POLYGONS AS OPTIMAL SHAPES WITH CONVEXITY
CONSTRAINT

JIMMY LAMBOLEY* AND ARIAN NOVRUZIt
Abstract. In this paper, we focus on the following general shape optimization problem:

min{J(Q), Q convezr, Q € Syuq},

where S, 4 is a set of 2-dimensional admissible shapes and J : S;q — R is a shape functional. Using
a specific parameterization of the set of convex domains, we derive some extremality conditions (first
and second order) for this kind of problem. Moreover, we use these optimality conditions to prove
that, for a large class of functionals (satisfying a concavity like property), any solution to this shape
optimization problem is a polygon.
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1. Introduction. In this paper, we are mainly interested in questions related
to a convexity constraint in shape optimization. We deal with the following general
shape optimization problem:

min{J(Q), Q convex, Q € S,4}, (1.1)

where J is a shape functional defined on a class S,q of subsets of R2.

Our goal is, on one hand, to write down explicit first and second order optimality
conditions for general 2-dimensional shape optimization problems with convexity con-
straint and, on the other hand, to use them to exhibit a family of shape functionals
for which optimal shapes are polygons.

As it is well-known, dimension 2 allows to write the convexity constraint through
the positivity of a linear operator with respect to the shape. More precisely, if one
uses polar coordinates representation (r, ) for the domains, namely

Q, = {(r,@)E[O,oo)xR;r<ﬁ}, (1.2)
where u is a positive and 27-periodic function, then
Q, is convex <= u" +u > 0.
As a consequence, we look at shape optimization problems of the form
g € Faa , j(ug) = min{j(u) :== J(Qu), u>0, v’ +u >0, ue Fuq} (1.3)

where F,q is a set of convenient 27-periodic admissible functions.
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A first contribution is to write down explicitly the first and second order optimal-
ity conditions on ug for some specific choices of F,4. Then, we use these conditions
to address the following question: let us consider the functional

() = j(u) = / "G (0, u(0)./(0)) dB

where G : R x (0, +00) x R — R is C?, 27-periodic in the first variable, and j is defined
on some set of functions F,4 as above. Then, is it possible to write down sufficient
conditions on G so that any optimal shape of (1.3) be a polygon?

This question is motivated by two preliminary results in this direction arising
from two quite different fields:

e first a result by T. Lachand-Robert and M.A. Peletier for a shape optimization
arising in the modeling of the movement of a body inside a fluid (Newton’s
problem, see [6] and references therein). Here G(6,u,u’) = hy(u) — u/?ha(u)
and Fuq = {u regular enough ; 0 < a < u < b}. With convenient assump-
tions on h; and hg, they prove that optimal shapes are polygons,

e then a result by M. Crouzeix in [3], motivated by abstract operator theory:
a problem of the form (1.3) is considered where G(6,u,u') = h(u'/u) with h
strictly concave and even, and F,q = {u regular enough ; 0 < a < u < b}.
Again, all optimal shapes are shown to be polygons.

We also refer to T. Bayen [1] for results about minimizing functionals of type j with
similar constraints, seen as controls.

Our goal here is to generalize these two results and to find rather general suffi-
cient conditions on G which will imply that optimal shapes are necessarily polygons.
We state three results in this direction in the next section. It turns out that a main
step in the proof is based on the use of the second order optimality conditions with
convexity constraint. This is the main reason why we write down explicitly these con-
ditions, which are actually interesting for themselves and which may also be useful
in some other problems (see [4] for the use of the first order optimality condition on
a particular problem of optimal eigenvalue with convexity constraint). They imply
that optimal shapes are necessarily polygons inside the constraints (see Theorem 2.1).
Next, to deal with the solution on the constraint, additional assumptions are needed
on the boundary of the constraints (see Theorems 2.2 and 2.3). The sufficient condi-
tions that we obtain on G, are rather sharp as shown through several examples and
counterexamples.

We state sufficient conditions on G for solutions to be polygons in the following
section. Then, Section 3 is devoted to the “abstract” first and second order optimality
conditions for convexity constraint. Proofs of the results in Section 2 are given in
Section 4. Finally, we give examples and counterexamples in Section 5 which show
how sharp our Section 2 results are.

2. Main results.
Notation: T := [0,27). Throughout the paper, any function defined on T is consid-
ered as the restriction to T of a 2m-periodic function on R, with the same regularity.
Let Whoo(T) := {u € WLX(R) / uis 2m-periodic}. If u € W*°(T), we say that
uw' +u>0if

Vv € WH(T) with v > 0, / (uwv —u'v")do > 0. (2.1)
T
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In this case, u” + u is a nonnegative 2m-periodic measure on R; we then denote
Sy = Supp(u” + u) the support of this measure.

As explained in the introduction, using the parameterization (1.2), we consider
all open bounded shapes (€,,),>0. A simple calculus of the curvature gives:

u’ +u
(1 + (%)2)3/2,

which leads to the characterization of the convexity of 2, by the linear condition
u”+u > 0. Moreover, straight lines in 9, are parameterized by the set {u” +u = 0},
and corners in the boundary are seen as Dirac masses in the measure u” + u.

K(Qy) =

We consider, as in [6, 3], the geometric constraint 9, C A(a,b) where A(a,b) :=
{(r,0) / 1/b <r < 1/a} is a closed annulus. So we consider the problem

min {j(u) = J(Q), weW"*(T), v +u>0, a<u<b}, (2.2)

where j : WH(T) — R, 0 < a < bare given. We are interested in sufficient conditions
on j (less restrictive as possible) such that the problem (2.2) has for solution a polygon.
We also look at the same question for the following problem with the volume constraint
|| = mo where mg is given, namely

1
min{j(u), ueWhHe(T), u’ +u>0, m(u) ::§/d—§:mo}, (2.3)
TU

with mg > 0. Note that m(u) is the measure of the domain inside the curve

{(1/u(6),6), 0 € T}.

THEOREM 2.1. Let G : (0,u,p) € Tx R x R+ G(0,u,p) € R be of class C* and
set j(u) = [ G(0,u,u’). Let ug be a solution of (2.2) or (2.3) and assume that G is
strongly concave in the third variable at ug, that is to say

Gpp(0,up,uj) <0, VO eT. (2.4)

o If ug is a solution of (2.2), then Sy, N1 is finite, for any I = (71,72) C
{0 € Rya < up(f) < b}, and in particular Qy, is locally polygonal inside the
annulus A(a,b),
o Ifug > 0 is a solution of (2.3), then S,,NT is finite, and so Qy, s a polygon.
Here S, denotes the support of the measure uj + ug.

See sections 4.1 and 4.2 for a proof.

REMARK 2.1. The assumption that j can be written in terms of an integral of
a functional of u and u/, means, roughly speaking, that the shape functional J is a
geometric one. We can easily drop this assumption, and also deal with non-geometric
shape functionals, implicitly defined in terms of u, involving PDE on the domain for
instance. Then, with the right substitution to the assumption (2.4) we can get the
same result with a very similar proof (see Remark 4.4). However, in that case, it is
not easy to find an explicit example involving a two-dimensional PDE and satisfying
this new assumption and that is why we restrict this paper to geometrical situations
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(however, an example of a non-geometric functional based on a (one-dimensional)
differential equation on the boundary of the domain is given in Remark 4.4).
REMARK 2.2. We choose to analyze a volume constraint in (2.3) because this
one is classical, and also to show that our approach can be adapted to nonlinear
constraints. With a few adjustments, this approach can be adapted to some other
constraints, regular enough in terms of u, see Proposition 3.3 and Section 4.2.
REMARK 2.3. The result is still true if ug is only a local minimum of (2.2) or
(2.3), since the proof only use the optimality conditions stated in Section 3.
REMARK 2.4. With the only assumptions of Theorem 2.1, it is not true that €2,
is a polygon if ug is solution of (2.2). Indeed, a solution can saturate the constraint
u > a or u < b, and in these cases, 0§}, contains an arc of circle. In some particular
cases, a solution can also have an infinite number of corners. We refer to Section 5
for explicit examples.
In the following results, we want to go deeper in the analysis, in order to find condi-
tions on G for the solution of (2.2) to be a polygon. As mentioned in Remark 2.4, we
need to avoid that 9, touches the boundary of A(a,b) in an arc of circle, and also
avoid an accumulation of corners of d€),, in a neighborhood of 0A(a,b). We treat
two kinds of technical assumptions:

THEOREM 2.2. Let j(u) = [; G(u,u) with G : (0,00) x R — R, and let ug be a

solution of (2.2). Assume that
(i) G is a C? function and Gp, < 0 on {(ug(6),uy(0)), 0 € T},
(i) The function p — G(a,p) is even and one of the followings holds

(i.1) Gyu(a,0) <0 or

(i1.2)  Gyu(a,0) =0 and Gy(uo, ug)uo + Gp(uo, ug)ug < 0,
(iii) The function p — G(-,p) is even and G, > 0 near (b,0).
Then Sy, s finite, i.e. ly, s a polygon.

The proof of this theorem follows from Theorem 2.1 and Proposition 4.3.
ExXaAMPLE 2.1. We can give the following geometric example :

J(Q) = AlQ] - P(Q),

where | - | denotes the area, P(-) denotes the perimeter, and A € [0,4+00]. The
minimization of J within convex sets whose boundary is inside the annulus A(a,b) is
in general non trivial.

When A = 0, the solution is the disk of radius 1/a (see [2] for a monotony property
of perimeter with convex sets). When A = 400, the solution is the disk of radius 1/b.

We can easily check (see section 5 for more detailed examples) that j(u) = J(Q,)
satisfies hypothesis of Theorem 2.1, so any solution is locally polygonal inside A(a,b).
And from Theorem 2.2, if A € (a,b) (in order to get conditions (i7) and (ii7)), any
solution is a polygon.

We can prove the same result as in Theorem 2.2 with a weaker condition than
the uniform condition given in (i), namely when G,(a,p) = 0, like in [6].

THEOREM 2.3. Let j(u) = [ G(u,u) with G : (0,00) x R — R, C(b) = 27b (see
Lemma 4.1) and let ug be a solution of (2.2). We assume that
(i) G is a C® function, Gpp, = 0 in {a} x [-C(b),C(D)], and Gpp < 0 in (a,b] x
[=C (), C0)],
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(i) p — G(a,p) is even, Gy(a,p) < 0 for all p € [—C(b),C(b)] and pGyp(a,p) =
2(p)Gupp(a,p) for p € (0,C(b)], with a certain function z > 0,

(iii) p — G(-,p) is even and Gy, > 0 near (b,0).

Then Sy, s finite, i.e. §2y, represents a polygon.

The proof of this theorem follows from Propositions 4.4 and 4.5.

REMARK 2.5. The hypotheses in Theorem 2.2 and 2.3 are quite general. In
Section 5 we give certain examples showing that if one of these hypotheses is not
satisfied, then the solutions of (2.2), in general, are not polygons.

REMARK 2.6. The condition (ii.2) in Theorem 2.2 (less natural than (ii.1)) has
been motivated by the problem in [3], where G(u, p) = h(p/u) with h(-) a C?, strictly
concave, and even function. Such a G(u,p) satisfies the hypothesis of Theorem 2.2.
Indeed,

(a)  Gpp(u,p) = h'(p/u)u=2, so Gpp(u,p) < 0 and (i) is satisfied,

(b)  Gu(u,p)u+ Gp(u,p)p =0 and Gy (-,0) =0, so (ii.2) is satisfied,

()  Gulu,p) = —h'(p/u)E > 0 so (iii) is satisfied.
Therefore the solution is a polygon. In [3], several more precise statements about the
geometric nature of solutions are proven (in this particular case).

REMARK 2.7. Similarly, Theorem 2.3 gives a generalization of the problem stud-
ied in [6]. Indeed, in this problem, they have G(u,p) = hq(u) — p?ha(u) with hq, ho
two C? functions satisfying h)(a) < 0, Ry (b) > 0, ha(a) = 0, and ¥ ¢t > a, ha(t) >0
(G is not C? in this case, but in fact we only need the existence of Gy, which is clear
here).

The function G(u, p) satisfies the hypothesis of Theorem 2.3 as p — G(u, p) is even and

(a)  Gpplu,p) = —2ha(u), so (i) is satisfied.

(b)  Gul(a,p) = hi(a) <0 and Gyp(a,p) = —2phh(a), Gupp(a,p) = —2h%(u), so

Gup(u, p) = pGypp(u,p), and therefore (ii) is satisfied.

(¢)  Gu(u,p) = hi(u) — p*hi(u) so Gy(b,0) = hi(b) > 0.
This last assumption is not specified in [6], but according to us, we need this one,
see Section 5.2. In fact, it seems that the case of an accumulation of corners in the
interior boundary {ug = b} is not considered in [6] (see Proposition 4.3, case (b)).
So the solution is a polygon. In [6], it is also proven that this polygon is regular in
this particular case.

REMARK 2.8. Les us make some comments on the question of existence. For the

problem (2.2), there always exists a solution, if for example j is continuous in H*(T)
(see below for a definition). Indeed, the minimization set {u € W1°(T) / v +u >
0,a < u < b} is strongly compact in H*(T).
About the problem (2.3) with a measure constraint, the question is more specific.
For example, if one looks at the problem of maximization of the perimeter (for
which the concavity assumptions is satisfied), with convexity and measure constraints,
we are in a case of non-existence (the sequence of rectangles Q, = (—n/2,n/2) x
(=mo/2n,mp/2n) satisfies the constraints, whereas the perimeter is going to +00).
However, existence may be proved for many further functionals. In Theorem 2.1, we
avoid this issue by asking the solution to be positive (and so to represent a convex
bounded set of dimension 2).

3. First and second order optimality conditions. As we noticed in Remark
2.8, the minimization set is compact. So there are very few directions to write opti-
mality. However, we are able in this section to write general optimality conditions for
our problem.
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Let us first introduce an abstract setting (see [5], [7]). Let U, Y be two real Banach
spaces, let K be a nonempty closed convex conein Y andlet f: U — R, g: U — Y.
We consider the minimization problem

min{ f(u), v €U, g(u) € K}. (3.1)

We denote by U’ (resp. Y”) the Banach space of continuous linear maps from U (resp.
Y) into R (dual spaces of U,Y), and we introduce

Y. ={leY;VkeK, I(k)>0}.

The following result is a particular case of Theorem 3.2 and 3.3 stated in [7] which
will be sufficient for our purpose.

PROPOSITION 3.1. Let ug € U be a solution of the minimization problem (3.1).
Assume f and g are twice (Fréchet-)differentiable at uo and that g'(uo)(U) = Y.
Then,

(i) there exists | € Y| such that f'(ug) =10 g'(ug) and I(g(ug)) =0,

(i) if F(u) := f(u) —l(g(u)), then F"(ug)(v,v) >0 for all v € T, where

Ty, = {’U e U, f’(’u,o)(’U) =0, g/(uo)(’v) € Kg(ug) = {K + )\g(uo);)\ c R}}

REMARK 3.1. When applying the second order optimality condition (ii), we have
to check whether well-chosen v € U are in Ty,. This may be done by using (i) and
the information on the linear map . We may use instead the following: assume
g(ug + tv) € K for t > 0 small, or, more generally that

ug + tv = vy + te(t) with . lérgos(t) =0 and g(v) € K; (3.2)
then
F/(10)(0) = 0 and g/ (u0)(v) € Kyun). (33)

To see this, we write the two following lines:

0 <t '[f(ve) — fluo)] = f'(uo)(v) +e1(t) where lim e1(t) =0,

t—0,t>0

g (uo)(v) =t~ [g(ve) — g(uo)] + £2(t) where tj(i){go@(t) =0,

and we let ¢ tend to zero.
If now, (3.2) is valid for all ¢ small (¢ > 0 and ¢ < 0), then v € Ty, . a

For our purpose, we choose U = H'(T) the Hilbert space of functions from R into
R which are in H}, (R) and 27-periodic, equipped with the scalar product

Yu,v € U, (u,v)yxy = /quru’v’.
T

Let go : U — U’ be defined by

Yu,v € U, go(u)(v) :/uv—u’v’.
T
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For l € U’ wesay | > 0 in U’ if [(v) > 0 for all v € U. Note that, if go(u) > 0 in U’
then u+wu"”, computed in the sense of distributions in R , is a 27-periodic nonnegative
measure on R, and we have

gow)(@) = [ uv—u'v' = [ vdu+u"). (3.4)
I /

Note also, for further purposes, that go(U) is a closed subspace of U’ which may be
described as the ”orthogonal” of the kernel of gq (because R(go) = N(gg)*, with g§
the adjoint of go), namely

go(U) ={ze€U’; Vv € Kergo, 2(v) =0} = {z € U’; 2(cos) = z(sin) = 0},

(and cos, sin denote the usual cosine and sine functions on R).
Finally, if [ is a continuous linear map from go(U) into R (that is [ € go(U)’),
then, thanks to the Hilbert space structure, there exists ¢ € U such that

Vz € go(U), l(Z) = <27C>U/><Ua (C,COS)UX[] = (C, sin)UXu =0. (35)
First problem:
Let j: U — R be C? Weset Y := go(U) x U x U equipped with its canonical Hilbert
space structure whose scalar product writes: Vy = (z,u1,u2),7 = (Z,u1,u3) € Y,
W, Py xy = (2, 2)vrxv + (u1,W)uxv + (u2, U2)uxuv-
And we define g : U — Y and K CY by
g(u) = (go(u),u —a,b—u), K ={(z,u,uz) €Y; 2>0inU’, ui,us > 0in U}.

We look at the minimization problem (see Lemma 4.1 and Remarks 3.2 and 4.1
for details about the choice of the two functional spaces H'(T) and W1>°(T)):

min{j(u), v € U, g(u) € K}. (3.6)

PROPOSITION 3.2. If uq is a solution of (5.6) where j : HY(T) — R is C%, then
there exist (o € H'(T) nonnegative, piq,uy € MT(T) (space of nonnegative Radon
measure on T) such that

Co=00n Sy, Supp(p.) C {uo=a}, Supp(u)C {uo=>0}  (3.7)

and ¥ v € HY(T), j'(uo)v = (¢o + ¢, v)vrxv + / vdjtg, — / vdpp.  (3.8)
T T

Moreover,
v+ v > Aug + ug)
Vv € HY(T) such that 3\ € R with { v > MNuo —a),v < Aug — b),
(Co+ ¢ v)urxu + Jpvd(pta — ) =0

we have 5" (ug)(v,v) > 0. (3.9)

REMARK 3.2. We choose here to work in the space H!(T), whereas the problem
is more naturally settled in W°°(T). This choice is motivated by the fact that
HY(T) is reflexive. If we had worked in W1:°°(T), we would have obtained a Lagrange
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multiplier in the bidual W°°(T)” which is not so easy to make explicit. Nevertheless,
this choice of H!(T) leads to this new difficulty: for G regular, the functional j(u) =
Jp G(0,u,u’) is generally not well defined on H'(T), and so we cannot directly apply
Proposition 3.2. We explain in Section 4.1 the adjustments that are needed to apply
this one.

Proof. We apply Proposition 3.1 with the notations just introduced above. The
main assumption ¢'(ug)(U) =Y is satisfied since ¢’(uo) = (go, I, —I) where I denotes
the identity. By the statement (i) there exists | = (lo,la,1s) € Y| and thanks to the
remarks (3.4), (3.5), there exists (o, fta, pp) € U x U’ x U’ such that

Vo € U, j'(uo)(v) = (Co + ¢gs v)vr v + Jpvdpa — [y vdps,
[ta is a nonnegative measure and [.(u — a)dpu, =0 or Supp(pa) C {ug = a},
fw is a nonnegative measure and [1.(b — u)duy, = 0 or Supp(up) C {ug = b},

(Cos cos)uxu = (Co,sin)uxv =0, [ Cod(uo + ug) = 0 and

Yo € U with go(v) > 0, /gov — ¢’ > 0. (3.10)
T

Let now v € U with v +v"” = 1(0)(uo + ug) with ¢ Borel measurable and bounded.
Then, go(]|¢||L<uo £+ v) > 0 so that (o, go(||¥]| Lo £ v))uxus > 0. It follows that

[(Cos go (W) uxu| < [|¥]l (o, go(uo))uxvr = 0. (3.11)

But this information on (y is not sufficient to obtain the first property of (3.7),
namely (o(ug + uo) = 0. For this, we now show that it is possible to change (o into
Zy = (p+a cos +bsin so that all same properties remain valid, but also Z(ug+ug) = 0.
Since [(v+v")cos =0 = [ (v+ v")sin, we also have (3.8) for Zy in place of (o.
Moreover, (3.11) is also true for Zy, that is to say: for every ¥ Borel measurable and
bounded such that v 4 v” = ¥(0)(ug + ug) for some v € U, [, Zodv = 0, where we
denote v = ug + uy.
Let us show that we can find a,b € R so that Zgy = 0 and Zy > 0, and the
proof of Proposition 3.2 will be complete.
Let us choose a, b so that

/cos 0Zy(0)dv(0) =0 = / sin 67y (0)dv(0), (3.12)
T T
which writes

{ Jpcos0¢o(0)dv(0) + a [ cos® 0 dv(0) + b [ cos O sinOdu(0) = 0,

[1-5in 6¢o(8)dv(6) + a [ sinOcosfdv(6) + b [-sin 6du(8) =0. L)

This is possible since C'S — B? # 0 where
C :/COSQHdV(G), S:/sin29dy(9), B :/cosesiDHdu(H).
T T T

Indeed, by Schwarz’ inequality, we have B? < C'S and equality would hold only if we
had

cosf = Asinf v —a.e 6,

for some A € R and it is not the case since v has at least 3 distinct points in its
support.
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Let now ¢ be a Borel measurable bounded function on T. Let ¢ := ¢ 4+ a cos +3sin
where «, 8 € R are chosen so that ¥v = v + v” for some v € U, or equivalently

{ JpcosO[p + a cos +sin](0)dv () = 0,

Jypsin 6 + o cos +Bsin(6)dv(6) = 0. (3.14)

Again, this is possible since C'S — B? # 0. Next, we deduce from (3.12), then from

(3.11) that
/gaZodl/ :/1/)Z0dl/ =0.
T T

By arbitrarity of ¢, this implies Zorv = 0 as expected. This gives (3.7) and (3.8) with
Zy in place of (.

We now prove that Zy is nonnegative : Supp(ug + uo)® = |J,, wn where w,, are open
intervals. Then, if ¢» > 0 is regular with a compact support in w,, we can introduce
v € H} (wy) satisfying v” + v = ¢ in w,, (possible since diam(w,) < 7). We define v
by 0 outside w,. Thus v" + v has Dirac mass at dw,, but since Zy vanishes at dw,,
we finally get, using (3.10):

/ Z(ﬂ/]d@ = /Zod(vll + ’U) > 0.
W T

Since ¢ > 0 is arbitrary, we get Zy > 0 in wy, and then Zy > 0 in T.
By the statement (ii) of Proposition 3.1, for each v € U satisfying

f'(uo)(v) =0, IXN € R, go(v) > Ago(uo), v > Auo —a), v < Muo — b), (3.15)

we have f”(ug)(v,v) > 0 (the constraint g is linear, so g” = 0). Whence Proposition
3.2, with Z; in place of (p. d

REMARK 3.3. In general, the positivity of (y on the orthogonal of {cos, sin} does
not imply that it is pointwise positive (one can write explicit examples).

REMARK 3.4. In the following section, the main difficulty will be to analyze the

situation where the convexity constraint is almost everywhere saturated. It would be
easy to prove the non-existence of an nonempty interval I C S,, N {a < up < b}.
However, this is not sufficient to conclude that uj + g is a sum of Dirac masses (we
can look at the Lebesgue decomposition of measures to see this). That is why we have
to analyze the case of infinitely many corners, or even of a diffuse singular measure
(see the proof of Theorem 2.1).
Another way to avoid these difficulties has been chosen by M. Crouzeix in [3] for his
particular problem (see Remark 2.6): he considers the minimization problem restricted
to convex polygons having at most n edges, and proves that with n large enough, any
solution in this restricted class has only ng edges where ng is only determined by a
and b. Therefore, using the density of convex polygons in convex sets, the solution
for this particular problem (2.2) is still a polygon.

REMARK 3.5. Our analysis in Section 4 could easily show on some simple exam-
ples that the first order equation is not sufficient to get the results of Theorems 2.1,
2.2 or 2.3. It turns out that the second order condition is very helpful.

Second problem:
Similarly, we can give the optimality conditions in the case of the measure constraint:

2 T’U,Q

1 [ dé
min{j(u), we HY(T), u"+u>0, m(u):= = :mo}, (3.16)
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PROPOSITION 3.3. If ug solves (3.16) where j : HY(T) — R is C2, then there
exist (o € HY(T) nonnegative, u € R such that

Co =0 o0n Sy, (3.17)
and ¥ v € HY(T), j' (uo)v = (Co + &, v)vrxvr — pm’ (o) (v). (3.18)

Moreover,

1 > "
for allv € HY(T), such that I\ € R satisfying { v v 2 Aug + uo)

(Co + ¢ v)urxu — pm/ (uo)(v) =0 7

we have j" (ug)(v,v) + um” (ug)(v,v) > 0. (3.19)

Proof. We make the same choices except for
Y= gO(U) X Ra g: U— Ya Vu € U’ g(u) = (go(u),m(u) - mO)a

and K ={z€ go(U), 2>0in U’} x {0} C Y.
Here, using min(ug) > 0, we have

Vv € U, g'(u0)(v) = (g0(v), m' (uo) (v)) = (QO(U)a —/Tﬁ)

Ug

and ¢'(uo)(U) = go(U) x R = Y. Therefore, we may apply Proposition 3.1, and
similarly to the proof of Proposition 3.2, we get the result. d

4. Proofs.

4.1. Proof of Theorem 2.1, case of inclusion in A(a,b). First of all, we
have to prove that u’ is bounded by a constant C(b), for all u admissible.
LEmMMA 4.1.

Vu e HY(T), [OSugb,u”—i—uZO — ||| < 27D = C(b)}

Proof of lemma 4.1 Since u is periodic, there exists xg € T such that u'(x¢) > 0.
With x € [z, zo + 27| and integrating the inequality u” 4+ u > 0, we get u'(x) —
u'(zo) + f;o u > 0 which leads to u'(z) > —27b, true for all z € R by periodicity.
Similarly with z; such that v/(z1) < 0 and z € [r1 — 27, x1], we get v/ (z) < 27b which
leads to the result with C'(b) = 27b. O

REMARK 4.1. With the help of this lemma, let us explain how we can use
Proposition 3.2, whereas j(u) = [, G(0,u,u’) is a priori not defined on H'(T): if
n(u,p) is a C*= cut-off functlon with 0 < 7 < 1 and such that

_ { 1, (u,p) € [a/2,2b] x [-2C(b),2C ()],
K 0, otherwise,

where C(b) is introduced in Lemma 4.1, then we can set j(u fT (0, u,u)d, with
G(0,u,p) := n(u,p)G(H,u,p). Easily, the new functlonal jis CF in HY(T) if G is
C*F in T x R x R. Moreover, by the choice of 1, any solution of the problem (2.2)
is still solution for } instead of j, and we can write first and second order necessary
conditions for the function }, in terms of G.
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We easily check that G still satisfy the hypothesis in Theorem 2.1, since n = 1 in
a neighborhood of [a,b] x [-C(b), C(b)] (this will also be true for Theorems 2.2 and
2.3). We drop the notation ~ in all what follows.

Proof of Theorem 2.1, case of inclusion in A(a,b):
Assume by contradiction that uy does not satisfy the conclusion. Therefore there
exists an interval I C {a < up < b} and 6y an accumulation point of Sy, N I.

(a) Case a < up(bp) < b.

Without loss of generality we can assume 6y = 0 and also that there exists a decreas-
ing sequence (g,) tending to 0 such that Sy, N (0,&e,) # 0. Then we follow an idea
of T. Lachand-Robert and M.A. Peletier (see [6]). We can always find 0 < &}, < &,
i=1,...,4, increasing with respect to i, such that S,, N (g%,,e5t1) #0, i =1,3. We
consider vy, ; solving

2 " . .
Un,i + Unys = X(E%éifl)(uo + ’LLO), Un,i = 0 in (05 En)cv 1=1,3.

Such v, ; exist since we avoid the spectrum of the Laplace operator with Dirichlet

boundary conditions. Next, we look for A, ;, ¢ = 1,3 such that v, = Z An,iUn,i
i=1,3

satisfy

Fic. 4.1. Case (a)

The above derivatives exist since vy, ; are regular near 0 and ¢, in (0, ,). We can
always find such A, ; as they satisfy two linear equations. It implies that v]] does not
have any Dirac mass at 0 and &,,. Since S, N (g¢,,eiF1) # (), we have v,, # 0. From

(3.7) and Supp(v,) C {a < ug < b} it follows that for such v,, we have

/vn(Co +¢) = / Undptg = / vndpy = 0.
T T T

Using the first order Euler-Lagrange equation (3.8), we get j'(uo)(v,) = 0. Conse-
quently, vy, is eligible for the second order necessary condition (it is easy to check the
other conditions required in Proposition 3.2). So, using (3.9), we get

72

0 < 5" (uo) (v, vn) = / Guu (0, ug, ué)v% + 2Gup (0, uo, ug) v vy, + Gpp (0, uo, ug)vs,”.
T
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Using the concavity assumptions (2.4) on G, it follows that

0 < §" (o) (v, v) < / Kout? + 2K om0 | — Kyt
T

En

2 En /2
< () Kuw+ 222Ky = Koy ) 0032, (4.1)

where, if we set R:=T X [a,b] x [-C(b), C(b)], we have
Ky = S%p |Guul,  Kup = S%p |Gupl,  Kpp = i%f |Gpp(0,u0(0),u(0))] > 0. (4.2)

In order to get (4.1), we have used Poincaré’s inequality V v € Hg(0,¢), [5u® <
(%)2 fog u'?, with e = &,,. As &, tends to 0, the inequality (4.1) becomes impossible
and proves that S, has not interior accumulation points. It follows that ug 4+ ug is a
sum of positive Dirac masses, ug +uo = Y, cy @nde, in {a < ug < b}.

(b) Case ug(fy) = a. From (a), it follows that near 6y and at least from one side
of it we have ug +uo = >, cy- @ndg, where {0, } is a sequence such that 6,, — 6o,
0n € Sy, NI and o, > 0. Without restriction, we may take 8y = 0 and assume
that 6, > 0 is decreasing. For every n we consider v, € Hg(0pt1,0,—1) satis-
fying v/ + v, = dp, in (0p41,0n—1). In T, the measure v!! + v, is supported in
{0n+1,0n,0,—1}, and since these points are in S,,, and since uy does not touch a in
a neighborhood of [0,,41, 6,-1], we can choose A < 0 (depending on n) such that

ol 4+ vp > Aug + uo)
Up > AMuo — a), v, < Aug — b).

Q=

F1G. 4.2. Case (b)

Moreover, since vy, is supported in {a < ug < b}, we finally get, using (3.7), [ vd((o+

o+ pa — pp) = 0, and so the function v, is admissible for the second order necessary
condition. Proceeding as in (a) above, we find a contradiction which proves that this
case is impossible.

(c) Case ug(6p) = b. This case is treated similarly to the case (b). O

COROLLARY 4.2. We have ||uj||r~ < 1/2b(b— a). More generally, if u € H'(T),
O<a<u<f<ooandu”+u>0 with |[{a <u < B} NSupp(u”’ + u)| =0 then

[u'[[ Lo < V/2B(8 — ).
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Proof. We have T = U,w, U ({a < u < 8} NSupp(u” +u)) U F, U Fs, where
Fy :={u=a}, Fg:={u=p} and w, C {a < u < §} open interval with «”" + v =0
inwy, Asu = 0ae in F,UFsand {a < u < 8} NSuppu” + u)| = 0, it’s
enough to estimate u’ only in w,,. From u” 4+ u = 0 in w, we get [v/|*> + u? = 4? with
a? <42 < 32 Therefore [u/|> = 42 — |u|? < 28(8 — ), which proves the statement.
a

REMARK 4.2. In Theorem 2.1 we have to work in an open interval I of {a <
ug < b} as, at this stage, it is not true in general that Sy, N {a < ug < b} is finite
(see Section 5). This property will be proved later with extra assumptions on G at
the boundary (see the proofs of Theorems 2.2 and 2.3).

REMARK 4.3. Assume that w C @ C {a < up < b}, with w an open connected
set, and that n, = #{60, € w} > 3, with n — 0,, increasing. Consider v € H}(61,03)
satisfying v” + v = dg,. The function v is admissible for the second order necessary
condition. Similarly to the case (a) we find the following estimation:

b =61, Loy — C(G,ab),
™ Kup + /K2, + KuuKpp
Therefore, we get
27

where [-] denotes the floor function.

REMARK 4.4. Theorem 2.1 and its proof are valid for non-geometric operators:
if j(u) = g(u,u') with g : (u,p) € W1>°(T) x L>®(T) ~ g(u,p) € R, of class C? and
satisfying

|9uu (0, up) (0, 0)] < KuullvlFoe,  |gup(uo, up) (v, 0)] < Kupllollze 0] 2, and
9pp (U0, ug) (v, v') < = Kopp|[0'][72

for some Ky, Kup, Kpp > 0, the main argument (4.1) still works (with a more precise
Poincaré inequality, valid in dimension 1, namely ||u|zo(0,e) < Ve[u'||£2(0,e), Yu €
HL(0,2)).

We give an explicit example, involving a one-dimensional equation: we can define
for u admissible v = 1 (u, p) € H*(T), with 1 (u,u’) given by

"+ =1+ %(u')2 on T, (4.3)

and g(u,u') = —3 [1(¥')? + % Note that it is easy to prove that ¢ > 1. Setting
V =0,¥(u,u)(v") and W = 9pptp(u, v’')(v',v") we have

—V'+V =, W'+ W =(")* onT. (4.4)
Therefore we obtain
oo, i) (0'0) == [ W wo = [zavi - [
< =Jlvl1Ze. (4.5)
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So, if ug is a minimizer of g(u,u’) then Q,, is a polygon inside the other constraints.

Finally, we like to point out that the shape functional g involves the solution of
the differential equation (4.3). The analysis in Theorem 2.1 can be done even when
the shape functional g involves the solution of a PDE, which will be the subject of a
forthcoming work.

4.2. Proof of Theorem 2.1, case of a volume constraint. First, we point
out that as 0 < ug € H'(T), we may assume that there exist 0 < a < b such that
a < up < b. Therefore, similarly to the case of inclusion in the annulus (see Remark
4.1), we introduce a cut-off function to get a new G and a new functional }, which is
equal to j on {u € H}(T) ; a < u < b and |u’'| < C(b)} and therefore, any solution of
the problem (2.3) is still solution of

min{j(u), ue HYT), a<u<b, v +u>0, m(u):mo}. (4.6)

Since 3 is now regular in H*(T), we can apply Proposition 3.3 and write first and
second order necessary conditions for the function }, in terms of G (the constraint
a < u < b does not appear in the optimality condition, because these constrains are
not saturated). It is easy to check that G still satisfies the hypothesis in Theorem 2.1.
In the following, we denote by j, resp. G, the function }, resp. G.

Now, we assume by contradiction that ug does not satisfy the theorem. Therefore
there exits at least one accumulation point 6y of S,,. Without loss of generality we
can assume fy = 0, and that there exists a decreasing sequence {e,, > 0} tending to
0 such that Sy, N (0,,) # 0. Then we can always find 0 < !, < e,, i = 1,...,5,
decreasing with respect to i, such that Sy, N (eit el) #0, i = 1,4. We consider vy, ;
solving

2 " : c .
Vp i+ Uni = X(Eifl’e%)(uo +ug), Un;=0in (0,,)°, i=1,4.

Next, we extend the same idea of [6] that we used in the first part of the proof (section

4.1) as follows: we look for A, ;, i = 1,4 such that v,, = Z An,iUn,; satisfies
i=1,4

v (07) = v (e;,) = m/ (uo) (vn) = 0.

Note that the derivatives at 07 and ¢, are well defined as v, ; are regular nearby 0
and &, in the interval (0,&,). Such a choice of A, ; is always possible as A, ; satisfy
three linear equations. Moreover, v, is not zero since Sy, N (¢%,e4tt) # (). Using
(3.17), we get [ vn(Co + ¢f) = 0, which implies

0= j/(U())(’Un) = /Un(CO + g(/)/) = m’(uo)(vn).

T

As vl + vy, > Mug + uo) for A < 0, it follows that v, is eligible for the second order
necessary condition. Then, using (2.4),

0< 5" (w)(wn ) = [

3
(Guu(é’,uO,%) + —Z) 02 + 2Gp (0, uo, uf) vy,
T U

0

+Gpp (0, ug, ug)v;f

3
< [ (ot ) 24 2Bl = Kl
T

< (o(1) - Kpp)”“iz”%%
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with o(1) — 0 as n — oo, where we have used Poincaré’s inequality in H{(0,e,)
(see (4.2) for the notation Ky, K,p and K,,). As n tends to oo, the inequality
0 < 5”(uo)(vn, vn) becomes impossible and this proves the theorem. O

4.3. Proof of Theorem 2.2. If j satisfies the hypotheses of Theorem 2.2, we
can apply Theorem 2.1 (see also Remark 4.1). Therefore, it remains to prove the
following result:

PROPOSITION 4.3. Under the assumptions of Theorem 2.2, the sets {ug = a}
and {ug = b} are finite.

Proof. Assume by contradiction there exists 6y an accumulation point of {(ug —
a)(ug —b) = 0}.

(a) First case : ug(6p) = a. Without loss of generality we can assume that 6y = 0
and that there exists a sequence {e,, > 0} of S, tending to 0, with ug(e,) = a and
Sup N (0,6n) # 0.

(a.1) First subcase: assume by contradiction that there exists a sequence 6,, € S,,, N
(0,&,) such that 6,, — 6y and a < ug(f,) < b. As {6, a < ug(f) < b} is open, there
exists an open connected set w,, 0, € w, C {a < ug < b}, diam(w,) — 0, ug(Owy) =
a. Consider the function v,, given by v, € HY(T), v 4+ v, = uf + ug = Zfil @;pi
in wy, (where Nj is finite), v, = 0 in w¢ (from Theorem 2.1, ug§ + uo is a finite sum
of Dirac masses in wy,). It follows that for n large v, is admissible (again using (3.7),
and also that ug = a on dw) for Proposition 3.2, since ug + ug has some Dirac masses
in Ow,. Then we can apply the second order necessary condition, as in (b), Section
4.1, which leads to a contradiction, since diam(wy,) is going to 0.

Fic. 4.3. Case (a.1)

(a.2) Second subcase: (0,e,) = F, U; w; with F, = {ug = a} N (0,&,) relatively
closed and w; C (0,ey,) open intervals with uo(Ow;) = a and u{ + up = 0 in w;. Let
vy, given by

vy v, = —(uy +ug) in (0,&,), v, =0 in (0,e,)".

We have v,, > 0 on (0,&,): indeed, as (ug+v,)"” + (ug+v,) = 01in (0,£,) (so up + v,
represents a line), ug +v, = ug in (0, &,,) and ug represents a convex curve, it follows
that ug < uo + vy, on (0,&,) (v, Z 0 because Sy, N (0,&,) # 0). Then for n large and
t > 0 small the function u, = ug + tv, satisfies a < u,, < b, ul! +u, > 0 (we use that
ug + uo has positive Dirac masses at 0 and €,,). Therefore, we can use the first order
inequality (see Remark 3.1) j'(uo)(v,) > 0, which gives

0 < 5 (ug)(vp) = / G (ug, ug)vn + Gp(uo, ug)vy,.
T
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Fic. 4.4. Case (a.2)

If (ii) holds we have fFa Gy (ug, ug)vn + Gp(uo, ug)v), < 0 because ug = a and ugy = 0
a.e. in F,, Gy(a,0) < 0 and Gp(a,0) =0 (as p — Gp(a,p) is odd). So, if one of (ii)
conditions holds, we have

0 < ' (up)(vy) < Z/ Gu(uo, ug)vn + Gp(ug, ug)vy,.

i

Note that we have [ Gu(uo,up)uy + Gp(uo,up)ug = [G(uo,up)ls,, = 0, since
up(0Tw;) = —ul(0~w;) (where w; = (0~ w;,07w;)) and G(a,-) is even. Therefore,
from
. UOUn f ) Ulovn
Up = Qo + Britly N wi, Oni = W72 >0, Bni= %7,27
fwi Up fwi |u0|

we get that if (ii) holds then

0 < j'(ug)(vy) < Zan,i/ Gu(uo, ug)uo + Gp(uo, ug)ug. (4.7)

We now prove that
vp — 0, U, —a in WHe(T) as n — oo, (4.8)

where @, = ug in (0,&,) and U, = a in (0,&,)°. Indeed, the statement for u, follows
from Corollary 4.2 because we have ||@,, — al|p~ — 0 as n — oo (from |ug(0) — a|] <
Ven|lugll Lz for 6 € (0,ey,) and @, + @, > 0). Next, from (G, + v,)" + (@p +vn) =0
in (0,e,) and W, + v, = a in (0,&,)¢, using again Corollary 4.2, we find out that
|(@n, +vn) — allwr.0o(ry — 0, which proves the statement for v,,.

Assume (ii.1) holds. We have u,, — a in W1>°(T) as n — oo, so G, (ug, ufy) = o(1)
as n — 00, and then

0 (wo)(va) < 3 ang / (Gula, 0y + 0(1))

i i

which is impossible as n — co because G, (a,0) < 0 and a,; > 0.
Now assume (ii.2) holds. In this case, we need a second order information: for n large
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we have

0< j(Uo + Uﬂ) - j(Uo) = j/(uO)(Un) + %j“(an)(vn; 'Un)

en
/ Gy (uo, ug)vn + Gp(uo, ug)vy,
0
1 [
+§ /0 G (U, Uy, J0p, + 2G up (Uin, Wy, )00y, + G (U, U7 )07,

S Z Qng / Gu(u07 u6)u0 + Gp(u()a U/O)U/O
i wi

1 [ -
+5 [ o) = Bplun
0

Here %y = ug + 0pVp, U, = uy + opv), with a certain o, € (0,1), and we used the
estimation (4.7) for j'(u)(vy), which holds as it uses only the fact Gy, (a,0) <0, and
Gyp(in, 1)) < —K,p < 0. The existence of K,, > 0 follows from hypothesis (i),
continuity of G, at (a,0) and the W1>°(T) convergence in (4.8). From (ii.2) we have
., Guluo, up)uo + Gp(uo, up)uy < 0 and therefore we get

. . L[ =~
0< jun +va) = () < 5 [ (0(1) = Rl 2
0

which is impossible for n large and proves that this case cannot occur.

(b) Second case : ug(6p) = b. Without loss of generality we may assume 6y = 0 and
that there exists a sequence &,, > 0 decreasing and tending to 0 such that ug(2¢,) = b.
From Theorem 2.1, it follows that (0,2e,) = Ujen, wn; U {0, i € N,} U F, with
F, = {u =0b}n(0,2¢,) relatively closed, N,, C NU{oo}, and u{ + up = 0 in the open
intervals wy,; (see Figure 4.5).

Consider the function u,, € H(T) given by

Up = UQ in (0, 26’”)07
Uy, = bcosf in (0,ep),
Up = bcos(0 — 2e,) in  (en,2e,),

Let 0, = sup{f € (0,e,), uo(0) = un(0)}, 7n = inf{0 € (e,2e,), uo(0) = u,(6)}.
We have ug = uy, in (0,0,) U (75, 2¢5,).

From the assumption of accumulation point, we must have o, < ¢, < 7,. Besides,
we have

0<u, <wug, |up| <lu,] ae in  (on,Tn). (4.9)
The first inequality is clear. For the other inequality we point out that 0 = uf < |ul,|
a.e. in Fp, and |ul|? +u2 = b2, |up|? + ug = ¢® in wy; N (0n, Tn), for some ¢ with
b2 > 2. Therefore

[l |2 —Jupl? =b* = +ug —u2 >0 in wyiN(0n,Tn)

We also note that as in the case (a.2), u, — bin WH°(T). As u,, satisfies a < u,, < b,
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En

F1G. 4.5. Case (b)

ul' +up, >0, and p — G(u,p) is even near (b,0) we get
0< jun) ~ (o) = | Gl ) - Gluo, u)
0
= [ (Gt ) = G ) + (Gl ) = Gu i)

= / (lun| = |ug NG (n, [ug| + t(Jun| = [ug)))

n

+(un — u0)Gu (uo + s(un — o), [ug|)do,

with 0 < ¢,s < 1. But from the parity of p — G(-,p) and Gp, < 0 near (b,0), it

follows that G, (-, p) < 0 for p > 0 near (b,0). Then from the assumption G,, > 0 near

(b,0) the last inequality leads to a contradiction, so this case is impossible. O
REMARK 4.5. Theorem 2.2 can be extended to more general integral operators.

More precisely, let j(u) = [ G(0,u,u’) for some G satisfying

(i) G is a C? function, p — G(0,u,p) is even and Gy, (0, ug,uf) <0,V 0 € T,

(ii) Go(0,a,p) = 0 and G(0,a,0) <0, for all § € T,

(iil) G (0, u,p) > 0 near (0,,0), for all § € T,

where u is a solution of problem (2.2). Then S, is finite, i.e. Q,, is a polygon.
The proof of this results is very similar to the proof of Theorem 2.2, except for the

analysis on the boundary {ug = a}, which requires certain particular estimations.

4.4. Proof of Theorem 2.3. Conditions of Theorem 2.1 are satisfied, so it’s
enough to prove:

PROPOSITION 4.4. Assume the conditions (i), (ii) of Theorem 2.3 hold. Then,
for any solution ug of (2.2), and for I = (y1,7v2) C {a < ug < b}, there exists ng € N
such that

ug + Uy = E ande, im I, ay>0.
1<n<ng

Proof. The proof follows closely the one of Theorem 2.1. In fact the proof of steps
(a) and (c) are identical, since we have Gpp(ug, uj) < —Kpp(a) < 0if ug > a + «,
a > 0. Let us deal with the step (b), which needs a new proof.
(b) Assume by contradiction that there exists 6y an accumulation point of Sy, NI with
uo(0o) = a (see Figure 4.2). Without restriction we may take 6y = 0 and assume there
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exists a decreasing sequence {6, > 0} tending to 0 such that ug +wuo = >, cyy @nde,
and ug > a in {0 < § < 1} and a,, > 0. Like in [6], we consider v,, € H}(T)) given
by

Sin(e — 9n+1) sin(@n_l — Gn) mn (9n+1; (9"),
0<wv,(0) =< sin(0, —Opy1)sin(lp—1—0) in (0,,0,-1),
0, in (9n+1; 9n,1)c.
Since ug + up has some Dirac mass at {0,+1,05,0,-1}, and up > a in {0 < 0 < 1},

the functlon vy, is admissible for the first and second order necessary conditions of
Proposition 3.2. From the first order condition we get

0= / Gl (a0, ) vm + Gy (g, )0,
T

:ﬂ@me%m+/

d
<Gu(u0, ug) — —Gp(uo, u6)> v
T\6,, do

:%QWWMM%WM+/

(G oy ) + G (0, 10 a0 — Grup (o, up Y ) v,
T\6n

since ug +up =0 on (0p+1,0n-1) \ {00} ([]o denotes the jump at 6).
We now prove the following consequence:

Gula,up(07)) = Gup(a, up(07))up(0F) = 0. (4.10)

We will prove (4.10) using the technique used in [6] for a particular functional G(u, p).
First we point out that

lim Jr(Gu(uo, up) + Gpp(uo, up)uo — Gup(uo, up)up)va

n—oo f,ﬂ, Un

= Gl h(0+)) = Guy 050" (0) = i (0ol ve B
n—oo T Upn

<0

— )

where we have used that fact that p — Gp(u,p) is decreasing (consequence of G, <
0), Gpp(a,p) = 0 and [ugle, > 0.
If by absurd (4.10) does not hold, there exists a constant ¢ > 0 such that

_ [Gp(uo, up)le, vn(6n)

Jrvn

for n large. Since Gpp(a,-) = 0 we have

[Gp(uo, up)le, = Gp(uo(n),up(0y)) — Gp(uo(On), up(0,,))
= [uo]OnGpp(u0(9n> ug,,) = [UB]Gn(Gpp(UO(en)766n> - Gpp(uo(()),ﬂgn))

1
= Oulugln, [ Guppluo(t9,), T (6, )
0

>e>0 (4.11)

with ), between u((0;7) and u((6;, ).
Un _ 1 Tn + Tn—1
0 vn(9n) 2y T

Tn + Tn—1 .
E ———— = 400, where 7, = 0 — 0141, (from an elementary lemma on series,

> e T

We point out that (14 0(1)) and the series
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see [6]). Therefore, from (4.11) we obtain

Lol il ) — i, ([ Gunntuot9). e, )t ) 2522

As fol Glupp (uo (05 ), uf, )ug(t0y,)dt is uniformly bounded w.r.t. to n, with a summa-
tion, we get:

o> O lublo, > — 3 lublo, < / Gupp<uo(t9n>,aan>ua(t9n>dt)

n n

The contradiction proves (4.10). The important corollary of (4.10) is
ug(07) >0, Gupp(a,u(0+)) < 0. (4.12)

Indeed, from (4.10) and (ii) it follows that 0 # Gy (a, uy(07))uh(01) < 0. As ug(0) <
up(0) implies ud (0) > 0, it follows that uy(0%) > 0 and Gyp(a,uh(07)) < 0. Using
once more (ii) gives

0> Gula, ug(07)) = Gup(a, up(07))ug(07) = 2(a, up(07) Gupp(a, up(07)),

which proves (4.12).
Using vy, in the second order condition of Proposition 3.2 gives

971,—1
0< [ Gunluo, )0 + Gupluo, ug) (02) + Gl )]0},

9n+1

= _[Gup (UOa u/O)]GnU" (9")2

On_1
+/ (G (uo, “6) - Guu;ﬂ(UOa UB)UG + Gupp(UOa “6)“0] U’IQL + G;D;D(UOa U/0)|U;z|2

On+1

971,—1
~o(1)r2r2 1 / Gy (10, ) 0,2 (4.13)

9n+1

Since Gpp(a,0) = 0, we need further developments allowing to use (4.12). Namely
Gpp(uo, UIO) = Gupp(a, u’o)u6(0+)9(1 +0o(1)),

anl 071.71
| Gl st = [ Gyl @8l 1+ o(1)

0n+1 6n+1

On—1
— ) (0F) Gupp 1,y (07) / O, (1 + o(1))

9n+1
~ U (0) Gupp (a, ug (7)) (7375 _1 + On 1 T Ty + 0T T 1)

From (4.12), the last inequality contradicts the second order condition (4.13) and
proves that this case is impossible. a

PROPOSITION 4.5. Under the assumptions of Theorem 2.3 the sets {up = a} and
{uo = b} are finite.
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Proof. The proof of proposition follows closely the proof of Proposition 4.3, except

for the case (a.1) which needs another proof as Gp,(u, p) is not strictly negative near
u = a. Note that the case (a.2) of Proposition 4.3 when using only condition (ii.1)
(which is the case in this proposition) does not require Gp, < 0 (but only G (a,0) < 0
and the parity of p — G(a,p)). Furthermore, the case (b) of Proposition 4.3 requires
only the (even) parity of p — G(u,p), Gpp(u,p) < 0 and G,, < 0 near (b,0).
(a.1) We assume by contradiction that 0 is an accumulation point of S,, N {ug =
a}, and that there exists a sequence {e, > 0} tending to 0, with ug(e,) = a and
Suo N (0,8,) N{a < up < b} # 0 (see Figure 4.3). Then, there exists an open interval
wn C (0,e,) N{a < ug < b}, with S, Nw, # 0 and ug(Ow,) = a. From Theorem 2.1
it follows that Sy, Nwy, is finite. Therefore, we can denote w, = (0,41, 0,—1) and find
0r € (Ont1,0n-1) N Sy,. We then consider

Sin(e — 9n+1) sin(@n_l — Gn) mn (9n+1; (9”),
0<wv,(0) =< sin(0, —Opy1)sin(lp—1—0) in (0,,0,-1),
0, in (9n+1; 9n,1)c.

The function v, is admissible for the first order condition, since ug§ + uo has some
positive Dirac mass on dw,,. We can proceed exactly as in step (b) of Proposition 4.4
and we prove that (4.12) holds, so u,(0%) > 0. However, from the fact that 6y = 0
is an accumulation point from the right, it’s easy to show that u((07) = 0. The
contradiction proves the claim. g

5. Sharpness of conditions. The conditions of Theorem 2.2, 2.3 are optimal in
the sense that there exist counterexamples with G(u, ') not satisfying one of (i)-(iii)
and such that the corresponding solution of (2.2) is not a polygon. We will provide
some counterexamples for Theorems 2.2, 2.3.

5.1. Counterexamples for Theorem 2.2.
Condition (i)
Set ¢ = (a+b)/2 and consider G(u,p) = 1 ((u — ¢)? + p?). Note that G satisfies (ii.1)
as Gy(a,0) = a — ¢ < 0 and (iii) because G, (b,0) = b — ¢ > 0. It does not satisfy
(i) because G, = 1. It is obvious that the corresponding solution of (2.2) is not a
polygon, but rather the circle {ug = c}.

Condition (ii)

Consider the function G(u,p) = (u? — p?). Of course G, (u,p) = u and Gyp(u,p) =
—2, so G(u, p) satisfies the conditions (i) and (iii), but it does not satisfy (ii.1), neither
(ii.2). The solution of (2.2) corresponding to this G(u, p) is the circle up = a. Indeed,
for admissible u we have

j(u)z§A(u2—|u'|2)=%/r(u+u")uzg/r(u+u")=g[ruzwa2=j(uo)

which proves that ug = a is the minimizer of j(u).

Another counterexample is using the perimeter. Indeed, if G(u,p) = 7("22#1/2
then j(u) := [, G(u,u')dd = —P(u), where P(u) is the perimeter of the domain
inside the curve {(1/u(6),0), 6 € T}. Therefore, solution of (2.2) is up = a, which
corresponds to the circle {r = 1/a}. On the other side, G(u, p) satisfies the conditions
(i) and (iii) but none of conditions (ii). Indeed,

1

1
Gu(uao): Ea Gpp(u’p)zfm'
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Condition (iii)

Set G(u,p) = —%(u?+ p?). Since G, = —u and G, = —2, G(u, p) satisfies (i), (ii.1),
but it does not satisfy (iii). A solution of the corresponding minimization problem is
ug = b. In fact, any ug representing a convex polygon with edges tangent to the circle
{uo = b} is a solution! We can also add some piece of circle in the boundary. Indeed,
first let v be a function such that 1/v represents a straight line with v < b. For such
v, we have

’U2 T |,Ul|2 S b2,

because v satisfies the equation v + v” = 0, so ((v?) + (v)?)’ = 0 and therefore
v + [v'|? = k2. For 6 such that v/ () = 0 the value of 1/v(6y) gives the distance of
the origin from the line v, so we must have 1/v(6p) > 1/b, which proves the claim.
Now, every admissible u can be approached for the H'(T) norm by a sequence of
convex polygons u,, satisfying a < u, < b. Then

1
J(u) = lim j(up) = =5 lim [ (up, + Jup,[)* > =70 = j(uo),

n— oo 2 n—oo

which proves that ug = b is a minimizer. This example provides some optimal shapes
having an infinite number of corners inside {a < u < b} (because we can have an
infinite number of edges, tangent to the circle of radius 1/b).

5.2. Counterexamples for Theorem 2.3. With minor modifications, the coun-
terexamples given in (i), (ii) and (iii) above can easily be updated for Theorem 2.3.

Condition (i) Let ¢ = 1(a+b) and G(u,p) = 1((u — ¢)* + (u — a)?p?). The function
G satisfies the (ii), (iii) of Theorem 2.3. Indeed,
(i1) : Gyla,p) =a—c<0,
PGup(a,p) =0, Guppla,p) =0, s0 pGup(a,0) = 2(p)Gupp(a, p) with z = 0.
(791) : Gy (b,0) =b—c¢ > 0.
The condition (i) is not satisfied as Gp, = 2(u — a)? (note that G, (a,p) = 0). For u

admissible we have
.7(“) >0 :j(C),
SO 4o = ¢ minimizes j(u).

Condition (ii) Let G(u,p) and j(u) be as in the first example of Condition (ii) of
Section 5.1. We consider

~

1 o) 07 S ?
G(u,p)za(ut@(u)p?), 0<p <1, pelC™R), w(U)={ 1 Z>Z

and let j(u) = Jr G(u,u'). The function G satisfies the (i), (iii) of Theorem 2.3, but
not (ii). For u admissible we have

~ -~

F() = / Glu,u) > /T Glu,) = j(u) > j(a) = 3(a),

$0 ug = a minimizes j(u).
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Condition (iii) Again, let G(u,p) and j(u) be as in the Condition (iii) of Section
5.1. We consider G(u, p) = —3(u® + ¢(u)p?) and j(u) = [, G(u,u’). The function G
satisfies the (i), (ii) of Theorem 2.3, but not (iii). Similarly as above, for u admissible
we have

F(u) / Glu, o) > /T Glu, o) = j(u) > j(B) = J(b),

S0 up = b minimizes E(u) Same remarks as in the previous subsection can be done.
We can construct some optimal shapes locally polygonal inside {a < u < b} (necessary
because of Proposition 4.4), but having an infinite number of corners in {a < u < b}
(the only condition to be a minimizer is that every edges of these shapes are tangent
to the circle of radius 1/b, and inside the domain {¢ = 1}).
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