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Résumé. Nous considérons I'équation de Galbrun, utilisée en acoustique linéaire dans les écoule-
ments. Dans un cas simple (conduit rigide avec écoulement uniforme) et en régime har-
monique établi, nous montrons qu’une approche basée sur une formulation variationnelle
régularisée du probléme permet d’assurer la convergence d’'une méthode d’'éléments finis
nodaux.d 2001 Académie des sciences/Editions scientifiques et médicales Elsevier SAS

acoustique / acoustique en écoulement / méthode variationnelle / régularisation

Mathematical analysis of Galbrun’s equation with uniform flow

Abstract. We consider Galbrun’s equation, used in linear aeroacoustics. For a simple case (rigid
duct with uniform flow) in the time harmonic regime, we show that an approach based on
a regularized variational formulation of the problem ensures the convergence of a nodal
finite-element methodl 2001 Académie des sciences/Editions scientifiques et médicales
Elsevier SAS

acoustics / aeroacoustics / variational method / regularization

Abridged English version

Galbrun’s equation (1) is a linear vector wave equation based on the Lagrangian displacementgariable
[1,2].

The problem is a two-dimensional one, set in theplane. A rigid duct of widthl and infinite length,
which walls are parallel to the axis, is considered. We suppose that the flow is subsonic and uniform, in
the directionz, the static pressung, is uniform, the time regime is harmonie(“* with pulsationw > 0)
and an acoustic sourgi(such thatot f = 0) is present. The displacemefits then a solution to (2).

As solving a problem set in an unbounded domain requires to model the asymptotic behavior of the
solution at infinity (by means of a radiation condition for instance) that would be beyond the scope of
this note, we consider the domafh= 10, L[ x ]0,![. Galbrun’s equation (2) then resumes to (5), where
% = —ik + M%, with k£ the wave numberk = w/cy, wherec, denotes the sound celerity in the
undisturbed mediumy, = 1) andM the Mach numberX/ = vy /co, —1 < M < 1).

In the non-flow case (equation (3)), the solution is irrotational (el £ = 0) and hence satisfies the
vector Helmholtz equation (4). This leads to the introduction of a so-called ‘regularized’ formulation for
Galbrun’s equation with uniform flow.
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In the irrotational case, the ‘classical’ problem (5)—(7) is replaced by an equivalent ‘regularized’ one,
composed of equation (8) and additional boundary conditions (9). We prove this new formulation leads
to a well-posed variational problem (of the Fredholm type) in a closed subspade( H'(£2))?. As a
consequence, the use of standard Lagrange nodal elements to compute a numerical solution by means of
a finite element method is allowed.

For the rotational case, we first notice the rotational of the displacement verifies a second-order
differential equation, which can be solvedcifrl € is given on the artificial boundaries of the domain
The ‘regularized’ formulation introduced before is then used to impose, in a weak sense, the valtié of
in the variational formulation of the problem. Once again, we prove the problem is well-poged in

We conclude this paper with some limitations of the method in the case of a nonconvex domain (while the
regularized problem is still well-posed, it is no longer equivalent to the initial one) or with nonuniform flow
(in which a coupling between acoustic, i.e. irrotational, and hydrodynamic, i.e. rotational, modes occurs
and therefore prevents us from determinémgl € a priori in £2).

1. L'équation de Galbrun

L'équation de Galbrun [1,2] est une équation linéaire de propagation des ondes portant sur le vecteur
déplacement Lagrangiey;, plus précisemeng représente le déplacement d’'une particule fluide dans un
écoulement perturbé par rapport a sa position dans le méme écoulement non perturbé (dit écoulement
d’entrainement) et s'exprime en fonction des coordonf#g (représentation mixte Euler—Lagrange).

En I'absence de source de volume ou de force extérieure, cette équation s’écrit :

2
poo s V(Y €+ € Vo) +(V-E+E V) Vpy =0 @
ou % est la dérivée convective par rapport a I'écoulement d’entrainemepg,ety, po désignent
respectivement la masse volumique du fluide parfait, la célérité du son et la pression statique dans le milieu
non perturbé.

Nous considérons un conduit rigide bidimensionnel, de largetide longueur infinie. Le probléme est
posé dans le plany, ol I'axex (respectivemeny) est paralléle (respectivement orthogonal) aux parois du
conduit. L'écoulement est supposé subsonique, de vitesse unifgrdams la direction:. Nous supposons
la pression statique uniforme. Le régime est harmonique, de pulsation> 0), et une source acoustique
f (telle querot f = 0) est présente.

Le champ de déplacement Lagrangfevérifie alors :

2

£
POW—poC(QJV(V-E)zf pourz €R, 0 <y <l )

E-n=0 pourzeR, y=0ety=I
1D 0
aveC —— =—-ik+M—
co Dt 1t ox
ou k, le nombre d’ondek = w/c), et M, le nombre de Mach¥ = vg/co, —1 < M < 1), ainsi que le
champyf sont des données du probléme (nous supposerons dans la syite-gquiestcy = 1).
Dans le cas\/ =0, I'équation (2) se réduita :

—k*6-V(V-€&)=f pourzcR, 0<y<l (3)
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Le champ de déplacement solution de (2) est irrotationnel (il suffit de prendre le rotationnel de I'équation).
Par conséqueng, est solution de I'équation de Helmholtz vectorielle :

K- AE=f (4)

en vertu de la relatiomot(rot &) — V(V - £) = —A&. Nous retrouvons alors un cadre classique pour
I'analyse mathématique et la discrétisation du probléme.

La prise en compte de cette propriété d'irrotationnalité de la solution dans le cas sans écoulement joue
donc un rdle essentiel dans la résolution numérique de I'équation. Nous montrons comment généraliser
cette approche au probléme avec écoulement uniforme, en considérant successivement le cas pour lequel [
solution est irrotationnelle puis le cas rotationnel.

La résolution en conduit non borné pose des questions liées au comportement de la solution a l'infini
(condition de rayonnement notamment) qui n’entrent pas dans le cadre de cette note. C'est pourquoi nous
posons a présent le probléme sur une portion du guide. Le domaine correspondant au conduit tronqué est
désigné par? =)0, L[ x ]0,].

Notre objectif est de montrer que I'on peut reconstituer la solution daaspartir de données sur les
frontiéres artificielles (notéefy = {x =0, 0 <y < i} etl', ={x =L, 0 <y <I}) que nous préciserons
dans la suite.

2. Le cas irrotationnel

Dans le cas ou la solution recherchée est irrotationnelle, le probléeme que nous étudions devient :

D2¢ B
D V(V-&=f dansf2 (5)
rot& =0 dans{? (6)

£ -n donnésup!?

Pour f = 0, il est possible de déterminer la solution par décomposition modale. Par linéarité, nous nous
ramenons alors au probleme (5)—(6) avec la condition aux limites homogéne :

& n=0 surdf? (7
Nous introduisons I'équation de Galbrun ‘régularisée’ suivante :

D2

D—tf —V(V-€) +srot(rot&) = f dansf? (8)
ou s est un réel positif. Nous complétons cette équation par la condition aux limites (7), ainsi qu'une
condition supplémentaire, nécessaire a I'équivalence avec le probléme (5)—(7) :

E-n=0, rot€=0 surdf? 9)

L'idée a la base de la construction d’'un probléeme «régularisé », initialement introduite et développée
pour les équations de Maxwell (voir, par exemple, [3] ou, plus récemment, [4]), est de faire apparaitre
un opérateur elliptique dans I'équation. Dans le cadre d’'une résolution numérique par éléments finis dans
un domaine convexe et régulier, cette méthode constitue une alternative a I'utilisation des éléments finis
d’'arétes [5] pour la discrétisation des champs électromagnétiques, puisqu’elle permet I'emploi d’éléments
finis standards de type Lagrange.

Nous allons maintenant montrer que le probléme régularisé est bien posé et équivalent au probléme de
départ.

603



A.-S. Bonnet-Ben Dhia et al.

Nous considérons une fonction test réguligretelle quen - n = 0 sur 942, et supposons qug €
(L?(£2))2. En multipliant (8) pam et en intégrant sur le domairfg nous avons :

/(—k2€—2kM%+M2—€—V(V £)+srot(r0t€)) nde= [ f-ndl
o Ox2 2

Aprés quelques intégrations par parties et 'utilisation des conditions aux limites, nous sommes conduits a
introduire le probléme variationnel suivant :

Trouver €€V ={ue (H'(2) 2|u-n=03ur8()} tel que Yn eV,

0 o0& on
/( k3¢ - _—2l<:M8—€ n—M28—§'a—z—|—(V-£)(V~ﬁ)—|—s(rot§)(rotﬁ)>dQ

/ fomde (10)

o0& 0m
Posons a(€,n) :/ <§'ﬁ+ (V-6)(V -7m) + s(rot€)(rot ) — ]\/‘[2_£ . _77> an
0] Ooxr Ox
THEOREME 2.1. -Sis > 1, la forme bilinéairea est coercive suV.

Démonstration. -D’aprés Costabel (cf. [6], theorem 4.1, p. 539), pour $de V', nous avons :
/ (V& + s|rot &) d2 > min(l,s)/ (V&P + |rot€f*) d2 =min(1,s) [ |VE[7dR2
2 2 2

Le résultat s'en déduitcav/2 < 1. O
THEOREME 2.2.-Sis > 1, le probléme variationndl10) reléve de l'alternative de Fredholm.

Démonstration. e probléme (10) peut s'écrire sous la forme :

0
a(iﬂ”l)—/g ((k2+1)£+2ikM£) mdN2 = Qf.ﬁdg

Ainsi, la forme bilinéaire est la somme d’un terme coercif (d'apres le théoréme précédent) et d’'un terme
compact (ce qui résulte de la compacité de I'injectionttle 2) dansL?(2)). O

Nous montrons maintenant I'équivalence entre la formulation variationnelle du probléme régularisé et le
probleme (5)—(7). Nous avons le

THEOREME 2.3.—Sirot f =0ets > s* = M2+ (k?/7?)(1/L? + 1/1?)~! alors toute solutiorg de(10)
est a rotationnel nul.

Démonstration. -Soit p € {p € H3(2) | ¢ = 0 surdN2} etn = rot . On vérifie aisément qug e V.
En remplacant dans la formulation variationnelle (10), nous obtenons :

0§ 0O(rotp)

%3
2 _ — 2
/Q( k“€ -rotp 21kM8 ‘rotp— M 9% 02

s(rot&)A@) dQ:/ f-rotpd
0

Nous réalisons ensuite des intégrations par parties pour arriver a :
0p ,0%p
/ rots( kg + 21kM8 + M? o f sA@) dN =0
2
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Par un résultat de densité (cf. [7], théoréme 1.6.2, p. 30), ce résultat est vrai pour toute fendgon
D={pe H*(2)]| p=0surofN}.
Le rotationnel de¢ appartient donc a I'orthogonal dang(2) de I'image de I'opérateur :

2 0 5 07
Hinr,s = =K1+ 2ikM — + M? — — s A
o Ox Dz?

de domaineD. Cet opérateur étant auto-adjoindt £ est dans le noyau d¥}, »r,s. Un calcul explicite par
séparation de variables permet finalement de montrer que ce noyau est ffidyisauf pour des valeurs
exceptionnelles de comprises entrd/? ets*. O

La régularisation de la formulation variationnelle du probleme par prise en compte, en un sens faible, de
la contrainte d'irrotationnalité permet de résoudre deux points sensibles. D’une part, le terme dépendant du
nombre de Mach de la forme bilinéaiteest « contr6lé » et le probléme est de type Fredholmsis*.

D’autre part, cette régularisation permet une approximation par éléments finis nodaux conformes a I'espace
H(£2) et nous avons les résultats classiques de convergence.

3. Le cas rotationnel

Nous nous intéressons maintenant aux solutions a rotationnel non nul de I'équation (5). En prenant le
rotationnel de cette équation, on vérifie que :

d(rot &) e D2 (rot €)

2 .
—k“rot & — 2ikM o 922

=0 dansf? (12)
Il est donc possible de déterminer analytiquement rot £, solution de I'équation différentielle (11),
a partir de sa donnée (supposée réguliereJ st I'; . Remarquons que la prise en compte d’une sogirce
a rotationnel non nul ne poserait pas de difficulté supplémentaire.

Nous introduisons le probleme régularisé suivant :

D2¢
Yl —V(V-&) +srot(rot& —¢)=f dansf? (12)

muni des conditions aux limites (7) et :
roté =Ylgn surdf? (13)

La formulation variationnelle du probléme est identique a (10), excepté pour le second membre, qui
devient:

/ (f-ﬁ+sw(rotﬁ))d!2—/ M*)(7 - ey)(n - eg)dS
2 {

F()UFL}

A nouveau, ce probléme variationnel reléve de l'alternative de Fredholm. Nous montrons son équivalence
avec le probléme fort.

Soit p € {p € H3(2) | ¢ = 0 sur 92} et n = roty. ¢ étant solution de I'équation (11) pour le
rotationnel de, nous avons :

/w( k2¢+21kMg +M2(3 2‘)drz / M%Z‘p(n ee)dS (14)
1) T {roury} €T
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En procédant comme dans la preuve du théoréme 2.3 et en utilisant (14), nous obtenons :

/ (rot& — ) (Hi,n,s@)d2=0
%)

Le résultat de densité précédemment cité permet de conclure que le ¢haoiption du probleme
variationnel régularisé vérifimt £ = .

4. Conclusion

En conclusion, nous avons obtenu pour le probléme considéré (écoulement uniforme et domaine
rectangulaire) une formulation mathématique de I'équation de Galbrun qui se préte a une discrétisation
par éléments finis nodaux.

Notons qu’en présence d’écoulement, la donnée du déplacement normal sur le bord du domaine ne suffit
plus a la détermination d¢ et doit étre complétée par la donnée du rotationnef dair les frontiéres
transverses a I'écoulement.

La généralisation de cette approche (autre géométrie ou écoulement non uniforme) souléve de nouvelles
difficultés :

— si le domaineg? est a coins rentrants (en présence d'une plaque plane dans le conduit par exemple), la
formulation régularisée reste mathématiquement bien posée. En revanche, elle n’est plus équivalente au
probléme initial car I'ensembl® n’est plus égal au domaine @é; as s ;

— dans le cas d'un écoulement non uniforme, un couplage existe entre les modes acoustiques (irrotation-
nels) et hydrodynamiques (rotationnels) et il n'est plus possible de déterminer arptigrdans le
domaine.
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