Wentzell eigenvalues, upper bound and stability

Jimmy LAMBOLEY
University Paris-Dauphine
with M. Dambrine, D. Kateb
Isoperimetric Problems Between Analysis and Geometry 16/06/2014, Pisa

Wentzell eigenvalue problem

$$
\left\{\begin{array}{rll}
-\Delta u & =0 & \text { in } \Omega \\
-\beta \Delta_{\tau} u+\partial_{n} u & =\lambda u & \text { on } \partial \Omega
\end{array}\right.
$$

where $\beta \in \mathbb{R}_{+}$.

Wentzell eigenvalue problem

$$
\left\{\begin{aligned}
-\Delta u & =0 & \text { in } \Omega \\
-\beta \Delta_{\tau} u+\partial_{n} u & =\lambda u & \text { on } \partial \Omega
\end{aligned}\right.
$$

where $\beta \in \mathbb{R}_{+}$.
It has a discrete sprectrum consisting in a sequence

$$
\lambda_{0, \beta}(\Omega)=0<\lambda_{1, \beta}(\Omega) \leq \lambda_{2, \beta}(\Omega) \ldots \rightarrow+\infty
$$

Wentzell eigenvalue problem

$$
\left\{\begin{array}{rll}
-\Delta u & =0 & \text { in } \Omega \\
-\beta \Delta_{\tau} u+\partial_{n} u & =\lambda u & \text { on } \partial \Omega
\end{array}\right.
$$

where $\beta \in \mathbb{R}_{+}$.
It has a discrete sprectrum consisting in a sequence

$$
\lambda_{0, \beta}(\Omega)=0<\lambda_{1, \beta}(\Omega) \leq \lambda_{2, \beta}(\Omega) \ldots \rightarrow+\infty
$$

Remark : it is the spectrum of

$$
-\beta \Delta_{\tau}+\mathcal{D}
$$

where \mathcal{D} is the Dirichlet-to-Neumann operator on $\partial \Omega$.

Wentzell eigenvalue problem

$$
\left\{\begin{aligned}
-\Delta u & =0 & & \text { in } \Omega \\
-\beta \Delta_{\tau} u+\partial_{n} u & =\lambda u & & \text { on } \partial \Omega
\end{aligned}\right.
$$

where $\beta \in \mathbb{R}_{+}$.
It has a discrete sprectrum consisting in a sequence

$$
\lambda_{0, \beta}(\Omega)=0<\lambda_{1, \beta}(\Omega) \leq \lambda_{2, \beta}(\Omega) \ldots \rightarrow+\infty
$$

Remark: it is the spectrum of

$$
-\beta \Delta_{\tau}+\mathcal{D}
$$

where \mathcal{D} is the Dirichlet-to-Neumann operator on $\partial \Omega$.
Question : Does the ball maximize $\lambda_{1, \beta}$ among smooth open sets of given volume?

Variational formulation

$$
\begin{gathered}
A_{\beta}(u, v)=\int_{\Omega} \nabla u \cdot \nabla v d x+\beta \int_{\partial \Omega} \nabla_{\tau} u \cdot \nabla_{\tau} v d \sigma, \quad B(u, v)=\int_{\partial \Omega} u v, \\
\lambda_{1, \beta}(\Omega)=\min \left\{\frac{A_{\beta}(v, v)}{B(v, v)}, v \in H^{3 / 2}(\Omega), \int_{\partial \Omega} v=0\right\}
\end{gathered}
$$

Outline

(1) Extremal cases $\beta=0$ and $\beta=\infty$
(2) Generalization of Brock's bound
(3) First order analysis
(4) Second order analysis

Outline

(1) Extremal cases $\beta=0$ and $\beta=\infty$

(2) Generalization of Brock's bound

(3) First order analysis

(4) Second order analysis

Steklov eigenvalue problem, $\beta=0$

$$
\left\{\begin{aligned}
\Delta u & =0 & & \text { in } \Omega \\
\partial_{n} u & =\lambda^{S t} u & & \text { on } \partial \Omega
\end{aligned}\right.
$$

It has a discrete sprectrum consisting in a sequence

$$
\lambda_{0}^{S t}(\Omega)=0<\lambda_{1}^{S t}(\Omega) \leq \lambda_{2}^{S t}(\Omega) \ldots \rightarrow+\infty
$$

Remark:

$$
\lambda_{1}^{S t}(\alpha \Omega)=\alpha^{-1} \lambda_{1}^{S t}(\Omega)
$$

Bound for $\lambda_{1}^{S t}, \beta=0$, Dimension 2

- Weinstock (1954) ; Ω simply connected

$$
\lambda_{1}^{S t}(\Omega) \leq \frac{2 \pi}{P(\Omega)} \quad\left(\leq \sqrt{\frac{\pi}{|\Omega|}}\right)
$$

- Hersch-Payne (1968) ; Ω simply connected

$$
\frac{1}{\lambda_{1}^{S t}(\Omega)}+\frac{1}{\lambda_{2}^{S t}(\Omega)} \geq \frac{P(\Omega)}{\pi}
$$

- Hersch-Payne-Schiffer (1975) ; Ω simply connected

$$
\lambda_{1}^{S t}(\Omega) \cdot \lambda_{2}^{S t}(\Omega) \leq \frac{4 \pi^{2}}{P(\Omega)^{2}}
$$

Bound for $\lambda_{1}^{S t}, \beta=0$, Dimension d

- Brock (2001) : Ω any smooth set in \mathbb{R}^{d} such that $\int_{\partial \Omega} x=0$:

$$
\begin{gathered}
\sum_{i=1}^{d} \frac{1}{\lambda_{i}^{S t}(\Omega)} \geq \frac{1}{|\Omega|} \int_{\partial \Omega}|x|^{2} \geq d\left(\frac{|\Omega|}{\omega_{d}}\right)^{\frac{1}{d}} . \\
\lambda_{1}^{S t}(\Omega)
\end{gathered} \frac{d|\Omega|}{\int_{\partial \Omega}|x|^{2}} \leq\left(\frac{\omega_{d}}{|\Omega|}\right)^{\frac{1}{d}} .
$$

Laplace-Beltrami eigenvalue problem, $\beta=+\infty$

$$
\begin{gathered}
-\Delta_{\tau} u=\lambda u \text { on } \partial \Omega \\
\lambda_{0}^{L B}(\partial \Omega)=0<\lambda_{1}^{L B}(\partial \Omega) \leq \lambda_{2}^{L B}(\partial \Omega) \ldots \rightarrow+\infty
\end{gathered}
$$

Remarks :

- $\lambda_{1}^{L B}(\alpha \partial \Omega)=\alpha^{-2} \lambda_{1}^{L B}(\partial \Omega)$.
- $\lambda_{1}^{L B}(\Omega)=\lim _{\beta \rightarrow \infty} \frac{\lambda_{1, \beta}(\Omega)}{\beta}$.

Bound for $\lambda_{1}^{L B}, \beta=+\infty$, 2-dimensional surface

- Hersch (1970) : If $\Omega \subset \mathbb{R}^{3}$ smooth and bounded is such that $\partial \Omega$ is diffeomorphic to the 2-dimensional sphere $\mathbb{S}^{2}=\partial B$, then

$$
\begin{gathered}
\frac{1}{\lambda_{1}^{L B}(\partial \Omega)}+\frac{1}{\lambda_{2}^{L B}(\partial \Omega)}+\frac{1}{\lambda_{3}^{L B}(\partial \Omega)} \geq \frac{3}{8 \pi} P(\Omega) \\
\lambda_{1}^{L B}(\partial \Omega) P(\Omega) \leq \lambda_{1}^{L B}\left(\mathbb{S}^{2}\right) P(B)
\end{gathered}
$$

Bound for $\lambda_{1}^{L B}, \beta=+\infty$, 2-dimensional surface

- Hersch (1970) : If $\Omega \subset \mathbb{R}^{3}$ smooth and bounded is such that $\partial \Omega$ is diffeomorphic to the 2-dimensional sphere $\mathbb{S}^{2}=\partial B$, then

$$
\begin{gathered}
\frac{1}{\lambda_{1}^{L B}(\partial \Omega)}+\frac{1}{\lambda_{2}^{L B}(\partial \Omega)}+\frac{1}{\lambda_{3}^{L B}(\partial \Omega)} \geq \frac{3}{8 \pi} P(\Omega) \\
\lambda_{1}^{L B}(\partial \Omega) P(\Omega) \leq \lambda_{1}^{L B}\left(\mathbb{S}^{2}\right) P(B)
\end{gathered}
$$

- Colbois-Dryden-El Soufi (2009)

$$
\sup _{\Omega \subset \mathbb{R}^{3}} \lambda_{1}^{L B}(\partial \Omega) P(\Omega)=\infty
$$

where the supremum is taken among smooth compact set Ω.

Bound for $\lambda_{1}^{L B}, \beta=+\infty$, 2-dimensional surface, volume constraint

Corollary

If $\Omega \subset \mathbb{R}^{3}$ smooth and bounded is such that $\partial \Omega$ is diffeomorphic to the 2-dimensional sphere $\mathbb{S}^{2}=\partial B$, then

$$
\lambda_{1}^{L B}(\partial \Omega)|\Omega|^{2 / 3} \leq \lambda_{1}^{L B}\left(\mathbb{S}^{2}\right)|B|^{2 / 3} .
$$

Bound for $\lambda_{1}^{L B}, \beta=+\infty, m$-dimensional manifold

- Colbois-Dodziuk (1994) ; for $m \geq 3$,

$$
\sup _{M} \lambda_{1}^{L B}(M) \operatorname{Vol}(M)^{2 / m}=\infty
$$

where the supremum is taken among smooth compact manifold of dimension m and fixed smooth structure.

Bound for $\lambda_{1}^{L B}, \beta=+\infty, m$-dimensional manifold

- Colbois-Dodziuk (1994) ; for $m \geq 3$,

$$
\sup _{M} \lambda_{1}^{L B}(M) \operatorname{Vol}(M)^{2 / m}=\infty
$$

where the supremum is taken among smooth compact manifold of dimension m and fixed smooth structure.

- Colbois-Dryden-El Soufi (2009) ; for $m \geq 3$,

$$
\sup _{\Omega \subset \mathbb{R}^{m+1}} \lambda_{1}^{L B}(\partial \Omega) P(\Omega)^{2 / m}=\infty
$$

where the supremum is taken among smooth compact set Ω such that $\partial \Omega$ has a fixed smooth structure.

Outline

(1) Extremal cases $\beta=0$ and $\beta=\infty$

(2) Generalization of Brock's bound

(3) First order analysis

(4) Second order analysis

Generalization of Brock's result

Theorem (Dambrine-Kateb-L. 2014)
Let Ω a smooth set such that $\int_{\partial \Omega} x=0$. Let $\Lambda[\Omega]$ be the spectral radius of $P[\Omega]=\left(p_{i j}\right)_{i, j=1, \ldots, d}$ defined as

$$
p_{i j}=\int_{\partial \Omega}\left(\delta_{i j}-n_{i} n_{j}\right),
$$

where \mathbf{n} is the outward normal vector to $\partial \Omega$. Then if $\beta \geq 0$, one has :

$$
\begin{equation*}
\sum_{i=1}^{d} \frac{1}{\lambda_{i, \beta}(\Omega)} \geq \frac{\int_{\partial \Omega}|x|^{2}}{|\Omega|+\beta \Lambda[\Omega]} \tag{1}
\end{equation*}
$$

Equality holds in (1) if Ω is a ball.

Generalization of Brock's result

Corollary

If $\beta \geq 0$, it holds :

$$
\lambda_{1, \beta}(\Omega) \leq d \frac{|\Omega|+\beta \Lambda[\Omega]}{\int_{\partial \Omega}|x|^{2}}
$$

Equality holds if Ω is a ball.

- $\beta=0$ is Brock's result.
- In general, the right-hand side is not maximized by the ball.
- $\beta=\infty$ gives:

$$
\lambda_{1}^{L B}(\partial \Omega) \leq d \frac{\Lambda[\Omega]}{\int_{\partial \Omega}|x|^{2}}
$$

Proof of the generalization of Brock's result

Variational formulation

$$
\begin{gathered}
A_{\beta}(u, v)=\int_{\Omega} \nabla u \cdot \nabla v d x+\beta \int_{\partial \Omega} \nabla_{\tau} u \cdot \nabla_{\tau} v d \sigma, \quad B(u, v)=\int_{\partial \Omega} u v, \\
\sum_{i=1}^{d} \frac{1}{\lambda_{i, \beta}(\Omega)}=\max _{v_{1}, \cdots, v_{d}} \sum_{i=1}^{d} \frac{B\left(v_{i}, v_{i}\right)}{A_{\beta}\left(v_{i}, v_{i}\right)},
\end{gathered}
$$

where the functions $\left(v_{i}\right)_{i=1, \ldots, d}$ are non zero functions that are B-orthogonal to the constants and pairwise A_{β}-orthogonal.

Proof of the generalization of Brock's result

Choice of test functions

We choose coordinates such that

$$
\forall i \neq j, \quad \int_{\partial \Omega} x_{i}=0 \text { and } \int_{\partial \Omega} x_{i} x_{j}=0
$$

Let for $i \in \llbracket 1, d \rrbracket$:

$$
w_{i}=\sum_{j=1}^{d} c_{i j} x_{j}, \quad B \text {-orthogonal to the constants. }
$$

Proof of the generalization of Brock's result

Choice of test functions

Let us compute $A_{\beta}\left(w_{i}, w_{j}\right)$:

$$
\int_{\partial \Omega} \nabla_{\tau} w_{i} \cdot \nabla_{\tau} w_{j}=\sum_{k, m} c_{i k} p_{k m} c_{j m}=\left(C P[\Omega] C^{T}\right)_{i j}
$$

Therefore

$$
A_{\beta}\left(w_{i}, w_{j}\right)=|\Omega|\left(C C^{T}\right)_{i j}+\beta\left(C P[\Omega] C^{T}\right)_{i j}
$$

We choose $C \in O(n)$ such that $C P[\Omega] C^{T}$ is diagonal. Then

- w_{i} and w_{j} are A_{β}-orthogonal if $i \neq j$,
- $A_{\beta}\left(w_{i}, w_{i}\right)=|\Omega|+\beta\left(C P[\Omega] C^{T}\right)_{i i} \leq|\Omega|+\beta \Lambda[\Omega]$.

Proof of the generalization of Brock's result

Conclusion

Using

$$
B\left(w_{i}, w_{i}\right)=\sum_{k=1}^{d} c_{i k}^{2} \int_{\partial \Omega} x_{k}^{2}
$$

we obtain :

$$
\sum_{i=1}^{d} \frac{1}{\lambda_{i}(\Omega)} \geq \frac{\sum_{k=1}^{d} \int_{\partial \Omega} x_{k}^{2}\left(\sum_{i=1}^{d} c_{i k}^{2}\right)}{|\Omega|+\beta \Lambda[\Omega]}=\frac{\int_{\partial \Omega}|x|^{2}}{|\Omega|+\beta \Lambda[\Omega]}
$$

Outline

(1) Extremal cases $\beta=0$ and $\beta=\infty$

(2) Generalization of Brock's bound

(3) First order analysis

(4) Second order analysis

Derivative of a multiple eigenvalue

Theorem (Dambrine-Kateb-L. 2014)
Let λ be an eigenvalue of order m and $\Omega_{t}=(I+t \mathbf{V})(\Omega)$. Then there exist m functions $\left(t \mapsto \lambda_{k, \beta}(t)\right)_{k \in \llbracket 1, m \rrbracket}$ such that

- $\lambda_{k, \beta}(0)=\lambda$,
- for $|t|$ small, $\lambda_{k, \beta}(t)$ is an eigenvalue of Ω_{t},
- the functions $\left(t \mapsto \lambda_{k, \beta}(t)\right)_{k \in \llbracket 1, m \rrbracket}$ admit derivatives and their values at 0 are the eigenvalues of the matrix $M=M_{\Omega}\left(V_{n}\right)$:

$$
\begin{aligned}
M_{i j}=\int_{\partial \Omega} V_{n}\left(\nabla_{\tau} u_{i} \cdot \nabla_{\tau} u_{j}-\right. & \partial_{n} u_{i} \partial_{n} u_{j}-\lambda H u_{i} u_{j} \\
& \left.+\beta\left(H I_{d}-2 D^{2} b_{\partial \Omega}\right) \nabla_{\tau} u_{i} \cdot \nabla_{\tau} u_{j}\right) d \sigma
\end{aligned}
$$

where $\left(u_{k}\right)_{k=1, \ldots, m}$ denote the eigenfunctions associated to λ.

First order optimality for the ball

If $\Omega=B$ the unit ball and \mathbf{V} preserves the volume, then :

$$
M_{i j}=C(d, \beta) \int_{\mathbb{S}^{d-1}} V_{n} x_{i} x_{j}
$$

Corollary

Any ball B is a critical shape for $\lambda_{1, \beta}$ with volume constraint : for every volume preserving deformations \mathbf{V},

$$
\sum_{k=1}^{d} \lambda_{k, \beta}^{\prime}(0)=\operatorname{Tr}\left(M_{B}\left(V_{n}\right)\right)=0
$$

Moreover, if $V_{n}: \mathbb{S}^{d-1} \rightarrow \mathbb{R}$ is orthogonal to spherical harmonics of order 2, the directional derivative exists in the usual sense and vanishes.

Outline

(1) Extremal cases $\beta=0$ and $\beta=\infty$

(2) Generalization of Brock's bound
(3) First order analysis
(4) Second order analysis

Sign of the second order derivative

Theorem (Dambrine-Kateb-L. 2014)
Let B be a ball in \mathbb{R}^{2} or \mathbb{R}^{3} and $t \mapsto B_{t}=I+t \mathbf{V}+O\left(t^{2}\right)$ a volume preserving deformation such that
V_{n} is orthogonal to spherical harmonics of order 2.
Then the functions $\left(t \mapsto \lambda_{k, \beta}(t)\right)_{k \in \llbracket 1, d \rrbracket}$ admit a second derivative and there exists $\alpha>0$ such that

$$
\sum_{k=1}^{d} \lambda_{k, \beta}^{\prime \prime}(0) \leq-\alpha\left\|V_{n}\right\|_{\mathrm{H}^{1}(\partial B)}^{2}
$$

Local optimality

Corollary

If B is a ball in \mathbb{R}^{2} or \mathbb{R}^{3}, and $t \mapsto B_{t}=\left(I+t \mathbf{V}+O\left(t^{2}\right)\right)(B)$ a smooth volume preserving deformation, then

$$
\lambda_{1, \beta}(B) \geq \lambda_{1, \beta}\left(B_{t}\right), \quad \text { for } t \text { small enough. }
$$

Perspectives - Open Problems

- Positive answer to the question when $\Omega \subset \mathbb{R}^{3}$ and $\partial \Omega$ is differomorphic to \mathbb{S}^{2} ?
- Study the stability question for Hersch's inequality in a smooth neighborhood :
- solve the "two-norm discrepancy issue" :

$$
S(\Omega):=\sum_{i=1}^{d} \frac{1}{\lambda_{i}^{L B}(\Omega)}=S(B)+\underbrace{S^{\prime \prime}(B)(V, V)}_{\leq-\alpha\left\|V_{n}\right\|_{H^{1}}^{2}}+o\left(\|V\|_{C^{3}}^{2}\right) .
$$

- prove coercivity for deformation preserving the perimeter.
- Enlarge the neighborhood/regularization procedure.

