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Corrigé (succinct) de l’examen du 7 janvier 2026

Exercice 1 (réduction d’une forme quadratique). Déterminer une base orthonormée de R4 relativement à laquelle la
matrice de la forme quadratique

∀x ∈ R4, q(x) = 2x1
2 + 4x2

2 + 2x3
2 + 4x4

2 − 6x1 x2 + 2x1 x3 + 6x1 x4 − 6x2 x3 − 8x2 x4 + 6x3 x4

est diagonale. En déduire la signature et le rang de q.
On détermine une telle base en diagonalisant la matrice de q relativement à la base canonique, qui est la matrice réelle
symétrique

M =







2 −3 1 3
−3 4 −3 −4
1 −3 2 3
3 −4 3 4






,

dans une base orthonormée. On a χM (X ) = (X +1)X (X −1)(X −12), d’où les valeurs propres de M sont −1, 0, 1 et 12. Il y
a deux valeurs propres strictement positives, une strictement négative et une nulle, on en déduit donc que la signature de
q est (2,1) et que le rang de q est 3. Une base orthonormée de R4 relativement à laquelle la matrice de q est diagonale est
obtenue en déterminant une base orthonormée de vecteurs propres de M . On a

MX = −X ⇐⇒















3x1 − 3x2 + x3 + 3x4 = 0

− 3x1 + 5x2 − 3x3 − 4x4 = 0

x1 − 3x2 + 3x3 + 3x4 = 0

3x1 − 4x2 + 3x3 + 5x4 = 0

⇐⇒ x1 = x3 =
3
2

x2 = −
3
2

x4,

MX = 0 ⇐⇒















2x1 − 3x2 + x3 + 3x4 = 0

− 3x1 + 4x2 − 3x3 − 4x4 = 0

x1 − 3x2 + 2x3 + 3x4 = 0

3x1 − 4x2 + 3x3 + 4x4 = 0

⇐⇒ x1 = x3 = 0 et x2 = x4,

MX = X ⇐⇒







x1 − 3x2 + x3 + 3x4 = 0

− 3x1 + 3x2 − 3x3 − 4x4 = 0

3x1 − 4x2 + 3x3 + 3x4 = 0

⇐⇒ x2 = x4 = 0 et x1 = −x3,

MX = 12X ⇐⇒















− 10x1 − 3x2 + x3 + 3x4 = 0

− 3x1 − 8x2 − 3x3 − 4x4 = 0

x1 − 3x2 − 10x3 + 3x4 = 0

3x1 − 4x2 + 3x3 − 8x4 = 0

⇐⇒ x1 = x3 = −
2
3

x2 =
2
3

x4,

dont on déduit la base
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qui est telle que voulue.

Exercice 2 (problème aux moindres carrés). Calculer

inf
(a,b)∈R2

∫ 1

0

(ln(t)− at − b)2 dt.

On reconnaît un problème aux moindres carrés en considérant l’espace vectoriel E des fonctions réelles définies et continues
sur l’intervalle ]0, 1] et de carré intégrable, muni du produit scalaire

∀( f , g) ∈ E, 〈 f , g〉=
∫ 1

0

f (t)g(t)dt.
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La quantité recherchée est alors d( f , F)2, avec d la distance euclidienne dans E, f : t 7→ ln(t) et F = Vect ({t 7→ 1, t 7→ t}).
On a alors d( f , F)2 = ∥ f − pF ( f )∥2, où pF est la projection orthogonale sur F . Il est clair que les fonctions t 7→ 1 et
t 7→ t sont linéairement indépendantes. On peut donc poser pF ( f )(t) = at + b, sachant que 〈 f , t 7→ 1〉 = 〈pF ( f ), t 7→ 1〉 et
〈 f , t 7→ t〉= 〈pF ( f ), t 7→ t〉, puisque f − pF ( f ) est orthogonal à F . On a

〈 f , t 7→ 1〉=
∫ 1

0

ln(t)dt = [t ln(t)− t]1t=0 = −1, 〈pF ( f ), t 7→ 1〉=
∫ 1

0

(at + b)dt =
ha

2
t2 + bt
i1

t=0
=

a
2
+ b,

〈 f , t 7→ t〉=
∫ 1

0

ln(t)t dt = −
∫ 1

0

t
2

dt = −
�

t2

4

�1

t=0

= −
1
4

, 〈pF ( f ), t 7→ t〉=
∫ 1

0

(at + b)t dt =
�

a
3

t3 +
b
2

t2
�1

t=0
=

a
3
+

b
2

,

et on obtient ainsi le système linéaire






−1=
a
2
+ b

−
1
4
=

a
3
+

b
2

qui a pour solution a = 3 et b = − 5
2 . On en conclut que la borne inférieure atteinte vaut, par utilisation de la relation de

Pythagore, ∥ f − pF ( f )∥2 = ∥ f ∥2 − ∥pF ( f )∥2 = 2− 7
4 =

1
4 .

Exercice 3 (représentation d’une forme linéaire). Soit n un entier naturel et E = Rn[X ] l’espace vectoriel des polynômes
à coefficients réels de dégré inférieur ou égal à n.

1. Justifier l’existence et l’unicité d’un polynôme Q de E tel que

∀P ∈ E, P(0) =

∫ 1

0

P(t)Q(t)dt.

Il est clair que l’application de E dansR définie par P 7→ P(0) est une forme linéaire non nulle sur E. De la même manière, on
peut montrer que l’application de E×E dansR définie par (P,Q) 7→

∫ 1

0 P(t)Q(t)dt est un produit scalaire sur E. L’existence et
l’unicité du polynôme Q est alors une conséquence du théorème de représentation de Riesz dans l’espace euclidien constitué
par E muni de ce produit scalaire.

2. Montrer que le polynôme Q est de degré n.
Indication : on pourra se servir du fait que l’inverse de la matrice H d’ordre m, avec m un entier naturel non nul, ayant
pour coefficients hi j =

1
i+ j−1 , a des coefficients entiers, s’exprimant en fonction de coefficients binomiaux, donnés par

∀(i, j) ∈ {1, . . . , m}2, (H−1)i j = (−1)i+ j(i + j − 1)
�

m+ i − 1
m− j

��

m+ j − 1
m− i

��

i + j − 2
i − 1

�2

.

L’identité de la première question étant vraie pour tout polynôme de E, elle l’est en particulier pour ceux de la base canonique
de E. Il en résulte que les coefficients du polynôme Q dans la base canonique de E sont solutions d’un système linéaire de
n+ 1 équations à n+ 1 inconnues, dont la matrice H a pour coefficients les scalaires

∀(i, j) ∈ {1, . . . , n+ 1}2, hi j =

∫ 1

0

t i−1 t j−1 dt =

∫ 1

0

t i+ j−2 dt =
1

i + j − 1
,

et pour second membre








1
0
...
0









.

Il en résulte que les coefficients de Q sont ceux de la première colonne de l’inverse de H. Ces derniers étant tous non nuls
d’après l’indication, on en déduit que Q est de degré n.

Exercice 4 (propriétés des endomorphismes antisymétriques). Soit n un entier naturel, E un espace euclidien de dimen-
sion n, de produit scalaire noté 〈·, ·〉, et u un endomorphisme de E. On rappelle que u est dit antisymétrique si et seulement
si u∗ = −u, où l’endomorphisme u∗ désigne l’adjoint de u.

1. Pour tout couple de vecteurs x et y de E, développer 〈u(x + y), x + y〉, puis montrer que u est antisymétrique si et
seulement si

∀x ∈ E, 〈u(x), x〉= 0.

On a
∀(x , y) ∈ E2, 〈u(x + y), x + y〉= 〈u(x), x〉+ 〈u(x), y〉+ 〈u(y), x〉+ 〈u(y), y〉 .
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On suppose que u soit antisymétrique. Par propriété de l’adjoint, on a alors

∀(x , y) ∈ E2, 〈u(x), y〉= −〈x , u(y)〉 ,

et donc, pour y = x ,

∀x ∈ E, 〈u(x), x〉= −〈x , u(x)〉= −〈u(x), x〉 ⇐⇒ ∀x ∈ E, 〈u(x), x〉= 0.

Réciproquement, si on a
∀x ∈ E, 〈u(x), x〉= 0.

En utilisant le calcul du développement précedent, on trouve que

∀(x , y) ∈ E2, 0= 〈u(x + y), x + y〉= 〈u(x), y〉+ 〈u(y), x〉 ,

d’où
∀(x , y) ∈ E2, 〈u(x), y〉= −〈u(y), x〉= −〈x , u(y)〉 .

2. On suppose dans cette question que la dimension de E est non nulle. Soit B = {e1, . . . , en} une base orthonormée
de E.

(a) Donner une expression des coefficients de la matrice M de u dans la baseB .

On a
∀(i, j) ∈ {1, . . . , n}2, mi j =




u(e j), ei

�

.

(b) Que dire de la matrice M si u est un endomorphisme antisymétrique?

Si u est un endomorphisme antisymétrique, on a

∀(i, j) ∈ {1, . . . , n}2, mi j =



u(e j), ei

�

= −



e j , u(ei)
�

= −



u(ei), e j

�

= −m ji ,

et la matrice de l’endomorphisme est antisymétrique.
Réciproquement, si la matrice M est antisymétrique, on a

∀(x , y) ∈ E2, 〈u(x), y〉= (MatB (u(x)))
⊤MatB (y) = (MMatB (x))

⊤MatB (y)

= (MatB (x))
⊤M⊤MatB (y) = −(MatB (x))

⊤MMatB (y) = −(MatB (x))
⊤MatB (u(y)) = −〈x , u(y)〉 ,

et l’endomorphisme est antisymétrique.

Dans cette partie, on suppose l’endomorphisme u antisymétrique et non nul.

3. Montrer que si le nombre réel λ est une valeur propre de u, alors λ= 0.

Soit λ une valeur propre réelle de u et x un vecteur propre associé. On a

0= 〈u(x), x〉= 〈λx , x〉= λ 〈x , x〉= λ∥x∥2.

Puisque le vecteur x est non nul, le réel ∥x∥ est non nul, d’où λ est nulle.

4. Montrer que les sous-espaces vectoriels ker(u) et Im (u) sont supplémentaires orthogonaux. En déduire que ker(u) =
ker(u2), où u2 = u ◦ u.

Soit x un élément de ker(u) et y un élément de Im (u). Il existe un vecteur z de E tel que u(z) = y . Il vient alors

〈x , y〉= 〈x , u(z)〉= −〈u(x), z〉= 〈0E , z〉= 0,

ce qui montre que ker(u) et Im (u) sont orthogonaux. En particulier, on a ker(u)∩ Im (u) = {0E}, ce qui permet de conclure
que ker(u) et Im (u) sont supplémentaires en utilisant le théorème du rang.
Il est clair que ker(u) ⊂ ker(u2). Soit x un élément de ker(u2). On a u2(x) = u(u(x)) = 0E , d’où u(x) appartient à ker(u)∩
Im (u). On en déduit que u(x) = 0E , d’où x appartient à ker(u) et donc ker(u2) ⊂ ker(u).

5. Montrer que l’endomorphisme u2 est auto-adjoint et que ses valeurs propres sont négatives ou nulles.

L’endomorphisme u étant antisymétrique, on a

∀(x , y) ∈ E2,



u2(x), y
�

= −〈u(x), u(y)〉= −(−



x , u2(y)
�

) =



x , u2(y)
�

.

Ceci montre que l’endomorphisme u2 est auto-adjoint. Soit λ une valeur propre de u2 et x un vecteur propre associé. On a
alors

λ∥x∥2 = λ 〈x , x〉=



u2(x), x
�

= −〈u(x), u(x)〉= −∥u(x)∥2.

Le vecteur x étant non nul, on a λ= − ∥u(x)∥
2

∥x∥2 et il est clair que λ est un réel négatif ou nul.
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6. (a) Montrer que l’endomorphisme u2 admet au moins une valeur propre non nulle.
L’endomorphisme u2 étant auto-adjoint, il est diagonalisable et il existe une base de E formée de vecteurs propres de
u2. Si 0 est la seule valeur propre de u2, alors ker(u2) est le seul sous-espace propre de u2, d’où E = ker(u2). Ceci
implique, par une question précédente, que E = ker(u), et u est donc l’endomorphisme nul, contredisant l’hypothèse
faite en début de partie. Ainsi, l’endomorphisme u2 admet au moins une valeur propre non nulle.
Soit x un vecteur propre de u2 associé à une telle valeur propre. On note F le sous-espace vectoriel de E engendré
par la famille {x , u(x)}.

(b) Montrer que F est stable par u et de dimension égale à 2.

On sait qu’il existe un réel λ non nul, et même strictement négatif, tel que u2(x) = λx . Ainsi, on a

u(F) = u (Vect({x , u(x)})) = Vect({u(x), u2(x)}) = Vect({u(x),λx}) ⊂ F,

ce qui assure que F est stable par u.
La famille {x , u(x)} étant génératrice de F , on va montrer qu’elle est libre. Pour cela, on suppose la famille liée. Le
vecteur x étant non nul, il existe un réel α tel que u(x) = αx . On a alors u2(x) = α2 x = λx , ce qui entraîne que
λ= α2, contredisant que λ est strictement négatif. La famille est donc libre et F est un sous-espace vectoriel de E de
dimension 2.

(c) Montrer que le supplémentaire orthogonal F⊥ est stable par u.

Soit y un élément de F⊥. Pour tout vecteur z de F , u(z) appartient à F , d’où 〈u(z), y〉 = 0. L’endomorphisme u étant
antisymétrique, on a alors −〈z, u(y)〉 = 0, d’où u(y) appartient à F⊥. Le sous-espace vectoriel F⊥ est donc stable
par u.

(d) Montrer que l’endomorphisme induit par u sur F⊥, noté u|F⊥ , est antisymétrique et qu’on a Im (u) = F⊕Im (u|F⊥ ).

L’endomorphisme induit par u sur F⊥ est un endomorphisme de F⊥ tel que

∀(x , y) ∈
�

F⊥
�2

,
¬

u|F⊥ (x), y
¶

= 〈u(x), y〉 .

C’est donc un endomorphisme antisymétrique. On déduit de la question précédente que son image est un sous-espace
de F⊥, ce qui implique que F ∩ Im (u|F⊥ ) = {0E}. Les sous-espaces F et Im (u|F⊥ ) sont donc en somme directe.

On a précédemment établi que x = u
�

1
λu(x)
�

et donc x est un élément de Im (u). Ainsi, le sous-espace F est inclus
dans Im (u). L’image de u|F⊥ étant aussi contenue dans Im (u), la somme F ⊕ Im (u|F⊥ ) est contenue dans Im (u).
Réciproquement, soit y un élément de Im (u). Il existe alors un vecteur z de E tel que u(z) = y . Les sous-espaces F
et F⊥ état en somme directe, on peut écrire z comme la somme z = z′ + z′′, où z′ appartient à F et z′′ appartient à
F⊥. On a alors u(z) = u(z′) + u(z′′), où le vecteur u(z′) appartient à F , par stabilité de F par u, et u(z′′) appartient à
Im (u|F⊥ ). Ainsi, le vecteur y appartient à F ⊕ Im (u|F⊥ ).
Par double inclusion, on a montré que Im (u) = F ⊕ Im (u|F⊥ ).

7. En déduire que le rang d’un endomorphisme antisymétrique est pair.
Indication : on pourra raisonner par récurrence sur la dimension de E.

On raisonne par récurrence sur la dimension de E. Si E est de dimension nulle, alors nécessairement Im (u) = {0E}, et le
rang de u est nul et donc pair.
Soit n un entier naturel. On suppose que tout endomorphisme antisymétrique d’un espace vectoriel euclidien de dimension
inférieure ou égale à n soit de rang pair. Soit u un endomorphisme antisymétrique d’un espace vectoriel E de dimension
n + 1. Si u est nul, son rang est nul et donc pair. Si u est non nul, alors u2 possède un valeur propre non nulle et, pour
tout vecteur propre x associé à cette valeur propre, le sous-espace F = Vect({x , u(x)}) est de dimension 2 et stable par u,
impliquant que F⊥ est stable par u. L’endomorphisme induit par u sur F⊥ est antisymétrique et tel que Im (u) = F⊕Im (u|F⊥ ).
On a dim(F⊥) = dim(E)− dim(F) = n+ 1− 2 = n− 1, le rang de u|F⊥ est donc pair en vertu de l’hypothèse de récurrence.
Il reste à remarquer que rang(u) = dim(Im (u)) = dim(F) + dim(Im (u|F⊥ )) = 2+ rang(u|F⊥ ) pour conclure que le rang de u
est pair.
On considère une application des précédents résultats. L’espace euclidien E est ici de dimension 4 et u est un endomorphisme
de E de matrice

M =







0 4 1 −1
−4 0 −1 −1
−1 1 0 −5
1 1 5 0







dans une baseB = {e1, e2, e3, e4} orthonormée de E.

8. (a) Montrer que l’endomorphisme u est antisymétrique.
On observe que la matrice M est antisymétrique. Comme c’est la matrice de u dans un base orthonormée, on en déduit
que u est un endomorphisme antisymétrique.

(b) Vérifier que le vecteur x = e1 + e2 − e3 est un vecteur propre de u2.
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On a

M2







1
1
−1
0






= M







3
−3
0
−3






=







−9
−9
9
0






= −9







1
1
−1
0






,

dont on déduit que e1 + e2 − e3 est un vecteur propre de u2 associé à la valeur propre −9.

(c) Soit F le sous-espace vectoriel de E engendré par la famille {x , u(x)}. Déterminer une base orthonormée de F
et une base orthonormée de F⊥.

On sait déjà que la famille {x , u(x)} est une base de F , et même une base orthogonale, puisque 〈u(x), x〉 = 0. Une
base orthonormée de F est donc { 1p

3
(e1+ e2− e3),

1p
3
(e1− e2− e4)}. L’orthogonal F⊥ est de dimension 2 et un système

d’équations cartésiennes de ce sous-espace est donné par

x1 + x2 − x3 = 0 et x1 − x2 − x4 = 0 ⇐⇒ x3 = x1 + x2 et x4 = x1 − x2.

On en déduit que
¦

1p
3
(e1 + e3 + e4),

1p
3
(e2 + e3 − e4)
©

est une base orthonormée de F⊥.

(d) En déduire une base orthonormée de E et deux nombres réels α et β tels que la matrice de u dans cette base soit







0 −α 0 0
α 0 0 0
0 0 0 −β
0 0 β 0






.

Les sous-espaces F et F⊥ étant supplémentaires, une base orthonormée de E est obtenue par réunion des bases
orthonormées de F et de F⊥ trouvées dans la question précédente. On détermine la matrice de u dans cette base. On a

u
�

1
p

3
(e1 + e3 + e4)
�

=
1
p

3
u(e1 + e3 + e4) =

3
p

3
(e1 − e2 − e4),

et

u
�

1
p

3
(e1 − e2 − e4)
�

=
1
p

3
u(e1 − e2 − e4) = −

3
p

3
(e1 + e2 − e3),

puis

u
�

1
p

3
(e1 + e3 + e4)
�

=
1
p

3
u(e1 + e3 + e4) = −

6
p

3
(e2 + e3 − e4),

et

u
�

1
p

3
(e2 + e3 − e4)
�

=
1
p

3
u(e2 + e3 − e4) =

6
p

3
(e1 + e3 + e4).

La matrice de u dans la base orthonormée trouvée est donc






0 −3 0 0
3 0 0 0
0 0 0 6
0 0 −6 0






.
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