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Durée : 3 heures

Exercice 1 (réduction d’une forme quadratique, 4 points). Déterminer une base orthonormée de R* relative-
ment a laquelle la matrice de la forme quadratique

Vx € RY, q(x) = 2x12 + 452 + 2x3% + 43,2 — 631X + 21 X3 + 6X7X4 — 6X5X3 — 8X9X4 + 6X3X4
est diagonale. En déduire la signature et le rang de q.

Exercice 2 (probleme aux moindres carrés, 4 points). Calculer

1
inf f (In(t) —at — b)?dt.
0

(a,b)eRr2

Exercice 3 (représentation d’une forme linéaire, 4 points). Soit n un entier naturel et E = R,[X] I'espace
vectoriel des polynémes a coefficients réels de dégré inférieur ou égal a n.

1. Justifier 'existence et 'unicité d'un polynéme Q de E tel que

1
YPeE, P(0)= J. P(t)Q(t)dt.
0
2. Montrer que le polynéme Q est de degré n.
Indication : on pourra se servir du fait que Uinverse de la matrice H d’ordre m, avec m un entier naturel non nul,

ayant pour coefficients h;; = iﬂ%l, a des coefficients entiers, s’exprimant en fonction de coefficients binomiaux,
donnés par

V(i,j) € {1,...,m}%, (H™V); = (_1)i+j(i+j_1)(mn‘|1‘i—.1)(m+]’—1)(l’+].—2)2.

—j m—i i—1

Exercice 4 (propriétés des endomorphismes antisymétriques, 15 points). Soit n un entier naturel, E un espace
euclidien de dimension n, de produit scalaire noté (-,-), et u un endomorphisme de E. On rappelle que u est dit
antisymétrique si et seulement si u* = —u, ot 'endomorphisme u* désigne I'adjoint de u.

1. Pour tout couple de vecteurs x et y de E, développer (u(x + y), x + y), puis montrer que u est antisymé-
trique si et seulement si
Vx € E, (u(x),x)=0.

2. On suppose dans cette question que la dimension de E est non nulle. Soit 8 = {e;,...,e,} une base
orthonormée de E.

(a) Donner une expression des coefficients de la matrice M de u dans la base 2.
(b) Que dire de la matrice M si u est un endomorphisme antisymétrique ?

Dans cette partie, on suppose 'endomorphisme u antisymétrique et non nul.

3. Montrer que si le nombre réel A est une valeur propre de u, alors A = 0.



4. Montrer que les sous-espaces vectoriels ker(u) et Im (u) sont supplémentaires orthogonaux. En déduire que

ker(u) = ker(u?), ot u? =uou.

5. Montrer que 'endomorphisme u? est auto-adjoint et que ses valeurs propres sont négatives ou nulles.

6. (a) Montrer que I'endomorphisme u? admet au moins une valeur propre non nulle.
Soit x un vecteur propre de u? associé a une telle valeur propre. On note F le sous-espace vectoriel de E
engendré par la famille {x,u(x)}.
(b) Montrer que F est stable par u et de dimension égale a 2.
(c) Montrer que le supplémentaire orthogonal F* est stable par u.
(d) Montrer que I'endomorphisme induit par u sur F*, noté ., ,est antisymétrique et qu’on a Im (u) =
F®Im (U|FJ_ ).
7. En déduire que le rang d’'un endomorphisme antisymétrique est pair.
Indication : on pourra raisonner par récurrence sur la dimension de E.

On considére une application des précédents résultats. Lespace euclidien E est ici de dimension 4 et u est un
endomorphisme de E de matrice

0 4 1 -1
—4 0 -1 -1
M=l_11 0o =s
1 1 5 0

dans une base B = {ej, e,, e3, 4} orthonormée de E.

8. (a) Montrer que 'endomorphisme u est antisymétrique.
(b) Vérifier que le vecteur x = e; + e, — e3 est un vecteur propre de u?.
(c) Soit F le sous-espace vectoriel de E engendré par la famille {x,u(x)}. Déterminer une base orthonor-
mée de F et une base orthonormée de F*.
(d) En déduire une base orthonormée de E et deux nombres réels a et 3 tels que la matrice de u dans
cette base soit

0 —a 0 0
a 0 0 0
0 0 0 —f
0 0 B O



