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Quantum Many-Body Systems

Hamiltonian of N identical spinless particles on [0,27]3 with periodic boundary conditions

N
Hy:=> (-A)+ > V(i—x) with V:RP>R
i=1 1<i<j<N

on the bosonic Hilbert space

L2 n(T) = {4 € LT | 9 (x(1), %), ) = U(x1,%,...) Vo € Sn}
or on the fermionic Hilbert space

L2
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What is the ground state energy

Eyn := ”di}r|1|£1<1/1, Hnv) = infspec(Hy) ?

Defining the two- and one-particle reduced density matrices (r.d. m.)

(2) . Nt

! 1
T (N2

N—-1

traa.nlY) @], A= try 72

we always have

1
(Y, Hytp) = tr (—A7(1)> +5 // V(x1 — x2)v ) (x1, x2; x1, x2) dxydxa .



Ground State Energy

What is the ground state energy

Ey = ||zipr\]\£1<w’ Hnw) = inf spec(Hp) ?

Defining the two- and one-particle reduced density matrices (r.d. m.)

1
Y= =2 tr3a. n[Y) (Y], ¥ = N1 ¥,

we always have

1
(¢, Hyab) = tr (—Av(l)) + 5 // V(x1 — )7 (x1, x0; x1, x2) dxydxa .

So we simply minimize over 4(2)? Unfortunately not: the set of all two-particle reduced density
matrices is hard to characterize: N-representability problem.
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Bosons




The way out: restrict to specific physical regimes.

Simplest: high density & weak interaction, s. th. we expect approximate mean-field behaviour:

HMf = Z( Aj) + — Z V(xi — xj), particle number N — co.
1<I<J<N



Bosonic Mean-Field Limit

The way out: restrict to specific physical regimes.

Simplest: high density & weak interaction, s. th. we expect approximate mean-field behaviour:
N

Hmf — Z (—A) + Z V(xi — xj), particle number N — co.
i=1 I<i<j<N

1

As N — oo, the set of two-particle r.d. m. is characterized by Quantum de-Finetti theorem:

N — k)!
(Nl)fy(k) — /|u®k><u®k\du(u) factorized, no quantum correlations.
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Bosonic Mean-Field Limit

The way out: restrict to specific physical regimes.
Simplest: high density & weak interaction, s. th. we expect approximate mean-field behaviour:
N 1
HYf = > (—A)+ N > V(xi—x;), particle number N — co.
i=1 1<i<j<N

As N — oo, the set of two-particle r.d. m. is characterized by Quantum de-Finetti theorem:

N — k)!
(/\/l)fy(k) — /|u®k><u®k\du(u) factorized, no quantum correlations.

Implies convergence to Hartree functional [Lewin—-Nam—Rougerie '13, ...]
EXf 5 N inf /|VU )2dx + /| — )u(y)Pdxdy | = N EMartree
ueL2 (R3)
llull=1
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Next order correction: due to quantum correlations!

E/r\'r[\f N EHartree + 0(1) )



Next order correction: due to quantum correlations!
E,r\1[1f N EHartree + 0(1) )

Bogoliubov theory [Grech—Seiringer '13, Pizzo '15]:

Epf - N EHa“fee—% > [p2 + V(p) — \/p* + 2p? \“/(p)] +O(NH?),

pEZ3




Correlation Corrections to the Hartree Functional

Next order correction: due to quantum correlations!
Elr\r;f N EHartree + O(l) )

Bogoliubov theory [Grech—Seiringer '13, Pizzo '15]:
1 N N
E,r\?f—) NEHartreei5 Z {p2 + V(p) _ P4+2P2V(P):| +O(N_1/2)
pEZ3

Remark: In thermodynamic limit the correlation energy is given by Lee-Huang—Yang formula

E(p) — 4mpa |1+ W( )1/2 + .. } , a = scattering length of V', p = density

[Yau=Yin '09], [Giuliani-Seiringer '09], [Boccato—Brennecke—Cenatiempo—Schlein '18],
[Brietzke—Solovej '19], [Brietzke—Fournais—Solovej '19], [Fournais—Solovej '19]

Niels Benedikter Bosonization in the Fermi Gas 5/21



Fermions




Fermions have high kinetic energy (Fermi energy), to be tamed down in mean-field scaling

N
1 .
AN = 2 (-rai) + 1<Z. L Vli—x), =N
1= <i<j<N



Fermions have high kinetic energy (Fermi energy), to be tamed down in mean-field scaling

N
1
H =3 () gy 3 Vi) =N
i= <i<j<N

No Quantum de-Finetti theorem — set of two-particle r.d. m. is complicated [Klyachko '06].



Fermionic Mean-Field Regime

Fermions have high kinetic energy (Fermi energy), to be tamed down in mean-field scaling
N 1
HR' =" (—n2ay) + o Vlei—x).  h=NT
i=1 1<i<j<N
No Quantum de-Finetti theorem — set of two-particle r.d. m. is complicated [Klyachko '06].

Special correlation estimate implies convergence to Hartree—Fock functional [Graf-Solovej '94]:

ST U D [flte i) -
z—wI:nL2(']I‘3) r(—Aw) X, xX)V(x=y)w(y,y lw(x, y)|“V(x — y)}

trw=N
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Fermionic Mean-Field Regime

Fermions have high kinetic energy (Fermi energy), to be tamed down in mean-field scaling
N 1
HR' =" (—n2ay) + o Vlei—x).  h=NT
i=1 1<i<j<N
No Quantum de-Finetti theorem — set of two-particle r.d. m. is complicated [Klyachko '06].

Special correlation estimate implies convergence to Hartree—Fock functional [Graf-Solovej '94]:

ST U D [flte i) -
z—wI:nLZ(T3) r(—Aw) X, xX)V(x=y)w(y,y lw(x, y)|“V(x — y)}

trw=N

[Wigner '34]: What is the next order, due to quantum correlations? J
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The Gell-Mann—Brueckner Formula

Originally jellium model considered: no scaling of couplings, Coulomb interaction,
thermodynamic limit, and density p — oo.

The solution [Macke '50], [Bohm—Pines '53], [Gell-Mann—-Brueckner '57], [Sawada—Brueckner—
Fukuda—Brout '57] also explained screening and collective plasmon oscillations.

Random Phase Approximation

Eiium (p) = Crep®/® — Cpp*/® + Capplog(p) + Capp +0(p)  as p— .

Hartree-Fock energy correlation energy
of Fermi ball
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The Gell-Mann—Brueckner Formula

Originally jellium model considered: no scaling of couplings, Coulomb interaction,
thermodynamic limit, and density p — oo.

The solution [Macke '50], [Bohm—Pines '53], [Gell-Mann—-Brueckner '57], [Sawada—Brueckner—
Fukuda—Brout '57] also explained screening and collective plasmon oscillations.

Random Phase Approximation

Eiium (p) = Crep®/® — Cpp*/® + Capplog(p) + Capp +0(p)  as p— .

Hartree-Fock energy
of Fermi ball

correlation energy

Mean-field scaling with regular interaction is slightly different:
mf _ HF BP GB,1 GB,2
ENy'=Ey  +E° +E + E :
~N-1/3 ~ N—2/3
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The random phase approximation of Gell-Mann and Brueckner:

Notice: For Coulomb interaction, high orders are badly IR divergent,

V(k)" ~ |k|72" for k = 0.



How did Gell-Mann and Brueckner calculate the correlation energy?
The random phase approximation of Gell-Mann and Brueckner:
Notice: For Coulomb interaction, high orders are badly IR divergent,
V(k)" ~ |k|=2" for k — 0.

Collect the most divergent term from each order of perturbation theory, finding

2 3

- X% x
ith x ~ V(k): — =+ —=+...=
with x (k) X 2+3+
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How did Gell-Mann and Brueckner calculate the correlation energy?

The random phase approximation of Gell-Mann and Brueckner:

Notice: For Coulomb interaction, high orders are badly IR divergent,
V(k)" ~ |k|=2" for k — 0.

Collect the most divergent term from each order of perturbation theory, finding

x2 X3

with x ~ V(k) x—7+?+...zlog(1+x).

Resummation of all orders of perturbation theory ~» regularization to log—divergence.
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How did Gell-Mann and Brueckner calculate the correlation energy?

The random phase approximation of Gell-Mann and Brueckner:

Notice: For Coulomb interaction, high orders are badly IR divergent,
V(k)" ~ |k|=2" for k — 0.

Collect the most divergent term from each order of perturbation theory, finding

x2 X3

with x ~ V(k) X—7+?+...:Iog(1+x).

Resummation of all orders of perturbation theory ~» regularization to log—divergence.

keZ3

EBP 4 ESBI =1 Y |k| [/ log (1 + V(k)(1 — varctanv=) ) dv — i\“/(k)} ’

Niels Benedikter Bosonization in the Fermi Gas 8/21



How did Gell-Mann and Brueckner calculate the correlation energy?

The random phase approximation of Gell-Mann and Brueckner:

Notice: For Coulomb interaction, high orders are badly IR divergent,
V(k)" ~ |k|=2" for k — 0.

Collect the most divergent term from each order of perturbation theory, finding

x2 X3

with x ~ V(k) X—7+?+...:Iog(1+x).

Resummation of all orders of perturbation theory ~» regularization to log—divergence.

keZ3

EBP 4 ESBI =1 Y |k| [/ log (1 + V(k)(1 — varctanv=) ) dv — i\“/(k)} ’

EGB,2

Remark: is much simpler, just second-order perturbation of exchange type.
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Our Result:
Gell-Mann—Brueckner
Formula as Upper Bound




Upper Bound on Correlation Energy

Theorem: [B-Nam-Porta-Schlein-Seiringer, arXiv:1809.01902]

Let \7(k) be non-negative and compactly supported. Then

ER < ENF + EBP 4+ ECBL + O(RN-Y?T).

Niels Benedikter Bosonization in the Fermi Gas 9/21



Upper Bound on Correlation Energy

Theorem: [B-Nam-Porta-Schlein-Seiringer, arXiv:1809.01902]

Let (k) be non-negative and compactly supported. Then

ER' < ERF + EBP + ECBT 4 O(hNTY/?T).

Remarks:
m [Hainzl-Porta-Rexze '18]: perturbative upper and lower bound to second order in V.

m We use a trial state which in principle also captures EB2, but in the mean-field scaling
this contribution is too small to be seen.
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Preparation: Extracting the
Hartree—Fock Energy




Hamiltonian in momentum representation, written with fermionic canonical operators:

HYf = h2 Z |k|2a}ay + — Z V(k)aq+ka _kasaq, h=N"Y3
kez3 q,s kez3



Extracting the Hartree—Fock Energy

Hamiltonian in momentum representation, written with fermionic canonical operators:

2 2 * _ n-1/3
= Z|k\ akakJr— Z V(k )3g+k3s—k3sdq » h=N"Y
kez3 q,s,keZ3

Introduce the Slater determinant of N plane waves in the Fermi ball

A e, Br:={kez?| |k < N'3(3/4m)"} .
keBE

[Gontier—Hainzl-Lewin '18]: plane waves are very close to optimal Slater determinant:

(W, HRfwy) = ESF 4 0N .
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Extracting the Hartree—Fock Energy

Hamiltonian in momentum representation, written with fermionic canonical operators:

1 N
HR' =12 > kPajax + N S V(k)aieai_rasaq,  h=NT3
kez3 q,s,keZ3

Introduce the Slater determinant of N plane waves in the Fermi ball

Wy = /\ s Br = {k€Z3| \k|§N1/3(3/47T)1/3} s
keBE

[Gontier—Hainzl-Lewin '18]: plane waves are very close to optimal Slater determinant:

(W, HRfwy) = ESF 4 0N .

Goal: find Wy s.th. (U, HITWy) = ENF + EBP 4 ECBL 4 o(N1/3).
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Define the unitary map R on fermionic Fock space by

) k € Br
RQ:=Wy= \ &, RajR* :={
kél\gF k { ay  keBg



Particle-Hole Transformation

Define the unitary map R on fermionic Fock space by

RQ = \UN = /\ eikx, Rai,‘:\y‘< = ai k < Bf
KB, ay k € B

Write Wy = R¢. Calculate R*HJIR to get

(U, HY ) = ENF + (¢, <h2 N pPaja, — 02> Kajay + Q)£> +O(N™Y)
pEBE heBe

—- Hkin
where @ is quartic in fermionic operators. Notice: (H" + Q)Q = 0.

Our task: construct a correlated trial state . )
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Adding Correlations using
Bosonization




The dominant part Q of the interaction can be expressed through collective pair operators

* o * ok
bk = Z 5p_h,kapah
peEBE
heBr

as a quadratic Hamiltonian

1 o
Q=5 > V(k) (2bfbe + bib™ + b_ib) .
kez3



Collective Particle-Hole Pairs

The dominant part @ of the interaction can be expressed through collective pair operators

X _ %k
= Z Op—h,kapah

pEBE
heBE

as a quadratic Hamiltonian

Z V(k) (2bp by + bpb*  + b_yby)
keZ3

Idea: [ajaj, azaz] = 0, pairs of fermions as bosons? The bad news:

2
(aZaf,) =0 (Pauli principle!).
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Collective Particle-Hole Pairs

The dominant part @ of the interaction can be expressed through collective pair operators

X _ %k
= Z Op—h,kapah

pEBE
heBE

as a quadratic Hamiltonian

Z V(k) (2bp by + bpb*  + b_yby)
keZ3

Idea: [ajaj, azaz] = 0, pairs of fermions as bosons? The bad news:

(aZaf,) =0 (Pauli principle!).

The good news: by are approximately bosonic if we use the delocalization:

2
In <Z af,+kaf,> only the n diagonal summands out of all n* summands vanish.
h
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Localize to M = M(N) patches near the Fermi surface,

Fermi ball Bg L Z

* I

ok T
Mok peBrnBa
pEBENB,

k %k
6P—hykapah

where n, = \/#p-h pairs in patch o with momentum k.




Localize to M = M(N) patches near the Fermi surface,

. 1
Fermi ball Bg :;,k T pp— Z 6,,_;,7;(3;37,
Mo, k heBeN B,
pEB NBa

where n, = \/#p-h pairs in patch o with momentum k.
Linearize kinetic energy around patch centers wq;:
HY" % Q ~ 2R |k - &a| b Q.
N——
=: ug(k)?

By comparison to harmonic oscillator:

HA™ o N N " 2hu (k)b i bak -

kez? «
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Effective Hamiltonian

Normalization constant = number of available modes
li
1

k ”<21,k = #p-h pairs in patch o with momentum k
// 4 N?/3 4 N2/3
! ) = |k - Gal = a(k)2
K ) M M
/ // In the quadratic Hamiltonian @, decompose

by = Z Na Kby, i + lower order .
«
!

v

HefF =h Z Zua(k)2ba7kba,k+lfﬂ)z (ua(k)uﬁ(k)ba,kbﬁ,k + Uoc(k)uﬁ(_k)ba,kbﬁ,k—i_h'c')
kez3 L @ a,B

Niels Benedikter
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Heuristics: Bosonic Approximation

For this slide only: Assume b}, ,, b, i are exactly bosonic operators.

Then the ground state of H*® is given by a Bogoliubov transformation:

and

fes=TQ, T =exp (Z > K(K)a,sbl kbl k — h.c.)

kezZ3 o,

K (k) is an almost explicit M x M-matrix

(Egs, H€gs) — EBP 4 ECBI as M — co.

To get a rigorous upper bound for the fermionic system:
Use (1) to define a trial state in fermionic Fock space.
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Rigorous Analysis J




Convergence to Bosonic Approximation

Lemma: We have approximately bosonic commutators:
(B kb5 = 0= [bakr bg ] and  [Bak, b1 = 6o (ks + Ealk, ) ,

where the operator £,(k, /) is bounded by

2

IEalk, N < p N (N = fermionic number operator)
a,l

Neyk

for all ¢ in fermionic Fock space.
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Approximate Bogoliubov Transformations

Proposition: With K (k) from the bosonic approximation, let in fermionic Fock space

Ty :=exp (AB), B:= Z Z K(K)a,3b% kbs _x — h.c.
kez3 a,f

Then Ty acts as an approximate Bogoliubov transformation on b% , and b, k., i.e.,

M M
TxbaxTan =) cosh(AK(k))asbs i+ D sinh(AK(k))a,zb5 _k + Cak
B=1 B=1

where the error is bounded by

1/2
< %H(NJF 2)3/2Ty9||  for all ¢ in fermionic Fock space.

ming m, 4

[Z €0l

Niels Benedikter Bosonization in the Fermi Gas 17 /21



Bound on N\

Lemma: The particle number on our trial state
f = T)\Zlﬂ

is bounded by
(€, (N +1)%¢) < C independent of N .

Conclusion: We introduce a cutoff excluding patches with u,(k)? < N79;
thus the error terms are small,

2)3 C M
<£,(J_\f+2)4$>§Nz/3 < Coaaris s
ming ng N ua(k)? N2/SN

€rrors ~

~» bosonic approximation is self-consistent for M(N) < N?/379,
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Linearization Error

Lemma: The kinetic energy can be linearized as HXI" = Hlinear ¢ where

M
Hlmear:hz Z |p'(«l‘>a|a;ap_ Z |h.d)a|a;ah

a=1 L peBENBy heBENB,

and the error operator € is small compared to & = N=/3 if M(N) > N/3; namely

|(, €Y)| < %(¢,N¢) for all ¢ in fermionic Fock space.
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Linearization Error

Lemma: The kinetic energy can be linearized as HXI" = Hlinear ¢ where

M
Hlmear:hz Z |p'(«l‘>a|a;ap_ Z |h.d)a|a;ah

a=1 L peBENBy heBENB,

and the error operator € is small compared to & = N=/3 if M(N) > N/3; namely

|(, €Y)| < %(¢,N¢) for all ¢ in fermionic Fock space.

\.

Lemma: We have i
[Hllnear7 b:’;,k] = 2h|k N d}a|bt)§l,k '

in this (and only this) sense H'"ea ~ 3~ /33~ 2hua(k)2b;7kba7k.
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Proof: We just have to calculate (R¢, H,'\',‘ng) ~(Q, T34 (H“"ea' + Q) Th=19Q).

m The interaction part Q is quadratic in b* and b;
just calculate the action of the approximate Bogoliubov transformation.



Proof of Main Theorem
Proof: We just have to calculate (R¢, H,’(,‘fR@ ~(Q, T, (H“”eaIr + Q) Th=1Q).

m The interaction part @ is quadratic in b* and b;
just calculate the action of the approximate Bogoliubov transformation.

m The linearized kinetic energy H'"®" is not quadratic in b* and b;
expand into commutators by applying once the Duhamel formula

€.y = [, Ti[H BITA) 0
0

1 .
:/ QT35 S ST K(K)a sl H™™ b7 b5y — h.c] TAQ) dA
0 keZ3 o,

1
:/0 (.75 S ST K(K)a 20|k -Gl + [k - @] ) B b5, TaQ) + c.c.
keZ? a,B

and T{b7 , T is given by the approximate Bogoliubov transformation.
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QED



m Corresponding lower bound — gapless system!

m Coulomb interaction and the plasmon:
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m Corresponding lower bound — gapless system!

m Coulomb interaction and the plasmon:
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