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Abstract

In this paper we investigate continuity properties of first and second order shape derivatives of func-
tionals depending on second order elliptic PDE’s around nonsmooth domains, essentially either Lipschitz
or convex, or satisfying a uniform exterior ball condition. We prove rather sharp continuity results for
these shape derivatives with respect to Sobolev norms of the boundary-traces of the displacements. With
respect to previous results of this kind, the approach is quite different and is valid in any dimension N ≥ 2.
It is based on sharp regularity results for Poisson-type equations in such nonsmooth domains. We also
enlarge the class of functionals and PDEs for which these estimates apply. Applications are given to qual-
itative properties of shape optimization problems under convexity constraints for the variable domains or
their complement.
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1 Introduction

In this paper, we focus on regularity estimates for first and second order shape derivatives around non-
smooth subsets of RN (N ≥ 2) for energy functionals involving classical elliptic partial differential equa-
tions (PDE). For instance, we address the following question: given a bounded Lipschitz or convex subset
Ω0 ⊂ RN , we wonder what is the optimal regularity of the shape derivatives

ξ → E′(Ω0)(ξ), ξ → E′′(Ω0)(ξ, ξ),

where E′(Ω0), E′′(Ω0) respectively denote the first and second shape derivatives around Ω0 of the shape
functional Ω 7→ E(Ω) =

∫
ΩK(x, UΩ,∇UΩ)dx, K(x, ·, ·) a quadratic polynomial and UΩ = UΩ(x) the solution

of an elliptic PDE set in Ω (see Sections 2.1, 2.2 for the precise definitions).
This question, interesting for itself, is in particular motivated by the qualitative analysis of shape opti-

mization problems of the form

min{J(Ω), Ω ⊂ RN convex, Ω ∈ Oad}, (1)

where Oad is a set of admissible subsets of RN and J : Oad → R is a shape functional which itself involves
shape functionals Ω 7→ E(Ω) of the above type.
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The following 2-dimensional example was considered in [20] among other cases:

J(Ω) = R(E(Ω), |Ω|)− P (Ω), Oad =
{

Ω ⊂ R2, open and ∂Ω ⊂ {x, a ≤ |x| ≤ b}
}
, (2)

where R : R2 → R is a smooth function, E(Ω) is a shape functional related to a PDE, |Ω| is the Lebesgue
measure of Ω, P (Ω) its perimeter and (a, b) ∈ [0,∞]2. It was proved (see [20, Theorem 2.9, Theorem
2.12 and Corollary 2.13] and also Section 4 in the present paper) that if the second order shape derivative
ξ 7→ E′′(Ω0)(ξ, ξ) around any bounded convex subset Ω0 is continuous with respect to a norm strictly weaker
than H1(∂Ω0), then optimal shapes of (1) are polygonal in {x, a < |x| < b}. In [20], the authors prove that
such a continuity holds in the two specific examples: when the functional E(Ω) is the Dirichlet energy of
Ω -that is K = K(x, U, q) = ‖q‖2 − 2f(x) and UΩ is solution of the associated Dirichlet problem, or when
E(Ω) is the first eigenvalue of the Dirichlet-Laplacian on Ω. More precisely, it is proved in [20] that the
second order shape derivative of E(·) is, in these two examples and around any open convex domain Ω0,
continuous for the H1/2(∂Ω0)∩L∞(∂Ω0) topology (and therefore continuous for the H1/2+ε(∂Ω0)-topology
for any ε > 0). The proof of this continuity strongly relies on the 2-dimensional environment. As explained
below, we prove in this paper that even the full H1/2(∂Ω0)-continuity holds in this case and even in any
dimension (see iii) in Corollary 2.6). Note that this continuity is optimal since, for regular convex domains
Ω0, if for instance f = 0 on ∂Ω0, then E′′(Ω0) satisfies

E′′(Ω0)(ξ, ξ) ≥ C‖ξ‖2
H1/2(∂Ω0)

, (3)

for any displacement ξ which is orthogonal to ∂Ω0. This estimate (3) may be obtained by using (5.101) and
Section 5.9.6. in [12].

In Problem (1), only convex domains are involved. However, it is also interesting to consider shape
optimization problems where the PDE is set in an ”exterior domain” like

min{J(RN \ Ω), Ω ⊂ RN convex, Ω ∈ Oad}, (4)

where Oad is as before, but now J involves E(Ω) =
∫
RN\ΩK(UΩ,∇UΩ) where UΩ is solution of an elliptic

PDE set on the exterior domain RN \Ω, which is here the complement of a convex set. It is well-known that
solutions of such PDE’s are not so regular as in convex domains. These exterior domains are nevertheless
Lipschitz domains and this is one main reason why it is interesting to look at the case of Lipschitz domains
even for shape optimization problems involving convex domains like (4).

In this paper, we use a different strategy to estimate shape derivatives, and we generalize and improve
the above-mentioned shape derivative estimates in the following directions.

• A most important generalization concerns the dimension of shapes. In [20], the result and the strategy
were restricted to planar shapes. Thanks to our new strategy, we are able to provide estimates of
first and second order shape derivatives in any dimension. This is an important breakthrough for
the study of problems like (1) in dimension 3 or higher.

• We generalize the class of PDE energy-functionals in several ways (see Section 2.1 for precise defini-
tions): the underlying elliptic operator is now a general linear elliptic operator with variable coeffi-
cients, the energy is any quadratic integral functional of the state function and its gradient (and in
particular does not need to be the energy associated to the PDE defining the state function) and more
importantly, we consider both interior and exterior PDEs. This last point motivates the next item.

• We generalize the classes of shapes we consider. Indeed we do not only consider the class of convex
domains, but we investigate two wider classes, namely the class of Lipschitz domains and the class
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of Lipschitz domains satisfying a uniform exterior ball condition (we refer to these domains as semi-
convex domains, see Definition 2.1). Even if we are interested in applications about convex domains, as
we pointed out in the previous point, we are interested in PDEs defined in the exterior of some convex
domain. Whence the consideration of the above kinds of boundary regularity. Estimates for semi-
convex domains are the same as those for convex domains. They are weaker for Lipschitz domains,
but probably rather sharp and they are strong enough to be used for our applications (see Section 4)
which are interesting for themselves.

• Even in the particular case where E is exactly the Dirichlet energy and Ω is a 2-dimensional convex
domain, we improve the result of [20] in obtaining that E′′(Ω) is continuous in the H1/2(∂Ω)-norm,
instead of H1/2(∂Ω)∩L∞(∂Ω). As noticed above, this result is sharp since one cannot expect continuity
in an Hs-norm for s < 1/2 (even if Ω is smooth). This specific result is actually valid as soon as the
energy is the one associated to the PDE defining the state function, and is valid in any dimension and
for any semi-convex domain.

The method for proving the shape derivative estimates is new. In order to study the derivative at a set
Ω0, we first prove adequate estimates of the “material derivative” Û ′θ, where θ : RN → RN is a smooth

vector field, ′ denotes the derivative with respect to θ, Ûθ = Uθ ◦ (I + θ), and Uθ is the state solution of the
related PDE in the domain Ωθ = (I+θ)(Ω0). For our purpose, it appears that it is much more efficient than
using the usual shape derivative U ′θ. We use the well-known property (see for example [12]) that without any

regularity of Ω, the map θ 7→ Ûθ is in general differentiable (even C∞ if the involved coefficients are smooth)
when seen as a H1

0 (Ω0)-valued function (whereas θ 7→ U ′θ is differentiable only when seen as an L2-valued
function). We show how the regularity of the shape derivatives essentially depends on the regularity of the
state function U0. Thus we shall use some sharp regularity results for the solution of a linear second order
PDE in a Lipschitz or semi-convex domain, in particular W 1,p-regularity results when the data are in W−1,p

(see Propositions 3.3 and 3.5).
Note that we insisted in this introduction on the second order shape derivative, but we also obtain

estimates of the first order shape derivative which seem to be new as well, in this non-smooth setting.
As an application of these estimates, using the strategy of [19, 20], we prove that any solution Ω0 of (1),

(4) is polygonal, if N = 2 and if E is in one of two classes described above (where E depends on the solution
of a PDE in the interior or the exterior of a convex domain, see more precisely Section 2.1). Also, in higher
dimension, we use our estimates to analyze solutions of the N -dimensional version of Problem (2). We
obtain very strong qualitative properties of optimal shapes, namely that the space of deformations which
leave it convex is actually of finite dimension (see Theorem 4.8). As an easy consequence, we obtain that
any optimal shape has zero Gauss curvature on any open set where the boundary is smooth. Actually, this
”finite dimension” property does contain quite more geometrical information.

This paper is structured as follows. In Section 2 we introduce the notations, the classes of PDE’s under
consideration and state our main results. In Section 3 we prove the estimates of first and second order shape
derivatives. In the last section, we apply these estimates for the analysis of optimal planar convex domains,
which happen to be polygons and we conclude by analyzing the consequence of our estimates for higher
dimensional optimal convex domains.

2 Main results

2.1 Class of energy functionals

We deal with energy functionals E(Ω) of two main forms.
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• Interior PDE: E(Ω) depends on a PDE in the interior of Ω, namely

E(Ω) =

∫
Ω
K(x, UΩ,∇UΩ)dx, (5)

where

K(x, U, q) =
1

2

 N∑
i,j=1

αij(x)qiqj + α00(x)U2

+
N∑
i=1

βi(x)qi + γ(x)U + δ(x), (6)

with smooth enough coefficients α, β, γ, δ, and UΩ solution of

U ∈ H1
0 (Ω), LU := −

N∑
i,j=1

∂j(aij(x)∂iU) +
N∑
i=1

bi∂iU + cU = f, in Ω. (7)

Regularity of the coefficient will be made precise later, but they will satisfy the following throughout
the paper:

∃λ > 0, ∀ξ ∈ RN , ∀x ∈ RN , λ|ξ|2 ≤
N∑

i,j=1

aij(x)ξiξj ≤ λ−1|ξ|2, (8)

∀(i, j) ∈ J1, nK, aij = aji, αij = αji, and c ≥ 0. (9)

Note that the condition αij = αji is not restrictive as, in the case the matrix (αij) is not symmetric,
we can consider αij = 1

2(αij + αji), which is symmetric, and then in (6) take αij instead of αij . Note
also that no ellipticity condition is a priori required on (αij). Actually, our strategy can handle much
more general functional K, see Remark 3.15.

• Exterior PDE: For simplicity, we will restrict ourselves to the model example where

E(Ω) =

∫
Ωe
|∇UΩ|2, (10)

where UΩ ∈ H1,0
0 (Ωe) solves

−∆U = f in Ωe := RN\Ω. (11)

and H1,0
0 (Ωe) is defined (see [26]) as the set of functions of H1,0(Ωe) with zero trace on ∂Ω and

H1,0(Ωe) =

{
U : Ωe 7→ R measurable, ‖U‖2H1,0(Ωe) :=

∫
Ωe

U2

(1 + |x|2)[ln(2 + |x|2)]δ2,N
+ |∇U |2 <∞

}
(12)

with δ2,N = 1 if N = 2 and δ2,N = 0 if N 6= 2.

2.2 Shape derivative estimates

In the whole paper, we consider

Ω0,Ω b BR = B(0, R), connected, open, bounded, (13)
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where R > 0 (and large). We set Θ := W 1,∞
0 (BR,RN ) the Banach space equipped with the usual norm

∀θ ∈ Θ, ‖θ‖1,∞ := sup
x∈BR

{‖θ(x)‖+ ‖Dθ(x)‖}.

Given a shape functional E(·) : Oad → R defined on a family Oad of admissible subsets of RN , we consider

E : Θ→ R, E(θ) := E((I + θ)(Ω0)).

Then, E is said to be shape differentiable of order m ∈ N∗ at Ω0 (resp. of class Cm near Ω0) if and only
if E is m times Fréchet-differentiable at θ = 0 (resp. if and only if E is m times continuously differentiable
in a neighborhood of θ = 0). When it is well-defined, E ′(0) and E ′′(0) are respectively called the first and
second order shape derivative of E at Ω0, and can also be denoted by E′(Ω0) and E′′(Ω0). Their values
at ξ, η ∈ Θ are denoted by E ′(0)(ξ) or E′(Ω)(ξ), E ′′(0)(ξ, η) or E′′(Ω)(ξ, η). They are linear and bilinear
continuous forms on Θ respectively and it is well-known that E′(Ω0), E′′(Ω0) only depend on the trace on
∂Ω0 of the deformations ξ and η (see the proof of Theorem 2.3).

Definition 2.1 A bounded open subset Ω ⊂ RN is said to be semi-convex if it is Lipschitz and satisfies a
uniform exterior ball condition in the following sense: there exists r > 0 such that for any x ∈ ∂Ω, there
exists y ∈ RN with B(y, r) ∩ Ω = {x}.

It is known that a domain is semi-convex if it is locally representable as the graph of a semi-convex function
(see for example [23, Theorem 3.9]), where a function f : C → R is said semi-convex on a convex subset
C of Rn if there exists M ∈ R such that x ∈ C 7→ f(x) + M‖x‖2 is convex. Recall that Ω is said to be
Lipschitz if it is locally representable as the graph of a Lipschitz function.

Remark 2.2 It is easy to check that, if Ω is semi-convex then forR1 small enough, there exist (δ1(R1), σ(R1)) ∈
(0,∞) × (0, 1) with limR1→0 δ1(R1) = 0 such that Ω is a (δ1(R1), σ(R1), R1)-quasi-convex domain in the
sense of [14]. It follows that Ω is a (δ, σ,R)-quasi-convex domain in the sense of [14] for all (δ, σ,R) ∈
[δ1(R1),∞)× (0, k(R)σ(R1)]× (0, R1], with k(R) > 0, k(R1) = 1, limR→0 k(R) = 0.

On the other hand, given a Lipschitz matrix (aij) (i.e. aij ∈ W 1,∞(Ω) ∀i, j = 1, ..., N), then for all
R2 ∈ (0, 1), there exists δ2(R2) ∈ (0,∞) with limR2→0 δ2(R2) = 0 such that A is a (δ2(R2), R2)-vanishing
matrix in the sense of [14]. It follows that A is (δ,R)-vanishing matrix in the sense of [14] for all (δ,R) ∈
[δ2(R2),∞)× (0, R2].

Therefore, we will be able to apply the W 1,p-regularity results proved in Theorem 1.1 of [14] for the
solutions to (7) in quasi-convex domains (see Proposition 3.5). Indeed, given p ∈ (1,∞), we first choose
R1 and R2 small enough so that δ1(R1), δ2(R2) ≤ δ(N, p) as defined in Theorem 1.1 of [14], and Ω is a
(δ1(R1), σ(R1), R1)-quasi-convex and (aij) is (δ(R2), R2)-vanishing. It follows that if R = min{R1, R2} and
σ = k(R)σ(R1) then Ω is a (δ(N, p), σ, R)-quasi-convex and (aij) is (δ(N, p), R)-vanishing.

Let us now present the main results of this paper.

Theorem 2.3 (interior) Let Ω0 be as in (13). For θ ∈ Θ, we denote by Uθ the solution of (7) in Ωθ =
(I + θ)(Ω0) (see Proposition 3.3) and E(θ) = E(Ωθ), where E is given by (5). The following holds.

i) If aij , bi, c, f, αij , βi, γ, δ ∈Wm,∞(BR), m ∈ N∗, then [θ 7→ E(θ)] is of class Cm near θ = 0 ∈ Θ.

In the rest of this statement, we assume the previous hypotheses are satisfied for m = 2.
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ii) Assume Ω0 is Lipschitz and L is of the form (7). Then there exists r1 = r1(Ω0) satisfying r1 ∈ (1, 2)
if N = 2 and r1 ∈ (1, 3) if N ≥ 3 such that, for all r ∈ (r1,∞), there exist Ci = Ci(Ω0, L, f,K, r) with

|E′(Ω0)(ξ)| ≤ C1‖ξ‖W 1−1/r,r(∂Ω0), (14)

|E′′(Ω0)(ξ, ξ)| ≤ C2‖ξ‖2W 1−1/(2r),2r(∂Ω0)
, (15)

for all ξ ∈ Θ.

iii) Assume Ω0 is semi-convex and L is of the form (7). Then (14), (15) hold for all r ∈ (1,∞).

iv) Assume Ω0 is semi-convex, L of the form (7) with L∗ = L and E is exactly its associated energy
(meaning that ∂UK(·, U,∇U) −∇ · ∂qK(·, U,∇U) = LU , for every smooth U). Then (14), (15) hold
for all r ∈ [1,∞).

Proof. This result is a consequence of Theorem 3.13 which provides an estimate in terms of “interior”
norms of ξ, which after replacing p ∈ (2, p1) by r = p/(p− 2) ∈ (r1 := p1/(p1 − 2),∞) gives

|E′(Ω0)(ξ)| ≤ C1‖ξ‖W 1,r(Ω0), |E′′(Ω0)(ξ, ξ)| ≤ C2‖ξ‖2W 1,2r(Ω0). (16)

If Ω0 is semi-convex then we can have any p ∈ (2,∞) which leads to any r ∈ (1,∞), and if moreover L is
self-adjoint and K is the associated energy, then we can have p =∞, r = 1.

Now, we use the well-known fact, that E′(Ω0)ξ, E′′(Ω0)(ξ, ξ) depend only on the values of ξ on ∂Ω0. More
precisely,

ξ, ξ̂ ∈W 1,∞(BR), ξ − ξ̂ ∈W 1,2r
0 (Ω0) ⇒ E′(Ω0)(ξ) = E′(Ω0)(ξ̂), E′′(Ω0)(ξ, ξ) = E′′(Ω0)(ξ̂, ξ̂).

Indeed, let ζn be a sequence in C∞0 (Ω0,RN ) converging to ξ − ξ̂ in W 1,2r(Ω0). Let zn ∈ C1([0,∞) : RN ) be
the solution of

∀t ≥ 0, ∀x ∈ RN , ∂tzn(t, x) = ζn(zn(t, x)), zn(0, x) = x.

Note that zn(t, ·) ∈ Θ (see [17]), and for x in some neighborhood of ∂Ω0, zn(t, x) = x for all t ≥ 0. It follows
that zn(t,Ω0) = Ω0, where zn(t,Ω0) = {zn(t, x), x ∈ Ω0}, and therefore E(zn(t,Ω0)) = E(Ω0) for all t ≥ 0.
In particular

E′(Ω0)(ξ − ξ̂) = lim
n→∞

d

dt |t=0

E(zn(t,Ω0)) = 0,

E′′(Ω0)(ξ − ξ̂, ξ − ξ̂) = lim
n→∞

d2

dt2 |t=0

E(zn(t,Ω0)) = 0.

From this property and (16), we deduce

|E′(Ω0)(ξ)| ≤ C1 inf{‖ξ̂‖W 1,r(Ω0) : ξ̂ ∈W 1,∞(Ω0;RN ), ξ̂ = ξ on ∂Ω0},

and the similar property for E′′(Ω0)(ξ, ξ) with the W 1,2r-norm. We then apply Lemma 3.1 to deduce (14),
(15). �

Remark 2.4 The result i) of Theorem 2.3 a priori implies that E′(Ω0) and E′′(Ω0) are continuous on Θ
for its W 1,∞(Ω0)-norm (as a linear and a bilinear form respectively). Using the previous trace analysis,
we deduce that they are also continuous for the W 1,∞(∂Ω0)-norm. The estimates (14), (15) improve this
a priori information and show that E′(Ω0), E′′(Ω0) are continuous in W 1−1/r,r(∂Ω0) and W 1−1/(2r),2r(∂Ω0)
respectively: note that the regularity gets stronger as r gets smaller.
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In case iv), the estimate (15) is valid with r = 1 (which yields the H1/2-continuity) and cannot be improved
since, as already noticed in the introduction (see (3)), E′′(Ω0) has H1/2-coercivity properties.

Again in case iv), it is interesting to notice that (14) with r = 1 can be stated as E′(Ω0) ∈ (L1(∂Ω0))′ =
L∞(∂Ω0). Again this is sharp in general; if for example E is the Dirichlet energy,

E(Ω) =
1

2

∫
Ω
|∇UΩ|2 −

∫
Ω
f UΩ,

it is well-known that E′(Ω0) = −1
2 |∇UΩ0 |2|∂Ω0

, which indeed belongs to L∞(∂Ω0).

Theorem 2.5 (exterior) Let Ω0 be as in (13) and Lipschitz and let f ∈ Wm,∞(RN ), m ∈ N∗, with
supp(f) b BR. For θ ∈ Θ, let Uθ ∈ H1,0

0 (Ωe
θ) be the solution of (11) in Ωe

θ (see Proposition 3.16) and
let E(θ) = E(Ωθ) with E given by (10). Then E is of class Cm near θ = 0 ∈ Θ. Moreover, there exists
r1 = r1(Ω0) satisfying r1 ∈ (1, 2) if N = 2 and r1 ∈ (1, 3) if N ≥ 3 such that, for any r ∈ (r1,∞), there
exist Ci = Ci(Ω0, U0, R, f, r) with

|E′(Ω0)(ξ)| ≤ C1‖ξ‖W 1−1/r,r(∂Ω0) if m ≥ 1, (17)

|E′′(Ω0)(ξ, ξ)| ≤ C2‖ξ‖2W 1−1/(2r),2r(∂Ω0)
if m ≥ 2, (18)

for any ξ ∈ Θ.

Proof. Similarly to the proof of Theorem 2.3, this result is a consequence of Theorem 3.19, combined with
the trace result of Lemma 3.1. �

Previous estimates can be written using a different range of Sobolev spaces. In the following statement,
we write these estimates in the Hs-norms, which are relevant for our applications (see Section 4).

Corollary 2.6 Let Ω0 be as in (13).

i) Under the same conditions as in ii) of Theorem 2.3, or as in Theorem 2.5, and with r1 = r1(Ω0) as
in these theorems, we have

|E′(Ω0)(ξ)| ≤ C1‖ξ‖Hs(∂Ω0), ∀s ∈ (s1, 1], s1 = min

{
1 , 1− 1

r1
+ (N − 1)

(
1

2
− 1

r1

)+
}
, (19)

|E′′(Ω0)(ξ, ξ)| ≤ C2‖ξ‖2Hs(∂Ω0), ∀s ∈ (s2, 1], s2 = min

{
1 ,

N + 1

2
− N

2r1

}
, (20)

for every ξ ∈ Θ.

ii) Under the same conditions as in iii) of Theorem 2.3, (19) (resp. (20)) holds for every s ∈ (0, 1] (resp.
s ∈ (1/2, 1]).

iii) Under the same conditions as in iv) of Theorem 2.3, (19) (resp. (20)) holds also for s = 0 (resp.
s = 1/2).

Proof. Inequalities (19), (20) follow from (14) and (17) respectively and from the embedding result (21)
recalled below which may be obtained from [31, Th. 1.107]. Indeed, ∂Ω0 is an (N−1)-dimensional Lipschitz
manifold and since we deal with exponents less than 1, these embeddings carry over to Lipschitz manifolds.

∀t1, t2 ∈ [0, 1], ∀ (p1, p2) ∈ [1,∞],[
t1 −

N − 1

p1
> t2 −

N − 1

p2
and t1 > t2

]
=⇒ W t1,p1(∂Ω0) ⊂ W t2,p2(∂Ω0). (21)
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We apply this result with t1 = s ∈ [0, 1], p1 = 2 and,
[
t2 = 1 − 1/r, p2 = r

]
to obtain (19) and

[
t2 =

1− 1/(2r), p2 = 2r
]

to obtain (20).
For the proof of ii) and iii) we apply the same embeddings and iii), iv) from Theorem 2.3. �

Remark 2.7 The restrictions on s1, s2 in the Lipschitz case i) of Corollary 2.6 are coming from the restric-
tion p < p1 = p1(Ω0) as indicated in Theorems 3.9, 3.18. We do not know the exact value of this p1, but
we know that p1 > 4 if N = 2 and p1 > 3 if N ≥ 3. Thus (recall that r1 = p1/(p1 − 2)), we may write
r1 = 2− σ if N = 2 and r1 = 3− σ if N ≥ 3, for some small σ > 0.

In the range of Hs-spaces, the best estimates we obtain in the case i) of Corollary 2.6 may also be written
as follows where the constants C1, C2 here do not depend on ξ ∈ Θ, but may depend on other variables,
especially ε):

• if N = 2, then there exists ε > 0 small such that

|E′(Ω0)(ξ)| ≤ C1‖ξ‖H1/2−ε(∂Ω0), (22)

|E′′(Ω0)(ξ, ξ)| ≤ C2‖ξ‖2H1−ε(∂Ω0). (23)

• If N = 3, then there exists ε > 0 small such that

|E′(Ω0)(ξ)| ≤ C1‖ξ‖H1−ε(∂Ω0).

3 Estimates of shape derivatives

3.1 Description of the method

We describe in this paragraph the main idea of the shape derivative estimates on the model example

E(Ω) =

∫
Ω
K(UΩ,∇UΩ) :=

∫
Ω

1

2
|∇UΩ|2,

where UΩ is solution of (7) with L = −∆ and Ω,Ω0 are as in (13). The main point of our approach is that we
will make interior estimates involving W 1,q(Ω0)-norms of the directions ξ ∈ Θ of differentiation. As already
explained in the proof of Theorem 2.3, we will then use the trace Lemma 3.1 to obtain estimates in terms
of W 1−1/q,q(∂Ω0)-norms of ξ. By doing so, we avoid integrations by parts which would be impossible due
to the poor regularity of the boundary of Ω0. Moreover, as we will se below, the shape derivative estimates
will only depend on the regularity of U0 := UΩ0 .

One first has to show that E is differentiable.
By changing variable x = (I + θ)(y), for θ ∈ Θ small, we have

E(θ) =

∫
Ω0

1

2
∇Ûθ · M̂θ · ∇Ûθdx,

where

Ûθ = Uθ ◦ (I + θ), M̂θ = [I +∇θ]−1 t[I +∇θ]−1det[I +∇θ], Uθ = UΩθ . (24)

Note that θ 7→ M̂θ is C∞ from Θ to (L∞(Ω0))N×N near θ = 0, see [12, 29]. Then the differentiability of
θ 7→ E(θ) fully depends on the differentiability of Ûθ. As it is classical, under reasonable assumptions on L
and the data, by using the implicit function theorem, one can prove that θ ∈ Θ 7→ Ûθ ∈ H1

0 (Ω0) is of class
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Cm near θ = 0, which implies that E is of class Cm near θ = 0.

Next, let us fix a direction ξ ∈ Θ; we will denote by (·)′ the derivatives with respect to θ in the direction
ξ. In general, U0 is more regular than H1(Ω0) and we consider p ∈ (2,∞) such that U0 ∈ W 1,p(Ω0) (see
Propositions 3.3 and 3.5 below). We may write:

E ′(θ)(ξ) =

∫
Ω0

∇Ûθ · M̂θ · ∇Û ′θ +
1

2
∇Ûθ · M̂ ′θ · ∇Ûθ, (25)

which at θ = 0 implies (see(24))

|E ′(0)(ξ)| ≤ C

(∣∣∣∣∫
Ω0

∇U0 · ∇Û ′0
∣∣∣∣+

∫
Ω0

|∇U0|2|∇ξ|
)

≤ C

(∣∣∣∣∫
Ω0

∇U0 · ∇Û ′0
∣∣∣∣+ ‖U0‖2W 1,p(Ω0)‖ξ‖W 1,p/(p−2)(Ω0)

)
. (26)

The second term in the last estimate being satisfactory, it remains to estimate the first term which involves
Û ′0. Note first that it would not help much to use a too simple Hölder inequality like∣∣∣∣∫

Ω0

∇U0 · ∇Û ′0
∣∣∣∣ ≤ C‖U0‖H1(Ω0)‖ξ‖W 1,∞(Ω0),

which uses only the starting information that Û ′0 is a linear continuous map from Θ to H1(Ω0).
Nor is it appropriate to write the term Û ′0 in terms of the shape derivative U ′0, i.e. Û ′0 = U ′0 + ∇U0 · ξ.

Indeed, in such a case one would have∫
Ω0

∇U0 · ∇Û ′0 =

∫
Ω0

∇U0 · ∇U ′0 +∇U0 ·D2U0 · ξ +∇U0 · ∇ξ · ∇U0.

But we would need here regularity for D2U0 and it is not available for the case we are interested in. Even
if in the semi-convex situation, we can get some significant information on the first derivative, it becomes
quite more difficult for the second derivative (see however [20] for some progress in this direction).

For these reasons, we proceed with the estimate of the term with Û ′0 by going back the state equation :
LUθ = f, Uθ ∈ H1

0 (Ωθ). Recall that we chose L = −∆ for simplicity here (but the ideas will be the same
for general L). The weak form of LUθ = f in Ωθ transported in Ω0 is∫

Ω0

ϕL̂θÛθdx =

∫
Ω0

f̂θϕdx, for all ϕ ∈ H1
0 (Ω0), (27)

with f̂θ = f ◦ (I + θ) det[I +∇θ] and

L̂θ : H1
0 (Ω0) 7→ H−1(Ω0), L̂θφ = ∇ · (M̂θ · ∇φ), (28)

where M̂θ is defined in (24). Note that L̂0 = L and (L̂θÛθ)
′ = L̂θÛ

′
θ + L̂′θÛθ. By differentiating (27) with

respect to θ in the direction ξ, we obtain∫
Ω0

ϕL̂θÛ
′
θdx =

∫
Ω0

ϕ(f̂ ′θ − L̂′θÛθ), (29)

which at θ = 0 gives∫
Ω0

∇Û ′0 · ∇ϕ =

∫
Ω0

ϕ(f̂ ′0 −∇ · (M̂ ′0 · ∇U0)), (30)
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The estimate (26) suggests to take ϕ = U0 ∈ H1
0 (Ω0) in (30), which then yields∣∣∣∣∫

Ω0

∇U0 · ∇Û ′0
∣∣∣∣ ≤ C(Ω0, f)

∫
Ω0

(|U0|+ |∇U0|2)(|ξ|+ |∇ξ|)

≤ C(Ω0, f, p)(1 + ‖U0‖W 1,p(Ω0))‖U0‖W 1,p(Ω0)‖ξ‖W 1,p/(p−2)(Ω0). (31)

Thus, going back to (26), we deduce

|E ′(0)(ξ)| ≤ C(Ω0, U0, f, p)‖ξ‖W 1,p/(p−2)(Ω0). (32)

For more general K and L, the choice of ϕ is more involved (see the proof of Theorem 3.9), but the procedure
is the same.

In the same spirit, that is to say by differentiating (25) and (29) at θ = 0, we can obtain a similar estimate
for |E ′′(0)(ξ, ξ)|. For more details see Sections 3.3, 3.4.

3.2 The trace lemma

Lemma 3.1 Let Ω be as in (13) and Lipschitz. Let also q ∈ [1,∞], s ∈
(

1

q
, 1 +

1

q

)
, or q = s = 1. Then

there exists C = C(s, q,Ω) such that, for every ξ ∈W 1,∞(Ω,RN ) ∩W s,q(Ω,RN ),

inf
{
‖ξ̂‖W s,q(Ω), ξ̂ ∈W 1,∞(Ω,RN ), ξ̂ = ξ on ∂Ω

}
≤ C‖ξ‖

W
s− 1

q ,q(∂Ω)
. (33)

The main tool for the proof of this lemma is the following classical trace/extension Theorem:

Theorem 3.2 Let Ω be a set with Lipschitz boundary, q ∈ [1,∞] and s ∈ (1
q , 1 + 1

q ) or q = s = 1. The

trace mapping Tr initially defined on C∞(Ω) extends as a bounded operator from W s,q(Ω) to W
s− 1

q
,q

(∂Ω).
Moreover there exists a bounded linear operator

Ext : W
s− 1

q
,q

(∂Ω)→W s,q(Ω)

such that Tr ◦Ext = Id on W s,q(∂Ω). In all cases, Tr operator is linear, while Ext is linear only in the case
p > 1.

See [9] for the case q = s = 1, and for example [15, Th1 p197] for the other cases.
Proof of Lemma 3.1: Let ξ ∈W 1,∞(Ω,RN )∩W s,q(Ω,RN ) (we drop the notation RN in the following). We

remark that ξ|∂Ω ∈W
s− 1

q
,q

(∂Ω). Using the extension defined in Theorem 3.2, we can define ξ̂ := Ext(Tr ξ) ∈
W s,q(Ω) satisfying

‖ξ̂‖W s,q(Ω) ≤ C‖ξ‖
W
s− 1

q ,q(∂Ω)
, (34)

where C = C(s, q,Ω).
Therefore ξ̂−ξ ∈W s,q

0 (Ω) and is therefore the limit in W s,q(Ω) of functions αn ∈ C∞0 (Ω). In other words,

ξ̂ is the limit in W s,q(Ω) of ϕn = ξ + αn. Clearly ϕn ∈W 1,∞(Ω) ∩W s,q(Ω) and Tr(ϕn) = Tr(ξ), so that

inf
{
‖ξ̂‖W s,q(Ω), ξ̂ ∈W 1,∞(Ω) ∩W s,q(Ω), ξ̂ = ξ on ∂Ω

}
≤ ‖ϕn‖W s,q(Ω),

and letting n→∞ and using (34), we obtain the first estimate (33). �
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3.3 Shape derivative estimates for an interior PDE

In this section we will prove estimates for the first and second order shape derivatives of the energy (5).
As explained above, it will rely on estimates of UΩ.

3.3.1 Existence, uniqueness and regularity of the solution UΩ

Proposition 3.3 Let Ω be as in (13) and Lipschitz. Let L be as in (7) with the matrix (aij) satisfying
(8),(9).

i) Assume bi, c ∈ L∞(Ω) and c ≥ 0. If f ∈ H−1(Ω), then there exists a unique solution UΩ ∈ H1
0 (Ω) of

(7).

ii) Assume aij ∈ W 1,∞(Ω), bi, c ∈ L∞(Ω) and c ≥ 0. Then there exists p1 = p1(Ω) satisfying [p1 > 4
if N = 2 and p1 > 3 if N ≥ 3], such that for every p ∈ (p′1, p1) (where 1/p1 + 1/p′1 = 1) and every
f ∈W−1,p(Ω) the problem (7) admits a unique solution UΩ ∈W 1,p

0 (Ω) and

‖UΩ‖W 1,p(Ω) ≤ C(Ω)‖f‖W−1,p(Ω). (35)

Proof. The point i) is standard, see [8]. The sharp regularity result in ii) has been first proved for
L = −∆ in [13, Thm. 0.5]. The complete proof of ii) is based on [30, Theorem C] and Remark 3.6 for
Lu = −

∑
i,j ∂i(aij∂ju), and Remark 3.7 for L of general form. See also Remark 3.8 for a different proof

with a slightly stronger regularity on aij . Note that, according to [30], the same result is valid with quite
weaker regularity on aij , like asking that they be in VMO(RN ). �

Remark 3.4 Notation: If L satisfies the assumptions of ii) above, then so does its adjoint L∗ as we can
easily see by writing (biu)xi = (bi)xiu + biuxi , where bi ∈ W 1,∞(Ω). Let p1, p′1 (resp. p∗1, p′∗1 ) be the
numbers associated to the equation LU = f , U ∈ W 1,p

0 (Ω) (resp. L∗U = f , U ∈ W 1,p
0 (Ω)) as given by ii),

Proposition 3.3. Then we set
p1 := min{p1, p

∗
1}, p′1 := max{p′1, p′

∗
1}.

Note that, if Ω is Lipschitz, then p1 > 4 if N = 2 and p1 > 3 if N ≥ 3.

Proposition 3.5 Let Ω be as in (13) and semi-convex. Let L be as in (7) with the matrix (aij) satisfying
(8),(9).

i) Assume aij ∈W 1,∞(Ω), bi, c ∈ L∞(Ω) and c ≥ 0. Then for every p ∈ (1,∞) and for all f ∈W−1,p(Ω),

the problem (7) admits a unique solution UΩ ∈W 1,p
0 (Ω) and (35) holds.

ii) Assume aij ∈ W 1,∞(Ω), bi, c ∈ L∞(Ω) and c ≥ 0. Then for every f ∈ L∞(Ω) there exists a unique
solution UΩ ∈ H1

0 (Ω) ∩W 1,∞(Ω) of (7).

Proof. The result in i) was proven for L = −∆, see [6, Corollary 1 and Remark]. For general L, we
refer to [14] as explained in Remark 2.2 and we use Remark 3.7 below to include the first order terms. For
ii), as f ∈ L∞(Ω), from i) it follows that UΩ ∈ W 1,p(Ω) for all p ∈ (1,∞), which implies UΩ ∈ C0(Ω).
Furthermore, applying [8, Thm. 8.8], it follows u ∈W 2,2

loc (Ω). Applying [8, Theorem 9.13] (locally in Ω, with

T = ∅) and then [8, Lemma 9.16], we get u ∈ W 2,q
loc (Ω), for all q > 2. From Sobolev embeddings it follows

u ∈ C0(Ω) ∩ C2(Ω). Then ii) follows from [8, Thm. 15.9]. �
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Remark 3.6 Theorem C in [30] states that if aij ∈ VMO(RN ) (and in particular if aij ∈ W 1,∞(Ω)),
and L = −∂i(aij(x)∂j), then T := ∇(L)−1/2 is continuous from Lp(Ω) to (Lp(Ω))N , for p ∈ (1, p1), with

p1 = p1(N), p1(2) > 4, p1(N) > 3 for N ≥ 3. Then it follows that L is continuous invertible from W 1,p
0 (Ω)

onto W−1,p(Ω) for p ∈ (p′1, p1). Indeed, first note that this is equivalent to show that∇(L)−1div is continuous
from (Lp(Ω))N to Lp(Ω). Next, we note that from [30, Theorem C], T ∗ = (L)−1/2div is continuous from
(Lq(Ω))N to Lq(Ω), for q ∈ (p′1,∞). Then the desired continuity for ∇(L)−1div follows from the fact that
∇(L)−1div = TT ∗.

Remark 3.7 To complete the proof of ii) in Proposition 3.3 and of i) in Proposition 3.5 , let us check that
if the map u→ Au := −∂i(aij(x)∂ju) defines an isomorphism from W 1,p

0 (Ω) into W−1,p(Ω), then so does L.
Indeed, let B = L−A, Bu = bi∂iu+ cu, and consider the equation

Lu = f, u ∈W 1,p
0 (Ω), f ∈W−1,p(Ω), (36)

which is equivalent to Au+Bu = f . Multiplying this equation by A−1, we get the equivalent equation

(I +K)u = g, g = A−1f ∈W 1,p
0 (Ω), u ∈W 1,p

0 (Ω), (37)

where K = A−1B : W 1,p
0 (Ω) 7→ W 1,p

0 (Ω) is compact since B is compact from W 1,p
0 into W−1,p and A−1 is

continuous from W−1,p into W 1,p
0 .

Then I + K satisfies the Fredholm alternative (see e.g. [4, Thm. 6.6]). Furthermore, Ker(I + K) =
Ker(L) = {0}. Indeed, assume u ∈ W 1,p

0 (Ω), Lu = 0. If p ≥ 2, we can directly use the uniqueness result
in [8, Thm. 8.1 and Cor. 8.2] to deduce u = 0. If p ∈ (1, 2), we obtain the same conclusion by using that

L∗ : W 1,p′

0 7→W−1,p′ is onto which follows from [8, Thm.8.3 and 8.6] (see also the remark following Corollary
8.7 in [8]).

Then, Fredholm alternative [4, Thm. 6.6] implies that I +K defines an isomorphism from W 1,p
0 (Ω) onto

itself. 2

Remark 3.8 Different approaches may be quoted for the last point of Proposition 3.3. They only require
a slightly stronger regularity hypothesis (like aij ∈ C1+γ(Ω), γ ∈ (0, 1)), but they are also quite interesting.
Let us just recall the idea: we need to focus only in the case L = −∂i(aij(x)∂i), because the case of gen-
eral L follows from Remark 3.7. The case N = 2 follows from [22]. For the case N ≥ 3 we consider the
manifold (Ω, g), where g is the metric given by g = det(aij)

1/(N−2)A−1. Then (from [25, p. 186] and the

formula of Laplace-Beltrami operator, see [22, (1.1)] for instance), the equation Lu = f , u ∈ W 1,p
0 (Ω) with

f ∈ W−1,p(Ω), becomes −∆gu = h, with h = det(aij)
1/(2−N)f ∈ W−1,p(Ω). Note that g ∈ C1,1(Ω) and

W−1,p(Ω) norms of f and h are equivalent. Then the claim ii) follows from [24, Corollary 13.2].

3.3.2 Estimates of the shape derivatives of the solution

The results of this section give estimates for Û ′0 and Û ′′0 . Note that while for Û ′0 we prove an H1(Ω0)-
estimate, we also prove more involved estimates for Û ′0 and Û ′′0 . These estimates are motivated by the
functional K involved in the energy (5), see also Theorem 3.13.

Theorem 3.9 Let Ω0 be as in (13) and let L be as in (7) with the matrix (aij) satisfying (8),(9). Let θ ∈ Θ,
Ωθ = (I + θ)(Ω0), Uθ ∈ H1

0 (Ωθ) solution of (7) (see i) in Proposition 3.3), Ûθ = Uθ ◦ (I + θ).

i) If aij , bi, c, f ∈Wm,∞(BR), m ∈ N∗, then Ûθ ∈ Cm(V, H1
0 (Ω0)) where V is a neighborhood of θ = 0 in

Θ.
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In the following, we assume the previous hypotheses are satisfied for m = 2.

ii) If moreover Ω0 is Lipschitz and αij ∈W 1,∞(Ω), βi, γ, α00 ∈ L∞(Ω) then for all p ∈ (2, p1) we have

‖Û ′0‖H1(Ω0) ≤ C1‖ξ‖W 1,2p/(p−2)(Ω0), (38)∣∣∣ ∫
Ω0

∂UK(·, U0,∇U0)Û ′0 + ∂qK(·, U0,∇U0) · ∇Û ′0
∣∣∣ ≤ C1‖ξ‖W 1,p/(p−2)(Ω0), (39)∣∣∣ ∫

Ω0

∂UK(·, U0,∇U0)Û ′′0 + ∂qK(·, U0,∇U0) · ∇Û ′′0
∣∣∣ ≤ C2‖ξ‖2W 1,2p/(p−2)(Ω0)

, (40)

where p1 is defined in Remark 3.4 (p1 > 4 if N = 2, p1 > 3 if N ≥ 3), Û ′0 = Û ′θ(0)(ξ), Û ′′0 = Û ′′θ (0)(ξ, ξ),
Ci = Ci(Ω0, L, f,K, p).

Proof.
Step 1. The proof of i) is classical. It is based on the implicit function theorem.

After changing the variable x = (I + θ)(y), the weak form of (7) in Ωθ is transformed in Ω0 as follows

〈L̂θÛθ, ϕ〉H−1(Ω0)×H1
0 (Ω0) =

∫
Ω0

ϕf̂θ, ∀ϕ ∈ H1
0 (Ω0), (41)

where L̂θ : H1
0 (Ω0) 7→ H−1(Ω0) is defined by

〈L̂θÛ , ϕ〉 = 〈∂l(âkl∂kÛ) + b̂k∂kÛ + ĉÛ , ϕ〉

=

∫
Ω0

âkl∂kÛ∂lϕ+ (b̂k∂kÛ + ĉÛ)ϕ, for (Û , ϕ) ∈ H1
0 (Ω0)2, (42)

and

âkl =
∑

i,j aij ◦ (I + θ)TkiTljdet[I +∇θ], b̂k =
∑

i bi ◦ (I + θ)Tkidet[I +∇θ],
ĉ = c ◦ (I + θ)det[I +∇θ], f̂ = f ◦ (I + θ)det[I +∇θ],
T = (Tkl) = [Id+∇θ]−1.

Consider F defined by

F : Θ×H1
0 (Ω0) −→ H−1(Ω)

(θ, Û) 7−→
[
ϕ 7→ 〈L̂θÛ − f̂ , ϕ〉

]
.

It is easy to check that F is well defined and of class Cm in a neighborhood of (0, U0) ∈ Θ×H1
0 (Ω0), and

∂UF (0, U0)(U) : ϕ 7→ 〈LU,ϕ〉 =

∫
Ω0

aij∂iU∂jϕ+ (bi∂iU + cU)ϕ, ∀U,ϕ ∈ H1
0 (Ω0).

Note that from Proposition 3.3, ∂UF (0, U0) defines an isomorphism from H1
0 (Ω0) to H−1(Ω0). Then, from

implicit function Theorem there exists a Cm map, Û : θ 7→ Û(θ), such that F (θ, Û(θ)) = 0 for ‖θ‖Θ small.
From the uniqueness of solution to (7) we obtain Ûθ = Û(θ), which proves the regularity of θ 7→ Ûθ.
Step 2. We prove the estimates (38)-(40) by differentiating (41) with respect to θ. The differentiation is
allowed because Ûθ is differentiable and aij , bi, c, f are regular enough.

Differentiating (41) once with respect to θ gives

〈L̂θÛ ′θ, ϕ〉 = 〈f̂ ′θ − L̂′θÛθ, ϕ〉. (43)
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We take θ = 0 in (43). Note that L̂0 = L. By isolating all the terms with Û ′0 we obtain

〈LÛ ′0, ϕ〉 = 〈L∗ϕ, Û ′0〉

=

∫
Ω0

f̂ ′0ϕ−
(
â′kl∂kU0∂lϕ+ (b̂′k∂kU0 + ĉ′0U0)ϕ

)
. (44)

We now choose suitable test functions ϕ to prove (38) and (39). Let ϕ ∈ H1
0 (Ω0) be the solution of

L∗ϕ = Û ′0 −∆Û ′0 =: g∗. (45)

Note that g∗ ∈ H−1(Ω0) and then the solution ϕ is uniquely defined in H1
0 (Ω0) and satisfies (see [18])

‖ϕ‖H1(Ω0) ≤ C‖g∗‖H−1(Ω0) ≤ C‖Û ′0‖H1(Ω0), C = C(Ω0, L). (46)

Then from (44) it follows

‖Û ′0‖2H1(Ω0) ≤ C1

∫
Ω0

(1 + |U0|+ |∇U0|)(|ξ|+ |∇ξ|)(|ϕ|+ |∇ϕ|)

≤ C1(1 + ‖U0‖W 1,p(Ω0))‖ξ‖W 1,2p/(p−2)(Ω0)‖ϕ‖H1(Ω0), (47)

where we applied Hölder inequality with three terms, and C1 = C1(Ω0, L, f), p ∈ (2, p1), p1 = p1(Ω0) as
given by Proposition 3.3 for L. Together with (46) this proves (38).

Now we consider ϕ ∈ H1
0 (Ω0) the solution of

L∗ϕ = ∂UK(·, U0,∇U0)−∇ · ∂qK(·, U0,∇U0)

= (α00U0 + γ)−∇ · (α∇U0 + β) =: g∗. (48)

Let q ∈ (2, p1). Recall that U0 ∈W 1,q(Ω0) by Proposition 3.3. From (6), we deduce

∂UK(·, U0,∇U0), ∂qK(·, U0,∇U0) ∈ Lq(Ω0).

It follows that g∗ ∈W−1,q(Ω0). By Proposition 3.3 applied to L∗, the solution ϕ of (48) is uniquely defined
in W 1,q

0 (Ω0) and satisfies

‖ϕ‖W 1,q(Ω0) ≤ C‖g∗‖W−1,q(Ω0) = C, C = C(Ω0, L,K,U0, q). (49)

Then from (44) it follows∣∣∣ ∫
Ω0

∂UK(·, U0,∇U0)Û ′0 + ∂qK(U0,∇U0) · ∇Û ′0
∣∣∣

=
∣∣∣〈L∗ϕ, Û ′0〉∣∣∣ = 〈LÛ ′, ϕ〉

∣∣∣
≤ C1

∫
Ω0

(1 + |U0|+ |∇U0|)(|ξ|+ |∇ξ|)(|ϕ|+ |∇ϕ|)

≤ C1(1 + ‖U0‖W 1,p(Ω0
)‖ϕ‖W 1,q(Ω0)‖ξ‖W 1,1/(1−1/p−1/q)(Ω0)), (50)

with C1 = C1(Ω0, L,K, f, q). Here we chose q := p where p is given in ii) of Theorem 3.9 and the estimate
(39) follows. (Note that the use in considering q 6= p in the previous computations will appear later in the
case of semi-convex domains).
Step 3. Differentiating (43) at θ = 0 and isolating the terms with Û ′′0 gives

〈LÛ ′′0 , ϕ〉 =

∫
Ω0

f̂ ′′0ϕ− (â′′kl∂kÛ0∂lϕ+ (b̂′′k∂kÛ0 + ĉ′′0Û0)ϕ)

−
∫

Ω0

2
(
â′kl∂kÛ

′
0∂lϕ+ (b̂′k∂kÛ

′
0 + ĉ′0Û

′
0)ϕ
)
. (51)
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It implies∣∣∣〈L∗ϕ, Û ′′0 〉∣∣∣ ≤ C2

∫
Ω0

(
(1 + |U0|+ |∇U0|)(|ξ|2 + |∇ξ|2) + (|Û ′0|+ |∇Û ′0|)(|ξ|+ |∇ξ|)

)
(|ϕ|+ |∇ϕ|), (52)

where C2 = C2(Ω0, L, f).
Then (52) with ϕ solution of (48), together with (38) yield∣∣∣〈L∗ϕ, Û ′′0 〉∣∣∣ =

∣∣∣∣∫
Ω0

∂UK(·, U0,∇U0)Û ′′0 + ∂qK(·, U0,∇U0) · ∇Û ′′0
∣∣∣∣

≤ C2

(
(1 + ‖U0‖W 1,p(Ω0))‖|ξ|2 + |∇ξ|2‖L1/(1−1/p−1/q)(Ω0) + ‖∇Û ′0‖L2(Ω0)‖ξ‖W 1,1/(1/2−1/q)(Ω0)

)
‖ϕ‖W 1,q(Ω0)

≤ C2(1 + ‖U0‖W 1,p(Ω0))‖U0‖W 1,q(Ω0)(
‖ξ‖2

W 1,2/(1−1/p−1/q)(Ω0)
+ ‖ξ‖W 1,2p/(p−2)(Ω0)‖ξ‖W 1,2q/(q−2)(Ω0)

)
, (53)

with C2 = C2(Ω0, L, f,K, p, q). Again we choose q := p and this proves (40). �

Proposition 3.10 Besides the assumptions of ii) in Theorem 3.9, we assume Ω0 is semi-convex. Then the
following holds.

i) For all p ∈ (2,∞) we have

‖Û ′0‖H1(Ω0) ≤ C1‖ξ‖H1(Ω0), (54)∣∣∣ ∫
Ω0

∂UK(·, U0,∇U0)Û ′0 + ∂qK(·, U0,∇U0) · ∇Û ′0
∣∣∣ ≤ C1‖ξ‖2W 1,p/(p−2)(Ω0)

, (55)∣∣∣ ∫
Ω0

∂UK(·, U0,∇U0)Û ′′0 + ∂qK(·, U0,∇U0) · ∇Û ′′0
∣∣∣ ≤ C2‖ξ‖2W 1,2p/(p−2)(Ω0)

, (56)

where Ci = Ci(Ω0, L, f,K, p).

ii) If furthermore L is self-adjoint and E is its energy associated, i.e. ∂UK(·, U,∇U)−∇·∂qK(·, U,∇U) =
LU , then we can take p =∞ in (55), (56).

Proof. We proceed as in Theorem 3.9 using the extra property that Ω0 is semi-convex. We now have
U0 ∈ W 1,∞(Ω0) (see Proposition 3.5). Moreover, the solution ϕ of (48) satisfies ϕ ∈ W 1,q(Ω) for all
q ∈ (2,∞). Then we can take p =∞ in (47) which implies (54). Furthermore, we can apply (50) and (53)
with p =∞ and q ∈ (2,∞) arbitrary, which prove (55) and (56).
In the case Ω semi-convex, L self-adjoint and K the energy associated to L, then L = L∗ and L∗ϕ = LU0.
Therefore, ϕ = U0 in (48). Hence U0 ∈ W 1,∞(Ω0) and ϕ ∈ W 1,∞(Ω0). Then we proceed as above with
p = q =∞. �

Remark 3.11 The results of Proposition 3.10 hold for any Ω0 such that U0 ∈ W 1,∞(Ω0) and such that
ϕ ∈W 1,q

0 (Ω0) 7→ L∗ϕ ∈W−1,q(Ω0) is bounded and invertible for all q ∈ (2,∞).

Remark 3.12 In Theorem 3.9, we could try to estimate ‖Û ′′0 ‖H1(Ω0). Indeed, in step 3 of Theorem 3.9, we

take ϕ to be the solution of L∗ϕ = Û ′′0 −∆Û ′′0 =: f∗, so that ‖Û ′′0 ‖2H1(Ω0) = 〈L∗ϕ, Û ′′0 〉. Then we can proceed
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as in (53). However, as we have only Û ′0, Û
′′
0 ∈ H1

0 (Ω0), then f∗ ∈ H−1(Ω0) and so ϕ ∈ H1
0 (Ω0) (sharp in

general). Therefore, in (53) we have q = 2 and it leads to

‖Û ′′0 ‖2H1(Ω0) ≤ C2(1 + ‖U0‖W 1,p(Ω0))‖U0‖W 1,2(Ω0)(
‖ξ‖2

W 1,4p/(p−2)(Ω0)
+ ‖ξ‖W 1,2p/(p−2)(Ω0)‖ξ‖W 1,∞(Ω0)

)
, (57)

which is not appropriate as it contains the strong norm ‖ξ‖W 1,∞(Ω0).

3.3.3 Estimates of the shape derivatives of the energy

Theorem 3.13 Let Ω0 be as in (13) and let L be as in (7) with the matrix (aij) satisfying (8),(9). The
following properties hold.

i) If aij , bi, c, f, αij , βi, γ, δ ∈Wm,∞(BR), m ≥ 1, then E : θ 7→ E(θ) is of class Cm in a neighborhood of
θ = 0 in Θ.

In the following, we assume the previous hypotheses are satisfied for m = 2.

ii) If Ω0 is Lipschitz, then for all p ∈ (2, p1) we have

|E ′(0)(ξ)| ≤ C1‖ξ‖W 1,p/(p−2)(Ω0), (58)

|E ′′(0)(ξ, ξ)| ≤ C2‖ξ‖2W 1,2p/(p−2)(Ω0)
, (59)

where Ci = Ci(Ω0, L, f,K, p) and p1 (introduced in Remark 3.4) satisfies p1 > 4 if N = 2 and p1 > 3
if N ≥ 3.

iii) If Ω0 is semi-convex, then (58) and (59) hold for all p ∈ (2,∞).

iv) If Ω0 is semi-convex, L is self-adjoint and K is its associated energy, then (58) and (59) hold for
p =∞.

Remark 3.14 Theorem 3.13 can be stated in a more general form, based on the regularity of the state
solution related to the operator L and its adjoint L∗. Namely, if

a) aij , bi, c, f, αij , βi, γ, δ ∈W 2,∞(Ω0),

b) the operators L and L∗ define isomorphisms from W 1,p
0 (Ω) 7→W−1,p(Ω), for some p ∈ [1,∞]

then (58) and (59) hold for this p.

Proof. [of Theorem 3.13]
Step 1. Note that by changing the variable y = (I + θ)(x) we have

E(θ) =

∫
Ω0

K(I + θ, Ûθ,
t[T ] · ∇Ûθ) det[I +∇θ]dx

=

∫
Ω0

(1

2
α̂kl∂kÛθ∂lÛθ +

1

2
α̂00Û

2
θ + β̂k∂kÛθ + γ̂Ûθ + δ̂

)
, (60)

where

α̂kl = αij ◦ (I + θ)TkiTljdet[I +∇θ], β̂i = βi ◦ (I + θ)Tkidet[I +∇θ],
γ̂ = γ ◦ (I + θ)det[I +∇θ], δ̂ = δ ◦ (I + θ)det[I +∇θ].
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The differentiability of E follows from the regularity of K and i), Theorem 3.9.
Step 2. Assume Ω0 is Lipschitz. Differentiating (60) gives

E ′(θ)(ξ) =

∫
Ω0

α̂kl∂kÛ
′
θ∂lÛθ + α̂00ÛθÛ

′
θ + β̂i∂kÛ

′
θ + γ̂Û ′θ

+

∫
Ω0

(1

2
α̂′kl∂kÛθ∂lÛθ +

1

2
α̂′00Û

2
θ + β̂′k∂kÛθ + γ̂′Ûθ + δ̂′. (61)

Taking θ = 0 in (61) and using (39) gives

|E ′(0)(ξ)| ≤
∣∣∣∣∫

Ω0

∂UK(x, U0,∇U0)Û ′0 + ∂qK(x, U0,∇U0) · ∇Û ′0
∣∣∣∣

+ C1

∫
Ω0

(1 + |U0|2 + |∇U0|2)(|ξ|+ |∇ξ|)

≤ C1(‖ξ‖W 1,q/(q−2)(Ω0) + (1 + ‖U0‖2W 1,p(Ω0
)‖ξ‖W 1,p/(p−2)(Ω0)), (62)

with C1 = C1(Ω0, L, f,K, p) and p, q ∈ (2, p1).
Differentiating (61) at θ = 0, isolating the terms with Û ′′0 , using the W 2,∞-regularity of the coefficients of

L and K, the W 1,p(Ω0) regularity of U0 and the estimates (38), (40) yields

|E ′′(0)(ξ, ξ)| ≤
∣∣∣∣∫

Ω0

∂UK(x, U0,∇U0)Û ′′0 + ∂qK(x, U0,∇U0) · ∇Û ′′0
∣∣∣∣

+C2

∫
Ω0

[
|Û ′0|2 + |∇Û ′0|2 + (1 + |U0|2 + |∇U0|2)(|ξ|2 + |∇ξ|2)

]
≤ C2(‖ξ‖2

W 1,2q/(q−2)(Ω0)
+ (1 + ‖U0‖2W 1,p(Ω0

)‖ξ‖2
W 1,2p/(p−2)(Ω0)

)
, (63)

with C2 = C2(Ω0, L, f,K, p) and p, q ∈ (2, p1).
Taking q = p in (62), (63) proves ii).

Step 3. If Ω0 is semi-convex then from U0 ∈ W 1,∞(Ω0) and i), Proposition 3.10, we can take p = ∞ and
q ∈ (2,∞) in (62) and (63), which proves iii).
Step 4. Finally, if Ω0 is semi-convex, L = L∗ and K is the energy associated to L then from U0 ∈W 1,∞(Ω0)
and ii), Proposition 3.10, we can take q = p =∞ in (62) and (63), which proves iv). �

Remark 3.15 The technique we have used to obtain estimates for E′(Ω) and E′′(Ω), can be applied to
shape functionals E defined as in (5) but involving more general K. Once the differentiability of E is proven,
our computations can be used similarly to get estimates whose exponents will depend on the growth of K
at infinity. Note that the proof of the differentiability of E may rely in these cases on the differentiability
of the map θ ∈ Θ 7→ Û(θ) ∈W 1,p(Ω0) with certain p ≥ 2, which is not known as far as we know.

3.4 Shape derivative estimates for an exterior PDE

In this section we will apply the technique described in Section 3.1 to estimate the first and second order
shape derivatives of the energy (10), related to the problem (11) in the exterior of a domain Ω.

Even in the case when Ω is convex, its exterior Ωe = RN \ Ω is only a Lipschitz domain. Therefore,
subject to the existence, uniqueness and regularity of the solution of the problem (11), which represents
some particularities as it is in the exterior of Ω, the method we developed in Section 3.1 and used for the
interior problem in Section 3.3, also applies for the problem in the exterior.

As in the previous section, we consider Θ = W 1,∞(BR,RN ) and all the domains Ω under consideration
will be assumed to satisfy at least (13).
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3.4.1 Existence, uniqueness and regularity

To analyze problem (11), it is appropriate to consider the space H1,0(Ω) as introduced in (12). This space
is a Banach space, see [26], and even an Hilbert space if equipped with the inner product

(U, V )H1,0(Ωe) :=

∫
Ωe

(
UV

(1 + |x|2)[ln(2 + |x|2]δ2,N
+∇U · ∇V

)
dx, (64)

where δ2,N is defined in (12). Let H1,0
0 (Ωe) denote the closure of D(Ωe) in H1,0(Ωe). It can be shown that

H1,0
0 (Ωe) equipped with the inner product

(U, V )
H1,0

0 (Ωe)
:=

∫
Ωe
∇U · ∇V dx, (65)

is an Hilbert space, see [26]. Furthermore, the norms in H1,0
0 (Ωe) generated by the inner products (64) and

(65) are equivalent. Let H−1,0(Ωe) denote the dual space of H1,0
0 (Ωe)

For the solution of (11) we have the following regularity result.

Proposition 3.16 Let Ω be as in (13). Assume it is also Lipschitz. Let f ∈ L∞(RN ), supp(f) ⊂ BR.

i) Then there exists a unique weak solution U ∈ H1,0
0 (Ωe) to (11) satisfying

‖U‖H1,0(Ωe) ≤ C(Ω) ‖f‖H−1,0(Ωe) ≤ C(Ω, R) ‖f‖L∞ . (66)

ii) There exists p1 = p1(Ω0) satisfying [p1 > 4 if N = 2 and p1 > 3 if N ≥ 3], such that U ∈ W 1,p
0 (Ωe)

for every p ∈ (p′1, p1) where 1/p1 + 1/p′1 = 1, and

‖U‖W 1,p(ΩeR) ≤ C(Ω, R, p) ‖f‖L∞ , Ωe
R = Ωe ∩BR. (67)

Proof.
Step 1. Note that the weak solution U of (11) satisfies∫

Ωe
∇U · ∇ϕ =

∫
Ωe
fϕ, ∀ϕ ∈ H1,0

0 (Ωe). (68)

Note also that as f ∈ L∞(RN ) has compact support, then f ∈ L2(Ωe) ⊂ H−1,0(Ωe) with ‖f‖H−1,0(Ωe) ≤
C(R)‖f‖L∞ . Therefore existence and uniqueness of a solution U ∈ H1,0

0 (Ωe) to (68) together with estimate
(66) follows from Lax-Milgram Lemma and from (65).
Step 2. We will use [13, Theorem 0.5]. Let η ∈ D(RN ), 0 ≤ η ≤ 1, η = 1 in BR and η = 0 in RN\B2R. Then
ηU satisfies

−∆(ηU) = fη − 2∇U · ∇η − U∆η =: g in Ωe
2R := Ωe ∩B2R,

ηU = 0 on ∂Ωe
2R.

From i) above, g ∈ L2(Ωe
2R). Let BR,2R := {x ∈ RN ;R < |x| < 2R}. From local regularity properties of

−∆, as −∆U = f = 0 on a neighborhood of the closure of BR,2R, we get U ∈W 1,p(BR,2R) for all p ∈ (1,∞)
with

‖U‖W 1,p(BR,2R) ≤ C(Ω, R, p)‖U‖H1,0(Ωe) ≤ C(Ω, R, p)‖f‖L∞ .

Since η = 1,∇η = 0,∆η = 0 on BR, it follows that g ∈ Lp(Ωe
2R) with ‖g‖Lp(Ωe2R) ≤ C(Ω, R, p)‖f‖L∞ .
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We recall [13, Theorem 0.5] which states that there exists p1 depending on Ωe
2R, satisfying p1 > 4 if

N = 2 and p1 > 3 for every N ≥ 3, such that the map V ∈ W 1,p
0 (Ωe

2R) 7→ −∆V ∈ W−1,p(Ωe
2R) defines an

isomorphism for every p ∈ (p′1, p1) (see also Proposition 3.3). It implies that

‖ηU‖W 1,p(Ωe2R) ≤ C(Ω, R, p)‖g‖W−1,p(Ωe2R) ≤ C(Ω, R, p)‖g‖Lp(Ωe2R) ≤ C(Ω, R, p)‖f‖L∞ ,

which implies (67). 2

Remark 3.17 In connection with Remark 3.4 related to the interior problem, note that with our choice of
L = L∗ = −∆, we have here p1 = p∗1 = p1. Recall that p1 > 4 if N = 2 and p1 > 3 if N ≥ 3.

3.4.2 Estimates of the shape derivatives of the solution

We have the following theorem, which is similar to Theorem 3.9:

Theorem 3.18 Let Ω0 be as in (13). Assume it is also Lipschitz. Let θ ∈ Θ, Ωe
0 = RN \ Ω0, Ωe

θ =

(I + θ)(Ωe
0), f ∈ L∞(RN ) with supp(f) ⊂ BR, Uθ ∈ H1,0

0 (Ωe
θ) the solution of (11) (see i) in Proposition

3.16), Ûθ = Uθ ◦ (I + θ).

i) If f ∈Wm,∞(Ωe
2R), m ∈ N∗, then θ 7→ Ûθ ∈ H1

0 (Ω0) is of class Cm in a neighborhood of θ = 0 ∈ Θ.

In the following, we assume the previous hypotheses are satisfied for m = 2 and we denote Ωe
R = Ωe

0 ∩BR.

ii) For all p ∈ (2, p1) where p1 is introduced in Remark 3.17, for all ξ ∈ Θ, we have

‖Û ′0‖H1,0(Ωe0) ≤ C1‖ξ‖W 1,2p/(p−2)(ΩeR), (69)∣∣∣∣∣
∫

Ωe0

∇U0 · Û ′0

∣∣∣∣∣ ≤ C1‖ξ‖W 1,p/(p−2)(ΩeR), (70)∣∣∣∣∣
∫

Ωe0

∇U0 · Û ′′0

∣∣∣∣∣ ≤ C2‖ξ‖2W 1,2p/(p−2)(ΩeR)
, (71)

where Û ′0 = Û ′θ(0)(ξ), Û ′′0 = Û ′′θ (0)(ξ, ξ), Ci = Ci(Ω0, U0, f, R, p).

Proof.
Step 1. The proof of i) is similar to the one of the same result in the interior, see i) in Theorem 3.9. For
convenience we present the proof.

The proof is based on the implicit function theorem. After changing the variable x = (I+ θ)(y), the weak
form (68) in Ωe

θ is transformed in Ωe
0 as follows∫

Ωe0

∇Ûθ ·Mθ · ∇ϕ− f̂θϕ = 0, (72)

where Mθ = (T · tT )det[Id+∇θ], T = [Id+∇θ]−1 and f̂ = f ◦ (I + ξ(t))det[I +∇θ]. Consider F defined by

F : Θ×H1,0
0 (Ωe

0) 7→ H−1,0(Ωe
0)

(θ, Û) =
[
ϕ 7→

∫
Ωe0
∇Û ·Mθ · ∇ϕ− f̂θϕ

]
.

It is easy to check that F is well defined and of class Cm in a neighborhood of (0, U0) ∈ Θ×H1,0
0 (Ωe

0) (here
we use the fact that f is with compact support), and

∂UF (0, U0)(U) : ϕ 7→
∫

Ωe0

(∇U · ∇ϕ)dx, ∀U,ϕ ∈ H1,0
0 (Ωe

0).
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Note that ∂UF (0, U0) defines an isomorphism from H1,0
0 (Ωe

0) to H−1,0(Ωe
0), see Proposition 3.16. Then, from

implicit function Theorem, there exists a Cm map θ 7→ U(θ) such that F (θ, U(θ)) = 0 for ‖θ‖Θ small. From
the uniqueness of solution to (11) we obtain Ûθ = U(θ), which proves the differentiability of θ 7→ Ûθ.
Step 2. Again the proofs of (69)-(71) are similar to the proofs of (38)-(40) (except that the choice of suitable
test functions is easier here). For the proof of (69) we differentiate (72) and get∫

Ωe0

(∇Û ′θ ·Mθ · ∇ϕ) =

∫
Ωe0

f̂ ′θϕ−∇Ûθ ·M ′θ · ∇ϕ. (73)

With θ = 0 and ϕ = Û ′0, as Supp(ξ) ⊂ B(0, R), from (73) we get

‖∇Û ′0‖2L2(Ωe0) ≤ C1

∫
ΩeR

(1 + |∇U0|)(|ξ|+ |∇ξ|)(|Û ′0|+ |∇Û ′0|)

≤ C1(1 + ‖U0‖W 1,p(ΩeR))‖ξ‖W 1,2p/(p−2)(ΩeR)‖∇Û
′
0‖L2(Ωe0), (74)

with C1 = C1(Ω0, R, f, p), which proves (69).
Similarly, if we take θ = 0 and ϕ = U0 in (73) we get∣∣∣∣∣

∫
Ωe0

∇Û ′0 · ∇U0

∣∣∣∣∣ ≤ C1

∫
ΩeR

(1 + |∇U0|)(|ξ|+ |∇ξ|)|∇U0|

≤ C1(1 + ‖U0‖2W 1,p(ΩeR))‖ξ‖W 1,p/(p−2)(ΩeR),

with C1 = C1(Ω0, f, R, p), which proves (70).
Step 3. For the proof of (71) we differentiate (73) at θ = 0 and take ϕ = U0. It gives∣∣∣∣∣

∫
Ωe0

∇Û ′′0 · ∇U0

∣∣∣∣∣ ≤ C2

∫
ΩeR

(1 + |∇U0|2)(|ξ|2 + |∇ξ|2) + |∇U0||∇ξ||∇Û ′0|

≤ C2

(
‖U0‖W 1,p(ΩeR)‖∇ξ‖L2p/(p−2)(ΩeR)‖∇Û

′
0‖L2(ΩeR) +

(1 + ‖U0‖2W 1,p(ΩeR))‖ξ‖
2
W 1,2p/(p−2)(ΩeR)

)
≤ C2(1 + ‖U0‖2W 1,p(ΩeR)‖ξ‖

2
W 1,2p/(p−2)(ΩeR)

,

with C2 = C2(Ω0, f, R, p), which completes the proof. 2

3.4.3 Estimate of shape derivatives of the energy

Theorem 3.19 Let Ω0 be as in (13). Assume it is also Lipschitz. Let θ ∈ Θ, Ωe
0 = RN \ Ω0, Ωe

θ =

(I + θ)(Ωe
0), f ∈ Wm,∞(RN ), m ∈ N∗, with supp(f) ⊂ BR, Uθ ∈ H1,0

0 (Ωe
θ) the solution of (68) and

E(θ) =
∫

Ωθ
|∇Uθ|2. Then E is of class Cm near θ = 0 ∈ Θ and for m ≥ 2, for all p ∈ (2, p1) with p1 defined

in Remark 3.17, for all ξ ∈ Θ, we have with Ωe
R = Ωe

0 ∩BR

|E ′(0)(ξ)| ≤ C1‖ξ‖W 1,p/(p−2)(ΩeR), (75)

|E ′′(0)(ξ, ξ)| ≤ C2‖ξ‖2W 1,2p/(p−2)(ΩeR)
, (76)

where Ci = Ci(Ω0, U0, f, R, p).

Proof. The proof of the theorem is very similar to the one of Theorem 3.9. We present it briefly. Note that

E(θ) =

∫
Ωe0

∇Ûθ ·Mθ · ∇Ûθ. (77)
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From Theorem 3.18 it follows that E is Cm in a neighborhood of θ = 0.
Differentiating (77) at θ = 0 in a direction ξ ∈ Θ, and then using (70) gives

|E ′(0)(ξ)| ≤ C1

(∣∣∣∣∣
∫

Ωe0

∇U0 · ∇Û ′0

∣∣∣∣∣+

∫
ΩeR

|∇U0|2|∇ξ|

)
≤ C1‖ξ‖W 1,p/(p−2)(ΩeR), (78)

with C1 = C1(Ω0, U0, R, p, f), which proves (75).
Differentiating twice (77) at θ = 0 in the direction ξ, and then using (69) and (71) gives

|E ′′(0)(ξ, ξ)| ≤ C2

∣∣∣∣∣
∫

Ωe0

∇Û ′′0 · ∇U0

∣∣∣∣∣+

∫
Ωe0

|∇Û ′0|2 + |∇U0|2(|ξ|2 + |∇ξ|2)

≤ C2‖ξ‖2W 1,2p/(p−2)(Ωe0)
, (79)

with C2 = C2(Ω0, U0, R, p, f), which completes the proof. 2

4 Application to optimal convex shapes

In this section, we remind the strategy from [20], and emphasize an application of the second order shape
derivatives estimates obtained in Section 2.2, first in dimension two, then in higher dimensions.

4.1 Application in the planar case

Here is the main result of this subsection:

Theorem 4.1 Let Ω0 be an open convex subset of R2, solution of the optimization problem:

min
{
J(Ω) = R(E(Ω), |Ω|)− P (Ω), Ω ⊂ R2open, convex and such that ∂Ω ⊂ {x, a ≤ |x| ≤ b}

}
, (80)

where R : R2 → R is smooth, (a, b) ∈ (0,∞]2, a < b, and E is an energy like (5), corresponding to the
interior problem, or like (10), corresponding to the exterior problem.

Then every connected component of (∂Ω0)in := ∂Ω0∩{x, a < |x| < b} is a finite union of straight segments.

We insist here on the fact that the existence of an optimal shape for problem (80) is true and easy to obtain
in the case 0 < a < b < ∞, see Remark 4.7. The cases b = ∞ and/or a = 0 require more attention: it
may happens that minimizing sequences are not bounded (for example if R = 0), or that they converge to
a segment.

Remark 4.2 This result was obtained in [20] for the two following particular cases:

• E = Ef is the Dirichlet energy associated to f ∈ H2
loc(R2):

E(Ω) =

∫
Ω

(
1

2
|∇UΩ|2 − fUΩ

)
, where UΩ solves

{
−∆UΩ = f in Ω
UΩ ∈ H1

0 (Ω)

• E = λ1 is the first Dirichlet eigenvalue of Ω:

λ1(Ω) = min

{∫
Ω |∇U |

2∫
Ω U

2
, U ∈ H1

0 (Ω) \ {0}
}
.
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Remark 4.3 In Theorem 4.1, we chose a simple function of P (Ω). Actually, the same result would extend
to functionals of the form R

(
E(Ω), |Ω|, λ1(Ω), P (Ω)

)
with p→ R(·, ·, ·, p) being decreasing and concave.

Remark 4.4 Similarly to [20, Theorem 4, Example 8], Theorem 4.1 is also valid with a volume constraint.
More precisely, any solution of

min{J(Ω) = R(E(Ω))− P (Ω), Ω ⊂ R2 open, convex and such that |Ω| = V0} (81)

(where R : R → R is smooth and E is as in Theorem 4.1) is a polygon. See also Remark 4.6 for other
geometrical constraints.

In order to analyze problem (80), we use, as in [19, 20], the following classical parametrization of 2-
dimensional convex with polar coordinates (r, θ) ∈ [0,∞)× T, where T = R/2πZ:

Ωu :=

{
(r, θ) ∈ [0,∞)× R ; r <

1

u(θ)

}
, (82)

where u is a positive and 2π-periodic function. A simple computation shows that the curvature of Ωu is

κ∂Ωu =
u′′ + u(

1 +
(
u′

u

)2)3/2
. (83)

This implies that Ωu is convex if and only if u′′+u ≥ 0, which has to be understood in the sense of H−1(T)
if u is not C2. More precisely, if u ∈ H1(T) then u′′ + u ≥ 0 if and only if

∀ v ∈ H1(T) with v ≥ 0,

∫
T

(
uv − u′v′

)
dθ ≥ 0.

Throughout this section, any function defined on T is considered as the restriction to T of a 2π-periodic
function on R, with the same regularity.

With this parametrization, considering j(u) = J(Ωu), Problem (80) is equivalent to

min
{
j(u), u′′ + u ≥ 0, u ∈ Uad

}
, where Uad = {u ∈W 1,∞(T), 1/u ∈ [a, b]}. (84)

Then we have the following result proven in [20, Theorem 3] where |v|2H1(T) =
∫
T(v′)2dθ.

Theorem 4.5 Let u0 > 0 be a solution for (84) and Tin :=

{
θ ∈ T, a <

1

u0(θ)
< b

}
. Assume j : W 1,∞(T)→

R is C2 and that there exist s ∈ [0, 1), α > 0, β, γ ∈ R such that, for any v ∈W 1,∞(T), we have

j′′(u0)(v, v) ≤ −α|v|2H1(T) + γ|v|H1(T)‖v‖Hs(T) + β‖v‖2Hs(T). (85)

If I is a connected component of Tin, then

u′′0 + u0 is a finite sum of Dirac masses in I.

This result, combined with the estimates from Section 2.2 will lead to a proof of Theorem 4.1. Indeed,
formula (83) explains that Ωu is polygonal if and only if u′′ + u is a sum of Dirac masses.
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Remark 4.6 As in [20], we may focus on a geometrical constraint different from ∂Ω ⊂ {x, a ≤ |x| ≤ b}. In
that case, the previous results remain valid when replacing the definitions of Tin, (∂Ω0)in with:

Tin = {θ ∈ T / ∃ε, δ > 0, ∀v ∈W 1,∞
0 (θ − ε, θ + ε) with ‖v‖W 1,∞ < δ, u0 + v ∈ Uad}.

(∂Ω0)in =

{
x ∈ ∂Ω0 / ∃θ ∈ Tin, x =

1

u0(θ)
(cos θ, sin θ)

}
.

where Uad replaces {Ω/∂Ω ⊂ {x, a ≤ |x| ≤ b} and includes the geometrical constraint, except the convexity
one. Note that (∂Ω0)in describes the part of the boundary which is inside the constraints, apart from
the convexity one. However, if one deals also with a finite-dimensional equality constraint (for example
|Ω| = V0), then one should work with a Lagrange multiplier, see Remark 4.4.

Remark 4.7 Due to the convexity constraint, the existence of a solution to (80) can be proved easily when
0 < a < b < ∞. We briefly provide a proof here: let (Ωn)n∈N ∈ ON

ad, with parametrization un ∈ Uad, be
a minimizing sequence of J(Ω). From u′′n + un ≥ 0 and 1/un ∈ [a, b], it follows that (un)n∈N, is strongly
relatively compact in H1(T) and therefore we may assume limn→∞ un = u0 in H1(T) (see also Remark
4.12), with u′′0 + u0 ≥ 0 and 1/u0 ∈ [a, b]. In such conditions the domains Ωn satisfy a uniform exterior cone
condition and will converge to Ω0 for the Hausdorff convergence, with parametrization u0. Then UΩn will
converge to UΩ0 in H1(B(0, b)) (see [12, Prop 2.4.4 and Theorem 3.2.13]), and thanks to the continuity of
the perimeter for the H1(T)-norm we get that P (Ωn) converges to P (Ω0), which implies that Ω0 solves (80).

Proof of Theorem 4.1. Let u0 such that Ω0 = Ωu0 . Then u0 is a solution of (84), where j(u) =
R(e(u),m(u))− p(u) and e(u) = E(Ωu),m(u) = |Ωu|, p(u) = P (Ωu).

The second order derivatives related to the geometrical terms m(u) and p(u) can be easily computed.
Indeed, first note that for every u ∈W 1,∞(T), u > 0 we have

m(u) =

∫
T

1

2u2
dθ, p(u) =

∫
T

√
u2 + u′2

u2
dθ.

It follows that m and p are twice differentiable in W 1,∞(T) and there exist some real numbers β1, β2, γ
(depending on u0) and α > 0 such that, |m

′′(u0)(v, v)| ≤ β1‖v‖2L2(T)

p′′(u0)(v, v) ≥ α|v|2H1(T) − γ|v|H1(T)‖v‖L2(T) − β2‖v‖2L2(T), |v|
2
H1(T) =

∫
T(v′)2dθ.

It remains the difficult term e′′(u0)(v, v), which relies on Section 2.2. To handle this term, we consider
v ∈W 1,∞(T) and introduce the vector field:

ξ ∈ C2((−t0, t0),W 1,∞(R2,R2)),

ξ(t) =

(
1

u+ tv
− 1

u

)
eiθη(r, θ) on ∂Ω0 (in polar coordinates), (86)

where η ∈ C∞c (R2) = D(R2), 0 ≤ η ≤ 1, η = 1 (resp. η = 0) in a neighborhood of ∂Ω0 (resp. the origin).
Let us point out that (I + ξ(t))(Ωu) = Ωu+tv, e(u+ tv) = E(Ωu+tv) = E(ξ(t)) and also that

∀v ∈W 1,∞(T) : ξ′(0)(v) = − v

u2
eiθ, ξ′′(0)(v, v) = 2

v2

u3
eiθ on ∂Ω. (87)

Then, we will differentiate twice around 0 the map t 7→ ϕ(t) := E(Ωu+tv) = EΩ(ξ(t)):

ϕ′(0) = e′(u0)(v) = E ′(0)(ξ′(0)),

ϕ′′(0) = e′′(u0)(v, v) = E ′′(0)(ξ′(0), ξ′(0)) + E ′(0)(ξ′′(0)).
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and therefore Corollary 2.6 (see also (22), (23)) implies there exists ε ∈ (0, 1/2) such that

|e′′(u0)(v, v)| ≤ β3(ε)‖ξ′′(0)‖
H

1
2−ε(∂Ω)

+ β4(ε)‖ξ′(0)‖2H1−ε(∂Ω).

We then use the fact that the H1−ε(∂Ω) and H1−ε(T) norms are equivalent (since the transformation
ψ = ψ(r, θ) := r

u(θ)e
iθ is bi-Lipschitz near T and ψ(T) = ∂Ω), and the fact that H1−ε(T) is a Banach algebra

to obtain
|e′′(u)(v, v)| ≤ β5(ε)‖v‖2H1−ε(T),

Easy computations about the term R(E(Ω), |Ω|) imply that j′′ satisfies (85), and therefore Theorem 4.5
applies. It follows that u′′0 +u0 is a finite sum of Dirac masses in any connected component of Tin. Geomet-
rically speaking, considering the formula (83), this correspond to the fact that any connected component of
(∂Ω0)in is polygonal and concludes the proof. 2

4.2 Application in the multi-dimensional case

In the multi-dimensional case, convexity constraint in shape optimization is much less understood, see
[3, 11] and the work of T. Lachand-Robert. Nevertheless, we can use a parametrization similar to the one
used in Section 4.1, and we show in this section that our estimates of shape derivatives allows to obtain
results in any dimension.

For N ≥ 2, if u : SN−1 → (0,∞) is given, SN−1 = {x ∈ RN , |x| = 1}, we can consider

Ωu :=

{
(r, θ) ∈ [0,∞)× SN−1, r <

1

u(θ)

}
. (88)

The function u is the so-called gauge function of Ωu. The set Ωu is convex if and only if the 1-homogeneous
extension of u, denoted by the same letter and given by u(x) = |x|u(x/|x|) is convex in RN (in this section,
we will refer to this property by saying that u : SN−1 → R is convex), see [28, Section 1.7] for example.
In this way, we describe every bounded convex open set containing the origin. Throughout this section,
the regularity of any function defined on SN−1 is seen as the regularity on RN \ {0} of its 1-homogeneous
extension, and it is classical that it is equivalent to the regularity of the set Ωu itself.

With this parametrization, considering j(u) = J(Ωu), problem (1) is equivalent to

min
{
j(u), u : SN−1 → (0,∞) convex , u ∈ Uad

}
, (89)

where Uad ⊂ W 1,∞(SN−1) is defined as Uad = {u ∈ W 1,∞(SN−1), Ωu ∈ Oad} and Oad is the class of
admissible open bounded sets considered in (1) (not taking into account the convexity constraint).

Then in the same spirit as Theorem 4.5, we can prove the following where we denote |v|2
H1(SN−1)

=∫
SN−1 |∇τv|2dθ, ∇τ = tangential gradient on SN−1:

Theorem 4.8 Let u0 > 0 be a solution for (89), where Uad is a convex subset of W 1,∞(SN−1). Assume
j : W 1,∞(SN−1)→ R is C2 and that there exists s ∈ [0, 1), α > 0, β, γ ∈ R such that for any v ∈W 1,∞(SN−1)
we have

j′′(u0)(v, v) ≤ −α|v|2H1(SN−1) + γ|v|H1(SN−1)‖v‖Hs(SN−1) + β‖v‖2Hs(SN−1). (90)

Then the set

Tu0 = {v ∈W 1,∞(SN−1)/∃ε > 0, ∀|t| < ε, u0 + tv ∈ Uad and is convex}, (91)

is a linear vector space of finite dimension.
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Proof. It is easy to check that Tu0 is a linear vector space. Since u0 is optimal, we have j′′(u0)(v, v) ≥ 0 for
every v ∈ Tu0 . To conclude, we prove that the unit ball of Tu0 for the Hs(SN−1)-norm is relatively compact.
Indeed, thanks to (90), we get

∀v ∈ Tu0 such that ‖v‖Hs(SN−1) ≤ 1, α|v|2H1(SN−1) ≤ γ|v|H1(SN−1) + β,

which easily leads to

∀v ∈ Tu0 such that ‖v‖Hs(SN−1) ≤ 1, |v|H1(SN−1) ≤
|γ|+

√
γ2 + 4α|β|
2α

.

From the compact embedding of Hs(SN−1) in H1(SN−1), we conclude that the unit ball of Tu0 ⊂ Hs(SN−1)
has a compact closure and therefore from Riesz Theorem, Tu0 has finite dimension. �

As a corollary, the results we obtained in this paper, namely iii), Theorem 2.3, lead to the following
generalization and improvement of [3, Theorem 4.5]:

Corollary 4.9 Let Ω0 be an open convex subset of RN , solution of the optimization problem:

min
{
J(Ω) = R(E(Ω), |Ω|)− P (Ω), Ω ⊂ RNopen, convex and such that ∂Ω ⊂ {x, a ≤ |x| ≤ b}

}
, (92)

where R : R2 → R is smooth, (a, b) ∈ (0,∞]2, a < b, and E is an energy like (5), corresponding to the
interior problem.

Then denoting by u0 the gauge function of Ω0, Tu0 defined in (91) has finite dimension. In particular,
if ω is a C2 relatively open subset of (∂Ω0)in := ∂Ω0 ∩ {x, a < |x| < b}, then the Gauss curvature of Ω0

vanishes on ω.

Compared to [3, Theorem 4.5], we have enlarged the class of functionals under consideration, and we require
less regularity on the optimal set.

Remark 4.10 Contrary to Theorem 4.1, we cannot deal with the exterior problem when N > 2. This is
due to the fact that for a Lipschitz domain Ω in dimension N ≥ 3, our estimates do not imply that there
exists s < 1 such that E′′(Ω)(ξ, ξ) ≤ ‖ξ‖Hs(∂Ω) (whereas it is the case for N = 2, see (23)).

Remark 4.11 As in Remark 4.6, we may focus on a geometrical constraint different from ∂Ω ⊂ {x, a ≤
|x| ≤ b}. In that case, given Oad a class of admissible open bounded set, the previous result remain valid
when replacing the definition of (∂Ω0)in as follows

(∂Ω0)in =

{
x ∈ ∂Ω0 / ∃θ ∈ SN−1

in , x =
1

u0(θ)
θ

}
, with

SN−1
in = {θ ∈ SN−1 / ∃ε, δ > 0, ∀v ∈W 1,∞

0 (BSN−1(θ, ε))with ‖v‖W 1,∞ < δ, u0 + v ∈ Uad} and

Uad = {u,Ωu ∈ Oad},

if Uad is convex, as assumed in Theorem 4.8.

Remark 4.12 As in Remark 4.7, the existence of a solution to (92) can be proved easily when 0 < a < b <
∞. The proof is similar to the one in Remark 4.7, the only adaptation to the multi-dimensional case is the
fact that a sequence of 1-homogeneous functions un : B1 → R (where B1 is the unit ball of RN ) such that
∀n ∈ N, ∀θ ∈ SN−1, α ≤ un(θ) ≤ β, with 0 < α < β <∞, is strongly relatively compact in H1(B1) (actually
in W 1,p(B1) for any p < ∞). To that end, we first notice that ‖∇un‖∞ ≤ β (see for example [5]), which
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implies that up to a subsequence un converges to u for the L∞(B1)-norm. Clearly u is then 1-homogeneous,
convex, and satisfies ∀θ ∈ SN−1, α ≤ u(θ) ≤ β. To obtain the convergence for the H1-norm, we follow [2,
Lemma 2.1.2]. As in Remark 4.7, the perimeter, the volume, and the energy E are continuous, and therefore
the set whose gauge function is the limit of un is a minimizer.

Proof of Corollary 4.9. Let u0 such that Ω0 = Ωu0 . Then u0 is a solution of (89), where j(u) =
R(e(u),m(u))− p(u) and e(u) = E(Ωu),m(u) = |Ωu|, p(u) = P (Ωu).

The second order derivatives related to the geometrical terms m(u) and p(u) can be easily computed.
Indeed, first note that for every u ∈W 1,∞(SN−1), u > 0 we have (see for instance [7])

m(u) =

∫
SN−1

1

NuN
dθ, p(u) =

∫
SN−1

√
u2 + |∇τu|2

uN
dθ.

where ∇τ denotes the tangential gradient on SN−1. It follows that m and p are twice differentiable and
there exists β1 (depending on u0) such that,

|m′′(u0)(v, v)| ≤ β1‖v‖2L2(T)

Easy direct calculations give

p′(u)(v) =

∫
SN−1

∂uG(u, |∇τu|)v + ∂pG(u, |∇τu|)
∇τu · ∇τv
|∇τu|

,

p′′(u)(v, v) =

∫
SN−1

∂uuG(u, |∇τu|)v2 + 2∂upG(u, |∇τu|)
∇τu · ∇τv
|∇τu|

v +

∂ppG(u, |∇τu|)
(∇τv · ∇τu)2

|∇τu|2
+ ∂pG(u, |∇τu|)

|∇τu|2|∇τv|2 − (∇τv · ∇τu)2

|∇τu|3
.

Taking into account ∂pG(u, p) =
p

uN
√
u2 + p2

, ∂ppG(u, p) =
u2

uN (u2 + p2)3/2
and rearranging the last two

terms gives

p′′(u)(v, v) =

∫
SN−1

∂uuG(u, |∇τu|)v2 + 2∂upG(u, |∇τu|)
∇τu · ∇τv
|∇τu|

v +

1

uN
√
u2 + |∇τu|2

[
|∇τv|2 −

|∇τu|2

u2 + |∇τu|2

(
∇τu
|∇τu|

· ∇τv
)2
]
.

As the first and second terms are controlled by β2‖v‖2L2 and γ‖v‖L2 |v|H1 respectively, with β2, γ depending
on u0, and

|∇τv|2 −
|∇τu|2

u2 + |∇τu|2

(
∇τu
|∇τu|

· ∇τv
)2

≥ (1− (1− α))|∇τv|2 = α‖∇τv|2,

with α = α(u0) > 0, it follows

p′′(u0)(v, v) ≥ α|v|2H1(SN−1) − γ|v|H1(SN−1)‖v‖L2(SN−1) − β2‖v‖2L2(SN−1).

As in the proof of Theorem 4.1, the term e′′(u0)(v, v) relies on Section 2.2, this time in any dimension, but
restricted to the case of convex domains. With the same proof and using iii), Theorem 2.3, we obtain

|e′′(u0)(v, v)| ≤ β3(r)‖ξ′′(0)‖
W 1− 1

r ,r(∂Ω)
+ β4(r)‖ξ′(0)‖2

W 1− 1
2r ,2r(∂Ω)

,
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valid for any r ∈ (1,∞). We would like to write the above inequality in terms of the Hs(SN−1)-norm of v,
for some s ∈ (0, 1). For this, first we note that any bi-Lipschitz transformation from SN−1 to ∂Ω0 (in our
case it is θ 7→ (1/u(θ), θ)) defines a diffeomorphism from W s,p(∂Ω0) to W s,p(SN−1), for every s ∈ [0, 1] and
p ∈ [1,∞]. Then the above inequality is equivalent to

|e′′(u0)(v, v)| ≤ β5(r, u)

∥∥∥∥v2

u3
0

∥∥∥∥
W 1− 1

r ,r(SN−1)

+ β6(r, u)

∥∥∥∥ vu2
0

∥∥∥∥2

W 1− 1
2r ,2r(SN−1)

, (93)

Note that here we used the formulas (87) with eiθ replaced by θ (of norm 1).
For the first term in (93) we wonder for which s ∈ (0, 1) the following inclusion is continuous:

Hs(RN−1)Hs(RN−1)W 1,∞(RN−1) ⊂W 1−1/r,r(RN−1). (94)

We use [27, Corollary, p. 189], which refers to the more general embedding Bs1
p1,q1 · · ·B

sm
pm,qm ⊂ Bs

p,q in RN .
Note that by using a partition of unity, some Lipschitz transformations and the extension theorem, we may
use these embeddings as if SN−1 was RN−1, and therefore we use it with N − 1 instead of N . In our specific
case, this leads to the condition(

1− 1

r

)
N

2
< s < 1. (95)

Clearly, for every s ∈ (0, 1) one can find r so that (95) holds, which implies that (94) is valid.
For the second term in (93), we look for the inclusion

Hs(RN−1)W 1,∞(RN−1) ⊂W 1−1/(2r),2r(RN−1). (96)

which is valid (again using [27]) if

1− 1

2r
+
N − 1

2
(1− 1

r
) < s < 1. (97)

Inequality (97) has a solution r (sufficiently close to 1) for any s ∈ (1/2, 1), which implies that (96) holds
for every s ∈ (1/2, 1).

Combining (94) and (96) with (93) gives

|e′′(u)(v, v)| ≤ β7(s, u0)‖v‖2Hs(SN−1),

for any s ∈ (1/2, 1).
Easy computations about the term R(E(Ω), |Ω|) implies then that j′′(u0) satisfies (90), and therefore

Theorem 4.8 applies, and Tu0 has finite dimension.
The fact that the Gauss curvature must vanish where it is defined is an easy consequence. Indeed, if ω

is as in the statement of Corollary 4.9 and if the Gauss curvature is positive at some point of ω, then it is
positive in a neighborhood ω̂ of this point. As a consequence, any smooth function with compact support
in ω̂ is in Tu0 . This contredicts the fact that Tu0 has finite dimension. 2
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