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Numerical methods for the solution of ordinary differential
equations

In this exercise sheet, one considers a generic, scalar initial value problem of the form

u′(t) = f (t, u(t)), for t > t0, and u(t0) = η,

in which the function f satisfies the assumptions of the Cauchy–Lipschitz (or Picard–Lindelöf) theorem and η is a given real
number, and its solution by a numerical method, defined by a recurrence relation, or scheme, of the form

∀n ∈ N, un+1 = un + hΦ f (tn, un; h), and u0 = η,

in which Φ f is the increment function of the method, depending on the function f , h is the length of the time step, and the
terms of sequence (un)n∈N are approximations of the values of the solution u at times tn = t0 + nh.

Exercise 1. Verify that Heun’s method [Heu00], whose scheme is

un+1 = un +
h
2
( f (tn, un) + f (tn + h, un + h f (tn, un)))

and modified Euler’s method, whose scheme is

un+1 = un + h f
�

tn +
h
2

, un +
h
2

f (tn, un)
�

are explicit 2-stage Runge–Kutta methods and give their respective Butcher tableaus.

Exercise 2 (order of some classic Runge–Kutta methods). By studying their respective local truncation errors, find the
order of the implicit Euler method, whose scheme is

un+1 = un + h f (tn+1, un+1),

of the trapezoidal rule method, whose scheme is

un+1 = un +
h
2

�

f (tn, un) + f (tn+1, un+1)
�

,

of Heun’s method, whose scheme is

un+1 = un +
h
2
( f (tn, un) + f (tn + h, un + h f (tn, un))) .

Exercise 3 (order barrier). Consider the initial-value problem

x ′(t) = λ x(t), x(0) = 1.

1. Apply a single step un pas d’une méthode de Runge–Kutta explicite à s niveaux pour la résolution numérique de ce
problème et montrer que un+1 est un polynôme en h de degré au plus égal à s.

2. Infer that the order of an explicit Runge–Kutta method cannot be larger than its number of stages.

Exercise 4 (order conditions without simplifying assumption). Obtain the order conditions on the coefficients a21, b1,
b2, c1 and c2 of an explicit 2-stage Runge–Kutta method of order 2 which does not satisfy the usual simplifying assumptions
c1 = 0 and c2 = a21.

Exercise 5 (the ERK methods from [vdHou72]). Construct the Runge–Kutta methods which have a Butcher tableau of
the form

0
c2 c2

c3 0 c3

0 0 1

.

1



What is the benefit of these methods in terms of storage requirements?

Exercise 6. Show that, for an explicit s-stage Runge–Kutta methods of order1 s, for which the coefficients ai j et bi , 1≤ j <
i ≤ s, are nonnegative, the Lipschitz constant Λ of the increment function Φ f of the method satisfies

1+ hΛ< eh L ,

where the positive number L is the Lipschitz constant of f .
Hint: use the order conditions for the coefficients of the methods, recalled hereafter:

• b1 = 1 for s = 1,

• b1 + b2 = 1 and b2c2 =
1
2 for s = 2,

• b1 + b2 + b3 = 1, b2c2 + b3c3 =
1
2 , b2c2

2 + b3c3
2 = 1

3 and b3a32c2 =
1
6 for s = 3,

• b1+ b2+ b3+ b4 = 1, b2c2+ b3c3+ b4c4 =
1
2 , b2c2

2+ b3c3
2+ b4c4

2 = 1
3 , b3a32c2+ b4(a42c2+a43c3) =

1
6 , b2c2

3+ b3c3
3+

b4c4
3 = 1

4 , b3c3a32c2 + b4c4a42c2 + b4c4a43c3 =
1
8 , b3a32c2

2 + b4a42c2
2 + b4a43c2

3 = 1
12 and b4a43a32c2 =

1
24 for s = 4.

Exercise 7. Consider the family of methods defined by the scheme

un+1 = un + h
�

(1−ω) f (tn, un) +ω f (tn+1, un+1)
�

,

where ω is a real number chosen in the interval [0,1]. Show that such a method is A-stable, that is, its region of absolute
stability includes the entire complex half-plane with negative real part C− = {z ∈ C |Re(z)< 0}, if and only if ω≥ 1

2 .

1Recall that this is only possible for 1≤ s ≤ 4.
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Finite difference methods

Exercise 1. Assuming that the function u is thrice differentiable at point x in R, find real numbers α, β and γ such that, for
any positive real number h,

u′(x) =
αu(x + 2 h) + β u(x) + γu(x − h)

h
+O(h2).

Exercise 2 (analysis of the Lax–Wendroff method for the transport equation). Let u be a smooth solution to the transport
equation

∀t ∈ R∗+, ∀x ∈ R,
∂ u
∂ t
(t, x) + c

∂ u
∂ x
(t, x) = 0, (1)

c being a given nonzero real number.

1. Show that

∀(n, j) ∈ N×Z, u(tn+1, x j) = u(tn, x j)− c∆t
∂ u
∂ x
(tn, x j) +

c2∆t2

2
∂ 2u
∂ x2
(tn, x j) +O(∆t3),

where tn = n∆t and x j = j∆x .

For the numerical solution of the equation, one uses a family of finite difference schemes, indexed by the parameter µ and
defined by

∀n ∈ N, ∀ j ∈ Z,
un+1

j − un
j

∆t
+ c

un
j+1 − un

j−1

2∆x
−µ

∆t
∆x2

�

un
j+1 − 2 un

j + un
j−1

�

= 0.

2. Determine the value of µ for which the above scheme is consistent and accurate of order 2 at least in both time and
space. Show that it corresponds to the Lax–Wendroff method.

3. Compute the amplification factor of the Lax–Wendroff method and infer that it is stable in the ℓ2-norm under the
condition |c| ∆t ≤∆x .

Exercise 3 (the upwind scheme). To approximate the solution to the transport equation (1), one can use the first-order
upwind scheme, defined by

∀n ∈ N, ∀ j ∈ Z,
un+1

j − un
j

∆t
+ c

un
j − un

j−1

∆x
= 0 for c > 0,

un+1
j − un

j

∆t
+ c

un
j+1 − un

j

∆x
= 0 for c < 0.

Study the stablity of this difference scheme. Show in particular that it is unstable if the two formulas depending on the sign
of c are replaced with one another.

Exercise 4 (analysis of the θ -scheme family in ℓ2-norm). One is interested in the numerical approximation of the solution
to the initial-value problem for the heat equation

∀t ∈ R∗+, ∀x ∈ R,
∂ u
∂ t
(t, x)−

∂ 2u
∂ x2
(t, x) = 0, (2)

∀x ∈ R, u(0, x) = u0(x), (3)

in which u0 is a continuous function in L2(R). For this purpose, a family of finite difference schemes is considered, which
reads

∀n ∈ N, ∀ j ∈ Z,
un+1

j − un
j

∆t
− θ

un+1
j+1 − 2 un+1

j + un+1
j−1

(∆x)2
− (1− θ )

un
j+1 − 2 un

j + un
j−1

(∆x)2
= 0,

the parameter θ being a real number in [0, 1], and complemented by the initialisation

∀ j ∈ Z, u0
j = u0( j∆x).

1. Depending on the value of the parameter θ , discuss the order of accuracy and the explicitness or implicitness of the
above difference schemes.
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2. Using the von Neumann analysis, discuss as well the stability of these schemes in the ℓ2-norm .

Exercise 5 (analysis of an explicit scheme for the heat equation). To approximate the solution to the initial value problem
(2)-(3), one considers the following finite difference scheme

un+1
j − un

j

∆t
−

un
j+1 − 2 un

j + un
j−1

(∆x)2
= 0, n ∈ N, j ∈ Z,

completed by the initialisation
u0

j = u0( j∆x), j ∈ Z.

1. Give an algorithm for the computation of the numerical approximation. Explain why this approximate solution exhibits
a finite propagation speed.

2. Under the hypothesis that ∆t
(∆x)2 ≤

1
2 , prove the following discrete maximum principle

∀ j ∈ Z, a ≤ u0
j ≤ b,⇒∀n ∈ N, ∀ j ∈ Z, a ≤ un

j ≤ b j ∈ Z,

satisfied by the approximation. Deduce that

∀n ∈ N, ∥un∥∞ ≤ ∥u0∥∞,

which proves that the method is stable in the ℓ∞-norm.

3. One defines the truncation error of the method by

∀n ∈ N, ∀ j ∈ Z, ϵn+1
j = u(tn+1, x j)− u(tn, x j)−

∆t
(∆x)2
�

u(tn, x j+1)− 2 u(tn, x j) + u(tn, x j−1)
�

.

It is assumed that the solution u to the problem is of class C 2 with respect to time and of class C 4 with respect to
space and that its partial derivatives are uniformly bounded in [0, T]×R. Using a Taylor expansion, show that, for
any natural integer n such that (n+ 1)∆t ≤ T , one has the estimate



ϵn+1




∞ ≤ C

�

(∆t)2








∂ 2u
∂ t2









L∞([0,T]×R)
+∆t (∆x)2








∂ 4u
∂ x4









L∞([0,T]×R)

�

,

in which
∥ f ∥L∞([0,T]×R) = sup

(t,x)∈[0,T]×R
| f (t, x)| .

4. One defines the error of the method by

∀n ∈ N, ∀ j ∈ Z, en
j = u(tn, x j)− un

j .

Write down the relations between the sequences (en)n∈N and (ϵn)n∈N and prove the following error estimate

sup
(n+1)∆t≤T

∥en∥∞ ≤ C T

�

∆t









∂ 2u
∂ t2









L∞([0,T]×R)
+ (∆x)2








∂ 4u
∂ x4









L∞([0,T]×R)

�

.

Exercise 6 (the Richardson and Du Fort–Frankel methods). For the numerical solution of the heat equation (2), one
considers the finite difference scheme of the Richardson (or leap-frog) method

un+1
j − un−1

j

2∆t
−

un
j+1 − 2 un

j + un
j−1

(∆x)2
= 0, n ∈ N∗, j ∈ Z.

1. What is the practical inconvenience of the above difference scheme?

2. Show that this scheme has second order of accuracy in both time and space, but that it is unconditionally unstable.

The difference scheme of the Du Fort–Frankel method [DF53] is obtained by replacing the term un
j in the difference scheme

of the Richardson method by the mean value
un+1

j +un−1
j

2 .

3. Show that this new method is explicit and unconditionally stable.

4. Analyse the truncation error of the difference scheme and conclude that it is consistent with the equation only if the
ratio ∆t

∆x tends to 0 as ∆t and ∆x tend to 0. Was this result expected?
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Exercise 7 (the Lax–Richtmyer equivalence theorem [LR56]). Consider the initial value problem

d
d t

u(t) = Au(t), 0≤ t ≤ T,

u(0) = u0,

in which u is an unknown function in the Banach space X , A is a linear operator whose domain D(A) dense in X and which
generates a strongly continuous semigroup S on X , and u0 is the initial datum in D(A).

For the numerical approximation of the solution to this problem, one uses a finite difference method, represented by a
strongly continuous function F from [0,+∞) to L (X ), with F(0) = idX , satisfying the following consistency condition: it
holds

lim
∆t→0









F(∆t)u(t)− u(t)
∆t

− Au(t)









= 0

uniformly for all t in [0, T].
Such a finite difference method is called stable if there exists a positive constant M such that

∥F(∆t)n∥B(X ) ≤ M , n ∈ N, 0≤ n∆t ≤ T.

Finally, such a method is called convergent if, for any sequences (∆tk)k∈N and (nk)k∈N, such that limk→+∞∆tk = 0,
limk→+∞ nk = +∞, and limk→+∞ nk∆tk = t with 0≤ t ≤ T ,

lim
k→+∞

∥F(∆tk)
nk u0 − S(t)u0∥= 0.

The goal of this exercise is to prove the celebrated result due to Lax and Richtmyer: for a consistent finite difference
method, stability is a necessary and sufficient condition for convergence.

1. Show that the above consistency condition is equivalent to having

lim
∆t→0









F(∆t)S(t)u0 − S(t +∆t)u0

∆t









= 0

uniformly for all t in [0, T].

2. Prove the necessary part of the theorem.
Hint: argue by contradiction using the uniform boundedness principle (also known as the Banach–Steinhaus theorem)
recalled hereafter: let X and Y be two Banach spaces andB(X , Y ) be the space of all continuous linear operators from X
into Y . Suppose that K is a collection of elements ofB(X , Y ). If K is strongly bounded, i.e., for all x in X ,

sup{∥Lx∥Y | L ∈ K}< +∞,

then it is uniformly bounded, i.e.
sup{∥L∥B(X ,Y ) | L ∈ K}< +∞.

3. In this question, in order to obtain the sufficient part of the theorem, it is assumed that the finite difference method
is stable. Observe that, by the strong continuity of S, it suffices to show that

lim
k→+∞

∥F(∆tk)
nk u0 − S(nk∆tk)u0∥= 0,

where (∆tk)k∈N and (nk)k∈N are sequences such that limk→+∞∆tk = 0, limk→+∞ nk = +∞, and limk→+∞ nk∆tk = t
with t in [0, T], to prove that the method is convergent.

(a) Establish that

∀k ∈ N, F(∆tk)
nk − S(nk∆tk) =

nk−1
∑

i=0

F(∆tk)
nk−1−i(F(∆tk)− S(∆tk))S(∆tk)

i .

(b) Prove that

∀ϵ > 0, ∃K ∈ N, ∀s ∈ [0, t], ∀k ∈ N, k ≥ K , ∥F(∆tk)S(s)u0 − T (∆tk)S(s)u0∥ ≤ ϵ∆tk.

(c) Conclude.
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Weak formulation of an elliptic boundary value problem

Some boundary-value problems for elliptic partial differential equations can be cast into the following form: given a Hilbert
space V , a bilinear form a(·, ·) on V × V and a continuous linear form el l(·) on V , find u in V satisfying

∀vh ∈ V, a(u, v) = ℓ(v). (4)

According to the Lax–Milgram theorem [LM54], if the form a is both bounded and coercive on V , that is, there exist positive
constants C and c such that

∀(u, v) ∈ V 2, |a(u, v)| ≤ C ∥u∥V∥V∥V , (5)

∀v ∈ V, a(v, v)≥ c ∥V∥V
2, (6)

which is assumed from here on, then this problem is well-posed, that is, there exists a unique solution and it holds

∥u∥V ≤
1
c
∥ℓ∥V ′ .

Exercise 1 (Dirichlet, Neumann and Robin problems for an elliptic partial differential equation). Consider a boundary-
value problem with a partial differential equation of the form

−
d
∑

j=1

d
∑

k=1

∂x j

�

a jk∂xk
u
�

+
d
∑

j=1

b j∂x j
u+ cu= f ,

in a bounded open set Ω in Rd with regular boundary ∂Ω, where a jk, b j , c in L∞(Ω) and f in L2(Ω) are given functions. It
assumed this equation is elliptic, that is, there exists a positive constant α such that

∀ξ ∈ Rd , ∀x ∈ Ω,
d
∑

j=1

d
∑

k=1

a jk(x)ξ jξk ≥ α
d
∑

j=1

ξ j
2.

It is complemented with boundary conditions, which can be of the following types:

• Dirichlet boundary conditions: one requires that u= g on ∂Ω (in the sense of traces) for a given g in L2(∂Ω).

• Neumann boundary conditions: one requires that
∑d

j=1

∑d
k=1 a jk∂xk

uν j = g for a given g in L2(∂Ω), where ν =
(ν1, . . . ,νd) is the outward unit normal vector to ∂Ω.

• Robin boundary conditions: one requires that e u+
∑d

j=1

∑d
k=1 a jk∂xk

uν j = g for a given g in L2(∂Ω) and e in L∞(∂Ω),
where ν= (ν1, . . . ,νd) is the outward unit normal vector to ∂Ω.

Set β = α−1
∑d

j=1 ∥b j∥L∞(Ω)
2.

1. Prove that the Dirichlet problem is well-posed in H1(Ω) if g belongs to H
1
2 (∂Ω) and

for almost all x in Ω, c(x)−
β

2
≥ 0.

2. Prove that the Neumann problem is well-posed in H1(Ω) if

for almost all x in Ω, c(x)−
β

2
≥ γ≥ 0, for almost all x in ∂Ω, e(x)≥ δ ≥ 0,

and either γ > 0 or δ > 0.

Hint: use the Lax-Milgram theorem, with the Hölder, Young and Poincaré inequalities to verify the continuity and the coercivity
of the forms. Where needed, employ a lifting of the boundary condition.
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Conforming Galerkin approximation

A conforming Galerkin approach for the solution of this problem consists in choosing a finite-dimensional (hence closed)
subspace Vh of V , the subscript h standing for a discretisation parameter meant to tend to 0, and looking for uh in Vh
satisfying

∀vh ∈ Vh, a(uh, vh) = ℓ(vh). (7)

Since Vh, equipped with the scalar product on V , is a Hilbert space, the Lax–Milgram theorem immediatly yields the well-
posedness of problem (7).

Exercise 2 (Céa’s lemma [Céa64]). Prove the following result: let u be the solution to (4) and uh be the solution to (7) for
a given Vh ⊂ V . Then, one has

∥u− uh∥V ≤
C
c

inf
vh∈Vh

∥u− vh∥V ,

where C and c are the constants appearing in (5) and (6), respectively.

Exercise 3 (the symmetric case). When the bilinear form appearing in the weak formulation of the problem is symmetric,
one can obtain a stronger estimate than the one provided by Céa’s lemma, by characterising solution to (4) as minimisers
of the functional defined by

∀v ∈ V, J(v) :=
1
2

a(v, v)− ℓ(v).

In what follows, it is assumed that the bilinear form a(·, ·) is coercive and symmetric.

1. Prove that a function u in V satisfies (4) if and only if it is the minimiser of J over V .
Hint: consider J(u+ t v) for any function v in V and t in R.

2. Deduce the solution uh in Vh of (7) satisfies

∥u− uh∥a = min
vh∈Vh

∥u− vh∥a,

that is, uh is the best approximation of u in Vh in the energy norm defined by

∀v ∈ V, ∥v∥a =
Æ

a(v, v).

Exercise 4 (the Aubin–Nitsche trick). To estimate the error in a weaker norm than the one on the space V , a duality
argument is required. The goal of this exercise is to prove the following result, due to Aubin [Aub67] and Nitsche [Nit68].
Let H be a Hilbert space, with scalar product (·, ·)H , and V be a closed subspace of H that becomes a Hilbert space when equipped
with a scalar product (·, ·)V . Let the embedding V ,→ H be continuous1. Let uh be the solution in Vh of (7). Then, there exists a
positive constant C such that

∥u− uh∥H ≤ C ∥u− uh∥V sup
g∈H\{0}

�

1
∥g∥H

min
vh∈Vh

∥ϕg − vh∥V
�

,

where, for any g in H, the function ϕg is the unique solution to the adjoint problem

∀w ∈ V, a(w,ϕg) = (g, w)H .

1. Using the above adjoint problem, show that, for any g in H,

∀vh ∈ Vh, (g, u− uh)H ≤ C∥u− uh∥V∥ϕg − vh∥V ,

where C is the constant apperaing in (5).

2. Deduce that

∀vh ∈ Vh, ∥u− uh∥H ≤ C∥u− uh∥V sup
g∈H\{0}

∥ϕg − vh∥V
∥g∥H

.

Hint: use the Riesz representation theorem in H.

3. Conclude.

1One may think of H = L2(Ω) and V = H1(Ω), for instance.
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Finite elements

Exercise 5 (simplicial Lagrange finite element). Let {a0, . . . , ad} be a family of points in Rd and assume that the sequence
of vectors a1 − a0, . . . , ad − a0 is linearly independent. Then, the convex hull of {a0, . . . , ad} is called a (d-)simplex.
Given a simplex K in Rd , one can consider the associated barycentric coordinates {λ0, . . . ,λd} defined as follows:

∀i ∈ {0, . . . , d}, ∀x ∈ Rd , λi(x) = 1−
(x − ai) · νi

(a j − ai) · νi
,

where νi is the outward unit normal vector to the face Fi of K opposite to ai , and a j is an arbitrary vertex in Fi (this definition
is independent of the choice of this vextex). The barycentric coordinate λi is an afine function; it is equal to 1 at ai and
vanishes on Fi . Furthermore, its level-sets are hyperplanes parallel to Fi and the barycenter of K has barycentric coordinates
�

1
d+1 , . . . , 1

d+1

�

. The barycentric coordinates satisfy the following properties

∀i ∈ {0, . . . , d}, ∀x ∈ K , 0≤ λi(x)≤ 1,

∀x ∈ Rd ,
d
∑

i=0

λi(x) = 1 and
d
∑

i=0

λi(x)(x − ai) = 0.

Let K be a simplex in Rd , k be a nonzero natural integer, and let P = Pk be the space of polynomial functions in the
variables x1, . . . , xd with real coefficients and global degree at most k. Consider the set of nodes {a1, . . . , adim(P)} with

barycentric coordinates
�

i0
k , . . . , id

k

�

, 0≤ i0, . . . , id ≤ k, i0 + . . . ,+id = k. Finally, let Σ= {σ1, . . . ,σdim(P)} be the set of linear
forms on P such that

∀i ∈ {1, . . . , dim(P)}, ∀p ∈ P, σi(p) = p(ai).

The goal of this exercise is to prove that the triplet {K , P,Σ} is a finite element.

1. Let p belong to P and assume that p vanishes on the Rd -hyperplane of equation λ = 0, with λ a nonzero affine
function in the variables x1, . . . , xd . Prove that there exists a polynomial function q in the variables x1, . . . , xd with
global degree at most k− 1 such that p = λq.
Hint: since affine transformations map the space of polynomial functions of degree at most k to itself, one may assume
that p vanishes on the hyperplace orthogonal to one of the coordinate axis.

2. Conclude.

Exercise 6 (geometrical estimates). For an element domain K of a given finite element (K , P,Σ), one defines

• the diameter hK := max
(x ,y)∈K2

∥x − y∥,

• the insphere diameter ρK := 2 max {ρ > 0 |B(x ,ρ) ⊂ K for some x in K}.

Let TK be the affine mapping generating K of a reference element domain K̂ , that is

TK : K̂ → K , x̂ 7→ AK x̂ + bK .

1. Establish, for any sufficiently smooth function v defined on K , the transformation rule
∫

TK (K̂)
v(x)dx =

∫

K̂

(v ◦ TK)( x̂) |det(AK)| d x̂ .

2. Deduce that |det(AK)|=
vol(K)
vol(K̂)

.

3. Show that ∥AK∥ ≤
hK
ρK̂

, where ∥AK∥= sup
∥ x̂∥=1
∥AK x̂∥, and infer that ∥AK

−1∥ ≤ hK̂
ρK

.

Polynomial interpolation in Sobolev spaces

Exercise 7 (the Bramble–Hilbert lemma [BH70]). The Bramble–Hilbert lemma is an essential tool in proving bounds for
the interpolation error in the finite element method, which amount to consistency error estimates. Let us state it. Let Ω be
an open subset of Rd with a Lipschitz-continuous boundary. For some natural integer k and some real number p in [0,+∞],
let f be a continuous linear form on the space W k+1,p(Ω) with the annihilation property that

∀q ∈ Pk(Ω), f (q) = 0.

Then, there exists a constant C(Ω) such that

∀v ∈W k+1,p(Ω), | f (v)| ≤ C(Ω)∥ f ∥W k+1,p(Ω)′ |v|W k+1,p(Ω)

The goal of this exercise is to prove this result.

3



1. We first establish a preliminary result, due to Deny and Lions.

(a) Let N = dim(Pk(Ω)). Show that there exist continuous linear forms f1, . . . , fN over W k+1,p(Ω) such that, for any
q in Pk(Ω), f1(q) = · · ·= fN (q) = 0 if and only if q = 0.
Hint: consider the dual basis of Pk(Ω) and use the Hahn–Banach extension theorem.

(b) Arguing by contradiction, we will now prove that there exists a positive constant C(Ω) such that

∀v ∈W k+1,p(Ω), ∥v∥W k+1,p(Ω) ≤ C(Ω)

�

|v|W k+1,p(Ω) +
N
∑

i=1

| fi(v)|

�

.

We thus assume assume that there exists a sequence (vl)l∈N in W k+1,p(Ω) such that

∀l ∈ N, ∥vl∥W k+1,p(Ω) = 1, and lim
l→+∞

�

|vl |W k+1,p(Ω) +
N
∑

i=1

| fi(vl)|

�

= 0.

i. Show that there exist a subquence, again denoted (vl)l∈N, and a function v in W k,p(Ω) such that

lim
l→+∞
∥vl − v∥W k,p(Ω) = 0.

ii. Deduce that the subsequence converges in W k+1,p(Ω) and that its limit v is such that, for any multi-index α
with |α|= k+ 1, |Dαv|= 0.

iii. Infer that v is almost evywhere equal to a polynomial function of degree lower of equal to k and conclude
that v = 0.
Hint: use the Sobolev imbedding theorem.

iv. Conclude.

(c) Use the preceding result to prove that there exists a positive constant C(Ω) such that

∀v ∈W k+1,p(Ω), inf
q∈Pk(Ω)

∥v + q∥W k+1,p ≤ C(Ω) |v|W k+1,p(Ω) .

2. Show that
∀v ∈W k+1,p(Ω), | f (v)| ≤ ∥ f ∥W k+1,p(Ω)′ inf

q∈Pk(Ω)
∥v + q∥W k+1,p(Ω).

3. Conclude.

Exercise 8 (interpolation error estimates on a reference element). Let (K , P,Σ) be a finite element with Pk ⊂ P for some
natural integer k and all degrees of liberty in Σ bounded on W k+1,p(K), 1 ≤ p ≤ +∞. Prove that there exists a positive
constant c, depending only on d, k, p, l and (K , P,Σ), such that

∀v ∈W k+1,p(K), ∀l ∈ {0, . . . , k+ 1}, |v − IK v|W l,p(K) ≤ c |v|W k+1,p(K) ,

where IK v denotes the local interpolant of v.
Hint: use the Bramble–Hilbert lemma.
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Spectral methods

Continuous Fourier series

Exercise 1 (the Dirichlet kernel). A truncated Fourier series can also be expressed in the convolution form. Let u be a
continuous and periodic function of bounded variation on [0,2π) and N be a natural integer. One has

N
∑

k=−N

ûkeikx =
1

2π

∫ 2π

0

DN (x − t)u(t)dt,

where ûk is the kth Fourier coefficient of u and DN is the Dirichlet kernel given by

DN (x) =
N
∑

k=−N

eikx = 1+ 2
N
∑

k=1

cos(kx) =
sin
��

N + 1
2

�

x
�

sin
�

x
2

� .

1. Show that DN is an even function, symmetric about x = 1
2 .

2. Show that
1

2π

∫ 2π

0

DN (t)dt = 1,

and
1

2π

∫ 2π

0

(DN (t))
2 dt = 2N + 1.

3. Show that

∀N ∈ N \ {0,1},
∫ 2π

0

|DN (t)| dt ≤ c ln(N),

where c is a positive constant independent of N .

4. Prove that, for any u in XN = Span{eikx | k ∈ {−N , . . . , N}},

∀x ∈ [0,2π), u(x) =
1

2π

∫ 2π

0

DN (x − t)u(t)dt,

and
∥u∥L∞([0,2π)) ≤

p
2N + 1∥u∥L2([0,2π)).

Discrete Fourier series

Exercise 2 (Fourier interpolant of a function). Let N be an even natural integer, u be a continuous and periodic function
u on [0,2π) and

∀ j ∈ {0, . . . , N − 1}, x j =
2π j
N

.

The Fourier interpolant of u at the node x0, . . . , xN−1 is

IN (u)(x) =
1
N

N/2
∑

k=−N/2+1

ũkeikx ,

where ũk is the kth discrete Fourier coefficient of u, defined by

ũk =
N−1
∑

j=0

u(x j)e
−ikx j .

1



1. Write IN u in the Lagrange basis, that is

IN u(x) =
N−1
∑

j=0

u(x j)ℓ j(x),

where
∀( j, k) ∈ {0, . . . , N − 1}2, ℓ j(xk) = δ jk,

and show that

∀ j ∈ {0, . . . , N − 1}, ℓ j(x) =
1
N

sin
� x − x j

2
N
�

cot
� x − x j

2

�

.

2. The differentiation process in the physical space of the Fourier interpolant can be formulated as a matrix-vector mul-
tiplication, that is, there exists a so-called first-order differentiation matrix DN such that the values of of the derivative
of the interpolant at the nodes are given by

∀ j ∈ {0, . . . , N − 1}, (IN u)′(x j) =
N−1
∑

l=0

(DN ) j+1 l+1u(x l).

Show that

∀( j, l) ∈ {1, . . . , N}2, (DN ) j l =

¨

1
2 (−1) j+l cot
�

( j−l)π
N

�

if j ̸= l,

0 if j = l.

Hint: use the result of the preceding question.
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