Diameter constraint in Shape Optimization

Antoine Henrot, Jimmy Lamboley, Yannick Privat
University Paris Dauphine, CEREMADE

September 2013

Outline

Outline

Main question

We consider the Shape Optimization problem

$$
\min \left\{J(\Omega), \quad \Omega \in \mathcal{S}_{a d}, \quad \operatorname{Diam}(\Omega)=\alpha\right\}
$$

where $\mathcal{S}_{\text {ad }}$ is a class of admissible convex domains in \mathbb{R}^{2}, and J is shape functional (rotation and translation invariant).

- Existence of a solution?
- Geometrical description of the solution.
- Numerical computation of the solution.

Examples

- Isodiametrical inequality:

$$
\frac{|\Omega|}{\operatorname{Diam}(\Omega)^{N}} \leq \frac{\left|B_{1}\right|}{2^{N}} .
$$

- Spectral Gap theorem :

$$
\lambda_{2}(\Omega)-\lambda_{1}(\Omega) \geq \frac{3 \pi^{2}}{\operatorname{Diam}(\Omega)^{2}}
$$

\square B. Andrews, J. Clutterbuck, Proof of the fundamental gap conjecture, J. Amer. Math. Soc. 24 (2011), 899-916.

- Another problem involving eigenvalues :

$$
\min \left\{\sqrt{\lambda_{1}(\Delta, \Omega)}-\lambda_{1}\left(\Delta_{\infty}, \Omega\right), \Omega \text { convex, } \operatorname{Diam}(\Omega)=\alpha\right\}
$$

M. Belloni, E. Oudet, The Minimal Gap Between $\Lambda_{2}(\Omega)$ and $\Lambda_{\infty}(\Omega)$ in a Class of Convex Domains, J. Convex Anal. 15 (2008), no. 3, 507-521.

Trivia

$$
\min \{J(\Omega), \quad \Omega \text { convex, } \quad \operatorname{Diam}(\Omega)=\alpha\}
$$

- If J is monotone increasing for inclusion, then solutions are segments.

$$
\text { Examples : } J=|\cdot|, J=\text { Per, } J=-\lambda_{k} \text {. }
$$

Trivia

$$
\min \{J(\Omega), \Omega \text { convex, } \operatorname{Diam}(\Omega)=\alpha\}
$$

- If J is monotone increasing for inclusion, then solutions are segments.

$$
\text { Examples : } J=|\cdot|, J=\text { Per, } J=-\lambda_{k} \text {. }
$$

- If J is monotone decreasing for inclusion, then solutions are of constant width α and we have
$\min \{J(\Omega), \operatorname{Diam}(\Omega)=\alpha\}=\min \{J(\Omega), \Omega$ convex of constant width $\alpha\}$
Examples: $J=-|\cdot|, J=-$ Per, $J=\lambda_{k}$.

Examples

- Generalization of the Gap functional : what shape realizes the minimum in :

$$
\inf \left\{\gamma\left[-\lambda_{1}(\Omega)\right]+\lambda_{2}(\Omega), \Omega \text { open and convex, } \operatorname{Diam}(\Omega)=\alpha\right\}
$$

where $\gamma>0$.

- Some reverse isoperimetric inequality : what shape realizes the minimum in :

$$
\min \{\gamma|\Omega|-\operatorname{Per}(\Omega), \Omega \text { convex, } \operatorname{Diam}(\Omega)=\alpha\} .
$$

Outline

Parametrization of convex domain with its support function

Figure : a convex domain C

Definition :

$h_{C}: \theta \in \mathbb{T} \mapsto \max _{c \in C}\left\langle c,\binom{\cos \theta}{\sin \theta}\right\rangle$.
Geometrical interpretation : distance between the support line orthogonal to $d=(\cos \theta, \sin \theta)$ and the origin.

Examples

- Segment $\Sigma=\{0\} \times[-1,1]: h_{\Sigma}(\theta)=|\sin \theta|$
- Rectangle R with corners $(\pm a, \pm b): h_{R}(\theta)=a|\cos \theta|+b|\sin \theta|$
- Ellipse centered at 0 and semi-axes $a, b: h_{\mathcal{E}}(\theta)=\sqrt{a^{2} \cos ^{2} \theta+b^{2} \sin ^{2} \theta}$.

Second order arguments

Reformulation

The problem is now of the form

$$
\min \left\{j(h), \quad h^{\prime \prime}+h \geq 0, \max _{\theta \in \mathbb{T}}\{h(\theta)+h(\theta+\pi)\}=\alpha\right\} .
$$

where $j\left(h_{\Omega}\right):=J(\Omega)$.

Example

$$
\gamma|\Omega|-P(\Omega)=\frac{\gamma}{2} \int_{\mathbb{T}}\left(h_{\Omega}^{2}-h_{\Omega}^{\prime 2}\right)-\int_{\mathbb{T}} h_{\Omega} .
$$

Remark : there is some concavity for j.

Second order arguments

Early work on convexity constraint : Theorem

$$
\min \left\{j(h), h^{\prime \prime}+h \geq 0\right\}
$$

Theorem (L., Novruzi, Pierre, 2011)
Let h be a minimizer. We assume j smooth and locally concave in the sense that, $j^{\prime \prime}(h)(v, v)<0$, for any v having a small enough support.

Then $h^{\prime \prime}+h$ is a sum of Dirac masses inside the constraint.

Second order arguments

Early work on convexity constraint : Examples

- Reverse isoperimetry in an annulus :

$$
\min \left\{\gamma|\Omega|-P(\Omega), \Omega \text { convex, } D_{a} \subset \Omega \subset D_{b}\right\} \text {. }
$$

园
J. Lamboley, A. Novruzi Polygon as optimal shapes with convexity constraint, SIAM Control Optim. 48, no. 5, (2009), 3003-3025
\square
C. Bianchini, A. Henrot, Optimal sets for a class of minimization problems with convex constraints, J. Convex Anal. 19 (2012), no. 2.

- Mahler problem in 2d :

$$
\min \left\{|\Omega|\left|\Omega^{\circ}\right|, \quad \Omega \text { convex }\right\} \text { is achieved for } \Omega=[-1,1]^{2}
$$

\square E. Harrell, A. Henrot, J. Lamboley, Analysis of the Mahler volume, Preprint

- Faber-Krahn versus reverse isoperimetry :

$$
\min \left\{\lambda_{1}(\Omega)-P(\Omega), \Omega \text { convex } \subset D,|\Omega|=V_{0}\right\}
$$

the boundary $\partial \Omega^{*} \cap D$ is polygonal (difficulty : estimate $\lambda_{1}^{\prime \prime}(\Omega)$)

J. Lamboley, A. Novruzi, M. Pierre, Regularity and singularities of optimal convex shapes in the plane, Arch. Ration. Mech. Anal. 205, no. 1 (2012), 311-343.

Second order arguments

Application to diameter constraint

$$
\min \{J(\Omega), \Omega \text { convex, } \operatorname{Diam}(\Omega)=\alpha\}, j\left(h_{\Omega}\right)=J(\Omega)
$$

Theorem (Henrot, L., Privat, 2013)
Let Ω be a minimizer. We assume j smooth and locally concave. Then any connected component of

$$
\partial \Omega \backslash\{x \in \partial \Omega, x \text { belongs to a diameter of } \Omega\}
$$

is made of a finite number of segments.

First order argument

$$
\min \{J(\Omega), \Omega \text { convex, } \operatorname{Diam}(\Omega)=\alpha\}, j\left(h_{\Omega}\right)=J(\Omega)
$$

Theorem (Henrot, L., Privat, 2013)
Let Ω be a minimizer. We assume j is of integral form

$$
j(h)=\int_{\mathbb{T}} G\left(h, h^{\prime}\right),
$$

and

$$
\partial_{1} G(\alpha, 0)>0 \quad \text { or } \quad \partial_{1} G(\alpha, 0)>\alpha \partial_{22} G(\alpha, 0)
$$

Then Ω saturates the diameter constraint at a finite number of points.

Outline

Reverse isoperimetric estimate

For $\gamma>0$, we seek to minimize

$$
J_{\gamma}(\Omega)=\gamma|\Omega|-\operatorname{Per}(\Omega) .
$$

among the sets Ω convex such that $\operatorname{Diam}(\Omega)=1$.

Results

$$
j(h)=\gamma \int_{\mathbb{T}}\left(h^{2}-h^{\prime 2}\right)-\int_{\mathbb{T}} h .
$$

Theorem

Let $\gamma>0$ and Ω_{γ} be a solution. Then

- every point of $\partial \Omega_{\gamma}$ is either diametrical or belongs to a segment of $\partial \Omega_{\gamma}$.
- If $\gamma>1 / 2$, then Ω_{γ} is a polygon with diametrical corners.
- The segment is a solution if and only if $\gamma \geq \frac{4}{\sqrt{3}}$.
- If $\gamma \leq \frac{1}{2}$, then the Reuleaux triangle is the unique minimizer.

Proof : The first two statements : application of the previous section...

Large values of γ

We start with an under-statement : for $\gamma>4$ then the segment is the unique solution.

- We fix a diameter $[A B]$ chosen as an axis, and the upper part of the shape is a graph of a concave function u

$$
\left\{(x, u(x)), x \in\left[-\frac{1}{2}, \frac{1}{2}\right]\right\} .
$$

- We consider the perturbation $T_{t}:(x, y) \mapsto(x,(1-t) y)$ for $t \geq 0$ (affinity).
- We write the optimality condition for $t \mapsto J\left(T_{t}\left(\Omega_{\gamma}\right)\right)$ minimized in [0, 1] by $t=0$, this leads to

$$
\int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{f^{\prime 2}(x)}{\sqrt{1+f^{\prime 2}(x)}} d x \geq \gamma \int_{-\frac{1}{2}}^{\frac{1}{2}} f(x) d x
$$

- We prove that for every $f \in H_{0}^{1}\left(-\frac{1}{2}, \frac{1}{2}\right)$ concave,

$$
\int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{f^{\prime 2}(x)}{\sqrt{1+f^{\prime 2}(x)}} d x \leq 4 \int_{-\frac{1}{2}}^{\frac{1}{2}} f(x) d x
$$

Large values of γ

\hookrightarrow The previous statement is not optimal.
With more efforts, we can actually prove
Proposition
If $\gamma \geq \frac{4}{\sqrt{3}}$, then :

$$
\gamma|\Omega|-\operatorname{Per}(\Omega) \geq-2,
$$

for every Ω convex of diameter 1 .
This is no longer true for $\gamma<\frac{4}{\sqrt{3}}$.
In other words, the segment is solution if and only if $\gamma \geq \frac{4}{\sqrt{3}}$.

Proof (optimality of the segment Σ)

Step 1 : shape reformulation

Σ is solution if and only if

$$
\gamma \geq \gamma^{*}:=\sup \left\{\frac{P(\Omega)-P(\Sigma)}{|\Omega|}, \Omega \text { convex }, \operatorname{Diam}(\Omega)=1\right\}
$$

Step 2: 1-sided shape reformulation
We denote $\Sigma=[A B]$ with $A=(-1 / 2,0), B=(1 / 2,0)$, and $\mathbb{H}=\mathbb{R} \times \mathbb{R}_{+}$. Then,

$$
\gamma^{*}=\sup \left\{\frac{P_{H H}(\Omega)-1}{|\Omega|}, \Omega \text { convex }, \Sigma \subset \Omega \subset T\right\} \text {, }
$$

where $T=\{X \in \mathbb{H}, d(X, A) \leq 1, d(X, B) \leq 1\}$.

Proof (optimality of the segment Σ)

Step 3 : Angle reformulation in the class of polygons

We optimize the number p and the angles $\theta_{0}, \theta_{1}, \ldots, \theta_{p-1}$ at the left and similarly at the right.
\hookrightarrow We end up with $p \leq 1$.

Proof (optimality of the segment Σ)

Step 4 : optimization in the class of quadrilateral

We optimize the position of L and R.
\hookrightarrow The solutions are $L=R=D$ (equilateral triangle) or $[L=A, R=B]$ (segment)

Small values of γ

- $\gamma=0$. So $J(\Omega)=-\operatorname{Per}(\Omega) \geq-\pi$ and any set of constant width is optimal.
- If $\gamma \leq \frac{1}{2}$,
- with a non-local perturbation, we prove that Ω_{γ} has no segment in its boundary.
- Using the first point in our Theorem, it implies Ω_{γ} is of constant width.
- We conclude with the Blaschke-Lebesgue Theorem.

Transition value $\gamma \in\left(\frac{1}{2}, \frac{4}{\sqrt{3}}\right)$, incomplete

Let Ω_{γ} be an optimal shape (which is a polygon).

- Let $[A B]$ be a diameter. Then either A or B is diametrically opposed to at least two points.
Proof : order two argument.
- Situations which remains to be excluded :

Perspectives

- Complete the description for $\gamma \in\left(\frac{1}{2}, \frac{4}{\sqrt{3}}\right)$.
- Replace |. | by λ_{1}.
- Replace Per by λ_{1}.
- Dimension 3!

