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Résumé. Nous considérons l’équation de Galbrun, utilisée en acoustique linéaire dans les écoule-
ments. Dans un cas simple (conduit rigide avec écoulement uniforme) et en régime har-
monique établi, nous montrons qu’une approche basée sur une formulation variationnelle
régularisée du problème permet d’assurer la convergence d’une méthode d’éléments finis
nodaux. 2001 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS

acoustique / acoustique en écoulement / méthode variationnelle / régularisation

Mathematical analysis of Galbrun’s equation with uniform flow

Abstract. We consider Galbrun’s equation, used in linear aeroacoustics. For a simple case (rigid
duct with uniform flow) in the time harmonic regime, we show that an approach based on
a regularized variational formulation of the problem ensures the convergence of a nodal
finite-element method. 2001 Académie des sciences/Éditions scientifiques et médicales
Elsevier SAS

acoustics / aeroacoustics / variational method / regularization

Abridged English version

Galbrun’s equation (1) is a linear vector wave equation based on the Lagrangian displacement variableξ
[1,2].

The problem is a two-dimensional one, set in thexy plane. A rigid duct of widthl and infinite length,
which walls are parallel to thex axis, is considered. We suppose that the flow is subsonic and uniform, in
the directionx, the static pressurep0 is uniform, the time regime is harmonic (e−iωt with pulsationω > 0)
and an acoustic sourcef (such thatrotf = 0) is present. The displacementξ is then a solution to (2).

As solving a problem set in an unbounded domain requires to model the asymptotic behavior of the
solution at infinity (by means of a radiation condition for instance) that would be beyond the scope of
this note, we consider the domainΩ = ]0,L[ × ]0, l[. Galbrun’s equation (2) then resumes to (5), where
D
Dt = −ik + M ∂

∂x , with k the wave number (k = ω/c0, where c0 denotes the sound celerity in the
undisturbed medium,c0 = 1) andM the Mach number (M = v0/c0, −1<M < 1).

In the non-flow case (equation (3)), the solution is irrotational (i.e.curlξ = 0) and hence satisfies the
vector Helmholtz equation (4). This leads to the introduction of a so-called ‘regularized’ formulation for
Galbrun’s equation with uniform flow.

Note présentée par Évariste SANCHEZ -PALENCIA .
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In the irrotational case, the ‘classical’ problem (5)–(7) is replaced by an equivalent ‘regularized’ one,
composed of equation (8) and additional boundary conditions (9). We prove this new formulation leads
to a well-posed variational problem (of the Fredholm type) in a closed subspaceV of (H1(Ω))2. As a
consequence, the use of standard Lagrange nodal elements to compute a numerical solution by means of
a finite element method is allowed.

For the rotational case, we first notice the rotational of the displacement verifies a second-order
differential equation, which can be solved ifcurlξ is given on the artificial boundaries of the domainΩ .
The ‘regularized’ formulation introduced before is then used to impose, in a weak sense, the value ofcurlξ
in the variational formulation of the problem. Once again, we prove the problem is well-posed inV .

We conclude this paper with some limitations of the method in the case of a nonconvex domain (while the
regularized problem is still well-posed, it is no longer equivalent to the initial one) or with nonuniform flow
(in which a coupling between acoustic, i.e. irrotational, and hydrodynamic, i.e. rotational, modes occurs
and therefore prevents us from determiningcurlξ a priori inΩ ).

1. L’équation de Galbrun

L’équation de Galbrun [1,2] est une équation linéaire de propagation des ondes portant sur le vecteur
déplacement Lagrangienξ ; plus précisement,ξ représente le déplacement d’une particule fluide dans un
écoulement perturbé par rapport à sa position dans le même écoulement non perturbé (dit écoulement
d’entraînement) et s’exprime en fonction des coordonnées(x, t) (représentation mixte Euler–Lagrange).

En l’absence de source de volume ou de force extérieure, cette équation s’écrit :

ρ0
D2ξ

Dt2
−∇

(
ρ0c

2
0∇ · ξ + ξ ·∇p0

)
+ (∇ · ξ + ξ ·∇)∇p0 = 0 (1)

où D
Dt est la dérivée convective par rapport à l’écoulement d’entraînement etρ0, c0, p0 désignent

respectivement la masse volumique du fluide parfait, la célérité du son et la pression statique dans le milieu
non perturbé.

Nous considérons un conduit rigide bidimensionnel, de largeurl et de longueur infinie. Le problème est
posé dans le planxy, où l’axex (respectivementy) est parallèle (respectivement orthogonal) aux parois du
conduit. L’écoulement est supposé subsonique, de vitesse uniformev0 dans la directionx. Nous supposons
la pression statique uniforme. Le régime est harmonique, de pulsationω (ω > 0), et une source acoustique
f (telle querotf = 0) est présente.

Le champ de déplacement Lagrangienξ vérifie alors :

ρ0
D2ξ

Dt2
− ρ0c

2
0∇(∇ · ξ) = f pourx ∈ R, 0< y < l (2)

ξ ·n = 0 pourx ∈ R, y = 0 ety = l

avec
1
c0

D
Dt

= −ik+M
∂

∂x

où k, le nombre d’onde (k = ω/c0), etM , le nombre de Mach (M = v0/c0, −1 <M < 1), ainsi que le
champf sont des données du problème (nous supposerons dans la suite queρ0 = 1 et c0 = 1).

Dans le casM = 0, l’équation (2) se réduit à :

−k2ξ −∇(∇ · ξ) = f pourx ∈ R, 0< y < l (3)
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Le champ de déplacement solution de (2) est irrotationnel (il suffit de prendre le rotationnel de l’équation).
Par conséquent,ξ est solution de l’équation de Helmholtz vectorielle :

−k2ξ −∆ξ = f (4)

en vertu de la relationrot(rotξ) − ∇(∇ · ξ) = −∆ξ. Nous retrouvons alors un cadre classique pour
l’analyse mathématique et la discrétisation du problème.

La prise en compte de cette propriété d’irrotationnalité de la solution dans le cas sans écoulement joue
donc un rôle essentiel dans la résolution numérique de l’équation. Nous montrons comment généraliser
cette approche au problème avec écoulement uniforme, en considérant successivement le cas pour lequel la
solution est irrotationnelle puis le cas rotationnel.

La résolution en conduit non borné pose des questions liées au comportement de la solution à l’infini
(condition de rayonnement notamment) qui n’entrent pas dans le cadre de cette note. C’est pourquoi nous
posons à présent le problème sur une portion du guide. Le domaine correspondant au conduit tronqué est
désigné parΩ = ]0,L[× ]0, l[.

Notre objectif est de montrer que l’on peut reconstituer la solution dansΩ à partir de données sur les
frontières artificielles (notéesΓ0 = {x= 0, 0< y < l} etΓL = {x= L, 0< y < l}) que nous préciserons
dans la suite.

2. Le cas irrotationnel

Dans le cas où la solution recherchée est irrotationnelle, le problème que nous étudions devient :

D2ξ

Dt2
−∇(∇ · ξ) = f dansΩ (5)

rotξ = 0 dansΩ (6)

ξ ·n donné sur∂Ω

Pourf = 0, il est possible de déterminer la solution par décomposition modale. Par linéarité, nous nous
ramenons alors au problème (5)–(6) avec la condition aux limites homogène :

ξ ·n = 0 sur∂Ω (7)

Nous introduisons l’équation de Galbrun ‘régularisée’ suivante :

D2ξ

Dt2
−∇(∇ · ξ) + s rot(rotξ) = f dansΩ (8)

où s est un réel positif. Nous complétons cette équation par la condition aux limites (7), ainsi qu’une
condition supplémentaire, nécessaire à l’équivalence avec le problème (5)–(7) :

ξ ·n = 0, rotξ = 0 sur ∂Ω (9)

L’idée à la base de la construction d’un problème « régularisé », initialement introduite et développée
pour les équations de Maxwell (voir, par exemple, [3] ou, plus récemment, [4]), est de faire apparaître
un opérateur elliptique dans l’équation. Dans le cadre d’une résolution numérique par éléments finis dans
un domaine convexe et régulier, cette méthode constitue une alternative à l’utilisation des éléments finis
d’arêtes [5] pour la discrétisation des champs électromagnétiques, puisqu’elle permet l’emploi d’éléments
finis standards de type Lagrange.

Nous allons maintenant montrer que le problème régularisé est bien posé et équivalent au problème de
départ.
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Nous considérons une fonction test régulièreη, telle queη · n = 0 sur ∂Ω , et supposons quef ∈
(L2(Ω))2. En multipliant (8) parη et en intégrant sur le domaineΩ , nous avons :

∫
Ω

(
−k2ξ − 2ikM

∂ξ

∂x
+M2 ∂

2ξ

∂x2
−∇(∇ · ξ) + s rot(rotξ)

)
· η dΩ =

∫
Ω

f · η dΩ

Après quelques intégrations par parties et l’utilisation des conditions aux limites, nous sommes conduits à
introduire le problème variationnel suivant :

Trouver ξ ∈ V =
{
u∈

(
H1(Ω)

)2 ∣∣ u ·n = 0 sur∂Ω
}

tel que ∀η ∈ V,∫
Ω

(
−k2ξ · η − 2ikM

∂ξ

∂x
· η −M2 ∂ξ

∂x
· ∂η

∂x
+ (∇ · ξ)(∇ · η) + s (rotξ)(rotη)

)
dΩ

=
∫
Ω

f · η dΩ (10)

Posons a(ξ,η) =
∫
Ω

(
ξ · η + (∇ · ξ)(∇ · η) + s (rotξ)(rotη)−M2 ∂ξ

∂x
· ∂η

∂x

)
dΩ

THÉORÈME 2.1. –Si s� 1, la forme bilinéairea est coercive surV .

Démonstration. –D’après Costabel (cf. [6], theorem 4.1, p. 539), pour toutξ deV , nous avons :

∫
Ω

(
|∇ · ξ|2 + s | rotξ|2

)
dΩ � min(1, s)

∫
Ω

(
|∇ · ξ|2 + | rotξ|2

)
dΩ = min(1, s)

∫
Ω

|∇ξ|2 dΩ

Le résultat s’en déduit carM2 < 1. ✷
THÉORÈME 2.2. –Si s� 1, le problème variationnel(10) relève de l’alternative de Fredholm.

Démonstration. –Le problème (10) peut s’écrire sous la forme :

a(ξ,η)−
∫
Ω

(
(k2 + 1)ξ + 2ikM

∂ξ

∂x

)
· η dΩ =

∫
Ω

f · η dΩ

Ainsi, la forme bilinéaire est la somme d’un terme coercif (d’après le théorème précédent) et d’un terme
compact (ce qui résulte de la compacité de l’injection deH1(Ω) dansL2(Ω)). ✷

Nous montrons maintenant l’équivalence entre la formulation variationnelle du problème régularisé et le
problème (5)–(7). Nous avons le

THÉORÈME 2.3. – Si rotf = 0 ets > s∗ =M2 + (k2/π2)(1/L2 + 1/l2)−1 alors toute solutionξ de(10)
est à rotationnel nul.

Démonstration. –Soitϕ ∈ {ϕ ∈H3(Ω) | ϕ= 0 sur∂Ω} et η = rotϕ. On vérifie aisément queη ∈ V .
En remplaçant dans la formulation variationnelle (10), nous obtenons :

∫
Ω

(
− k2ξ · rotϕ− 2ikM

∂ξ

∂x
· rotϕ−M2 ∂ξ

∂x
· ∂(rotϕ)

∂x
− s (rotξ)∆ϕ

)
dΩ =

∫
Ω

f · rotϕdΩ

Nous réalisons ensuite des intégrations par parties pour arriver à :

∫
Ω

rotξ

(
− k2ϕ+ 2ikM

∂ϕ

∂x
+M2 ∂

2ϕ

∂x2
− s∆ϕ

)
dΩ = 0
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Par un résultat de densité (cf. [7], théorème 1.6.2, p. 30), ce résultat est vrai pour toute fonctionϕ de
D= {ϕ ∈H2(Ω) | ϕ= 0 sur∂Ω}.

Le rotationnel deξ appartient donc à l’orthogonal dansL2(Ω) de l’image de l’opérateur :

Hk,M,s = −k2I + 2ikM
∂

∂x
+M2 ∂

2

∂x2
− s∆

de domaineD. Cet opérateur étant auto-adjoint,rotξ est dans le noyau deHk,M,s. Un calcul explicite par
séparation de variables permet finalement de montrer que ce noyau est réduit à{0}, sauf pour des valeurs
exceptionnelles des comprises entreM2 et s∗. ✷

La régularisation de la formulation variationnelle du problème par prise en compte, en un sens faible, de
la contrainte d’irrotationnalité permet de résoudre deux points sensibles. D’une part, le terme dépendant du
nombre de Mach de la forme bilinéairea est « contrôlé » et le problème est de type Fredholm sis > s∗.
D’autre part, cette régularisation permet une approximation par éléments finis nodaux conformes à l’espace
H1(Ω) et nous avons les résultats classiques de convergence.

3. Le cas rotationnel

Nous nous intéressons maintenant aux solutions à rotationnel non nul de l’équation (5). En prenant le
rotationnel de cette équation, on vérifie que :

−k2 rotξ − 2ikM
∂(rotξ)
∂x

+M2 ∂
2(rotξ)
∂x2

= 0 dansΩ (11)

Il est donc possible de déterminer analytiquementψ = rotξ, solution de l’équation différentielle (11),
à partir de sa donnée (supposée régulière) surΓ0 etΓL. Remarquons que la prise en compte d’une sourcef
à rotationnel non nul ne poserait pas de difficulté supplémentaire.

Nous introduisons le problème régularisé suivant :

D2ξ

Dt2
−∇(∇ · ξ) + s rot(rotξ −ψ) = f dansΩ (12)

muni des conditions aux limites (7) et :

rotξ = ψ|∂Ω sur∂Ω (13)

La formulation variationnelle du problème est identique à (10), excepté pour le second membre, qui
devient : ∫

Ω

(
f · η + sψ(rotη)

)
dΩ −

∫
{Γ0∪ΓL}

M2ψ(η · ey)(n · ex)dS

À nouveau, ce problème variationnel relève de l’alternative de Fredholm. Nous montrons son équivalence
avec le problème fort.

Soit ϕ ∈ {ϕ ∈ H3(Ω) | ϕ = 0 sur ∂Ω} et η = rotϕ. ψ étant solution de l’équation (11) pour le
rotationnel deξ, nous avons :

∫
Ω

ψ

(
− k2ϕ+ 2ikM

∂ϕ

∂x
+M2 ∂

2ϕ

∂x2

)
dΩ =

∫
{Γ0∪ΓL}

M2ψ
∂ϕ

∂x
(n · ex)dS (14)
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En procédant comme dans la preuve du théorème 2.3 et en utilisant (14), nous obtenons :

∫
Ω

(rotξ − ψ)(Hk,M,sϕ)dΩ = 0

Le résultat de densité précédemment cité permet de conclure que le champξ solution du problème
variationnel régularisé vérifierotξ = ψ.

4. Conclusion

En conclusion, nous avons obtenu pour le problème considéré (écoulement uniforme et domaine
rectangulaire) une formulation mathématique de l’équation de Galbrun qui se prête à une discrétisation
par éléments finis nodaux.

Notons qu’en présence d’écoulement, la donnée du déplacement normal sur le bord du domaine ne suffit
plus à la détermination deξ et doit être complétée par la donnée du rotationnel deξ sur les frontières
transverses à l’écoulement.

La généralisation de cette approche (autre géométrie ou écoulement non uniforme) soulève de nouvelles
difficultés :
– si le domaineΩ est à coins rentrants (en présence d’une plaque plane dans le conduit par exemple), la

formulation régularisée reste mathématiquement bien posée. En revanche, elle n’est plus équivalente au
problème initial car l’ensembleD n’est plus égal au domaine deHk,M,s ;

– dans le cas d’un écoulement non uniforme, un couplage existe entre les modes acoustiques (irrotation-
nels) et hydrodynamiques (rotationnels) et il n’est plus possible de déterminer a priorirotξ dans le
domaine.
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