mathbb{R}^2$ . Then there exist $\beta$ and $\varepsilon > 0$ such that $|\ell''(u)(v,v)| \leq \beta ||v||^2_{\mu_{1-\varepsilon}}.$

#### N-dim result PDE functional, lipschitz domains

# Theorem (L., Novruzi, Pierre, 2015) Let $\Omega_u$ be Lipschitz in $\mathbb{R}^2$ . Then there exist $\beta$ and $\varepsilon > 0$ such that $|\ell''(u)(v,v)| \leq \beta ||v||^2_{H^{1-\varepsilon}}.$

• Allows to deal with Exterior PDE problems

#### N-dim result PDE functional, lipschitz domains

# Theorem (L., Novruzi, Pierre, 2015) Let $\Omega_u$ be Lipschitz in $\mathbb{R}^2$ . Then there exist $\beta$ and $\varepsilon > 0$ such that $|\ell''(u)(v,v)| \leq \beta ||v||^2_{H^{1-\varepsilon}}.$

- Allows to deal with Exterior PDE problems
- Estimate available in ℝ<sup>N</sup>, but too weak to handle Example III (Pólya-Szëgo)

### Perspectives - More open problems

#### • Reverse Faber-Krahn inequality

#### $\max\{\lambda_1(K) \mid K \text{ convex} \subset B(0, b), |K| = V_0\}$

# Perspectives - More open problems

• Reverse Faber-Krahn inequality

$$\max\{\lambda_1(K) \mid K \textit{ convex} \subset B(0,b), \ |K| = V_0\}$$

• Polyhedra in dimension  $\geq 3$ ?