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Abstract: We consider the question of giving an upper bound for the first nontrivial eigenvalue of the
Wentzell-Laplace operator of a domain Ω, involving only geometrical informations. We provide such
an upper bound, by generalizing Brock’s inequality concerning Steklov eigenvalues, and we conjecture
that balls maximize the Wentzell eigenvalue, in a suitable class of domains, which would improve our
bound. To support this conjecture, we prove that balls are critical domains for the Wentzell eigen-
value, in any dimension, and that they are local maximizers in dimension 2 and 3, using an order two
sensitivity analysis. We also provide some numerical evidence.
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1 Introduction

Background. Let d ≥ 2 and Ω be a bounded domain in Rd (i.e a bounded connected open set)
supposed to be sufficiently smooth (of class C3), and we denote ∆τ the Laplace-Beltrami operator on
∂Ω. Motivated by generalized impedance boundary conditions, we consider the eigenvalue problem
for Wentzell boundary conditions{

−∆u = 0 in Ω
−β∆τu+ ∂nu = λu on ∂Ω

(1)

where β is a given real number and ∂n denotes the outward unit normal derivative.
The coefficient β appears as a surface diffusion coefficient arising in a passage to the limit in the

thickness of the boundary layer for coated object (see [22, 1, 16]). A general derivation of Wentzell
boundary conditions can be found in [15]. The coefficient can be either positive or negative. We first
consider the case β ≥ 0 where the obtained boundary value problem is coercive.

This problem couples surface and volume effects through the Steklov eigenvalue problem in Ω with
the Laplace-Beltrami eigenvalue problem on ∂Ω. Let us recall some known facts about these two
problems. The Steklov eigenvalue problem consists in solving{

∆u = 0 in Ω
∂nu = λSu on ∂Ω

(2)

It has a discrete spectrum consisting in a sequence

λS0 (Ω) = 0 < λS1 (Ω) ≤ λS2 (Ω) . . .→ +∞

where the λS are called Steklov eigenvalues. Brock-Weinstock inequality states that λS1 is maximized
by the ball among all open sets of fixed volume |Ω|. It was first proved in the case d = 2 by Weinstock
and extended by Brock to any dimension in [6] (Weinstock inequality is slightly stronger but restricted
to simply-connected domains: he proved indeed that the disk maximizes λS1 among simply-connected
sets of given perimeter). A quantitative form of this inequality was recently obtained by Brasco, De
Philippis and Ruffini who proved in [5] that

λS1 (Ω) ≤ λS1 (B)

1− δd

(
|Ω∆B(x∂Ω)|

|Ω|

)2
 ,
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where δd is an explicit nonnegative constant depending only on d, x∂Ω is the center of mass of ∂Ω and
B(x∂Ω) is the ball centered in x∂Ω with volume |Ω|1. Let us emphasize that no additional topological
assumption is needed.

It is well-known that the spectrum of the Laplace-Beltrami operator on ∂Ω, that is numbers
λ such that the equation −∆τu = λu on ∂Ω has nontrivial solutions, is also discrete and satisfies:

λLB0 (∂Ω) = 0 < λLB1 (∂Ω) ≤ λLB2 (∂Ω) . . .→ +∞

Again, one can ask if λLB1 takes its maximal value on the euclidean sphere, among hypersurfaces of
fixed (d−1)-dimensional volume. Here, the answer is more complicated than for the Steklov problem.
It depends on both the topology of the surface and the dimension. In [19], Hersch gave a positive
answer if d = 3 for surfaces homomorphic to the euclidean sphere. In the cases d > 3 or without
topological restriction, the answer is negative (see [3, 10, 11], and Section 2.1 for the 2-dimensional
case)).

When β ≥ 0, the spectrum of the Laplacian with Wentzell conditions consists in an
increasing countable sequence of eigenvalues

λ0,β(Ω) = 0 < λ1,β(Ω) ≤ λ2,β(Ω) . . .→ +∞ (3)

with corresponding real orthonormal (in L2(∂Ω)) eigenfunctions u0, u1, u2, . . . As in the previous cases,
the first eigenvalue is zero with constants as corresponding eigenfunctions. As usual, we adopt the
convention that each eigenvalue is repeated according to its multiplicity. Hence, the first eigenvalue of
interest is λ1,β. A variational characterization of the eigenvalues is available: we introduce the Hilbert
space

H(Ω) = {u ∈ H1(Ω), Tr∂Ω(u) ∈ H1(∂Ω)},

where Tr∂Ω is the trace operator, and we define on H(Ω) the two bilinear forms

Aβ(u, v) =

∫
Ω
∇u.∇v dx+ β

∫
∂Ω
∇τu.∇τv dσ, B(u, v) =

∫
∂Ω
uv, (4)

where ∇τ is the tangential gradient. Since we assume β is nonnegative, the two bilinear forms are
positive and the variational characterization for the k-th eigenvalue is

λk,β(Ω) = min

{
Aβ(v, v)

B(v, v)
, v ∈ H(Ω),

∫
∂Ω
vui = 0, i = 0, . . . , k − 1

}
(5)

In particular, when k = 1, the minimum is taken over the functions orthogonal to the eigenfunctions
associated to λ0,β = 0, i.e constant functions. To describe this spectrum, one can notice that the
eigenvalue problem can be rewritten purely on ∂Ω as:

−β∆τu+ Du = λu

where D denotes the Dirichlet-to-Neumann map, that is a selfadjoint, positive pseudodifferential op-
erator of order one. Therefore, this problem can be seen as a compact perturbation of the usual
Laplace-Beltrami operator. This point of view was used in [4] and justify that high order eigenvalues
of the Laplace-Wentzell problem look like those of the Laplace-Beltrami operator.

1The results in [5] are stated with the Fraenkel asymmetry, meaning that the previous inequality is stated for the ball
B of volume |Ω| that minimizes |Ω∆B|, but from the proof (see [5, Section 5]) we can conclude that the ball B(x∂Ω) of
volume |Ω| and such that

∫
∂Ω

(x− x∂Ω)dσ = 0 is in fact valid as well.
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However, we are interested in this work, in studying low order eigenvalues and more precisely in
giving an upper bound for the second eigenvalue λ1,β involving only geometrical informations. Please
remark that we are not seeking for lower bound, because even with very strong geometrical assumption,
there is none. Indeed, a consequence of our results is that

inf {λ1,β(Ω), Ω convex , |Ω| = m} = 0 (6)

for any value of β ≥ 0 and m ≥ 0, see Remark 2.5. An important remark at this point is that
the bilinear form Aβ is not homogeneous with respect to dilatation of the domain. Therefore, the
volume of Ω plays a crucial role in λ1,β. As a surface term appears also in Aβ (corresponding to the
Laplace-Beltrami operator), the perimeter of Ω (i.e. the volume of ∂Ω) should also play a crucial role.

Notice that when β = 0 we retrieve the Steklov eigenvalues, and we recover the Laplace-Beltrami
eigenvalues by considering 1

βλ1,β and letting β go to +∞, see Section 2.1.
Note also that the close but distinct eigenvalue problem{

−∆u = λu in Ω
∆u+ α∂nu+ γu = 0 on ∂Ω

(7)

was considered by J.B. Kennedy in [21]. He transforms this problem into a Robin type problem to
prove a Faber-Krahn type inequality when the constants α, γ are non negative: the ball is the best
possible domain among those of given volume.

The results of the paper. We first apply the strategy of F. Brock for the Steklov eigenvalue
problem to the Wentzell eigenvalue problem and obtain a first upper bound of λ1,β(Ω) in terms of
purely geometric quantities (we actually provide a refined version, using [5]):

Theorem 1.1 Let Ω be a smooth set such that
∫
∂Ω x = 0. Let Λ[Ω] be the spectral radius of the

symmetric and positive semidefinite matrix P (Ω) = (pij)i,j=1,...,d defined as

pij =

∫
∂Ω

(δij − ninj), (8)

where n is the outward normal vector to ∂Ω. Then if β ≥ 0, one has:

S(Ω) :=
d∑
i=1

1

λi,β(Ω)
≥

∫
∂Ω |x|

2

|Ω|+ βΛ[Ω]
≥
dω
−1/d
d |Ω|

d+1
d

|Ω|+ βΛ[Ω]

1 + γd

(
|Ω∆B|
|B|

)2
. (9)

where

γd =
d+ 1

d

21/d − 1

4
, (10)

ωd = |B1| and B is the ball of volume |Ω| and centered at 0. Equality holds in (9) if Ω is a ball.

A consequence of Theorem 1.1 is the following upper bound for λ1,β(Ω).

Corollary 1.2 With the same notations as in Theorem 1.1, if β ≥ 0, it holds:

λ1,β(Ω)≤ d |Ω|+ βΛ[Ω]∫
∂Ω |x|2

≤
|Ω|+ βΛ[Ω]

ω
−1/d
d |Ω|

d+1
d

1 + γd

(
|Ω∆B|
|B|

)2
. (11)

where B and γd are as in Theorem 1.1. Equality holds in (11) if Ω is a ball.
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Note that the method used for the Wentzell eigenvalue problem also applies for the Laplace-
Beltrami case and provides an upper bound for λLB1 without any topological assumption on Ω.

Theorem 1.3 With the same notations as in Theorem 1.1, it holds

SLB(∂Ω) :=

d∑
i=1

1

λLBi (∂Ω)
≥

∫
∂Ω
|x|2

Λ[Ω]
≥
dω
−1/d
d |Ω|

d+1
d

Λ[Ω]

1 + γd

(
|Ω∆B|
|B|

)2
. (12)

and

λLB1 (∂Ω)≤ d Λ[Ω]∫
∂Ω
|x|2
≤

Λ[Ω]

ω
−1/d
d |Ω|

d+1
d

1 + γd

(
|Ω∆B|
|B|

)2
. (13)

Equality holds in (12) and (13) if Ω is a ball.

It is expected in this type of extremal eigenvalue problem that ball are maximizers. We are not
able to fully justify the natural following conjecture:

Conjecture: The ball maximizes the first non-trivial Wentzell-Laplace eigenvalue among smooth
open sets of given volume and which are homeomorphic to the ball.

The topological restriction is motivated by the limit case β → +∞ as we noticed before (see also
Section 2.1). In Section 2.2, we observe that the intermediate bound in (11) has both its numerator
and denominator that are minimized by the ball, under volume constraint, so there is a competition.
In Section 2.3 we observe that in fact, the ball does not minimize this bound in general (see Figure
2.3). Therefore, we can not deduce from this bound the maximality of balls (though it might work
for certain values of β and the volume constraint). About the upper bound (11), we show that it is
larger than λ1,β(B) for every β > 0 (with equality for the ball) and hence again does not imply that
balls are maximizing λ1,β. To check if balls are relevant candidates for maximizers in our case, we
then turn our attention to a shape sensitivity analysis of λ1,β.

Therefore, we first wonder if the ball is a critical shape in any dimension. With respect to shape
sensitivity, the main difficulty is to handle multiple eigenvalues which leads to a nonsmooth dependency
of λ1,β with respect to Ω. However, for a fixed deformation field V ∈W 3,∞(Ω,Rd), along the transport
of Ω by Tt = I + tV , we prove the existence of smooth branches of eigenvalues and eigenfunctions
associated to the subspace generated by the group of eigenvalues and provide a characterization of the
derivative along the branches: λ1,β is then the minimum value among these d smooth branches.

Theorem 1.4 We distinguish the case of simple and multiple eigenvalue.

• If λ= λk,β(Ω) is a simple eigenvalue of the Wentzell problem, then the application t 7→ λ(t)= λk,β(Ωt)
(where Ωt = (I + tV )(Ω)) is differentiable and the derivative at t = 0 is

λ′(0) =

∫
∂Ω
Vn

(
|∇τu|2 − |∂nu|2 − λH|u0|2 + β(H Id − 2D2b)∇τu.∇τu

)
dσ.

where u is the normalized eigenfunction associated to λ, D2b is the Hessian of the signed distance
function (see (48)), H = Tr(D2b) is the mean curvature of ∂Ω, Id is the identity matrix of size
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d, and Vn = V ·n∂Ω is the normal component of the deformation. Moreover, the shape derivative
u′ at t = 0 of the eigenfunction satisfies

∆u′ = 0 in Ω,

−β∆τu
′ + ∂nu

′ − λu′ = β∆τ (Vn∂nu) + βdivτ
(
Vn(HId − 2D2b)∇τu

)
+divτ (Vn∇τu)− λ′u+ λVn(∂nu+Hu) on ∂Ω.

(14)

• Let λ be a multiple eigenvalue of order m ≥ 2. Let (uk)k=1,...,m denote the eigenfunctions
associated to λ. Then there exist m functions t 7→ λk,β(t), k = 1, . . . ,m defined in a neighborhood
of 0 such that

– λk,β(0) = λ,

– for every t in a neighborhood of 0, λk,β(t) is an eigenvalue of Ωt = (I + tV )(Ω),

– the functions t 7→ λk,β(t), k = 1, . . . ,m admit derivatives and their values at 0 are the
eigenvalues of the m×m matrix M= MΩ(Vn) of entries (Mij) defined by

Mij =

∫
∂Ω
Vn

(
∇τui.∇τuj − ∂nui∂nuj − λHuiuj + β

(
HId − 2D2b

)
∇τui.∇τuj

)
dσ.

Notice that in the notations above and contrary to (3), the functions λk(t) are no longer ordered.
As a byproduct of this result, notice that we can write the corresponding shape derivatives for the
Steklov and Laplace-Beltrami eigenvalue problem (see Appendix E). Another consequence of this
result, regarding our conjecture, is that we are able to check that balls are critical shapes for λ1,β by
computing the trace of the previously defined matrix M = MB (recall that λ1,β(B) is an eigenvalue of
multiplicity d the dimension). But first, we make a short remark about the notion of volume preserving
deformation:

Remark 1.5 In the next results and in many places in the paper, we will consider volume preserving
smooth deformations of domains, that is to say Ωt = Tt(Ω) where t 7→ Tt satisfies:

• T0 = Id,

• for every t near 0, Tt is a W 3,∞-diffeomorphism from Ω onto its image Ωt = Tt(Ω),

• the application t 7→ Tt is real-analytic near t = 0.

• for every t near 0, |Ωt| = |Ω|.

More generally, it can be sufficient to assume that the volume is preserved at the first or the second
order, depending on whether we are interested in first or second order conditions. For example, if one
considers Tt = I + tV the vector field V is said to be volume preserving at first order if it satisfies∫
∂Ω Vndσ = 0 ; indeed for Ωt = (I + tV )(Ω), we have d

dt |t=0
|Ωt| =

∫
∂Ω Vndσ.

When dealing with second order considerations as in Theorem 1.7, we need that the volume is
preserved at the second order, so Tt is volume preserving at second order if

d2

dt2
|Ωt||t=0 =

∫
∂Ω

(
W + Vn∂nVn +HV 2

n

)
dσ = 0,

where V = 1
t (Tt − I), Vn is the value at t = 0 of V · n∂Ωt, and W denotes the derivative of V · n∂Ωt

with respect to t at t = 0.
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Proposition 1.6 Any ball B is a critical shape for λ1,β with volume constraint, in the sense that for
every volume preserving deformations V ,

Tr(MB(Vn)) =
d∑

k=1

λ′k,β(0) =0,

where (t 7→ λk,β(t))k=1...d are defined in Theorem 1.4.
In particular, 0 ∈ ∂λ1,β(B;Vn):= [infi=1···d λ

′
i,β(0), supi=1···d λ

′
i,β(0)] the directional subdifferential as-

sociated to the first non trivial eigenvalue.
Moreover, this subdifferential reduces to {0} if Vn is orthogonal to spherical harmonics of order

two: in other words, in that case, the directional derivative exists in the usual sense and vanishes.

Two situations can now occur: either the subdifferential in direction Vn is not reduced to {0} and
then one can deduce from the previous statement that B locally maximizes λ1,β along t 7→ Bt (see for
example (c) and (d) in Figure 5), or the subdifferential in direction Vn is {0} and then this first order
shape calculus does not allow us to conclude that the ball is a local maximizer of λ1,β. Hence, for the
directions Vn in H defined as the Hilbert space generated by spherical harmonics of order
greater or equal to three, we now consider the second order analysis to wonder if the ball satisfies
the second order necessary condition of optimality, and obtain the following result in dimension two
and three.

Theorem 1.7 Let B be a ball of radius R in R2 or R3 and t 7→ Bt = Tt(B) a second order volume
preserving deformation. λ1,β(B) is an eigenvalue of multiplicity d the dimension, and we denote
t 7→ λk,β(t), k = 1, . . . , d the branches obtained in Theorem 1.4.

Then the functions t 7→ λk,β(t), k = 1, . . . , d admit a second derivative and their values at 0 are the
eigenvalues of the d×d matrix E = EB(Vn) defined in Section 4. Moreover, there exists a nonnegative
number µ(= µ(β)) independent of the radius R such that

Tr(EB(Vn))=
d∑

k=1

λ′′k,β(0) ≤ −µK(R)

∫
∂B

(
|∇τVn|2 + |Vn|2

)
dσ = −µK(R)‖Vn‖2H1(∂B).

holds for or all Vn ∈ H, with K(R) = d
R2+dωd−1

.

As a consequence of Proposition 1.6 and Theorem 1.7, we have the result:

Corollary 1.8 If B is a ball in R2 or R3, and t 7→ Tt ∈W 3,∞(B,Rd) a smooth (second order)volume
preserving deformation, then

λ1,β(B) ≥ λ1,β(Tt(B)), for t small enough.

Plan of the paper. The paper is organized as follows: in section 2, we prove Theorem 1.1 by
adapting the strategy of Brock and present some numerical tests to illustrate the sharpness of the
upper bound. The first order shape analysis is presented in section 3, while the second order shape
analysis is presented in section 4. The background material for shape calculus and the proofs of
technical intermediary results are postponed to the annexes.
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2 Upper bound for λ1,β

2.1 Preliminary remarks and results.

Let us start by a few remarks on the proofs in the two limit cases β → +∞ (that is the Laplace-
Beltrami eigenvalue problem), and β = 0 (that is the Steklov eigenvalue problem).

On the Laplace-Beltrami case:

The case d = 2 is trivial: it suffices to argue on each connected component of ∂Ω. We introduce γ : [0, L]
a parametrization by the arclength of a connected component Γ of ∂Ω, then for any u ∈ H1(∂Ω), the
Rayleigh quotient can be written as ∫

Γ
|∇τu|2∫
Γ
u2

=

∫ L

0
[(u ◦ γ)′]2∫ L

0
(u ◦ γ)2

.

Hence, the λLB1 (Γ) is nothing but the infimum of ‖u′‖2L2(0,L) among periodic functions u with 0 mean

value and ‖u‖L2(0,L) = 1, that is to say 4π2/L2. It is a decreasing function of the length of the
connected component of the boundary. Then, if Ω is simply connected, combined with the isoperimetric
inequality, the previous computations leads to λLB1 (∂Ω) ≤ λLB1 (∂B) where B is a disk of same area
than Ω.

Moreover, if ∂Ω has more than one connected component, then λLB1 = 0 since the multiplicity
of 0 as eigenvalue is at least the number of connected component. To check that claim, it suffices
to check that the functions taking the value 1 on one of the connected component and 0 elsewhere
are independent eigenfunctions associated to the eigenvalue 0. We conclude that in dimension 2,
λLB1 (∂Ω) ≤ λLB1 (∂B), where B is a disk of same area than Ω.

The case d = 3 is more complex. There is a classical result of J. Hersch [19]: if Ω ⊂ R3 is
homeomorphic to the ball, then

λLB1 (∂Ω) ≤ λLB1 (∂B), for all Ω such that |∂Ω| = |∂B|. (15)

We first extend Hersch statement to domains of same volume by a classic homogenity argument.

Lemma 2.1 If Ω ⊂ R3 is homeomorphic to the ball, then

λLB1 (∂Ω) ≤ λLB1 (∂B) if |Ω| = |B|.

Proof of Lemma 2.1.:
One easily checks that Ω 7→ λLB1 (∂Ω) is homogeneous of degree −2, so Ω 7→ λLB1 (Ω)|∂Ω|2/(d−1) is
homogeneous of degree 0. Then we get from Hersch’s inequality (15), that

λLB1 (∂Ω)|∂Ω|
2
d−1 ≤ λLB1 (∂B)|∂B|

2
d−1 , for all Ω such that |∂Ω| = |∂B|. (16)

Thanks to the invariance by translation of λLB1 and the perimeter, and using the 0-homogeneity of the
previous product, we get that the previous inequality is in fact valid for any ball B and any domain
Ω. We combine with the isoperimetric inequality

|∂B|
d
d−1

|B|
≤
|∂Ω|

d
d−1

|Ω|
to conclude.
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On the Steklov case:

In the general case β ≥ 0, we will adapt the original Brock’s proof; the main tool is an isoperimetric
inequality for the moment of inertia of the boundary ∂Ω with respect to the origin. The general form
of the weighted isoperimetric inequality due to F. Betta, F. Brock, A. Mercaldo and M.R. Posteraro
[2] is:

Lemma 2.2 Let Ω ⊂ Rd be an open set and let f be a continuous, nonnegative and nondecreasing
function defined on [0,∞]. Moreover, we suppose that

t 7→
(
f(t

1
d )− f(0)

)
t1−

1
d is convex for t ≥ 0

Then ∫
∂Ω
f(|x|)dσ ≥ f(R) |∂BR|, (17)

where BR is the ball centered at the origin such that |BR| = |Ω|.

Let us remark that the function t 7→ tp satisfies the assumptions of the lemma as soon as p ≥ 1 and in
particular for p = 2. In that case and in order to prove a refinement of Brock’s inequality, L. Brasco,
G. De Philippis and B. Ruffini established a qualitative refinement of this inequality (Theorem B of
[5]):

Lemma 2.3 There exists an explicit dimensional constant γd such that for every bounded, open Lip-
schitz set Ω in Rd, ∫

∂Ω
|x|2dσ ≥ R2 |∂BR|

1 + γd

(
|Ω∆BR|
|BR|

)2
 , (18)

where BR is the ball centered at the origin such that |BR| = |Ω| and γd is the constant defined in (10).

On the Wentzell case:

An important remark for the sequel is the particular case when Ω is a ball BR of radius R. The
eigenspace corresponding to λ1,β is d-dimensional: it consists to the restrictions on the sphere Sd−1

R

of the linear functions in Rd spanned by the coordinates functions. It follows, from the theory of
spherical harmonic functions that

λ1,β(BR) = λ2,β(BR) = . . . = λd,βBR) =
(d− 1)β +R

R2
. (19)

The Laplace-Beltrami operator on ∂BR and the Steklov operator also are diagonal on the basis of
spherical harmonics, hence

λ1,β(BR) = λS1 (BR) + βλLB1 (∂BR),

and more generally the eigenvalue associated to spherical harmonics of order l is

λ(l)(BR) =
l(l + d− 2)β +R

R2
. (20)

But, this situation is specific to the ball: indeed, in general we only have the inequality

λ1,β(Ω) ≥ λS1 (Ω) + βλLB1 (Ω).
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Moreover, we can easily prove that for any smooth Ω, lim
β→∞

1

β
λ1,β(Ω) = λLB1 (Ω): indeed, we have a

first trivial inequality 1
βλ1,β(Ω) ≥ λLB1 (Ω) for any β ≥ 0, and using the variational formulation (5),

we obtain ∀v ∈ H(Ω) with the additional condition
∫
∂Ω v = 0,

lim
β→∞

1

β
λ1,β(Ω) ≤ lim

β→∞

1
β

∫
Ω
|∇v|2 +

∫
∂Ω
|∇τv|2∫

∂Ω
v2

=

∫
∂Ω
|∇τv|2∫
∂Ω
v2

which leads to the result.
For example if d = 3, combining Brock’s inequality and Lemma 2.1, we obtain that the right-

hand side in the previous inequality is maximized by the ball, among domains of given volume and
homeomorphic to the ball. Unfortunately, this is not enough to obtain that balls are maximizing the
Wentzell eigenvalue.

So in order to obtain an estimate of λ1,β, we look into the strategies used for the extremal problems,
which are the Steklov (β = 0) and the Laplace-Beltrami (β → +∞) cases. The strategies of Brock
and Hersch for those cases are actually close but distinct: they use the coordinate functions as test
functions in the Rayleigh quotient characterization of eigenvalues. In the case of the Laplace-Beltrami
operator though, J. Hersch had an additional step: he first transports the surface ∂Ω on the sphere
by a conformal mapping, and use the conformal invariance of the Dirichlet energy for 2-dimensional
surfaces. In the following, we choose to follow the ideas of Brock. This allows to obtain an estimate
with no assumption on the topology or the dimension of the domain. Indeed, the above mentioned
phenomenon of decoupling between the different connected components does not appear in the Steklov
case, due to the volume term, and in fact Brock’s result is valid for every (smooth enough) domain.
The same volume term appears in the Wentzell case and the approach of Brock is then the natural
one. However, one expects from these topological considerations that it will not provide an optimal
result.

2.2 Proof of Theorem 1.1

Our strategy to prove Theorem 1.1 is to use the following characterization for the inverse trace of
eigenvalues (stated by J. Hersch in [18] and proved by G. Hile and Z. Xu in [20])

d∑
i=1

1

λi,β
= max

v1,··· ,vd

d∑
i=1

B(vi, vi)

Aβ(vi, vi)
, (21)

where the functions (vi)i=1,...,d are non zero functions that are B-orthogonal to the constants and
pairwise Aβ-orthogonal.

Before proving Theorem 1.1, we now present some preliminary results.

Lemma 2.4 The matrix P [Ω]defined by (8) is symmetric, positive definite. Its spectral radius Λ[Ω]
satisfies

(d− 1)|∂Ω| ≥ Λ[Ω] ≥
d− 1

d
|∂Ω|. (22)

In particular, among sets of given volume, the spectral radius is minimal for the ball.
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Proof: The matrix P (Ω) is symmetric by definition. For y = (y1, · · · , yd) ∈ Rd with y 6= 0, we
check that

d∑
i,j=1

yi(δij − ninj)yj = yTy − (yTn)2 ≥ 0

by Cauchy-Schwarz inequality. By integration over ∂Ω, P [Ω] is positive semidefinite. Assume, by
contradiction, that P is not definite: then there is a vector y 6= 0 such that

0 =
d∑

i,j=1

yi

(∫
∂Ω

(δij − ninj)

)
yj =

∫
∂Ω

(
yTy − (yTn)2

)
.

The equality case of Cauchy-Schwarz inequality yTy − (yTn)2 = 0 is therefore satisfied everywhere
on ∂Ω, this holds if and only if y and n are colinear. Hence, n is constant on ∂Ω which contradicts
the boundedness of Ω.

The matrix P [Ω] has positive eigenvalues. Their sum is the trace Tr(P [Ω]), hence

Tr(P [Ω]) ≥ Λ[Ω] ≥
Tr(P [Ω])

d
with Tr(P [Ω]) =

d∑
i=1

∫
∂Ω

(1− n2
i ) = (d− 1)|∂Ω|.

Therefore

(d− 1)|∂Ω| ≥ Λ[Ω] ≥
(d− 1)

d
|∂Ω| ≥

(d− 1)

d
|∂B|.

The last inequality is obtained by the usual isoperimetric inequality and assuming B is a ball such
that |Ω| = |B|. Let us compute Λ[B]. From the invariance by rotation of the ball, there exists a real
number a such that P [B] = aId. In others words, we have∫

∂B
ninj = 0, i 6= j and

∫
∂B

(1− n2
i ) =

∫
∂B

(1− n2
1), i = 1, . . . , d.

The real number a is determined using the trace of the matrix: we obtain that d Λ[B] = (d− 1)|∂B|,
and so Λ(Ω) ≥ Λ(B).

Remark 2.5 The inequalities in (22) are sharp. The lower bound is reached when Ω is a ball and the
upper bound is the limit of the collapsing stadium Sε (union of a rectangle and two half-disks) of unit
area and width ε when ε tends to 0: one checks by an explicit elementary calculus that:

|∂Sε| =
2

ε
+
πε

2
while Λ[Sε] =

2

ε
.

This example is also useful to prove (6): indeed, we easily prove∫
∂Sε

|x|2 ≥ α

ε3
,

where α is a universal constant, so using (11), we obtain (6) for d = 2 and m = 1. The other cases
can be handled similarly.
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Proof of Theorem 1.1:
We first translate and rotate coordinates xi, i = 1, 2, . . . d such that

∀i 6= j ∈ J1, dK2,

∫
∂Ω
xi = 0 and

∫
∂Ω
xixj = 0.

We now construct a family which is pairwise Aβ-orthogonal, and B-orthogonal to R. We consider
a collection of a family of functions w1, w2, . . . , wd in the vector space spanned by the coordinates
functions: there is a matrix C such that

wi =

d∑
j=1

cijxj , i ∈ J1, dK.

Brock used directly the coordinate functions to deal with A0. Here, we need an Aβ-orthogonal family,
hence the matrix C will be chosen to that end. Since the coordinates functions are L2 orthogonal to
the constants, each wi is L2-orthogonal to the constants (that is to say the eigenfunctions associated
to the smallest eigenvalue λ0 = 0).

Let us compute Aβ(wi, wj). First, we get ∇wi = (ci1, ci2, . . . , cid)
T then

∫
Ω
∇wi · ∇wj =

∫
Ω

d∑
k,m=1

cikcjm = |Ω| (CCT )ij .

To compute the second term of the sum occurring in Aβ, we recall that

∇τwi · ∇τwj = ∇wi · ∇wj − (∇wi · n)(∇wj · nj).

We therefore get∫
∂Ω
∇τwi · ∇τwi =

∫
∂Ω

[
d∑

k=1

cik cjk −

(
d∑

k=1

ciknk

)(
d∑

k=1

cjknk

)]

=

∫
∂Ω

 d∑
k=1

cik cjk −
d∑

k,l=1

cikcjlnknl

 .
We introduce P [Ω] the matrix defined in (8) to get∫

∂Ω
∇τwi · ∇τwj =

∑
k,m

cik pkm cjm = (CP [Ω]CT )ij .

Gathering all the terms, it comes that

Aβ(wi, wj) = |Ω| (CCT )ij + β(CP [Ω]CT )ij (23)

Since P [Ω] is a real symmetric matrix, we can choose an orthogonal matrix C such that CP [Ω]CT is
diagonal. Hence, CCT = I and finally wi and wj are Aβ-orthogonal if i 6= j while

Aβ(wi, wi) = |Ω| + β(CP [Ω]CT )ii ≤ |Ω| + βΛ[Ω]. (24)

and we can apply Hile and Xu’s inequality (see [20]).
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Since by assumption ∫
∂Ω
xixj = 0

when i 6= j, it comes that

B(wi, wi) =
d∑

k=1

c2
ik

∫
∂Ω
x2
k

and then

S(Ω) =

d∑
i=1

1

λi,β(Ω)
≥

d∑
i=1

d∑
k=1

c2
ik

∫
∂Ω
x2
k

|Ω|+ βΛ[Ω]
=

d∑
k=1

(∫
∂Ω
x2
k

) d∑
i=1

c2
ik

|Ω|+ βΛ[Ω]
=

∫
∂Ω
|x|2

|Ω|+ βΛ[Ω]
,

which is the first part of the result. Then using first the isoperimetric weighted inequality (17) for
p = 2, we get ∫

∂Ω
|x|2 ≥ R2|∂BR|,

and so ∫
∂Ω
|x|2

|Ω|+ βΛ[Ω]
≥

R2|∂BR|
|Ω|+ βΛ[Ω]

=
R2

|BR|
|∂BR|

+
βΛ[Ω]

|∂BR|

.

If Ω = BR, we know that d|BR| = R|∂BR| and then

R2

|BR|
|∂BR|

+
βΛ[BR]

|∂BR|

=
R2

R

d
+ β

d− 1

d

=
d

λ1,β(BR)
,

and prove the equality case. By the quantitative version of the isoperimetric inequality for the moment
of inertia of ∂Ω with respect to the origin (18), we also get the precise version:∫

∂Ω
|x|2

|Ω|+ βΛ[Ω]
≥

R2|∂BR|
|Ω|+ βΛ[Ω]

1 + γd

(
|Ω∆BR|
|BR|

)2
.

Using the definition of R and |Ω| = |BR|, we obtain R2|∂BR| = dω
−1/d
d |Ω|

d+1
d and the desired inequal-

ity.

Proof of Corollary 1.2:
Since λ1,β(Ω) ≤ λi,β(Ω) for i = 1, . . . , d, we get

λ1,β(Ω) ≤
d

S(Ω)
≤ d
|Ω|+ βΛ[Ω]∫

∂Ω
|x|2

≤
d

1 + γd

(
|Ω∆BR|
|BR|

)2

|Ω|+ βΛ[Ω]

dω
−1/d
d |Ω|

d+1
d

.

Proof of Theorem 1.3:
It is a direct adaptation of the previous proof to the Laplace-Beltrami case: it suffices to replace the bi-
linear form Aβ(u, v) by A(u, v) =

∫
Ω∇u.∇v. Then Equation (24) becomes A(wi, wi) = (CP [Ω]CT )ii ≤

Λ[Ω] and the conclusion follows.
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2.3 On the sharpness of the upper bounds.

Testing the sharpness. Let us denote M1(Ω) the upper bound (11). In order to emphasize the
improvement to the inequality of Brasco, De Philippis and Ruffini, we also plot the rougher upper
bound

M3(Ω) =
|Ω|+ βΛ[Ω]

ω
−1/d
d |Ω|

d+1
d

= d
|Ω|+ βΛ[Ω]

R2|∂BR|
.

It is clear from the bound of Λ[Ω] stated in (22) that

λ1,β(BR) = M1(BR) ≤M2(Ω) =
d(

1 + γd
|Ω∆BR|
|BR|

)2

|Ω|+ βΛ[Ω]

R2|∂BR|
.

We also plot the shaper bound

M1(Ω) = d
|Ω|+ βΛ[Ω]∫

∂Ω
|x|2

.

This inequality means that proving that balls are maximizers would be strictly better than (11). Let
us illustrate this fact with some numerical illustrations. We compute λ1,β(Ω) and Mi(Ω) (i = 1, 2)
for several parametrized families of plane domains when β = 1. In Figure 1(a), we present the case
of ellipses of area π (their semiaxis are et and e−t, t is in abscissa) while in Figure 1(b) and 1(c) we
present the case of the star-shaped domains Ωt defined in polar coordinate by r(θ) = a(t)(2 + cos(kθ))
where a(t) is a constant chosen such that |Ωt| = π.
From these graphs, it seems that the upper bounds Mi(Ω) lack of precision when Ω is far from a ball
and that the maximality of balls is possible and would improve the upper bound given in Corollary
1.2.

Some numerical tests. It is natural to wonder if the ball have the largest λ1,β among all the
domains of same volume that are homeomorphic to the ball. This question cannot be solved with
estimate (11), as Figure 1(a) shows. Therefore, to conclude this section, we would like to present
some numerical experiments in favor of such property.

Let us start by computing the value of λ1,β(Ω) when Ω is an ellipse of fixed volume. We present
here the results of our numerical computations for β ∈ {0.1, 1, 5, 10} when |Ω| = π. Then when the
volume of Ω is 4π. In both figures, the abscissa stands for the eccentricity of the ellipse. It seems that
the ball maximizes λ1,β among ellipses of fixed area.

Let us show some computations in dimension three. We consider families of ellipsoids with semi-
axes defined by (exp(αit))i=1,2,3 where α1 + α2 + α3 = 0 to insure the volume constraint. The ball
B corresponds to t = 0. We remind that in this case, λ1,β(B) has multiplicity 3 at the sphere, we
then have plotted the three corresponding eigenvalues in two cases: first for the family such that
α = (2,−0.8,−1.2) in Figure 3(a), then for α = (2,−1,−1) in Figure 3(b). In the last case, the
defined ellipsoids are of revolution and we observe that in this particular case λ3,β ≈ λ4,β. One can
wonder if it is really the case.

Let E(a, b) be an ellipsoid of volume 4π/3 where a is the larger semiaxis and b the middle one. We
now show in Figure 4 the surfaces z = λi,β(E(a, b)) where i = 1, 2, 3. The pictures have been obtained
by interpolation after the computations of the eigenvalues on 2700 ellipsoids. Again one can attest
that the ball seems to maximize λ1,β among ellipsoids.
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(b) 5 branches star-shaped domains

0 0.02 0.04 0.06 0.08 0.1 0.12
1.75

1.8

1.85

1.9

1.95

2

2.05

2.1

2.15

 

 

λ
1

M
1

M
2

M
3

(c) 11 branches star-shaped domains
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Figure 1: Comparison of λ1,β(Ω) and Mi(Ω). Here λ1,β(B1) = 2.
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Figure 2: λ1,β(Ω) when Ω is an ellipse of volume |Ω|

3 First order shape calculus

In order to go one step further, we adopt a shape optimization point of view and prove in this
section that the ball is a critical point. The main difficulty here is that the eigenvalue λ1,β(B) has
multiplicity the dimension of the ambient space. We need some technical material on shape derivative
and tangential calculus on manifold to justify the results stated in this section; to simplify the reading
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Figure 3: (λ1,β(Ωt), λ2,β(Ωt), λ3,β(Ωt)) when Ωt is a parametrized ellipsoid of volume 4π/3

(a) λ1,β(E(a, b)) (b) λ2,β(E(a, b)) (c) λ3,β(E(a, b))

Figure 4: (λ1,β(Ω), λ2,β(Ω), λ3,β(Ω)) when Ω = E(a, b) is an ellipsoid of volume 4π/3

of this work, we postpone these reminders in Appendix A.
Let us emphasize that from this point we do not make the assumption β ≥ 0, and therefore all

the results of this section and the following are valid for any β ∈ R. Thus from now on we drop the
notation β in λ1,β since there is no possible confusion anymore.

3.1 Notations and preliminary result for shape deformation

We adopt the formalism of Hadamard’s shape calculus and consider the map t 7→ Tt = I + tV where
V ∈W 3,∞(Ω,Rd) and t is small enough. We denote by

Ωt = Tt(Ω) = {x+ tV (x), x ∈ Ω}.

Remark 3.1 More generally the results and computations from this section are valid if t 7→ Tt satis-
fies:

• T0 = Id,

• for every t near 0, Tt is a W 3,∞-diffeomorphism from Ω onto its image Ωt = Tt(Ω).

• The application t 7→ Tt is real-analytic near t = 0.
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We need to introduce the surface jacobian ωt defined as

ωt(x) = det(DTt(x)) ‖ (DTt(x)T )−1n(x) ‖,

and the functions

At(x) = (DTt(x))−1(DTt(x)T )−1, Ãt(x) = det(DTt(x))At(x), Ct(x) = ωt(x)At(x).

We have to study the transport of the considered eigenvalue problem on the deformed domain Ωt. To
that end, we first rewrite the deformed equation on the fixed domain Ω and its boundary ∂Ω: we have
to describe how are transported the Laplace-Beltrami and the Dirichlet-to-Neumann operators.

Transport of the Dirichlet-to-Neumann map. Let us consider the Dirichlet-to-Neumann oper-
ator defined on its natural space Dt : H1/2(∂Ωt) → H−1/2(∂Ωt). It maps a function φt in H1/2(∂Ωt)
onto the normal derivative of its harmonic expansion in Ωt, that is to say Dt(φt) = ∂ntut, where ut

solves the boundary values problem:{
−∆ut = 0 in Ωt,

ut = φt on ∂Ωt.
(25)

To compute the quantity Dt such that Dt(φt ◦Tt) = [Dt(φt)]◦Tt , we transport the boundary value
problem (25) back on the domain Ω. In others words, Dt makes the following diagram commutative:

H1/2(∂Ωt) H1/2(∂Ω)

H−1/2(∂Ωt) H−1/2(∂Ω)

Dt

Tt

Tt

Dt

To be more precise, we have the following result proved in [12].

Lemma 3.2 Given ψ ∈ H1/2(∂Ω), we denote vt the solution of the boundary value problem{
−div (Ãt∇vt) = 0 in Ω,

vt = ψ on ∂Ω.
(26)

and then define Dtψ ∈ H−1/2(∂Ω) as:

Dtψ : f ∈ H1/2(∂Ω) 7→
∫

Ω
Ãt(x)∇vt(x) · ∇E(f)(x)dx,

where E is a continuous extension operator from H1/2(∂Ω) to H1(Ω). Then the relation

(Dtϕ) ◦ Tt = Dt [ϕ ◦ Tt] (27)

holds for all functions ϕ ∈ H1/2(Ωt).
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Setting ut = ut ◦ Tt, we check from the variational formulation, that the function ut is the unique
solution of the transported boundary value problem:{

−div (Ãt∇ut) = 0 in Ω,
ut = φt ◦ Tt on ∂Ω.

(28)

Hence, setting y = Tt(x), x ∈ Ω we get formally

Dt(φt)(y) = ∇ut(y).nt(y) = (DTt(x)T )−1∇vt(x).
(DTt(x)T )−1n(x)

‖(DTt(x)T )−1n(x)‖
=

At(x)n(x).∇ut(x)

‖(DTt(x)T )−1n(x)‖
.

Here again, we can give a sense to the co-normal derivative Atn.∇ut thanks to the boundary value
problem (28): this quantity is defined in a weak sense as the previous Dirichlet-to-Neumann operator
Dt.

Transport of the Laplace-Beltrami operator. We recall now the expression of the transported
Laplace-Beltrami operator, relying on the relation

∀ϕ ∈ H2(∂Ωt), (∆τϕ) ◦ Tt =
1

ωt(x)
divτ (Ct(x)∇τ (ϕ ◦ Tt)(x)) on ∂Ω. (29)

Let us denote by Lt the operator defined as

Lt [ϕ ◦ Tt] (x) =

1

ωt(x)
divτ

{
Ct(x)∇ [ϕ ◦ Tt] (x)−

Ct(x)∇ [ϕ ◦ Tt] (x).n(x)

At(x)n(x).n(x)
At(x)n(x)

}
(30)

for ϕ ∈ H5/2(Ωt). In [12], we show the following lemma:

Lemma 3.3 The identity
[∆τϕ] ◦ Tt = Lt [ϕ ◦ Tt] (31)

holds for all functions ϕ belonging to H5/2(Ωt).

3.2 Regularity of the eigenfunctions and eigenvalues with respect to the param-
eter

The section is a slight variation of a theorem due to Ortega and Zuazua on the existence and regularity
of eigenvalues and associated eigenfunctions in the case of Stokes system [24]. The difficulty comes from
the possible multiple eigenvalues. The main result is, for a fixed deformation field V ∈W 3,∞(Ω,Rd),
the existence of smooth branches of eigenvalue. In other words, the eigenvalues are not regular when
sorted in the increasing order, but can be locally relabeled around the multiple point in order to
remain smooth. The restriction is that this labeling depends on the deformation field V hence one
cannot hope to prove Fréchet-differentiability.

Theorem 3.4 Let Ω be an open smooth bounded domain of Rd. Assume that λ is an eigenvalue
of multiplicity m of the Wentzell-Laplace operator. We suppose that Tt = I + tV for some V ∈
W 3,∞(Ω,R)d and denote Ωt = Tt(Ω). Then there exists m real-valued continuous functions t 7→
λi(t), i = 1, 2, . . . ,m and m functions t 7→ uti ∈ H

5
2 (Ω) such that the following properties hold
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1. λi(0) = λ, i = 1, . . . ,m,

2. the functions t 7→ λi(t) and t 7→ uti, i = 1, 2, . . . ,m are analytic in a neighborhood of t = 0.

3. The functions ui,t defined by ui,t ◦ Tt = uti are normalized eigenfunctions associated to λi(t) on
the moving domain Ωt. If one considers K compact subset such that K ⊂ Ωt for all t small
enough, then t 7→ ui,t|K is also an analytic function of t in a neighborhood of t = 0.

4. Let I ⊂ R be an interval such that I contains only the eigenvalue λ of the Wentzell problem of
multiplicity m. Then there exists a neighborhood of t = 0 such that λi(t) i = 1, . . . ,m are the
only eigenvalues of Ωt which belongs to I.

Proof: Let λ be an eigenvalue of multiplicity m and let u1, . . . , um the orthonormal eigenfunctions
associated to λ. Let (λ(t), ut) be an eigenpair satisfying

(Pt)

{
−∆ut = 0 in Ωt,

−β∆τut + ∂ntut = λ(t)ut on ∂Ωt.

Setting ut = ut◦Tt, Lemma 3.2 (transport of the Dirichlet-to-Neumann map) and 3.3 (transport of the
Laplace-Beltrami operator) show that the system (Pt) above is equivalent to the following equation
set on the boundary

(−βLt +Dt)ut = λ(t)ωtu
t on ∂Ω. (32)

Consider the operator S(t) defined on H3/2(∂Ω) by

v 7→ S(t)v = −βLtv +Dtv (33)

From their expressions computed for example in [17, Section 5-2] and the regularity assumption on Tt,
all the operators Ct, At and ωt are analytic in a neighborhood of t = 0 . Since det(DTt) > 0 for t small
enough, we deduce that all the expressions involved in Ct, Lt and Dt are analytic in a neighborhood
of t = 0. This enables us to conclude that S(t) is also analytic in a neighborhood of zero.
To show that the eigenvalues and the corresponding eigenfunctions are analytic in a neighborhood of
zero, we apply the Lyapunov-Schmidt reduction in order to treat a problem on a finite dimensional
space, namely the kernel of S(0)− λI. To that end, we rewrite the problem (Pt) on the fixed domain
∂Ω as

S(t)(ut)− λ(t)ωtu
t = 0.

From the decomposition

(S(0)− λ)(ut) =
[
(S(0)− S(t)) + [(λ(t)− λ)ωt + λ(ωt − 1)]

]
ut,

ut is solution of the equation

(S(0)− λ)(ut) = W (t, λ(t)− λ)ut, (34)

where we have set R(t) = S(0) − S(t) + λ(ωt − 1) and W (t, α) = R(t) + αωtI. From the Lyapunov-
Schmidt Theorem (see [24, Lemma 3-2, p. 999]), we obtain that S(0)−λ has a right inverse operator
denoted by K. Hence the equation above implies that ut = KW (t, λ(t) − λ)ut + ψt where ψt ∈
Ker (S(0) − λ), i.e ψt =

∑m
k=1 ck(t)φk where (φk) is a basis of Ker (S(0) − λ). Notice that I −
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KW (t, λ(t) − λ) is invertible on Ker(S(0) − λI), the inverse of his operator restricted to this kernel
will be denoted by (I −KW (t, λ(t)− λ))−1 so that

ut = (I −KW (t, λ(t)− λ))−1ψt.

From (34), W (t, λ(t) − λ)ut belongs to Im(S(0) − λ) = Ker⊥(S(0) − λ) since S(0) is a Fredholm
selfadjoint operator, and then

m∑
k=1

ck(t)〈W (t, λ(t)− λ)(I −KW (t, λ(t)− λ))−1φk, φi〉 = 0, i = 1, 2, . . . ,m, (35)

where 〈·, ·〉 denote the scalar product of L2(∂Ω). This shows that a vector of coefficients C =
(cj)j=1,...,m 6= 0 is a solution if and only if the determinant of the m × m matrix M(t, λ(t) − λ)
with entries

M(t, α)i,j = 〈W (t, α)(I −KW (t, α))−1φj , φi〉

satisfies
det (M(t, λ(t)− λ)) = 0.

Hence λ(t) is an eigenvalue of our problem if and only if det (M(t, λ(t)− λ)) = 0. Note that t 7→
M(t, λ(t)) is analytic around t = 0.

For small values of t the operator (I −KW (t, α))−1 is well defined since I −KW (0, 0) = I and
t 7→ (I −KW (t, α))−1 is analytic around t = 0. On the other hand, if detM(t, α) = 0 then (35) has
a nontrivial solution c1(t), . . . , cm(t) and this means that λ(t) = λ+ α is an eigenvalue of (Pt).

We focus now on detM(t, α) for α ∈ R. From the fact that W (0, α) = αI, it comes that for
sufficiently small values of α, the operator I −KW (0, α) is invertible on Ker(S(0)−λI) and from the
Von Neumann expansion we write

〈W (0, α)(I −KW (0, α))−1φi, φj〉 = α
[
δij +

∞∑
k=1

αk〈Kkφi, φj〉
]
;

hence

det (M(0, α)) = αm +

∞∑
i=1

βiα
m+i = αm(1 +

∞∑
i=1

βiα
i).

Since det (M(0, α)) 6= 0 is the restriction on t = 0 of det (M(t, α)), we deduce from the Weierstrass
preparation theorem that there is neighborhood of (0, 0) such that det (M(t, α)) is uniquely repre-
sentable as

det (M(t, α)) = Pm(t, α)h(t, α)

where

Pm(t, α) = αm +

m∑
k=1

ak(t)α
m−k

and where
h(t, α) 6= 0.

Furthermore, the coefficients ak(t), k = 1, . . . ,m are real and analytic in a neighborhood of t = 0.
Then det (M(t, α)) = 0 if and only if Pm(t, α) = 0. If αk(t), k = 1, . . . ,m are the real roots of the
polynomial, we take λ1(t) = λ+ α1(t) if α1(t) is not identically equal to zero.
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We now have to find the (m− 1) other branches λi(t) and the corresponding eigenfunction ui,t for
i = 2, . . . ,m. We use the idea of the deflation method by considering the operator

S2(t) = S(t)− λ1P1(t)

where P1 is the orthogonal projection on the subspace spanned by u1,t. At t = 0, we obtain

S2(0)uj = S(0)uj − λδ1juj

in other terms S2(0)uj = λuj , j = 2, . . . ,m while S2(0)u1 = 0. This shows that λ is an eigenvalue
of multiplicity m − 1 of S2(0) with eigenvalues u2, . . . , um. One can show that these functions are
the only linearly independent eigenfunctions associated to λ. Now we can apply the same recipe used
before to the operator S2 instead of S. We then get a branch λ2(t) such that t 7→ λ2(t) is analytic in
a neighborhood of t = 0. Iterating the process, we get at the end the m− branches λi(t), i = 1, . . . ,m
such that each branch is analytic in a neighborhood of t = 0 and m corresponding eigenfunctions
forming an orthonormal set of functions in H

3
2 (∂Ωt).

The proof of the last item follows the same lines than the proof of Ortega and Zuazua for the Stokes
system, see [24].

Theorem 3.5 With the notations of Theorem 3.4, if t 7→ (λ(t), ut) is one of the smooth eigenpair path
(λi(t), ui,t) of Ωt for the Wentzell problem, then the shape derivative u′ = (∂tut)|t=0 of the eigenfunction
satisfies

∆u′ = 0 in Ω,

−β∆τu
′ + ∂nu

′ − λu′ = β∆τ (Vn∂nu)− βdivτ
(
Vn(2D2b−HId)∇τu

)
+ divτ (Vn∇τu)− λ′(0)u+ λVn(∂nu+Hu) on ∂Ω. (36)

Proof: The fact that u′ is harmonic inside the domain is trivial. To derive the boundary condition
satisfied by u′, we use a test function φt defined on ∂Ωt with ∂nφt = 0 as used in the proof of Lemma
3.2 and 3.3 in [12]. We get the following weak formulation valid for all t small enough:∫

∂Ωt

β∇τu(t, x).∇τφt dσt +

∫
∂Ωt

∂ntu(t, x) φt dσt − λ(t)

∫
∂Ωt

u(t, x)φt dσt = 0.

We take the derivative with respect to t and get at t = 0:

β
d

dt

(∫
∂Ωt

∇τu(t, x).∇τφt dσt
)
t=0

+
d

dt

(∫
∂Ωt

∂ntu(t, x)φt dσt

)
t=0

=
d

dt

(
λ(t)

∫
∂Ωt

u(t, x) φt(x) dσt

)
t=0

.

From [14] and [7], we get

d

dt

(∫
∂Ωt

∇τu(t, x).∇τφt dσt
)
t=0

=

∫
∂Ω

(
−∆τu

′ −∆τ (Vn∂nu) + divτ
(
(2D2b−HId)∇τu

) )
φ dσ.

After some lengthy but straightforward computations we also obtain

d

dt

(∫
Ωt

∂ntu φt dσt

)
t=0

=

∫
∂Ω
∂nu

′ φ dσ −
∫
∂Ω
∇τVn.∇τuφ dσ +

∫
∂Ω
Vn

(
∂nu+Hu

)
φ dσ

and
d

dt

(∫
∂Ωt

λ(t)utφt dσt

)
t=0

=λ′(0)

∫
∂Ω
u φ dσ

+ λ

∫
∂Ω
u′φ dσ + λ

∫
∂Ω
∂nu φ dσ + λ

∫
∂Ω
Huφ dσ.

To end the proof of this second point, it suffices to gather the relations.
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3.3 Shape derivative of simple eigenvalues of the Wentzell-Laplace problem

Let λ be a simple eigenvalue of the Wentzell-Laplace equation (1) and let u be the corresponding
normalized eigenfunction. We give in this subsection the explicit formula for the shape derivative of
the eigenvalue of the Wentzell-Laplace operator associated to (1).

On Ωt = (I + tV )(Ω) with t small, there is a unique eigenvalue λ(t) near λ which is an analytic
function with respect of the parameter t. The associated eigenfunction ut(x) = u(t, x) is solution of
the problem (1). The shape derivative denoted u′ is the partial derivative ∂tu(t, x) evaluated at t = 0
and solves (36). Let us deduce the analytic expression of λ′(0):

Theorem 3.6 If (λ, u) is an eigenpair (with u normalized) for the Wentzell problem with the addi-
tional assumption that λ is simple then the application t→ λ(t) is analytic and its derivative at t = 0
is

λ′(0) =

∫
∂Ω
Vn

(
|∇τu|2 − |∂nu|2 − λH|u|2 + β(H Id − 2D2b)∇τu.∇τu

)
dσ.

Proof: We start with the result of Theorem 3.5. Let us multiply the two sides of (36) the boundary
condition satisfied by u′ by the eigenfunction u and integrate over the boundary ∂Ω:

0 =

∫
∂Ω
v′(−β∆τu+ ∂nu− λu) dσ +

∫
∂Ω
Vn∂nu(−β∆τu) dσ

+

∫
∂Ω
βVn(HId − 2D2b)∇τu.∇τu dσ +

∫
∂Ω
Vn|∇τu|2 − λ′(0)

∫
∂Ω
|u|2

−λ
∫
∂Ω
Vn

(
u∂nu+H|u|2

)
dσ.

Using the boundary condition satisfied by the eigenfunction: −β∆τu+ ∂nu− λu = 0, it follows that

0 =

∫
∂Ω
Vn∂nu(λu− ∂nu) dσ +

∫
∂Ω
βVn(HId − 2D2b)∇τu.∇τu) dσ

+

∫
∂Ω
Vn∇τ |u|2 − λ′(0)

∫
∂Ω
|u|2 − λ

∫
∂Ω
Vn

(
u∂nu+H|u|2

)
dσ.

and the normalization condition

∫
∂Ω
u2 dσ = 1 implies

λ′(0) = −
∫
∂Ω
Vn|∂nu|2 dσ +

∫
∂Ω
βVn(HId − 2D2b)∇τu.∇τu dσ

+

∫
∂Ω
Vn|∇τu|2 − λ

∫
∂Ω
Vn H|u|2 dσ.

3.4 Shape derivative of multiple eigenvalues of the Wentzell-Laplace problem

3.4.1 The general result

We suppose that λ is an eigenvalue of multiplicity m. For smooth deformation t 7→ Ωt, there will be
m eigenvalues close to λ (counting their multiplicities) for small values of t. We know that such a
multiple eigenvalue is no longer differentiable in the classical sense. We are then led to compute the
directional derivative of t 7→ λi(t) at t = 0 where λi(t), j = 1, . . . ,m are given by Theorem 3.4. This
is the second part of Theorem 1.4 that we recall here:
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Theorem 3.7 Let λ be a multiple eigenvalue of order m ≥ 2. Then each t 7→ λi(t) for i ∈ J1, dK
given by Theorem 3.4 has a derivative near 0, and the values of (λ′i(0))i∈J1,dK are the eigenvalues of
the matrix M(Vn) = (Mjk)1≤j,k≤m defined by

Mjk =

∫
∂Ω
Vn

(
∇τuj .∇τuk − ∂nuj∂nuk − λHujuk + β

(
HId − 2D2b

)
∇τuj .∇τuk

)
dσ. (37)

Proof of Theorem 3.7:
Let t 7→ (u(t, x), λ(t) = λ(Ωt)) a smooth path of eigenpair of the Laplace-Wentzell problem, so that it
satisfies {

∆u(t, x) = 0 in Ωt

−β∆τu(t, x) + ∂nu(t, x) = λ(t)u(t, x) on ∂Ωt.

We have proved that u′ = ∂tu(0, x) is harmonic in Ω and satisfies the boundary condition (36) on ∂Ω.
We use the decomposition of u = u(0, x) as

u =
m∑
j=1

cjuj

for some c = (c1, c2, . . . , cm)T 6= 0. Multiplying the two sides equation of (36) by uk, we get after some
integration by parts the eigenvalue equation

λ′(0)c = Mc

where M = (Mjk)1≤i,j≤m is defined by (37). From this, we deduce that the set of derivatives
(λ′i(0))i∈J1,dK is exactly the set of eigenvalues of the matrix M , which achieves the proof of Theo-
rem 3.7.

3.4.2 The case of balls

We consider now the case where the domain is a ball of radius R. The problem is invariant under
translation. In order to remove the invariance, we fix the center of mass of the boundary of the domain,
as in Section 2.

The coordinates functions xi are eigenfunctions of the Wentzell-Laplace operator, so we get

λ =
β(d− 1) +R

R2
, and ui(x) =

xi

‖ xi ‖L2(∂BR)
=

xi√
ωdRd+1

.

Corollary 3.8 Let Ω = BR be a ball of radius R, λ1 its first non-trivial eigenvalue, which is of
multiplicity d. The shape derivatives of the maps t 7→ λi(t), i = 1, . . . , d given by Theorem 3.4 are the
eigenvalues of the matrix MBR(Vn) = (Mjk)j,k=1,...,d defined by

Mjk =
δjk

ωdRd+1

(
1 + β

d− 3

R

)∫
∂BR

Vn − C(d,R)

∫
∂BR

Vn xjxk dσ (38)

where C(d,R) =
(d+1)(1+β d−2

R
)

ωdRd+3 .
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Proof of Corollary 3.8:
We use (37). On one hand we check the geometric quantities:

H =
d− 1

R
, D2b(x) =

1

R
Id −

1

R3
(xixj)i,j

so since ∇τuj ,∇τuk are in the tangent space of ∂BR, we obtain that

(HId − 2D2b(x))∇τuj .∇τuk =
d− 3

R
∇τuj .∇τuk

and on the other hand:

∂nuj =
xi

R
√
ωdRd+1

∇τuj .∇τuk =
1

ωdR1+d

(
δjk −

xjxk

R2

)
Therefore, the matrix M = MBR has the following entries

Mjk =
1

ωdRd+1

∫
∂BR

Vn

[ (
δjk −

xjxk
R2

)
− xjxk

R2
− λd− 1

R
xjxk + β

d− 3

R

(
δjk −

xjxk
R2

) ]
dσ

=
δjk

ωdRd+1

(
1 + β

d− 3

R

)∫
∂BR

Vn −

[
d+ 1 + β (d−1)2+d−3

R

ωdRd+3

]∫
∂BR

Vnxjxk dσ.

This leads to the result since (d− 1)2 + d− 3 = (d+ 1)(d− 2).

From this formula, we deduce a first interesting result:

Proposition 3.9 If V is a volume preserving deformation, then the following statements are equiva-
lent:

(i) Vn is orthogonal (in L2(∂BR)) to homogeneous harmonic polynomials of degree 2,

(ii) MBR(Vn) = 0.

Proof of Proposition 3.9:
We denote H2 the space of homogeneous harmonic polynomials of degree 2 (therefore we use here
a slightly different notation than in Section 4). Let us suppose that M(Vn) = 0; this means that∫
∂BR

Vn xjxk dσ = 0, for all j, k = 1, . . . , d, and in particular Vn is orthogonal to H2.

If we assume now that Vn is orthogonal to H2, using that

H2 = span
{
xjxk, j 6= k ∈ {1, . . . , d}, x2

1 − x2
j , j = 2, . . . , d

}
.

and moreover that
∫
∂BR

Vn = 0, we obtain

d

∫
∂BR

Vnx
2
1 =

d∑
j=2

∫
∂BR

Vn(x2
1 − x2

j ) +

∫
∂BR

d∑
j=1

x2
j = 0,

and therefore ∫
∂BR

Vnx
2
j =

∫
∂BR

Vn(x2
j − x2

1) = 0,

which concludes the proof.
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In the case where MBR(Vn) 6= 0, we compute the trace of the matrix MBR(Vn) to obtain information
on its eigenvalues.

Proposition 3.10 When Ω is a ball of radius R, then

Tr(MBR(Vn)) = 0 (39)

for all volume preserving deformations.

Proof of Proposition 3.10:
It comes that

Tr(MBR(Vn)) = −C(d,R)

∫
∂BR

d∑
j=1

x2
j Vn dσ = −C(d,R)

d∑
j=1

x2
j

∫
∂BR

Vn dσ = 0

since we are concerned with deformations preserving the volume.

As a consequence of Proposition 3.9 and Proposition 3.10, there is the following alternative: either the
only eigenvalue of M(Vn) is 0, or M(Vn) has at least one nonnegative and one nonpositive eigenvalue.
Each t 7→ λi(t) given by Theorem 3.4 has a directional derivative at t = 0 denoted by λ′i(0). We then
define, as usual [8], ∂λ1 the subgradient of λ1 by ∂λ1 = [infi=1···d λ

′
i(0), supi=1···d λ

′
i(0)]. With this

notation, 0 ∈ ∂λ1 and we say the ball is a critical shape.

3.5 Numerical illustrations

In order to illustrate Proposition 3.10, we consider the two dimensional case and consider perturbations
of the disk given in polar coordinates by

ρt(θ) = R+ tf(θ)

where f has zero mean value.
In Figure 5, the computations are made in the case R = 1 and β = 10, the deformation parameter

t appears in the abscissa.
In both collection of figures, we can see the derivatives of the second and third eigenvalues vanish

at the ball in every case except when f(θ) = cos(2θ), where the regular lines cross, leading to a really
non differentiable second eigenvalue. This is coherent with Proposition 3.9. Let us explicit the case
Vn = R2 cos 2θ, where we are led to compute the eigenvalues of the following symmetric matrix

M = − 3

πR


∫ 2π

0
cos 2θ cos2 θ dθ 0

0

∫ 2π

0
cos 2θ sin2 θ dθ


whose eigenvalues are α1 = − 3

2R
and α2 =

3

2R
.
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Figure 5: λ1(Ω) and λ2(Ω) in the direction of f(θ) - |BR| = π, β = 10.

4 Testing if the ball is a local maximum for λ1: second order argu-
ments

We know that any ball is a critical point for volume preserving deformations. Therefore, if the
subgradient ∂λ1(B;Vn) 6= {0}, then the ball is a local maximizer. It remains to deal with the case
where all the eigenvalues of MB(Vn) are 0; this case corresponds to Vn orthogonal to the harmonics of
order two. Then, we aim at proving that the second derivative of λ1 along at least one of the smooth
branches is nonpositive.

The necessary order two conditions of optimality are: the second derivative of the Lagrangian
should be non positive on the subspace orthogonal to the space generated by the gradient of the
volume constraint. We compute:

Vol′(0) =

∫
∂BR

Vn (40)

Hence Vol′(0) = 0 if and only if Vn ∈ (H0)⊥ where Hk denotes the linear space of spherical harmonics
of order k. Due to the previous remarks, we hence consider deformation field in the hilbertian space
H spanned by all the spherical harmonics of order l ∈ I = N \ {0, 2} . The normal component of such
a field is orthogonal to spherical harmonics of order 0 and 2.

The goal of this section is to present the different steps for the computations. We will characterize
the matrix E whose eigenvalues are the second order derivatives of the smooth branches of eigenvalues.
It turns out that this computation is hard even in the case of a ball. Nevertheless, the computation
of Tr(E) is much simpler than the individual computations of the entries. In order to prove that the
ball is a local maximum of λ1, it suffices to prove that its trace is nonpositive: therefore at least one
smooth branch of eigenvalues has a nonpositive second order derivative.

In this section, we consider deformations preserving the volume at second order and not only at
first order. Hence, we cannot consider deformation Tt of type I + tV with V independent of t and
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introduce deformations St that are the flow at time t of a vector field V (see also Remark 1.5). Notice
that St = I + tV + o(t) so that Tt − St = o(t) and first order shape derivatives are unchanged. In
particular, one has

d2

dt2
Vol(St(Ω)) =

∫
∂Ω(t)

(
∂

∂t
(Vn(t)) + Vn(t)

∂

∂n(t)
(Vn(t)) +HV 2

n(t)

)
dσ

and the volume preservation at second order means that(
d2

dt2
Vol(St(Ω))

)
|t=0

=

∫
∂Ω

(
∂

∂t
(Vn(t)) + Vn(t)

∂

∂n(t)
(Vn(t)) +HV 2

n(t)

)
|t=0

dσ = 0. (41)

4.1 Construction of the matrix E of the second derivatives

Let (u(t, x), λ(t) = λ(Ωt)) be an eigenpair of the Laplace-Wentzell problem, that is to say solves{
∆u(t, x) = 0 in Ωt

−β∆τu(t, x) + ∂nu(t, x) = λ(t)u(t, x) on ∂Ωt

We use the decomposition of u = u(0, x) in the basis of eigenfunctions:

u =
d∑
j=1

cjuj

for some c1, c2, . . . , cd not all zero. We have shown that the vector c = (c1, c2, . . . , cd)
T is solution of

λ′(0)c = M(Vn)c

where the matrix M(Vn) = (Mjk)1≤i,j≤d is defined by (37).
To compute the second derivative at t = 0, one has to compute the first shape derivative u′(x) =
u′(0, x). Fredholm’s alternative insures the existence of a unique harmonic function ũj orthogonal to
the eigenfunctions u1, u2, . . . , ud and satisfying on ∂Ω the boundary condition

−β∆τ ũj + ∂nũj − λũj = β
[
∆τ [Vn∂nuj ] + divτ [Vn(HId − 2D2b) · ∇τuj ]

]
+divτ [Vn∇τuj ] + λ′uj + λVn(∂nuj +Huj). (42)

It follows that

u′ =

d∑
j=1

c̃juj +

d∑
j=1

cj ũj (43)

for some cj , c̃j when j = 1, . . . , d. We point out that the (cj) are the same coefficients as the decom-
position of u in the basis (uj).
The strategy is straightforward : we have to consider the equation satisfied by u′ on the boundary ∂Ω
and take its shape derivative again. A first look to the second derivative shows that we will encounter
three operators :

• the first contains only u′′ and its expression is the following

E(0) = −β∆u′′ + ∂nu
′′ − λu′′
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• concerning the term in u′ and λ′ = 0 we have

E(1) = −2β∆τ (Vn∂nu
′)− 2divτ (Vn(I + βA)∇τu′)

−2
[
λ′u′ + λVn(∂nu

′ +Hu′)
]

where A = HI − 2D2b is the deviatoric part of the curvature tensor.

• The remaining term is E(2) contains only u; we give a more explicit expression below.

Green-Riemann identity tells us that 〈E(0), ui〉 = 〈u′′,−β∆τui + ∂nui − λui〉 = 0, i = 1, . . . , d. This
means that the term E(0) will have no influence in the determination of the second derivative of the
eigenvalue. We will focus only on E(1) and E(2).

Construction of E(2):
The computations are very technical. We need first to use a test function φ which is the restriction

of a test function Φ defined on a tubular neighborhood of the boundary such that its normal derivative
on ∂Ω is zero. This kind of extension is well discussed in the book [13] of Delfour-Zolesio. Taking the
shape derivative of the boundary condition (36) (in the multiple case) we need to compute(

d

dt

∫
∂Ωt

Vn∇τu.∇τφ dσt
)

t=0

= 〈A(1)u′, φ〉+ 〈A(2)u, φ〉,

β

(
d

dt

∫
∂Ωt

A(t)Vn∇τu.∇τφ dσt
)

t=0

= 〈B(1)u′, φ〉+ 〈B(2)u, φ〉,

− d

dt

(∫
∂Ωt

[
λ′u+ λ(u′ + Vn∂nu+ VnHu)

]
φ dσt

)
t=0

= 〈C(0)u′′, φ〉+ 〈C(1)u′, φ〉+ 〈C(2)u, φ〉,

β

(
d

dt

∫
∂Ωt

∇τ (Vn∇τ∂nu).∇τφdσt
)

t=0

= 〈D(1)u′, φ〉+ 〈D(2)u, φ〉.

The remaining E(2) containing only u is then given by

E(2) = A(2)u+B(2)u+ C(2)u+D(2)u.

For an operator L involved in E(i), i = 1, 2, 3 we denote by (Lij)i,j=1,...,d the matrix of L in the
basis of the eigenvalues. After calculations (see also Remark D.1 in the Appendix), we get the following
linear equation

(λ′′I − E)c+ 2(−M(Vn) + λ′I)c̃ = 0

(corresponding to the second derivation) together with

(−M(Vn) + λ′I)c = 0.

(corresponding to the first derivation) where the matrix E = (Eij) is split into E = E(1) +E(2) where
the terms involving u′ are gathered in E(1) and the terms involving u are gathered in E(2).

4.2 Computation of the trace

Since the direct computations of the eigenvalues are difficult, we restrict ourselves to the cases d = 2
or d = 3, and we will focus on the trace of E and prove that Tr(E) is nonpositive. We start with the
trace of E(2):
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Lemma 4.1 Assume d ∈ {2, 3}. With K(R) = d
R2+dωd−1

, we have

Tr(E(2)) = −(dβ +R)RK(R)

∫
∂BR

|∇τVn|2dσ −K(R)

∫
∂BR

V 2
n dσ. (44)

for all deformations preserving volume and such that Vn is orthogonal to spherical harmonics of order
two.

Proof: The computation of E(2) is done in the Appendix C, and to obtain the result, we sum all
the traces given by Lemmas C.1, C.2, C.3 and C.4.

Concerning Tr(E(1)), we start with the following Lemma which is straightforward (see also Remark
D.1):

Lemma 4.2 We have

Tr(E(1)) = 2

∫
∂Ω
Vn

d∑
j=1

(
− ∂nũj∂nuj −Hλũjuj + (I + β

(
HId − 2D2b)

)
∇τ ũj .∇τuj

)
dσ. (45)

holds for all deformations preserving volumes such that Vn is orthogonal to spherical harmonics of
order two.

From this result we deduce the following, which is proved in Appendix D:

Proposition 4.3 Assume d = 3 and set α =
β

R
. We denote Y m

l ,m = −l, . . . ,m any spherical

harmonic of order l ∈ I. If

Vn =
∑
l∈I

Rl
( l∑
m=−l

vl,mY
m
l

)
,

then

Tr(E(1)) = − K(R)

( ∑
l∈I

[Al,α +Bl,α] R2l+1
l∑

m=−l
|vl,m|2

)
where

Al,α =
l

2l + 1

l + 2

l − 2
(4α+ 2l)

1 + α(3− l)
1 + α(l + 1)

and Bl,α =
l + 1

l

l − 1

l
(4α+ 2)

1 + α(4 + l)

1 + α(3 + l)
.

Since TrE = Tr(E(1)) + Tr(E(2)), we will then deduce the following result

Proposition 4.4 Assume d ∈ {2, 3}. Then there exists a nonnegative constant µ such that

Tr(E) ≤ −K(R)µ

∫
∂BR

|∇τVn|2 + |Vn|2 dσ.

holds for all preserving volume deformations such that Vn is orthogonal to H.

Proof: We distinguish the case d = 2 and d = 3.
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The case d = 2. Let us compute the trace of the matrix E. Gathering all the results of Lemma 4.1
with the computations of Appendix D concerning the trace of the different matrices involved in the
matrix E, we obtain the following formula: when

Vn =
∑
l∈I

Rl
√
π

(
v

(l)
1 cos lθ + v

(l)
2 sin lθ

)
, l ∈ I,

we have
Tr(E) = −K(R)

∑
l∈I

G(α, l) (l2 + 1) R2l+1
(
(v

(l)
1 )2 + (v

(l)
1 )2

)
. (46)

where

G(α, l) =
(l2 − 1)

2(1 + l2)

2 + l2 + 2α2(l − 2)l2 + α(l − 2)(l2 + 2))

(l − 2)l(1 + αl)
.

Let us remark that G(α, 1) = 0. This could have been guessed since the Wentzell eigenvalues are
translation invariance: we recall that, denoting Bar the center of mass of the boundary, we have

Bar′(0) =

∫
∂BR

xVn

so that deformations orthogonal to spherical harmonics of order 1 preserve at first order the center
of mass. A close look to the fraction G shows that it has no pole for α > 0 and l ≥ 3, that it is
nonnegative for l > 2 and that G(l, α) → 1 when l → +∞; then there is a nonnegative constant µ
such that for all l ≥ 3, µ ≤ G(l, α). This gives

Tr(E) ≤ −K(R)µ

∫
∂BR

|∇τVn|2 + |Vn|2 dσ.

The case d = 3. The strategy is the same, and we use again Lemma 4.1 and the detailed computa-
tions from Section D.2: we get for l ∈ I:

Vn =
∑
l∈I

Rl
l∑

p=−l
v(l)
p Y

p
l ,

Tr(E) = −K(R)
∑
l∈I

F (α, l) (l(l + 1) + 1)R2l+1
l∑

p=−l
(v(l)
p )2.

where F (α, l) is the fraction

F (α, l) =

(l − 1)

3∑
m=0

Pm(l)αm

(l(l + 1) + 1) l (1 + α(l + 1)) (2l + 1) (l − 2) (1 + α(l + 3))
,

and where the polynomial Pm are defined as

P0(X) = 2X4 + 5X3 + 16X2 − 8,

P1(X) = 4X5 + 18X4 + 40X3 + 68X2 − 28X − 56,

P2(X) = 2X6 + 21X5 + 42X4 + 35X3 + 16X − 112,

P3(X) = 8X6 + 18X5 + 24X4 − 68X3 − 144X2 − 112X − 64.
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Let us remark that F (α, 1) = 0 for the same reason than in dimension two. By Descartes’s rule
of signs, the polynomials Pm have at most one positive root. Since Pm(0) < 0 and Pm(2) > 0 for
m = 0, . . . 3, Pm has exactly one positive root which is in [0, 2]. Since l > 2, there exists a nonnegative
constant µ such that for all k ≥ 3, µ ≤ F (k, α) and

Tr(E) ≤ −K(R) µ

∫
∂BR

|∇τVn|2 + |Vn|2 dσ.

A Some classical results on tangential differential calculus

We recall some facts about tangential operators acting on functions defined on ∂Ω. The formulas
involve the extensions of functions and the differential calculus becomes easier since we will use the
classical euclidean differential calculus in a neighborhood of ∂Ω. The canonical extension will be
provided thanks to the oriented distance and the orthogonal projection on the tangent plane. For
more details, the interested reader will consult the book [13] of M. Delfour and J.P. Zolesio from
which we borrowed the necessary material.

A.1 Notations and definitions. Preliminary results

We recall some essential notations and definitions that are needed for the computations of shape
derivatives. Given a smooth function f : ∂Ω 7→ R, we define its tangential gradient ∇τ as

∇τf = ∇f̃ −∇f̃ .n n (47)

where f̃ is any extension of f in a tubular neighborhood of ∂Ω. An extension is easily obtained when
∂Ω is smooth. The tangential gradient does not depends on the extension.
It is also useful to define the tangential gradient as the normal projection of ∇f̃ to the tangent
hyperplane of ∂Ω; in other words

∇τf = ∇f̃ − n⊗ n∇f̃ , on ∂Ω.

We also need the definition of the tangential divergence : for a tensor v, we define the surface divergence
as

divτ u = Tr(∇τu)

For regular functions we define the surface Laplacian or Laplace-Beltrami operator as

∆τf := divτ (∇τf).

We recall the definition of the oriented distance b∂Ω:

b∂Ω(x) =

{
dΩ(x) for x ∈ Rd\Ω
−dΩ(x) for x ∈ Ω,

(48)

where the notation dΩ stands for the distance function for a subset Ω ⊂ Rd:

dΩ(x) = infy∈Ω|x− y|
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We shall sometimes write b instead of b∂Ω; its gradient is an extension of the normal vector field n in
a neighborhood of ∂Ω.
Let D2b be the Weingarten operator with entries (∇τ )i nj where nj is the j−th component of n. The
normal vector is known to be in the kernel of D2b, while the other eigenfunctions are tangential with
the corresponding eigenvalues given by the principal curvatures of ∂Ω.
Let κi, i = 1, . . . , d− 1 be the non zero eigenvalues of D2b. We define the mean curvature H as

H =

d−1∑
i=1

κi = Tr(D2b) = ∆b, on ∂Ω. (49)

An important result about the normal derivative of this quantities is:

Proposition A.1 Suppose that the boundary ∂Ω is of class C3. Then the normal derivative of the
mean curvature H is

∂nH = −
d−1∑
i=1

κ2
i . (50)

Other known identities: we denote x the identity function. We have

−∆τx = Hn
divτ n = Hn

Tangential integral formula: Given two functions f (scalar) and v smooth enough, we have∫
∂Ω
fdivτ v +

∫
∂Ω
∇τf.v =

∫
∂Ω
Hf v.n

Shape derivative of the main curvature H and of the normal n in the direction of a velocity
V :

Proposition A.2 Let a surface ∂Ω be of class C2. The shape derivatives of the normal n and of the
mean curvature H in the direction of the velocity vector V are

n′ = −∇τVn
H ′ = −∆τVn

(51)

where Vn = 〈V ,n〉 denotes the normal component of the vector deformation V.

A.2 A commutation lemma

Here f and g are two smooth functions defined on U a neighborhood of ∂Ω; the notation b stands for
the oriented distance. Recall that its gradient is an extension of the normal field n on ∂Ω.

Proposition A.3 We have

∂n(∇τf.∇τg) + 2(D2b∇τf).∇g = ∇τ (∂nf).∇τg +∇τ (∂ng).∇τf (52)

Proof: A straightforward computation gives

∂n(∇f.∇g) = (D2f∇g).n + (D2g∇f).n
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and
∇(∂nf).∇g = ∇(∇f.n).∇g

= (D2fn).∇g + (D2b∇f).∇g
hence

∇(∂nf).∇g +∇(∂ng).∇f = 2(D2b∇f).∇g + (D2fn).∇g + (D2g n).∇f
= 2(D2b∇f).∇g + ∂n(∇f.∇g)

We use now the decomposition of ∇ into its normal and tangential components and the well known
identity D2bn.n = 0. We get

∇τ (∂nf).∇τg +∇τ (∂ng).∇τf +
∂2f

∂n2

∂g

∂n
+
∂2g

∂n2

∂f

∂n
=

2(D2b∇τf).∇τg + ∂n(∇τf.∇τg) +
∂2f

∂n2

∂g

∂n
+
∂2g

∂n2

∂f

∂n
(53)

hence
∇τ (∂nf).∇τg +∇τ (∂ng).∇τf = 2(D2b∇τf).∇τg + ∂n(∇τf.∇τg)

B Spherical harmonics

In order to explicit the shape hessian under consideration, a useful tool is the surface spherical har-
monics defined as the restriction to the surface of the unit sphere of harmonic polynomials in the
special case d = 3. We recall here facts from [25, pages 139-141]. Spherical Harmonics are defined as
restrictions of homogeneous harmonic polynomials to the unit sphere. The spherical harmonics are
said of order k when the harmonic homogeneous polynomial is of degree k. We denote by Hk the
space of spherical harmonics of degree k. We show that is also the eigenspace of the Laplace-Beltrami
operator on the unit sphere associated with the eigenvalue k(k + 1). Its dimension is

dk = 2k + 1.

Let (Y l
k)−k≤l≤k be an orthonormal basis of Hk with respect to the L2(∂B1) scalar product. The

(Hk)k∈N spans a vector space dense in L2(∂B1) and the family (Y l
k)k∈N,−k≤l≤k is a Hilbert basis of

L2(∂B1). To be more precise, if f ∈ L2(∂B1), then there exists a unique representation

f =

∞∑
k=0

Yk

where the series converge to f in the L2 norm and

Yk =

k∑
l=−k

blkY
l
k ∈ Hk

If x = (x1, x2, x3) ∈ R3, it is natural to use on a sphere the spherical coordinates (r, θ, φ) where r is
the radius and θ and φ are the Euler angles. The spherical harmonic Y l

k is defined with the Euler
angles (θ, φ) as

Y l
k = (−1)l

√[k + 1
2

2π

(k − l)!
(k + l)!

]
eilφPlk(cos θ), − k ≤ l ≤ k.
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where the polynomial Plk is the associated Legendre polynomial. The formula giving the explicit form
of these polynomials can be found in the book of Nedelec [23, page 24].

When k 6= k′, we have also the orthogonality property∫
∂B1

YkYk′dσ = 0

when Yk ∈ Hk and Yk′ ∈ Hk′ . An homogeneity argument shows that any function ϕ in L2(∂BR) can
be decomposed as the Fourier series:

ϕ(x) =

∞∑
k=0

Rk

(
k∑

l=−k
αk,l(ϕ)Y l

k

(
x

| x |

))
, for |x| = R.

Then, by construction, the function u defined by

u(x) =

∞∑
k=0

|x|k
(

dk∑
l=1

αk,l(ϕ)Y l
k

(
x

|x|

))
, for |x| ≤ R,

is harmonic in BR and satisfies u = ϕ on ∂BR.
We recall now some results about the integration of three spherical harmonics, they will enable us

to estimate Tr(E) in dimension three. When we integrate three spherical harmonics, we use coefficients
called Clebsch-Gordon coefficients or Wigner-3j coefficients. The Wigner-3j coefficients are mostly
used; they are related to Clebsch-Gordon coefficients via some known formula that the interested
reader will find in the book of Cohen-Tannoudji and al [9, Tome 2, Annex B].
The first general result concerns the product of two spherical harmonics; it is given by the following
proposition

Proposition B.1 Given l1, l2 > 0 two natural integers and −l1 ≤ m1 ≤ l1, −l2 ≤ m2 ≤ l2, we have

Y m1
l1

Y m2
l2

=

(−1)m1+m2

l1+l2∑
L=|l1−l2|

√
(2l1 + 1)(2l2 + 1)(2L+ 1)

4π

(
l1 l2 L
0 0 0

)(
l1 l2 L
m1 m2 −m1 −m2

)
Y m1+m2
L ,

where

(
l1 l2 L
0 0 0

)
and

(
l1 l2 L
m1 m2 −m1 −m2

)
are the Wigner-3j symbols.

The second result concerns the integration of three spherical harmonics.

Proposition B.2 We have:

∫
∂B1

Y m1
l1

Y m2
l2

Y m3
l3

=

√
(2l1 + 1)(2l2 + 1)(2l3 + 1)

4π

(
l1 l2 l3
0 0 0

)(
l1 l2 l3
m1 m2 m3

)
.

In particular it holds

Proposition B.3 Let l be a natural integer and m an integer. We have
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1. If −l ≤ m ≤ l then ∫
∂B1

Y m
l Y 0

0 Y
m
l =

√
1

4π
,

and ∫
∂B1

Y m
l Y 1

1 Y
m+1
l−1 = −

√
3

8π

√
(l −m)(l −m− 1)

(2l + 1)(2l − 1)
.

2. If −l − 1 ≤ m ≤ l + 1 then∫
∂B1

Y m
l Y 0

1 Y
m
l+1 =

√
3

4π

√
(l +m+ 1)(l −m+ 1)

(2l + 1)(2l + 3)
,

3. If −l − 2 ≤ m ≤ l then∫
∂B1

Y m
l Y 1

1 Y
m+1
l+1 =

√
3

8π

√
(l +m+ 1)(l +m+ 2)

(2l + 1)(2l + 3)
,

C Intermediate results for the second shape derivative matrix

We need to construct the matrix associated to the second shape derivative. To that end, we have to
compute the explicit formula for all the shape derivatives of order one involved in the formula giving
λ′ (see Theorem 3.6). In this appendix, we focus on the term E(2) introduced in Section 4.1. Since
these computations are very technical, we only give the main line and the used arguments, omitting
a couple of details. In the following lines, we denote by H(t) the mean curvature associated to the
boundary of Ωt and A(t) the deviatoric part defined on ∂Ωt as

A(t) = H(t)I − 2D2b(t)

(see [13] for the terminology).
In order to deal with the weak formulation on the boundary ∂Ωt, we will make use of a test

function φ which is the restriction of a test function Φ defined on a tubular neighborhood of the
boundary such that its normal derivative is zero. This kind of extension is well discussed in the book
[13] of Delfour-Zolesio.

In this differentiation, nineteen terms arise and we introduce some notations to study them sepa-
rately. For all function test φ ∈ H1(∂Ω), we will need in the sequel the following quantities:

A(u, u′, φ) =

(
d

dt

∫
∂Ωt

Vn∇τu.∇τφdσt
)

t=0

,

B(u, u′, φ) = β

(
d

dt

∫
∂Ωt

A(t)Vn∇τu.∇τφ dσt
)

t=0

,

C(u, u′, u′′, φ) = − d

dt

(∫
∂Ωt

[
λ′u+ λ(u′ + Vn∂nu+ VnHu)

]
φ dσt

)
t=0

,

D(u, u′, φ) = β

(
d

dt

∫
∂Ωt

∇τ (Vn∂nu).∇τφ dσt
)

t=0

.
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We will now study independently each term A,B,C and D, when Ω = BR ⊂ R2 or R3, and t 7→ Ωt is
volume preserving.

Study of D(u, u′, φ). First, we denote

W =
d

dt
(V · nΩt)|t=0 .

From the derivative formula of boundary integrals, we know that we have to compute three main
terms: the first corresponding to the shape derivative, the second concerns the normal derivative of
the integrand and the third is related to the term related to the mean curvature H. The first term is

β

(∫
∂Ωt

d

dt
[∇τ (Vn∂nu).∇τφ] dσt

)
t=0

= β
(∫

∂BR

∇τ (Vn.∂nu
′ − Vn∇τu.∇τVn).∇τφ dσ +

∫
∂BR

∇τ (V ′n.∂nu).∇τφ dσ
)

+ β

∫
∂BR

∂n(Vn∂nu)∇τVn.∇τφ dσ

= −β
∫
∂BR

∆τ (Vn.∂nu
′)φ dσ + β

∫
∂BR

∇τ (V ′n.∂nu).∇τφ dσ

+ β

∫
∂BR

∂n(Vn∂nu)∇τVn.∇τφ dσ + β

∫
∂BR

∆τ

(
Vn∇τu.∇τVn

)
φ dσ.

The third term is

β

∫
∂BR

HVn∇τ (Vn∂nu).∇τφ dσ = −β
∫
∂BR

divτ

(
HVn∇τ (Vn∂nu)

)
φ dσ.

We focus now on the second term. We have

β

∫
∂BR

Vn∂n[∇τ (Vn∂nu).∇τφ] dσ

= β

∫
∂BR

Vn∇τ [∂n(Vn∂nu)].∇τφ dσ − 2β

∫
∂BR

Vn(D2b∇τ [Vn∂nu]).∇τφ dσ

= β

(∫
∂BR

Vn∇τ [∂nVn∂nu)] .∇τφ dσ − 2

∫
∂BR

Vn(D2b∇τ [Vn∂nu]).∇τφ dσ
)

= −β
∫
∂BR

divτ [Vn∇τ [∂nu ∂nVn]− 2VnD
2b∇τ [Vn∂nu]]φ dσ.

We expand D(u, φ) into a sum 〈D(1)u′, φ〉+〈D(2)u, φ〉. For D(2), we will set D(2) =
∑3

k=1D
(2,k) where

〈D(1)u′, φ〉 = β

∫
∂BR

∇τ [Vn.∂nu
′].∇τφ dσ = −β

∫
∂BR

∆τ [Vn∂nu
′]φ dσ

〈D(2,1)u, φ〉 = β
[ ∫

∂BR

(−∆τ [W∂nu] φ dσ −
∫
∂BR

divτ [Vn∂nVn∇τ [∂nu]] φ dσ,

−
∫
∂BR

divτ [HVn∇τ (Vn∂nu)] φ dσ
]
,

〈D(2,2)u, φ〉 = −β
∫
∂BR

divτ [∂nu ∂nVn∇τVn]φ dσ + β

∫
∂BR

∆τ [Vn∂nu∇τVn]φ dσ,

〈D(2,3)u, φ〉 = 2β

∫
∂BR

divτ [VnD
2b · ∇τ [Vn∂nu]]φ dσ.
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We denote D(1) and D(2,k), k = 1, 2, 3 the matrices whose elements are defined by

D
(1)
ij = 〈D(1)ũi, uj〉, and D

(2,k)
ij = 〈D(2,k)ui, uj〉, i, j = 1, 2, . . . , d.

We give a result concerning the traces of the matrices.

Lemma C.1 We have

Tr(D(2,1)) = Tr(D(2,2)) = 0 and Tr(D(2,3)) = −
2β(d− 1)K(R)

R

∫
∂BR

V 2
n dσ,

with the normalization constant K(R) =
d

R2+dωd
.

Proof of Lemma C.1:
We have

Tr(D(2,1)) = β
[ ∫

∂BR

−∆τ (W

d∑
i=1

∂nui)ui dσ −
∫
∂BR

divτ (Vn∂nVn

d∑
i=1

∇τ (∂nui))ui dσ

−
∫
∂BR

d∑
i=1

divτ (HVn∇τ (Vn∂nui))ui dσ
]

(54)

= β

∫
∂BR

V ′n(d− 1)
d∑
i=1

|∂nui)|2
dσ

R
+ β

∫
∂BR

Vn∂nVn

d∑
i=1

∇τ (∂nui) · ∇τui ∂σ

+β

∫
∂BR

HV 2
n

d∑
i=1

∇τ (∂nui) · ∇τui dσ + β

∫
∂BR

H
d∑
i=1

∂nuiVn∇τVn · ∇τui. dσ

Combining the two facts (coming from algebraic properties of spherical harmonics, see Appendix B),

(d− 1)
d∑
i=1

|∂nui|2

R
=

d∑
i=1

∇τ (∂nui) · ∇τui =
d(d− 1)

R2+dωd
= (d− 1)K(R). (55)

and ∫
∂BR

Vn

d∑
i=1

∂nui∇τVn · ∇τui = 0, (56)

we get

Tr(D(2,1)) = (d− 1)
d∑
i=1

|∂nui|2
∫
∂BR

(
W + Vn∂nVn +HV 2

n

) dσ

R
.

Since we assumed the deformation to be volume preserving up to the second order (41), we have
Tr(D(2,1)) = 0. The same strategy applies for Tr(D(2,2)).
We focus now on Tr(D(2,3)). We first expand the second term in the definition of D(4):

Tr(D(2,3)) = β
d∑
i=1

∫
∂BR

Vn∂nui ∇τ [∂nVn].∇τui − 2Vn∂nui D
2b∇τVn · ∇τui dσ

− β
d∑
i=1

∫
∂BR

2V 2
n D2b∇τ (∂nui) · ∇τui dσ.
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We follow the same argument thanks to the relations (55)-(56) and the fact

d∑
i=1

D2b∇τ (∂nui).∇τui =
(d− 1)K(R)

R

on the sphere. Recall that on the sphere D2b = Id/R when restricted to the tangent space.

Study of B(u, u′, φ). In the same manner, we begin to compute the derivative of the integrand:

d

dt

(
A(t)Vn∇τu.∇τφ

)
t=0

=

A′Vn∇τu.∇τφ+AV ′n∇τu.∇τφ+AVn∇τu′.∇τφ−AVn∂nu∇τVn.∇τφ.

Denote A = (aij)1≤i,j≤d and Ã = (∂naij)1≤i,j≤d. Thanks to lemma A.3, we get

Vn∂n

(
VnA · ∇τu.∇τφ

)
= V 2

n Ã · ∇τu.∇τφ+ Vn∂nVnA · ∇τu.∇τφ+ V 2
nA∂n

[
∇τu.∇τφ

]
.

From the relation

β
d

dt

∫
∂Ωt

A(t)Vn∇∂Ωtu.∇∂Ωtφ dσt
t=0

=

∫
∂BR

d

dt

(
A(t)Vn∇∂Ωtu.∇∂Ωtφ

)
t=0

dσ

+

∫
∂BR

Vn∂n

(
AVn∇τu.∇τφ

)
dσ +

∫
∂BR

HV 2
nA∇tu.∇τφ dσt,

we gather all the terms and obtain B(u, φ) = 〈B(1)u′, φ〉+ 〈B(2)u′, φ〉; we then set

〈B2)u, φ〉 =
4∑
i=1

〈B(2,i)u, φ〉,

where

〈B(2,1)u′, φ〉 = −β
∫
∂BR

divτ [VnA · ∇τu′]φ dσ,

〈B(2,1)u, φ〉 = −β
∫
∂BR

divτ [(W +HV 2
n + Vn∂nVn) A · ∇τu]φ dσ,

〈B(2,2)u, φ〉 = −β
∫
∂BR

divτ [∂nu VnA · ∇τVn]φ dσ,

〈B(2,3)u, φ〉 = −β
∫
∂BR

divτ [VnA′ · ∇τu]φ dσ,

〈B(2,4)u, φ〉 = β

∫
∂BR

V 2
n ∂n [A · ∇τu.∇τφ] dσ.

We get

B(2,4)u, φ〉 = β

∫
∂BR

V 2
n (∂n[A] · ∇τu.∇τφ) dσ + β

∫
∂BR

V 2
nA · ∇τ∂nu.∇τφ dσ

−β
∫
∂Ω

2(D2bA) · ∇τu.∇τφ dσ

= −β
∫
∂BR

divτ

[
V 2
n

(
Ã · ∇τu+A · ∇τ [∂nu])− 2D2bA · ∇τu

)]
φ dσ
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Let B(2,k) k = 1, 2, 3, 4 denote the respective matrices associated to the operator with respect to the
basis of eigenvectors. We have the following result:

Lemma C.2 We have

Tr(
4∑
i=1

B(2,i)) = −β(d− 1)RK(R)

∫
∂BR

|∇τVn|2 dσ + 2
βK(R)

R

∫
∂BR

V 2
n dσ.

Proof of Lemma C.2:
Using the same arguments as before, we prove easily that Tr(B(2,1)) = Tr(B(2,2)) = 0.
For the other terms, above all we have to focus on the term

Tr(B(2,3)) = β

∫
∂BR

Vn

d∑
i=1

(A′ · ∇τui).∇τui dσ.

We have, thanks to the expression of shape derivation of the normal vector and of the mean curvature
given in Proposition A.2:

A(t) = H(t)− 2D2b(t)⇒ A′ = −∆τVn + 2D(∇τVn);

then

Tr(B(2,3)) = β

∫
∂BR

Vn

d∑
i=1

(A′ · ∇τui).∇τui dσ

= −β
∫
∂BR

Vn∆τVn

d∑
i=1

|∇τui|2 dσ + 2β

∫
∂BR

Vn

d∑
i=1

[
D(∇τVn) · ∇τui

]
.∇τui dσ

= −β
∫
∂BR

Vn∆τVn

d∑
i=1

|∇τui|2 dσ + 2β

∫
∂BR

Vn

d∑
i=1

[
Dτ (∇τVn) · ∇τui

]
.∇τui dσ

= −β
∫
∂BR

Vn∆τVn

d∑
i=1

|∇τui|2 dσ + 2β

∫
∂BR

Vn

d∑
i=1

[
D2
τVn · ∇τui

]
.∇τui dσ

= −β
∫
∂BR

Vn∆τVn

d∑
i=1

|∇τui|2 dσ + 2β

∫
∂BR

VnTr(D2
τVn)

d∑
i=1

|∇τui|2 dσ

Since Tr(D2
τVn) = ∆τVn, and since

∑d
i=1 |∇τui|2 = RK(R), on ∂BR we get

Tr(B(2,3)) = β

∫
∂BR

Vn∆τVn

d∑
i=1

|∇τui|2 dσ = β(d− 1)RK(R)

∫
∂BR

Vn∆τVn dσ.

Concerning Tr(B(2,4)), we have to distinguish the case d = 2 from the case d = 3. If d = 3 then A = 0
; this implies that Tr(B(2,4)) is reduced to

Tr(B(2,4)) = (d− 1)K(R)
β

R

∫
∂BR

V 2
n dσ.

If d = 2, then A+ Ã is a null matrix and this leads to

Tr(B(2,4)) = 2β

∫
∂BR

V 2
n

d∑
i=1

D2b · ∇τui.∇τui dσ

= 2K(R)
β

R

∫
∂BR

V 2
n dσ.
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Then for d = 2, 3 we get

Tr(B(2,4)) = 2β
K(R)

R
;

Study of A(u, u′, φ). We have

d

dt

(∫
∂Ωt

Vn∇τu.∇τφdσt
)

t=0

=

∫
∂BR

W∇τu.∇τφ dσ +

∫
∂BR

Vn∇τu′.∇τφ dσ

+

∫
∂BR

Vn ∇τVn.
[
∂nu ∇τφ+ ∂nφ∇τu

]
+
(
Vn∂n[Vn∇τu.∇τφ] +HV 2

n∇τu.∇τφ
)
dσ.

Since ∂nφ = 0, it comes that∫
∂BR

Vn ∇τVn.
[
∂nu ∇τφ+ ∂nφ∇τu

]
dσ = −1

2

∫
∂BR

V 2
n

[
∂nu∆τφ+∇τ [∂nu].∇τφ

]
= −1

2

∫
∂BR

V 2
n

(
∂n[∇τu.∇τφ] + 2D2b∇τu.∇τφ

)
dσ − 1

2

∫
∂BR

V 2
n ∂nu∆τφ dσ

Hence, gathering the equivalent terms we get

d

dt

∫
∂Ωt

Vn∇τu.∇τφdσt
t=0

=

∫
∂BR

W∇τu′.∇τφ dσ +

∫
∂BR

Vn∇τu′.∇τφ dσ

− 1

2

∫
∂BR

∆τ [V 2
n ∂nu]φ− ∂n

(
V 2
n∇τu.∇τφ

)
dσ +

∫
∂BR

(HId −D2b)V 2
n∇τu.∇τφ dσ.

We split these terms intoA(u, φ) = 〈A(1)u′, φ〉+〈A(2)u, φ〉. As before, we set 〈A(2)u, φ〉 =
∑3

i=1〈A(i)u, φ〉
where

〈A(1)u′, φ〉 =

∫
∂BR

−divτ [Vn∇τu′]φ dσ,

〈A(2,1)u, φ〉 =

∫
∂BR

−divτ [(W +HV 2
n + Vn∂nVn) ∇τu] φ dσ,

〈A(2,2)u, φ〉 =

∫
∂BR

divτ [∂nu Vn∇τVn] φ dσ,

〈A(2,3)u, φ〉 =

∫
∂BR

divτ [V 2
n

(
2D2b∇τu−∇τ (∂nu)

)
]φ dσ.

We have

Lemma C.3 We have

Tr(A(2,1)) = 0, Tr(A(2,2)) = 0 and Tr(A(2,3)) = −K(R)

∫
∂BR

V 2
n dσ.

The proof of Lemma C.3 follows the lines of the proof of Lemma C.2.
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Study of C(u, u′, u′′, φ). We decompose C(u, u′, u′′, φ) as follows:

C(u, φ) = 〈C(0)u′′, φ〉+ 〈C(1)u′, φ〉+ 〈C(2)u, φ〉

with 〈C(2)u, φ〉 =
∑6

i=3〈C(2,i)u, φ〉 where

〈C(0)u′′, φ〉 = −λ
∫
∂BR

u′′φ dσ

〈C(1)u′, φ〉 = −2

∫
∂BR

(
λ′u′ + λVn(∂nu

′ +Hu′)
)
φ dσ

〈C(2,1)u, φ〉 = −λ′′
∫
∂BR

uφ− λ′
∫
∂BR

Vn∂nuφ dσ

〈C(2,2)u, φ〉 = −λ
∫
∂BR

(
W + Vn∂nVn +HV 2

n )(∂nu+Hu)
)
φ dσ

〈C(2,3)u, φ〉 = −λ
∫
∂BR

Vn

(
−∇τVn.∇τu+H ′u

)
φ dσ

= λ

∫
∂BR

Vn

(
∇τVn.∇τu+ ∆τVn u

)
φ dσ

〈C(2,4)u, φ〉 = −λ
∫
∂BR

V 2
n

(
∂2
nu− u

d−1∑
i=1

κ2
i +H∂nu

)
φ dσ

= 0.

Denoting by (C(2,j)), j = 1, 2, 3, 4 the matrices associated to the linear operators C(2,p), p = 1, 2, 3, 4
in the basis of eigenvectors, we get:

Lemma C.4 We have

4∑
j=1

Tr(C(2,j)) = λR3K(R)

∫
∂BR

Vn∆τVn dσ = − ((d− 1)β +R)RK(R)

∫
∂BR

|∇τVn|2 dσ.

Proof of Lemma C.4:
The proof is straightforward and obeys to the same arguments used before. The only non null trace
concerns the factor in −H ′ = ∆τVn.

D Computing u′

In this section, we focus on the computation of the trace of E(1) introduced in Section 4.1. We recall
that t 7→ (λ(t), u(t, ·)) is solution of

∆u = 0 in Tt(BR),
−β∆τu+ ∂nu− λ(t)u = 0 on ∂Tt(BR).

(57)

To compute the second derivative, one must know u′ = u′(0). For the reader convenience, we recall
the problem (36) solved by u′.

∆u′ = 0 in BR,

−β∆τu
′ + ∂nu

′−λv′ = β∆τ (Vn∂nu)− βdivτ
(
Vn(2D2b−HId)∇τu

)
+ divτ (Vn∇τu)− λ′u+ λVn(∂nu+Hu) on ∂BR.
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First, Fredholm’s alternative insures the existence of a unique harmonic function ũj orthogonal to the
eigenfunctions u1, u2, . . . , ud and satisfying on ∂BR the boundary condition

−β∆τ ũj + ∂nũj − λũj = β
[
∆τ [Vn∂nuj ] + divτ [Vn(HId − 2D2b) · ∇τuj ]

]
+divτ [Vn∇τuj ] + λ′uj + λVn(∂nuj +Huj). (58)

It follows that

u′ =
d∑
j=1

c̃juj +
m∑
j=1

cj ũj (59)

for some cj , c̃j when j = 1, . . . , d. We point out that the (cj) are the same coefficients as the decom-
position of u in the basis (uj) of the eigenspace associated to λ: u = c1u1 + · · ·+ cdud.

Remark D.1 We recall that we only need the terms ũj: we inject this decomposition of u′ in E(1):

E(1)φ = −2
d∑
j=1

c̃j

[ ∫
∂BR

Vn∂nuj∂nφ dσ + 2
R+ β(d− 3)

R

∫
∂BR

Vn∇τuj .∇τφ dσ
]

−2
m∑
j=1

cj

[ ∫
∂BR

Vn∂nũj∂nφ dσ + 2
R+ β(d− 3)

R

∫
∂BR

Vn∇τ ũj .∇τφ dσ

− 2λ

∫
∂BR

VnHujφ dσ − 2λ

∫
∂BR

VnHũjφ dσ
]
.

By construction the first sum cancels and we simply get

E
(1)
jk = 2

∫
∂Ω
Vn

(
− ∂nũj∂nuk −Hλũjuk + (I + β

(
HId − 2D2b)

)
∇τ ũj .∇τuk

)
dσ

D.1 Explicit resolution of (58) to compute ũj

Let us now compute ũj solution of (58). This step consists in technical computations. For the
completeness of the presentation, we present the case of dimension three, we will then simply state
the results in dimension two. From now on, we do not consider the case d ≥ 4 for technical reasons.

D.1.1 Explicit representation of ũj in the case d = 2.

We illustrate the computation of the elements ũi, i = 1, 2 in the case d = 2. The eigenfunctions are
the normalized coordinates functions that is (u1, u2) given by

u1(r, θ) = r
cos θ
√
πR3

and u2(r, θ) = r
sin θ
√
πR3

.

We have

Lemma D.2 Let V be a deformation of normal component Vn = Rk(v
(k)
1 cos kθ + v

(k)
2 sin kθ), then

ũ1(r, θ) =
rk+1

2
√
πR

7
2

1− k
k

[
v

(k)
1 cos (k + 1)θ + vk2 sin (k + 1)θ

]
(60)

+
rk−1

2
√
πR

3
2

1 + k

k − 2

[β(2− k) +R

kβ +R

][
v

(k)
1 cos (k − 1)θ + vk2 sin (k − 1)θ

]
42



and

ũ2(r, θ) =
rk+1

2
√
πR

7
2

1− k
k

[
− v(k)

2 cos (k + 1)θ + vk1 sin (k + 1)θ
]

(61)

+
rk−1

2
√
πR

3
2

1 + k

k − 2

[β(2− k) +R

kβ +R

][
v

(k)
2 cos (k − 1)θ − vk1 sin (k − 1)θ

]
In order to justify these formulae, one has to compute a, b, c, d the coefficients

ũj = a(k) cos (k + 1)θ + b(k) sin (k + 1)θ + c(k) cos (k − 1)θ + d(k) cos (k − 1)θ

such that ũj satisfies (58) with ui =
xi

‖ xi ‖L2(∂BR)
. We left the tedious computations to the reader.

D.1.2 Explicit representation of ũj in the case d = 3

We begin with the case where Vn = rlY m
l and ϕp = rY p

1 where −l ≤ m ≤ l and −1 ≤ p ≤ 1. We
introduce the coefficients:

C
(l,1,m,p)
l−1,p = (−1)m+p

√
3(2l − 1)(2l + 1)

4π

(
l 1 l − 1
m p −m− p

)(
l 1 l − 1
0 0 0

)
,

and

C
(l,1,m,p)
l+1,p = (−1)m+p

√
3(2l + 1)(2l + 3)

4π

(
l 1 l + 1
m p −m− p

)(
l 1 l + 1
0 0 0

)
,

where we use the Wigner 3j symbol and Clebsch-Gordan coefficients. We set α = β/R in order to
obtain an adimensional constant.

Lemma D.3 Let l 6= 0 be a natural integer and let −l ≤ m ≤ l. Let Vn = rlY m
l and up = rY p

1 where
−1 ≤ p ≤ 1. The unique solution of (58) that is orthogonal to Span(Y −1

1 , Y 0
1 , Y

1
1 ) is given by

ũp = a
(l,1,m,p)
l−1,p,α rl−1Y m+p

l−1 + a
(l,1,m,p)
l+1,p,α

rl+1

R2
Y m+p
l+1

where

a
(l,1,m,p)
l−1,p,α =

l + 2

l − 2

1 + α(3− l)
1 + α(1 + l)

C
(l,1,m,p)
l−1,p and a

(l,1,m,p)
l+1,p,α =

l − 1

l

1 + α(4 + l)

1 + α(3 + l)
C

(l,1,m,p)
l+1,p .

Proof of Lemma D.3:
We first decompose the right hand side of (58) into the basis of spherical harmonics. Taking into
account that (

l1 l2 L
0 0 0

)
= 0

whenever (l1, l2, L) satisfies the triangular inequality and l1 + l2 + L is odd, we get

βVn∂nup = βRlY m
l Y p

1 = βRl
[
C

(l,1,m,p)
l−1,p Y m+p

l−1 + C
(l,1,m,p)
l+1,p Y m+p

l+1

]
and then

β∆τ (Vn∂nup) = αRl−1
[
l(1− l)C(l,1,m,p)

l−1,p Y m+p
l−1 − (l + 1)(l + 2)C

(l,1,m,p)
l+1,p Y m+p

l+1

]
.
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We also have

∇τVn.∇τup =
1

2
[∆τ (Vnup)− Vn∆τup − up∆τVn]

=
Rl−1

2

[
l(1− l)C(l,1,m,p)

l−1,p Y m+p
l−1 − (l + 1)(l + 2)C

(l,1,m,p)
l+1,p Y m+p

l+1

+ 2 C
(l,1,m,p)
l−1,p Y m+p

l−1 + 2 C
(l,1,m,p)
l+1,p Y m+p

l+1

+ l(l + 1)C
(l,1,m,p)
l−1,p Y m+p

l−1 + l(l + 1) C
(l,1,m,p)
l+1,p Y m+p

l+1

]
= Rl−1

[
(l + 1)C

(l,1,m,p)
l−1,p Y m+p

l−1 − l C(l,1,m,p)
l+1,p Y m+p

l+1

]
.

Since divτ Vn∇τup = ∇τVn.∇τup + Vn∆τup, it comes

divτ Vn∇τup = Rl−1
[
(l − 1)C

(l,1,m,p)
l−1,p Y m+p

l−1 − (l + 2) C
(l,1,m,p)
l+1,p Y m+p

l+1

]
.

Hence, gathering the various terms in the right hand side of (58), we see that ũp is solution of

−β∆τ ũp + ∂nũp − λ2ũp =

Rl−1
[
(l + 2)(1 + α(3− l))C(l,m,1,p)

l−1,p Y m+p
l−1 + (1− l)(1 + α(4 + l))C

(l,m,1,p)
l+1,p Y m+p

l+1

]
.

After identification, we obtain:

ũp = a
(l,1,m,p)
l−1,p,α rl−1Y m+p

l−1 + a
(l,1,m,p)
l+1,p,α

rl+1

R2
Y m+p
l+1 ,

where the coefficients a
(l,1,m,p)
l±1,p,α are defined in Lemma D.3.

As a corollary, we deduce the general case for Vn.

Corollary D.4 If

Vn =

∞∑
l=2

rl
l∑

m=−l
vl,mY

m
l and up =

1∑
p=−1

αpY
p

1 ,

then

ũp =

∞∑
l=2

l∑
m=−l

1∑
p=−1

αpvl,m

[
a

(l,1,m,p)
l−1,p,α rl−1Y m+p

l−1 + a
(l,1,m,p)
l+1,p,α

rl+1

R2
Y m+p
l+1

]
.

D.2 The explicit expression of the trace of E(1)

We leave the tedious but easy computations of the case d = 2 to the reader; the obtained result is
written in (46). We focus here on the much more technical case d = 3.
We set uj = K(R)(αi−1Y

−1
1 + αi0Y

0
1 + αi1Y

1
1 ) for 1 ≤ j ≤ 3 where

α1
−1 = 1/

√
2, α1

0 = 0, α1
1 = 1/

√
2,

α2
−1 = 0, α2

0 = 1, α2
1 = 0,

α3
−1 = −i/

√
2, α3

0 = 0, α3
1 = i/

√
2.
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On the sphere in dimension 3, the deviatoric part of the curvature cancels and the entries of E(1) are

Tr(E(1)) =
3∑
j=1

E
(1)
jj where E

(1)
jj =

∫
∂Ω
Vn

(
− ∂nũj∂nuj −Hλũjuj +∇τ ũj .∇τuj

)
dσ,

where each ũj corresponding to uj is computed thanks to Corollary D.4.
We first state a technical result to perform this summation. We postpone its proof to the end of the
section.

Lemma D.5 Let Vn = RlY m
l , −l ≤ m ≤ l and

ψ = rY p
1

for −1 ≤ p ≤ 1. Let m′ and p′ be integer such that −l ≤ m′ ≤ l and −1 ≤ p′ ≤ 1 and suppose

ψ̃ = a rl−1Y m′+p′

l−1 + b
rl+1

R2
Y m′+p′

l+1 .

Then ∫
∂BR

Vn

(
− ∂nψ̃∂nψ −Hλψ̃ψ +∇τ ψ̃.∇τψ

)
dσ

= −a (4α+ 2l) R2l−1

∫
∂B1

Y m′+p′

l−1 Y m
l Y p

1 − b (4α+ 2) R2l−1

∫
∂B1

Y m′+p′

l+1 Y m
l Y p

1 .

As a consequence, we get for j = 1, 2, 3

E
(1)
jj = − K(R) R2l+1

(4α+ 2l)
l + 2

l − 2

1 + α(3 + l)

1 + α(1 + l)

l∑
m=−l

1∑
p=−1

|αjp|2 |vl,m|2
(∫

∂B1

Y m+p
l−1 Y m

l Y p
1

)2

+ (4α+ 2)
l − 1

l

1 + α(4 + l)

1 + α(3 + l)

l∑
m=−l

1∑
p=−1

|αjp|2 |vl,m|2
(∫

∂B1

Y m+p
l+1 Y m

l Y p
1

)2
 .

We are now in position to prove Proposition 4.3 concerning the trace of E(1) in dimension d = 3.

Proof of Proposition 4.3:

We have to sum the E
(1)
jj obtained before the statement of Proposition 4.3. By the normalization

condition
∑

j |α
j
p|2 = 1, our main task is to compute the sum over p = −1, 0, 1 of the integrals

involving three spherical harmonics. The values of this type of integral is recalled in Propositions B.2
and B.3. Elementary computations then give

l∑
m=−l

1∑
p=−1

(∫
∂B1

Y m+p
l−1 Y m

l Y p
1

)2

=
3

4π

l

2l + 1
and

l∑
m=−l

1∑
p=−1

(∫
∂B1

Y m+p
l+1 Y m

l Y p
1

)2

=
3

4π

l + 1

2l + 1
.
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Proof of Lemma D.5:
We compute:

−Vn∂nψ̃∂nψ = −R2l−1
[
a(l − 1)Y m′+p′

l−1 + b(l + 1)Y m′+p′

l+1

]
Y m
l Y p

1 ,

−λHVnψ̃ψ = −R2l−1(4α+ 2)
[
aY m′+p′

l−1 + bY m′+p′

l+1

]
Y m
l Y p

1 ,

We have also∫
∂BR

Vn∇τ ψ̃.∇τψ =
1

2

∫
∂BR

Vn

[
∆τ (ψ̃ψ)− ψ∆τ ψ̃ − ψ̃∆τψ

]
= − 1

2
l(l + 1) R2l−1

∫
∂B1

(aY m′+p′

l−1 + bY m′+p′

l+1 )Y m
l Y p

1

+R2l+1

∫
∂B1

(aY m′+p′

l−1 + bY m′+p′

l+1 )Y m
l Y p

1

+
1

2
R2l−1

∫
∂B1

[
a l(l − 1) Y m′+p′

l−1 + b (l + 1)(l + 2) Y m′+p′

l+1

]
Y m
l Y p

1

= R2l−1

∫
∂B1

[
a (l − 1) Y m′+p′

l−1 + b (l + 2) Y m′+p′

l+1

]
Y m
l Y p

1 .

We obtain the result by summing the three terms.

E Shape Derivatives of Steklov and Laplace-Beltrami eigenvalues
problem

The following result is obtained by taking β = 0 in Theorem 1.4.

Theorem E.1 [Steklov eigenvalues] We distinguish the case of simple and multiple eigenvalue.

• If λ= λk(Ω) is a simple eigenvalue of the Steklov problem and u an associated eigenfunction,
then the application t→ λ(t) = λk((I + tV )(Ω)) is differentiable and the derivative at t = 0 is

λ′(0) =

∫
∂Ω
Vn

(
|∇τu|2 − |∂nu|2 − λH|u|2

)
dσ.

The shape derivative u′of the eigenfunction satisfies

∆u′ = 0 in Ω,

∂nu
′−λu′ = divτ (Vn∇τu)− λ′(0)u+ λVn(∂nu+Hu) on ∂Ω.

• Let λ be a multiple eigenvalue of order m ≥ 2. Let (uj) for 1 ≤ j ≤ m denote the eigenfunctions
associated to λ. Then there exists m functions t 7→ λk(t), k = 1, . . . ,m defined in a neighborhood
of 0 such that

– λk(0) = λ,

– for every t in a neighborhood of 0, λk(t) is an Steklov eigenvalue of Ωt = (I + tV )(Ω),
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– the functions t 7→ λk(t), k = 1, . . . ,m admit derivatives which are the eigenvalues of the
m×m matrix M= MΩ(Vn) of entries (Mij) defined by

Mjk =

∫
∂Ω
Vn

(
− ∂nuj∂nuk −Hλujuk +∇τuj .∇τuk

)
dσ.

The following result is obtain by taking β → +∞ in Theorem 1.4.

Theorem E.2 [Laplace-Beltrami eigenvalues] We distinguish the case of simple and multiple eigen-
value.

• If λ= λk(Ω) is a simple eigenvalue of the Laplace-Beltrami problem and u an associated eigen-
function, then the application t→ λ(t) = λk((I + tV )(Ω)) is differentiable and the derivative at
t = 0 is

λ′(0) =

∫
∂Ω
Vn

(
(H Id − 2D2b)∇τu.∇τu

)
dσ.

The shape derivative v′of the eigenfunction satisfies

∆u′ = 0 in Ω,

−∆τu
′ = ∆τ (Vn∂nu)− divτ

(
Vn(2D2b−HId)∇τu

)
− λ′(0)u on ∂Ω.

• Let λ be a multiple eigenvalue of order m ≥ 2. Let (uj) for 1 ≤ j ≤ m denote the eigenfunctions
associated to λ. Then there exists m functions t 7→ λk(t), k = 1, . . . ,m defined in a neighborhood
of 0 such that

– λk(0) = λ,

– for every t in a neighborhood of 0, λk(t) is a Laplace-Beltrami eigenvalue of Ωt = (I +
tV )(Ω),

– the functions t 7→ λk(t), k = 1, . . . ,m admit derivatives which are the eigenvalues of the
m×m matrix M= MΩ(Vn) of entries (Mij) defined by

Mjk =

∫
∂Ω
Vn

( (
HId − 2D2b

)
∇τui.∇τuj

)
dσ.
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